Powered by Deep Web Technologies
Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Metal organic chemical vapor deposition of 111-v compounds on silicon  

DOE Patents (OSTI)

Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

Vernon, Stanley M. (Wellesley, MA)

1986-01-01T23:59:59.000Z

2

A Chemical Study of Oils and Fats of Animal OriginChapter 1 Definitions of Concepts and Description of the Elemental Analysis of Organic Compounds  

Science Conference Proceedings (OSTI)

A Chemical Study of Oils and Fats of Animal Origin Chapter 1 Definitions of Concepts and Description of the Elemental Analysis of Organic Compounds Food Science eChapters Food Science & Technology Press Downloadable pdf...

3

Devices for collecting chemical compounds  

SciTech Connect

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

4

Volatile organic compound sensing devices  

DOE Patents (OSTI)

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

Lancaster, Gregory D. (Idaho Falls, ID); Moore, Glenn A. (Idaho Falls, ID); Stone, Mark L. (Idaho Falls, ID); Reagen, William K. (Stillwater, MN)

1995-01-01T23:59:59.000Z

5

Volatile organic compound sensing devices  

DOE Patents (OSTI)

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

1995-08-29T23:59:59.000Z

6

Volatile organic compound sensing devices  

DOE Patents (OSTI)

Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Regen, W.K.

1993-12-31T23:59:59.000Z

7

Volatile organic compound emissions from composting.  

E-Print Network (OSTI)

??This paper is a review of the aerobic composting process and the emissions of volatile organic compounds (VOCs) from this process. To understand why and… (more)

Harris, Stephanie Rose Renée

2013-01-01T23:59:59.000Z

8

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1993-09-07T23:59:59.000Z

9

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1994-06-14T23:59:59.000Z

10

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

Smith, L.A. Jr.

1989-07-18T23:59:59.000Z

11

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01T23:59:59.000Z

12

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1994-01-01T23:59:59.000Z

13

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

Smith, Jr., Lawrence A. (Houston, TX)

1989-01-01T23:59:59.000Z

14

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

1993-01-05T23:59:59.000Z

15

Alkylation of organic aromatic compounds  

DOE Patents (OSTI)

Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

Smith, Jr., Lawrence A. (Bellaire, TX); Arganbright, Robert P. (Seabrook, TX); Hearn, Dennis (Houston, TX)

1993-01-01T23:59:59.000Z

16

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

1987-01-01T23:59:59.000Z

17

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14T23:59:59.000Z

18

Energy-efficient indoor volatile organic compound air cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficient indoor volatile organic compound air cleaning using activated carbon fiber media with nightly regeneration Title Energy-efficient indoor volatile organic compound...

19

Organic photosensitive devices using subphthalocyanine compounds  

DOE Patents (OSTI)

An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

Rand, Barry (Princeton, NJ); Forrest, Stephen R. (Ann Arbor, MI); Mutolo, Kristin L. (Hollywood, CA); Mayo, Elizabeth (Alhambra, CA); Thompson, Mark E. (Anaheim Hills, CA)

2011-07-05T23:59:59.000Z

20

The Periodic Table as a Part of the Periodic Table of Chemical Compounds  

E-Print Network (OSTI)

The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

Labushev, Mikhail M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Device for collecting chemical compounds and related methods  

SciTech Connect

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

2013-01-01T23:59:59.000Z

22

Palladium catalyzed hydrogenation of bio-oils and organic compounds  

DOE Patents (OSTI)

The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

2011-06-07T23:59:59.000Z

23

Palladium catalyzed hydrogenation of bio-oils and organic compounds  

DOE Patents (OSTI)

The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

Elliott, Douglas C. (Richland, WA); Hu, Jianli (Kennewick, WA); Hart, Todd R. (Kennewick, WA); Neuenschwander, Gary G. (Burbank, WA)

2008-09-16T23:59:59.000Z

24

IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS  

DOE Patents (OSTI)

A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

Allen, A.O.; Caffrey, J.M. Jr.

1960-10-11T23:59:59.000Z

25

Process for preparing a chemical compound enriched in isotope content  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

Michaels, Edward D. (Spring Valley, OH)

1982-01-01T23:59:59.000Z

26

Tritium labeling of organic compounds deposited on porous structures  

DOE Patents (OSTI)

An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

Ehrenkaufer, Richard L. E. (Speonk, NY); Wolf, Alfred P. (Setauket, NY); Hembree, Wylie C. (Woodcliff Lake, NJ)

1979-01-01T23:59:59.000Z

27

Organic Chemical Metrology - Staff Directory  

Science Conference Proceedings (OSTI)

... Group. Search for Staff Member. The Search box will accept a name, phone number, organization name, email address, etc.

2013-06-06T23:59:59.000Z

28

Volatile organic compound remedial action project  

SciTech Connect

This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

NONE

1991-12-01T23:59:59.000Z

29

Chemical and Radiological Toxicity of Uranium and Its Compounds  

SciTech Connect

The concentration of uranyl nitrate required to deliver the radiation dose limit for soluble uranium compounds is larger than the toxicity-based concentration limits. Therefore, for soluble uranium compounds, health consequences of exposure are primarily due to their chemical toxicity. For insoluble compounds of uranium, health consequences (e.g., fibrosis and/or carcinogenesis of the lung) are primarily due to irradiation of pulmonary tissues from inhaled respirable particles.

Tansky, R.R.

2001-07-26T23:59:59.000Z

30

Measurement of Passive Uptake Rates for Volatile Organic Compounds on  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of Passive Uptake Rates for Volatile Organic Compounds on Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling Title Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling Publication Type Report LBNL Report Number LBNL-6257E Year of Publication 2013 Authors Maddalena, Randy L., Amanda Parra, Marion L. Russell, and Wen-Yee Lee Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords indoor air quality, Passive Sampling, Uptake Rates, vocs Abstract Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick's Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

31

Clean process to destroy arsenic-containing organic compounds with recovery of arsenic  

DOE Patents (OSTI)

A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

Upadhye, R.S.; Wang, F.T.

1996-08-13T23:59:59.000Z

32

Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology  

E-Print Network (OSTI)

The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

Quan, Tracy M. (Tracy Michelle), 1977-

2005-01-01T23:59:59.000Z

33

Chemicals from coal. Utilization of coal-derived phenolic compounds  

Science Conference Proceedings (OSTI)

This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

Song, C.; Schobert, H.H.

1999-07-01T23:59:59.000Z

34

Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response  

Science Conference Proceedings (OSTI)

Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

2013-01-01T23:59:59.000Z

35

Process for reducing organic compounds with calcium, amine, and alcohol  

DOE Patents (OSTI)

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

1985-01-01T23:59:59.000Z

36

Process for reducing organic compounds with calcium, amine, and alcohol  

DOE Patents (OSTI)

Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

Benkeser, R.A.; Laugal, J.A.; Rappa, A.

1985-08-06T23:59:59.000Z

37

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network (OSTI)

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Labushev, Mikhail M

2013-01-01T23:59:59.000Z

38

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network (OSTI)

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Mikhail M. Labushev

2013-03-20T23:59:59.000Z

39

Methods and systems for chemoautotrophic production of organic compounds  

SciTech Connect

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

40

Sorption of organic compounds in the aqueous phase onto tire rubber  

Science Conference Proceedings (OSTI)

Batch sorption tests were conducted to investigate the sorption capacity of organic compounds by ground tire and to assess the effects of the presence of other organic compounds, ionic strength, pH, ground tire particle size, and temperature on sorption. None of the factors were significant under the conditions tested, m-Xylene had the highest partition coefficient, followed by ethylbenzene, toluene, trichloroethylene, 1,1,1-trichloroethane, chloroform, and methylene chloride (13 L/kg). The partition coefficients had a logarithmic linear relationship with the octanol-water partition coefficients. The diffusion coefficients of the compounds tested were in the range of 10{sup {minus}8} cm{sup 2}/s. The diffusion coefficients did not correlate well with the physical/chemical properties, such as molecular size, of the compounds tested. The heat of solutions of the compounds tested had relatively low values. Thus, the sorption may not be affected significantly by temperature change. Organic compounds sorbed onto tire rubber appear to be sorbed primarily onto tire rubber polymeric materials and partially carbon black in the tire rubber. Overall, ground tire shows significant capacity as a sorbent of organic compounds.

Kim, J.Y.; Park, J.K.; Edil, T.B. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reactivity of target compounds for chemical coal desulfurization. Technical report, March 1, 1994--May 31, 1994  

SciTech Connect

This project seeks to identify representative organosulfur compounds which are removed by known coal desulfurization reactions. Demineralized coals are solvent extracted and the extracts fractionated to concentrate organosulfur compounds for analysis by Gas Chromatography/Mass Spectroscopy. After sulfur compounds are characterized, the parent extracts are subjected to reactions previously shown to reduce the organic sulfur content of Illinois coals, fractionated and again analyzed for organosulfur content to determine if the identified compounds reacted during the chemical treatment. The original coal also will be subjected to chemical desulfurization, extraction, fractionation and analysis in order to correlate changes in organic sulfur content of the coal with reactions of specific sulfur compounds. These compounds can thus be reliably considered as target molecules for the next generation of desulfurization processes. Work during this quarter has shown that fractionation and chromatography of pyridine extracts to isolate suitable samples for GC/MS analysis, although time-consuming, appears to be better than direct toluene extraction in terms of providing a representative set of compounds for analysis. The toluene soluble fractions prepared by this route contain aromatic sulfur compounds and O, N, S-containing hetrocycles. A set of these compounds has been identified and their fate following desulfurization of the parent coal extracts is under investigation. Previously studied desulfurization reactions using the single electron transfer reagent, K/THF/naphthalene, and the reactive nickel boride reagent have been repeated and analyzed by GC/MS. SET and nickel boride reactions of the THF soluble portions of pyridine coal are currently in progress.

Buchanan, D.H.; Amin, M.; Cunningham, R.; Galyen, J.; Ho, K.K.

1994-09-01T23:59:59.000Z

42

Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes  

DOE Patents (OSTI)

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1985-01-01T23:59:59.000Z

43

Electrolytic photodissociation of chemical compounds by iron oxide electrodes  

DOE Patents (OSTI)

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1984-01-01T23:59:59.000Z

44

Natural organic compounds as tracers for biomass combustion in aerosols  

SciTech Connect

Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

1995-08-01T23:59:59.000Z

45

Effect of Outside Air Ventilation Rate on Volatile Organic Compound  

NLE Websites -- All DOE Office Websites (Extended Search)

Outside Air Ventilation Rate on Volatile Organic Compound Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Title Effect of Outside Air Ventilation Rate on Volatile Organic Compound Concentrations in a Call Center Publication Type Journal Article Year of Publication 2003 Authors Hodgson, Alfred T., David Faulkner, Douglas P. Sullivan, Dennis L. DiBartolomeo, Marion L. Russell, and William J. Fisk Journal Atmospheric Environment Volume 37 Start Page Chapter Pagination 5517-5528 Abstract A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a floor area of 4,600 m2, was located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC concentrations in the AHU returns were measured on seven days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature supporting the associations. Two vectors with high loadings of compounds including formaldehyde, 2,2,4-trimethyl-1,3- pentanediol monoisobutyrate, decamethylcyclopentasiloxane (d5 siloxane), and isoprene likely identified occupant-related sources. One vector likely represented emissions from building materials. Another vector represented emissions of solvents from cleaning products. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which were likely associated with material sources, and d5 siloxane exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, the operation of the building and variations in pollutant generation and removal rates apparently combined to obscure the inverse relationship between VOC concentrations and ventilation. This result emphasizes the importance of utilizing source control measures, in addition to adequate ventilation, to limit concentrations of VOCs of concern in office buildings

46

Membrane-Organized Chemical Photoredox Systems  

DOE Green Energy (OSTI)

This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem and their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens. These studies provide an estimate of thermodynamic constraints imposed by these assemblies on hydrogen photoproduction. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. These studies provide information on how quinone pools transfer charge in biomimetic systems designed to store solar energy as transmembrane electrochemical gradients. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox; unexpectedly, both electrogenic and electroneutral pathways were observed, which were dependent upon the isomeric state of the chromophore (mero vs. spiro) and quinone substituent groups. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2 O; and (iii) detected by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle. Analogs containing substituted bipyridine ligands have been synthesized to probe molecular details of these reactions whose understanding is necessary for rational design of superior catalysts.

James K. Hurst

2007-05-15T23:59:59.000Z

47

Chemical Sciences Division: Introduction: Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Ultrafast X-Ray Science Laboratory ALS-MES Beamline Actinde Science Chemical Dynamics Beamline Centers Programs Chemical Physics The Glenn T. Seaborg Center...

48

Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater.  

E-Print Network (OSTI)

?? Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used… (more)

Hodzic, Elvisa

2011-01-01T23:59:59.000Z

49

Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

2009-05-13T23:59:59.000Z

50

Process for removing an organic compound from water  

DOE Patents (OSTI)

A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

Baker, Richard W. (Palo Alto, CA); Kaschemekat, Jurgen (Palo Alto, CA); Wijmans, Johannes G. (Menlo Park, CA); Kamaruddin, Henky D. (San Francisco, CA)

1993-12-28T23:59:59.000Z

51

Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds  

DOE Patents (OSTI)

Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

Grindstaff, Quirinus G. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

52

Formaldehyde and Other Volatile Organic Chemical Emissions in Four FEMA  

NLE Websites -- All DOE Office Websites (Extended Search)

Formaldehyde and Other Volatile Organic Chemical Emissions in Four FEMA Formaldehyde and Other Volatile Organic Chemical Emissions in Four FEMA Temporary Housing Units Title Formaldehyde and Other Volatile Organic Chemical Emissions in Four FEMA Temporary Housing Units Publication Type Journal Article Year of Publication 2009 Authors Maddalena, Randy L., Marion L. Russell, Douglas P. Sullivan, and Michael G. Apte Journal Environmental Science and Technology Volume 43 Start Page Chapter Pagination 5626-5632 Publisher Lawrence Berkeley National Laboratory Abstract Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THUVOC and aldehyde emission factors (µg h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehydeconcentrations ranged from 378 µg m-3 (0.31ppm) to 632 µg m-3 (0.52 ppm) in the AM, and from 433 µg m-3 (0.35 ppm) to 926 µg m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography - mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (µg h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and materialspecific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was theonly one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 µg m-2 h-1 in the morning and 257 to 347 µg m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 µg m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 µg/m2 h-1 for particleboard and 130 µg/m2 h-1 for plywood). The high loading factor (materialsurface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde

53

Detection of volatile organic compounds using surface enhanced Raman scattering  

SciTech Connect

The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

2012-03-22T23:59:59.000Z

54

Residential pollutants and ventilation strategies: Volatile organic compounds and radon  

SciTech Connect

This paper reviews literature that reports investigations of residential ventilation and indoor air quality. Two important residential pollutant classes, volatile organic compounds and radon, are examined. A companion paper examines moisture and combustion pollutants. Control strategies recommended from the review include appropriate building design to prevent or limit the sources of the pollutants within the space, proper operation and maintenance to prevent adverse conditions from developing during the building's life and appropriate use of ventilation. The characteristics of these pollutant sources suggest that ventilation systems in residences should have several properties. They should have the extra capacity available to reduce short bursts of pollution, be located close to the expected source of the contamination, and be inexpensive. Mitigation of radon is technically a major success using a form of task ventilation. Whole-house ventilation is, at best, a secondary form of control of excess radon in residences.

Grimsrud, D.T.; Hadlich, D.E.

1999-07-01T23:59:59.000Z

55

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

56

New Soil Volatile Organic Compound Samplers U S  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Volatile Organic Soil Volatile Organic Compound Samplers U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l E n e r g y T e c h n o l o g y L a b o r a t o r y Successes AdvAnced ReseARch To support coal and power systems development, NETL's Advanced Research Program conducts a range of pre-competitive research focused on breakthroughs in materials and processes, coal utilization science, sensors and controls, computational energy science, and bioprocessing-opening new avenues to gains in power plant efficiency, reliability, and environmental quality. NETL also sponsors cooperative educational initiatives in University Coal Research, Historically Black Colleges and Universities, and Other Minority Institutions. Accomplishments P Process improvement P Cost reduction P Greater efficiency

57

Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems  

SciTech Connect

This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references.

Silviera, D.J.

1981-03-01T23:59:59.000Z

58

Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

Michaels, E.D.

1981-02-25T23:59:59.000Z

59

Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration  

DOE Patents (OSTI)

Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

Farha, Omar K; Hupp, Joseph T

2013-06-25T23:59:59.000Z

60

Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration  

DOE Patents (OSTI)

Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

Farha, Omar K.; Hupp, Joseph T.

2012-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Predicting flammability of gas mixtures containing volatile organic compounds  

DOE Green Energy (OSTI)

One requirement regarding the transportation of transuranic (TRU) radioactive waste containers currently limits the total concentration of potentially flammable volatile organic compounds (VOCs) and flammable gases in the headspace of the waste container. Typical VOCs observed in the drums include aromatic hydrocarbons, ketones, alcohols, cyclohexane, as well as chlorinated hydrocarbons (alkanes and alkenes). Flammable gases, such as hydrogen and methane, may be generated in the containers by radiation-induced decomposition (radiolysis) of water and hydrocarbon waste forms. An experimental program was initiated to identify an accurate means for predicting flammability for gas mixtures containing one or more of the following species: hydrogen, carbon tetrachloride, 1,2-dichloroethane, toluene, or 2-butanone. The lower flammability limits (LFL) of gas mixtures containing equimolar quantity for each species were determined in a 19-liter laboratory flammability chamber using a strong spark ignition source. The group factor contribution method was determined to be more accurate than the LeChatelier method for estimating the LFL for these gas mixtures.

Liekhus, K. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Zlochower, I. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Pittsburgh Research Lab.; Djordjevic, S.; Loehr, C. [Benchmark Environmental, Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

62

Advanced heat pump for the recovery of volatile organic compounds  

Science Conference Proceedings (OSTI)

Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

Not Available

1992-03-01T23:59:59.000Z

63

Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries  

DOE Patents (OSTI)

A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

Doherty, J.P.; Marek, J.C.

1987-02-25T23:59:59.000Z

64

OBSERVATION Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

E-Print Network (OSTI)

ABSTRACT The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85 % of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. IMPORTANCE Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-01-01T23:59:59.000Z

65

Opportunities for reducing volatile organic compound emissions in manufacturing office furniture partitions: a feasibility analysis  

Science Conference Proceedings (OSTI)

A feasibility analysis is reported of reduction opportunities for volatile organic compound (VOC) emissions in manufacturing office furniture partitions. The pollution prevention (P2) methodology as defined by the Ontario Ministry of the Environment ... Keywords: emissions, manufacturing, office furniture, pollution prevention, volatile organic compound

Frank S. Luisser; Marc A. Rosen

2009-02-01T23:59:59.000Z

66

Catalytic reforming and hydrocracking of organic compounds employing promoted zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc, titanium and rhenium.

Drehman, L.E.; Farha, F.E.

1981-04-21T23:59:59.000Z

67

Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc and titanium.

Drehman, L.E.; Farha, F.E.; Walker, D.W.

1981-04-21T23:59:59.000Z

68

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High  

NLE Websites -- All DOE Office Websites (Extended Search)

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building Title Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building Publication Type Report LBNL Report Number LBNL-3979e Year of Publication 2010 Authors Ortiz, Anna C., Marion L. Russell, Wen-Yee Lee, Michael G. Apte, and Randy L. Maddalena Pagination 29 Date Published 09/2010 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 ÎĽg/m2/h (old wood with old polish) to >500 ÎĽg/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~ 15 ÎĽg/m2/h while the new wood material emitted > 100 ÎĽg/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs

69

RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE  

DOE Patents (OSTI)

>A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

Sutherland, J.W.; Allen, A.O.

1961-10-01T23:59:59.000Z

70

Source Footprint Considerations in the Determination of Volatile Organic Compound Fluxes from Forest Canopies  

Science Conference Proceedings (OSTI)

Above-canopy sampling of trace gases to determine volatile organic compound (VOC) emissions should be interpreted in terms of footprint considerations. This can be accomplished by defining the upwind canopy areas effectively sampled under the ...

S. K. Kaharabata; P. H. Schuepp; J. D. Fuentes

1999-07-01T23:59:59.000Z

71

Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air  

E-Print Network (OSTI)

Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and ...

Scholten, Elke

72

Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign  

E-Print Network (OSTI)

Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of ...

Fortner, E. C.

73

Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and  

E-Print Network (OSTI)

1 Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters and reduced exhaust emissions have led to the emergence of new fuels and combustion devices. Over the past ten years, considerable effort has gone into understanding combustion phenomena in relation to emerging fuel

74

Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation  

SciTech Connect

This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

Testoni, A. L.

2011-10-19T23:59:59.000Z

75

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. (University of Southern California, Los Angeles, CA (United States))

1993-02-01T23:59:59.000Z

76

Composites for removing metals and volatile organic compounds and method thereof  

DOE Patents (OSTI)

Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Reynolds, John G. (San Ramon, CA)

2006-12-12T23:59:59.000Z

77

Mass transport of volatile organic compounds between the saturated and vadose zones. Master`s thesis  

Science Conference Proceedings (OSTI)

Volatile organic compounds (VOCs) dissolved in the saturated zone are transported into the vadose zone primarily by gaseous phase diffusion. If the saturated zone is remediated, VOCs present in the vadose zone may become a secondary source of contamination for the groundwater. The amount of VOCs that remain in the vadose zone is dependent on site hydrology, soil properties, and the chemical properties of the contaminants. The purpose of this study was to determine what conditions caused VOC concentrations in the vadose zone to significantly recontaminate the saturated zone. A one-dimensional numerical model was developed to investigate the transport of a VOC, trichioroethylene, between the saturated and vadose zones under a variety of conditions. The model featured steady-state unsaturated water flow and transient contaminant transport. Transport mechanisms included aqueous phase advection-dispersion and gaseous phase diffusion. Partitioning between the water, gas, and soil compartments were modeled as equilibrium processes. Sensitivity analyses were performed on several variables including soil type (homogeneous and heterogeneous profiles), water infiltration rate and vadose zone depth. Results indicated that recontamination was most significant rate, and vadose zone depth. Results indicated that recontamination was most significant in the presence of heterogeneous soils, low infiltration rates and deep vadose zones.

Harner, M.S.

1996-12-01T23:59:59.000Z

78

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building  

SciTech Connect

The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.

Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

2010-09-20T23:59:59.000Z

79

Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report  

DOE Green Energy (OSTI)

This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

Wahl, Jon H.; Colburn, Heather A.

2009-10-29T23:59:59.000Z

80

QSAR Modeling of Genotoxicity onNon-congeneric Sets of Organic Compounds  

Science Conference Proceedings (OSTI)

A multi-linear (ML) and artificial neural network (ANN) approaches have been used to derive quantitative structure-activity relationships (QSAR) between the genotoxicity (mutagenicity) and molecular structure of compounds by using large initial pools ... Keywords: Ames test, QSAR, forward selection, molecular descriptors, multi-linear regression, mutagenicity, neural network, quantum chemical descriptors

Uko Maran; Sulev Slid

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal engine driven heat pump for recovery of volatile organic compounds  

DOE Patents (OSTI)

The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

Drake, Richard L. (Schenectady, NY)

1991-01-01T23:59:59.000Z

82

Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers  

Science Conference Proceedings (OSTI)

Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

Howard-Reed, C.; Corsi, R.L. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Moya, J. [Environmental Protection Agency, Washington, DC (United States)

1999-07-01T23:59:59.000Z

83

Mechanical-chemical coupling and self-organization in mudstones.  

SciTech Connect

Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

Heath, Jason E.; Dewers, Thomas A.

2010-06-01T23:59:59.000Z

84

Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations  

SciTech Connect

The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank.

Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

1997-02-01T23:59:59.000Z

85

Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide  

SciTech Connect

Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

Schilling, J.B.

1997-09-01T23:59:59.000Z

86

Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds  

E-Print Network (OSTI)

1 Field Test to Demonstrate Real-Time In-Situ Detection of Volatile Organic Compounds Hazmat Spill Center, Nevada Test Site September 19-25, 2001 Clifford K. Ho Sandia National Laboratories Albuquerque-filled 55- gallon drum at the Hazmat Spill Center at the Nevada Test Site. Background and Objectives Tens

Ho, Cliff

87

Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds  

Science Conference Proceedings (OSTI)

Models for the dynamic adsorption of volatile organic compound (VOC) traces in air are considered. They are based on the linear driving force approximation associated with various adsorption isotherms characteristic of the couple VOC-adsorbent (Langmuir, ... Keywords: Comsol, Dubinin-Astakhov isotherm, Dynamic adsorption modelling, Finite element

Agnčs Joly; Alain Perrard

2009-08-01T23:59:59.000Z

88

Toxicity of chemical compounds used for enhanced oil recovery. Final report  

SciTech Connect

The intent of this report is to assess the toxicological nature of compounds used in Enhanced Oil Recovery (EOR) technologies so that the Department of Energy (DOE) can delineate the possible constraints to EOR commercialization that the toxicity of these substances could pose. In addition, research priorities are recommended to the DOE so that these constraints can be overcome in as safe and expedient manner as possible. In evaluating the toxicity of EOR chemicals, priority is given to the many chemicals which are now available commercially and are being used in a significant fashion in current EOR field tests. Specific attention has been paid to those chemicals which are used most extensively and to the human health effects data that are associated with them. These data are presented in Chapter Two. Information on toxicological concepts and a glossary of terms is presented in a separate appendix. Long-term environmental effects are not addressed in this document, but the possibility of impacts due to the toxic properties of certain chemicals is discussed briefly in the research recommendations. A table of aquatic toxicity data is included as Appendix C. The toxicity of EOR chemicals used is given for each of the following major secondary and tertiary recovery methods: micellar/polymer flooding technology; miscible carbon dioxide technology; in situ combustion technology; alkaline flooding and preflush technologies; and steam soak and steam drive technologies.

Silvestro, E.; Crocker, M.

1980-09-01T23:59:59.000Z

89

Chemical kinetic study of the oxidation of toluene and related cyclic compounds  

SciTech Connect

Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

2009-10-01T23:59:59.000Z

90

Detection and classification of volatile organic compounds using Indium Tin Oxide sensor array and artificial neural network  

Science Conference Proceedings (OSTI)

This article reveals the novel approach of fabricating Indium Tin Oxide thin films grown on glass substrate at 648 K temperatures using direct evaporation method for detection of small concentration volatile organic compounds (VOCs) and their ... Keywords: ANNs, ITO thin films, VOC mixtures, VOCs, artificial neural networks, direct evaporation, indium tin oxide, sensor arrays, thin film sensors, volatile organic compounds

H. J. Pandya

2009-05-01T23:59:59.000Z

91

Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils  

Science Conference Proceedings (OSTI)

Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

2014-01-01T23:59:59.000Z

92

Stress-induced chemical detection using flexible metal-organic frameworks.  

DOE Green Energy (OSTI)

In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

2009-09-01T23:59:59.000Z

93

Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units  

Science Conference Proceedings (OSTI)

Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

2010-10-01T23:59:59.000Z

94

The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation  

E-Print Network (OSTI)

The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

Kessler, Sean Herbert

2013-01-01T23:59:59.000Z

95

Hybrid membranes and their use in volatile organic compound/air separations  

E-Print Network (OSTI)

Hybrid organic/inorganic membranes were produced by chemical grafting of octadecyltrichlorosilane onto ?-alumina membranes. Separation factors are presented showing strong evidence of capillary condensation in ungrafted membranes. The grafted membranes exhibit a much improved separation factor, over the bare membranes, in the low-toluene feed concentration range. The separation factor appeared to decrease slightly with increasing feed toluene concentration, and it was approximately 1/8 the magnitude of the separation factors reported for polydimethylsiloxane under similar feed conditions.

Krohn, John Eric

2001-01-01T23:59:59.000Z

96

Integrated production of fuel gas and oxygenated organic compounds from synthesis gas  

DOE Patents (OSTI)

An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

1995-01-01T23:59:59.000Z

97

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

compounds (e.g. , 80% catechol formation from phenol, OlariuO 2 Isoprene Benzene Phenol Catechol Toluene o-/m- Cresol NObenzene, phenol, and catechol), ~0.5 for C 7 species (

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

98

Chemical-Tolerant Microbes Produce 50-Fold More Organic Acid ...  

The U.S. Department of Energy (DOE) recently targeted several ‘building block’ chemicals that could be produced via microorganism consumption of biomass.

99

Degradation of organic chemicals with titanium ceramic membranes  

DOE Patents (OSTI)

Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

Anderson, Marc A. (Madison, WI); Tunesi, Simonetta (Madison, WI); Xu, Qunyin (Madison, WI)

1991-01-01T23:59:59.000Z

100

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network (OSTI)

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft  

E-Print Network (OSTI)

A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the ...

Herndon, S. C.

102

Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof  

DOE Patents (OSTI)

In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.

Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

2013-12-03T23:59:59.000Z

103

Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis  

Science Conference Proceedings (OSTI)

In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which represent a cross section of the current inventory of USAF wastewater plants in ozone nonattainment areas. From these calculations, maximum facility emissions are determined which represent the upper limit for the potential VOC emissions from these wastewater plants. Based on the calculated emission estimates, each selected wastewater facility is evaluated as a potential major stationary source of volatile organic emissions under both Title I of the 1990 CAAA and the plant's governing Clean Air Act state implementation plan. Next, the potential impact of the specific volatile organics being emitted is discussed in terms of their relative reactivity and individual contribution to tropospheric ozone formation. Finally, a relative comparison is made between the estimated VOC emissions for the selected wastewater facilities and the total VOC emissions for their respective host installations.

Ouellette, B.A.

1994-09-01T23:59:59.000Z

104

Degradation of organic chemicals with titanium ceramic membranes  

DOE Patents (OSTI)

Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

Anderson, M.A.; Tunesi, S.; Xu, Q.

1991-07-30T23:59:59.000Z

105

Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties  

E-Print Network (OSTI)

In the first part of this dissertation, we study the aging of soot, a representative type of primary aerosols, in the presence of OH-initiated oxidation products of toluene. Monodisperse soot particles are introduced into an environmental chamber where toluene is oxidized by OH radicals. The variations in soot particle properties are simultaneously monitored, including particle size, mass, organic mass faction, hygroscopicity, and optical properties. The changes in particle properties are found to be largely governed by the thickness of the organic coating that is closely related to reaction time and initial reactant concentrations. Derived from particle size and mass, the effective density increases while dynamic shape factor decreases as the organic coating grows, suggesting a compaction of the soot morphology. As the organic coating grows, the particles become more hygroscopic and have enhanced light scattering and absorption. The second part discusses the potential reactions between amines and some aerosol constituents and alteration of aerosol properties. The reactions between alkylamines and ammonium sulfate/bisulfate have been studied using a low-pressure fast flow reactor coupled to a mass spectrometer at 293 K. Alkylamines react with ammonium sulfate/bisulfate to form alkylaminium sulfates, suggesting the existence of alkylaminium salts in particle phase. We have extended our study to characterize the physicochemical properties of alkylaminium sulfates. The hygroscopicity, thermostability, and density of five representative alkylaminium sulfates have been measured by an integrated aerosol analytical system. All alkylaminium sulfate aerosols show monotonic size growth when exposed to increasing relative humidity. Mixing ammonium sulfate with alkylaminium sulfates lowers the deliquescence point corresponding to ammonium sulfate. Alkylaminium sulfates are thermally comparable to or more stable than ammonium sulfate. The densities of alkylaminium sulfate particles are lower than that of ammonium sulfate. Our results suggest that the organic compounds can effectively alter the composition and properties of atmospheric aerosols, considerably influencing the impacts of aerosols on air quality, climate forcing, and human health.

Qiu, Chong

2013-05-01T23:59:59.000Z

106

Chemical characterization of the ambient organic aerosol soluble in water  

E-Print Network (OSTI)

the water-soluble organic car- bon (WSOC) components of ambient aerosol particles into hydrophilic and Weber [2006]. In the XAD-8 method, the WSOC components that penetrate the column are hydro- philic

Weber, Rodney

107

NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET ANALYTE LIST  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET ANALYTE LIST OTHER CHANGES TO VOC MONITORING PROGRAM Page 1 of 21 VOC 3·1: PMR Section 3, Topic 1, Table 1 Recalculated Waste Matrix Code Group Weighting Factors based on the 2004 Compliance Recertification Contact Handled (CH) Transuranic (TRU) Waste Inventory (m 3 ) The new weighting factors appear to be based on CH TRU waste only and do not include remote handled (RH) TRU waste. There was no discussion in the PMR addressing possible differences in Waste Matrix Code Group (WMCG) for RH TRU that could potentially impact the weighting factors. Please provide data characterizing the differences in emissions between the two types of waste, in support of the assertion that modeling data from CH TRU waste adequately

108

Technology projects for characterization--monitoring of volatile organic compounds (VOCs)  

Science Conference Proceedings (OSTI)

One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

Junk, G.A.; Haas, W.J. Jr.

1992-07-01T23:59:59.000Z

109

ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN  

DOE Green Energy (OSTI)

Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

MARUSICH, R.M.

2006-07-10T23:59:59.000Z

110

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network (OSTI)

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

111

Estimating farfield organic chemical exposures, intake rates and intake fractions to human age classes  

Science Conference Proceedings (OSTI)

This study describes the development and application of the Farfield Human Exposure (FHX) model. This screening level model brings together information on chemical partitioning, degradation, environmental fate and transport, and food web bioaccumulation ... Keywords: Bioaccumulation, Biotransformation, Exposure assessment, Human health, Multimedia modelling, Organic chemicals

Jon A. Arnot; Don Mackay; Roger Sutcliffe; Belinda Lo

2010-10-01T23:59:59.000Z

112

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering  

E-Print Network (OSTI)

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical matter yield induced by chemical weathering of carbonates and shales, considering their global surface carbonate rocks and shales weathering in major world watersheds, published by numerous authors. The results

Paris-Sud XI, Université de

113

Subsurface flow and transport of organic chemicals: an assessment of current modeling capability and priority directions for future research (1987-1995)  

SciTech Connect

Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.

Streile, G.P.; Simmons, C.S.

1986-09-01T23:59:59.000Z

114

Single-reactor process for producing liquid-phase organic compounds from biomass  

DOE Patents (OSTI)

Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

Dumesic, James A. (Verona, WI); Simonetti, Dante A. (Middleton, WI); Kunkes, Edward L. (Madison, WI)

2011-12-13T23:59:59.000Z

115

Uranium and Its Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

and Its Compounds Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects...

116

Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program  

SciTech Connect

An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

1993-09-01T23:59:59.000Z

117

Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

Samuels, W.D.; Camaioni, D.M. [Pacific Northwest Lab., Richland, WA (United States); Babad, H. [Westinghouse Hanford Co., Richland, WA (United States)

1994-03-01T23:59:59.000Z

118

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

Fish, Richard H.

2013-01-01T23:59:59.000Z

119

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

organoarsenic compounds in oi.l shale process waters using aPresented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.

Fish, Richard H.

2013-01-01T23:59:59.000Z

120

Membrane System for Recovery of Volatile Organic Compounds from Remediation Off-Gases.: Phase 1.  

Science Conference Proceedings (OSTI)

In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. This report covers the first phase of a two-phase project. The first phase involved the laboratory demonstration of the water separation section of the unit, the production and demonstration of new membrane modules to improve the separation, the design studies required for the demonstration system, and initial contacts with potential field sites. In the second phase, the demonstration system will be built and, after a short laboratory evaluation, will be tested at two field sites.

Wijmans, J.G.; Goakey, S.; Wang, X.; Baker, R.W.; Kaschemekat, J.H.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.  

Science Conference Proceedings (OSTI)

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

1999-07-01T23:59:59.000Z

122

A General, Cryogenically-Based Analytical Technique for the Determination of Trace Quantities of Volatile Organic Compounds in the Atmosphere  

Science Conference Proceedings (OSTI)

An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a ...

Randolph A. Coleman; Wesley R. Cofer III; Robert A. Edahl Jr.

1985-09-01T23:59:59.000Z

123

The effect of elevated atmospheric carbon dioxide mixing ratios on the emission of Volatile organic compounds from Corymbia citriodora and Tristaniopsis laurina.  

E-Print Network (OSTI)

??Bibliography: p. 120-124. Introduction  – Environmental factors affecting the emission of biogenic Volatile organic compounds  – Materials and experimental procedures  – Quantification using sold-phase microextraction… (more)

Camenzuli, Michelle

2008-01-01T23:59:59.000Z

124

Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA  

NLE Websites -- All DOE Office Websites (Extended Search)

for Studying the Chemical Transformations of for Studying the Chemical Transformations of Organic Particles Kevin Wilson Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Molecular weight growth and decomposition chemistries play important roles in the transformation of particles from soot formation to atmospheric aerosol oxidation. Understanding these complex reaction pathways requires novel methods of analyzing particle phase hydrocarbons. We are developing a suite of synchrotron-based tools to provide better insights into the molecular composition, isomer distribution, and elemental composition of complex hydrocarbon mixtures, aimed at developing simple yet realistic descriptions of molecular weight growth and decomposition that occur during a heterogeneous reaction.

125

FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS: THE NEW X-WAND HVOC SCREENING DEVICE  

SciTech Connect

Western Research Institute (WRI) has developed new methodology and a test kit to screen soil or water samples for halogenated volatile organic compounds (HVOCs) in the field. The technology has been designated the X-Wand{trademark} screening tool. The new device uses a heated diode sensor that is commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. This sensor is selective to halogens. It does not respond to volatile aromatic hydrocarbons, such as those in gasoline, and it is not affected by high humidity. In the current work, the heated diode leak detectors were modified further to provide units with rapid response and enhanced sensitivity. The limit of detection for trichloroethylene TCE in air is 0.1 mg/m{sup 3} (S/N = 2). The response to other HVOCS relative to TCE is similar. Variability between sensors and changes in a particular sensor over time can be compensated for by normalizing sensor readings to a maximum sensor reading at 1,000 mg/m{sup 3} TCE. The soil TCE screening method was expanded to include application to water samples. Assuming complete vaporization, the detection limit for TCE in soil is about 1 ug/kg (ppb) for a 25-g sample in an 8-oz jar. The detection limit for TCE in water is about 1 ug/L (ppb) for a 25-mL sample in an 8-oz jar. This is comparable to quantitation limits of EPA GC/MS laboratory methods. A draft ASTM method for screening TCE contaminated soils using a heated diode sensor was successfully submitted for concurrent main committee and subcommittee balloting in ASTM Committee D 34 on Waste Management. The method was approved as ASTM D 7203-05, Standard Test Method for Screening Trichloroethylene (TCE)-Contaminated Soil Using a Heated Diode Sensor.

John F. Schabron; Susan S. Sorini; Joseph F. Rovani Jr

2006-03-01T23:59:59.000Z

126

Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry  

SciTech Connect

Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and quantification of compounds possessing these groups in complex mixtures.

Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

2012-08-21T23:59:59.000Z

127

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

lll67C Presented at the 13th Oil Shale Symposium, Golden,~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.expanded by the Division of Oil, Gas, and Shale Technology

Fish, Richard H.

2013-01-01T23:59:59.000Z

128

Isotopic constraints on the sources and associations of organic compounds in marine sediments  

E-Print Network (OSTI)

To provide a new perspective on the fate of both natural organic matter and hydrophobic organic contaminants (HOCs) in marine sediments, we have investigated the relationship between radiocarbon (14C) age and the different ...

White, Helen K

2006-01-01T23:59:59.000Z

129

Evaluation of EPA Region IV Standard Operating Procedures for decontamination of field equipment when sampling for volatile organic compounds  

Science Conference Proceedings (OSTI)

Decontamination procedures for use at CERCLA sites where the US Environmental protection Agency (EPA) Region IV is the lead agency are specified in their Standard Operating Procedures (SOP) document. Under certain circumstances, the objectives of proper decontamination can be obtained without utilizing the full procedure as specified in the SOP. Because some treatment methods may introduce low levels of organic constituents into water (e.g., chlorination), the use of treated potable water would actually have an adverse effect on the decontamination procedure compared to the use of an untreated potable supply. Certified organic-free water, the cost of which ranges from five dollars per gallon to over sixty dollars per gallon may also be unnecessary in some cases. Distilled water samples from seven different suppliers (at a cost of less than a dollar per gallon) were analyzed for Target Compound List (TCL) volatile, organic compounds (VOCs) or benzene, toluene, ethylbenzene, and xylenes (BTEX). Fifty of the samples analyzed for BTEX contained no detectable amounts of these compounds, and twenty-six of the samples analyzed for TCL VOCs contained no detectable concentration. The use of solvent rinses may cause false positives during sampling. Field experiments have shown that isopropanol may degrade to acetone under some circumstances. In many cases, particularly when sampling ground water or decontaminating drilling equipment, the elimination of this step should not adversely affect sample quality. 8 refs., 1 fig., 3 tabs.

Brice, D.A. (Westinghouse Materials Co. of Ohio, Cincinnati, OH (USA). Feed Materials Production Center); Kelley, M.E. (Geraghty and Miller, Inc., Oak Ridge, TN (USA))

1991-01-01T23:59:59.000Z

130

Recovery of semi-volatile organic compounds during sample preparation: Compilation for characterization of airborne particulate matter  

DOE Green Energy (OSTI)

Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide volatility and polarity range. To meet these challenges, solutions of n-alkanes (nC{sub 12} to nC{sub 40}) and polycyclic aromatic hydrocarbons PAHs (naphthalene to benzo[ghi]perylene) were reduced in volume from a solvent mixture (equal volumes of hexane, dichloromethane and methanol), to examine recovery after reduction in volume. When the extract solution volume reached 0.5 mL the solvent was entirely methanol, and the recovery averaged 60% for n-alkanes nC{sub 12} to nC{sub 25} and PAHs from naphthalene to chrysene. Recovery of higher MW compounds decreased with MW, because of their insolubility in methanol. When the walls of the flasks were washed with 1 mL of equal parts hexane and dichloromethane (to reconstruct the original solvent composition), the recovery of nC{sub 18} and higher MW compounds increased dramatically, up to 100% for nC{sub 22}-nC{sub 32} and then slowly decreasing with MW due to insolubility. To examine recovery during extraction of the components of the High Capacity Integrated Gas and Particle Sampler, the same standards were used to spike its denuders and filters. For XAD-4 coated denuders and filters, normalized recovery was > 95% after two extractions. Recovery from spiked quartz filters matched the recovery from the coated surfaces for alkanes nC{sub 18} and larger, and for fluoranthene and larger PAHs. Lower MW compounds evaporated from the quartz filter with the spiking solvent. This careful approach allowed quantification of organics by correcting for volatility- and solubility-related sample preparation losses. This method is illustrated for an ambient sample collected with this sampler during the Texas Air Quality Study 2000.

Swartz, Erick; Stockburger, Leonard; Gundel, Lara

2002-05-01T23:59:59.000Z

131

Data Analysis of Multi-Laser Standoff Spectral identification of chemical and biological compounds  

SciTech Connect

With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for develop- ment of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

Farahi, R H [ORNL; Zaharov, Viktor [ORNL; Tetard, Laurene [ORNL; Thundat, Thomas George [ORNL; Passian, Ali [ORNL

2013-01-01T23:59:59.000Z

132

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells. Final technical report, 1 September 1985--30 November 1989  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. [University of Southern California, Los Angeles, CA (United States)

1993-02-01T23:59:59.000Z

133

Use of Proton-Transfer-Reaction Mass Spectrometry to Characterize Volatile Organic Compound Sources at the La Porte Super Site During the Texas Air Quality Study 2000  

SciTech Connect

Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogencontaining compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ~40 nmol mol-1) and acetaldehyde (up to ~80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by ‘‘soft’’ chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

Karl, Thomas G.; Jobson, B Tom T.; Kuster, W. C.; Williams, Eric; Stutz, Jochen P.; Shetter, Rick; Hall, Samual R.; Goldan, P. D.; Fehsenfeld, Fred C.; Lindinger, Werner

2003-08-19T23:59:59.000Z

134

Lipid Analysis and Lipidomics: New Techniques & ApplicationChapter 11 TLC-FID with Special Reference to Marine Lipids and Other High-Molecular-Weight Organic Compounds  

Science Conference Proceedings (OSTI)

Lipid Analysis and Lipidomics: New Techniques & Application Chapter 11 TLC-FID with Special Reference to Marine Lipids and Other High-Molecular-Weight Organic Compounds Methods and Analyses eChapters Methods - Analyses Books D

135

Evolution and Transport of Pollutants over a Mediterranean Coastal Area: The Influence of Biogenic Volatile Organic Compound Emissions on Ozone Concentrations  

Science Conference Proceedings (OSTI)

A computational simulation of a typical sea-breeze situation and the transport and evolution of photochemical pollutants on the Spanish east coast is performed, and the influence of biogenic volatile organic compound (BVOC) emissions on the ozone ...

Spyros Andronopoulos; Artemis Passamichali; Nikos Gounaris; John G. Bartzis

2000-04-01T23:59:59.000Z

136

Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers  

SciTech Connect

In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs the V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.

Albanna, Muna, E-mail: muna.albanna@gju.edu.j [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada); Warith, Mostafa; Fernandes, Leta [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, K1N 6N5 (Canada)

2010-02-15T23:59:59.000Z

137

Method of making AlInSb by metal-organic chemical vapor deposition  

DOE Patents (OSTI)

A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

138

Open Chemical Systems Theory and Its Implications to Darwinian Evolutionary Dynamics, Complex Self-Organization and Beyond  

E-Print Network (OSTI)

The study of biological cells as a nonequilibrium, nonlinear, stochastic open chemical systems provides a paradigm for other complex, self-organizing systems with short-time deterministic and long-time evolutionary dynamics.

Qian, Hong

2012-01-01T23:59:59.000Z

139

Characteristics of Gd2-xLaxO3 high-k films by metal-organic chemical vapor deposition  

Science Conference Proceedings (OSTI)

Gd"2"-"xLa"xO"3 high-k films were deposited on (100) Si substrates by low-pressure metal-organic chemical vapor deposition (MOCVD). The metal-organic precursors we used were Gd and La @b-diketonates. The structure, band gap, composition and electrical ... Keywords: Gd2-xLaxO3, High- k, MOCVD

Liu-Ying Huang; Ai-Dong Li; Ying-Ying Fu; Wen-Qi Zhang; Xiao-Jie Liu; Di Wu

2012-06-01T23:59:59.000Z

140

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds  

SciTech Connect

The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

1995-01-23T23:59:59.000Z

142

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability  

E-Print Network (OSTI)

The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.

Rinehart, Amanda J.

2007-08-01T23:59:59.000Z

143

Proceedings: Second International Conference on the Interaction of Organics and Organic Cycle Treatment Chemicals with Water, Steam and Materials  

Science Conference Proceedings (OSTI)

The current worldwide suite of cycle chemistry guidelines contains little information on the presence of organics in the cycle. In addition, the guidelines do not advocate the use of organic additives during operation or shutdown. This second international conference was organized to continue the discussion initiated at the first international conference on all aspects of organics in power plants.

2010-03-30T23:59:59.000Z

144

Proceedings: International Conference on the Interaction of Organics and Organic Cycle Treatment Chemicals with Water, Steam, and Ma terials  

Science Conference Proceedings (OSTI)

The current worldwide suite of cycle chemistry guidelines contains little information on the presence of organics in the cycle. The guidelines also do not advocate the use of organic additives during operation or shutdown. This international conference was organized in order to provide a forum for discussion on all aspects of organics in power plants.

2006-08-30T23:59:59.000Z

145

Polybenzimidazole compounds  

SciTech Connect

A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Wertsching, Alan K. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Luther, Thomas A. (Idaho Falls, ID); Jones, Michael G. (Pocatello, ID)

2010-08-10T23:59:59.000Z

146

Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography  

Science Conference Proceedings (OSTI)

This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

Morris, J.B.

1993-07-01T23:59:59.000Z

147

Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials  

SciTech Connect

Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.

Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

2001-07-01T23:59:59.000Z

148

Characterization of the Sources and Concentrations of Formaldehyde and other volatile organic compounds in four new manufactured houses  

Science Conference Proceedings (OSTI)

The concentrations of formaldehyde, 52 individual volatile organic compounds (VOCs) and total VOCs (TVOC) were measured in four new manufactured houses on three occasions over a period of approximately nine months following completion of their construction. The houses were furnished, but unoccupied, model homes produced by a single U.S. manufacturer. Several of the houses incorporated interior finish materials with lower VOC emissions than standard materials. One house had a modified ventilation system. Ventilation rates were measured concurrently with the collection of air samples. A steady-state mass-balance model was used to calculate the area-specific emission rates of the target compounds and TVOC. The emissions of formaldehyde and VOCs from a specimen of plywood used as the floor sheeting were additionally quantified. The median formaldehyde concentration in the four houses was 37 parts-per-billion ( ppb). The formaldehyde concentrations were all less than the most restrictive guideline for this compound of 50 ppb. The concentrations of many of the target VOCs were low. Thirty-one of the VOCs had median concentrations that were at or below 1 ppb. Seven of the compounds were among the most abundant VOCs in all four houses. These compounds were alpha-pinene, beta-pinene, 3-carene, ethylene glycol, hexanal, 2-butanone, and acetic acid. The concentrations of the aldehydes, hexanal, octanal and nonanal, in the four houses were either near or exceeded their respective odor thresholds. The concentrations of acetic acid increased with time. In the final sampling period, the odor threshold for acetic acid was exceeded in all of the houses. The range of TVOC concentrations in the four houses was 0.8 to 3 mg m{sup -3}, with a median value of 1.6 mg m{sup -3}. These concentrations were somewhat lower than TVOC concentrations previously measured in several new site-built houses, and the median concentration was only about twice the typical value for existing residences. The house with the modified ventilation system and several lower emitting materials had consistently low TVOC concentrations that were near 1 mg m{sup -3}. There were no large decreases with time in the emission rates of the individual VOCs or TVOC during the course of the study. However, the emission rates were often lowest in the final sampling with the notable exception of the acetic acid emission rate that increased with time. The source of the aldehydes was most likely engineered wood products, such as the plywood floor sheeting and possibly other structural or interior components. The source of the acetic acid was uncertain. The effects of the source substitution treatments were measurable but turned out to be relatively minor due to the predominance of other sources.

Hodgson, A.T.; Beal, D.; Chandra, S.

1998-09-01T23:59:59.000Z

149

Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report  

Science Conference Proceedings (OSTI)

Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

Not Available

1992-03-01T23:59:59.000Z

150

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions  

Science Conference Proceedings (OSTI)

More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

2012-01-01T23:59:59.000Z

151

Sandia National Labs: PCNSC: Research: Compound Semiconductor...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound...

152

ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT  

Science Conference Proceedings (OSTI)

Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was the only one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 mu g m-2 h 1 in the morning and 257 to 347 mu g m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 mu g m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 mu g/m2 h-1 for particleboard and 130 mu g/m2 h-1 for plywood). The high loading factor (material surface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde.

Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

2008-05-04T23:59:59.000Z

153

Chemical-Tolerant Microbes Produce 50-Fold More Organic Acid from Biomass  

Production of industrial chemicals has long relied on petroleum-based starting material. As reserves of fossil carbon dwindle, a new approach is looking to microorganisms and their ability to convert renewable sources into valuable chemicals. The U.S. ...

154

On-line tests of organic additives for the inhibition of the precipitation of silica from hypersaline geothermal brine II. Tests of nitrogen-containing compounds, silanes, and additional ethoxylated compounds  

DOE Green Energy (OSTI)

Several new classes of organic compounds have been screened as potential geothermal scale control agents by examining their effect on the precipitation of silica from Magmamax No. 1 brine. The substances were tested using the Lawrence Livermore Laboratory Brine Treatment Test System at the Niland, California, Test Site. Solutions of the test substances were injected into flowing brine at 210{sup 0}C, the brine was flashed to 125{sup 0}C, and then the kinetics of solids and silica precipitation from effluent brine held at 90{sup 0}C were measured. Three new types of compounds were shown to have activity as precipitation inhibitors: polyethylene imines, polyethyloxazalines, and quaternary ammonium compounds containing polyoxyethylene. Among the latter, Ethoquad 18/25, which is methyl-polyoxyethylene(15) octadecylammonium chloride, is the leading candidate antiscalant. It is a more powerful inhibitor of silica precipitation than the pure polyoxyethylene polymers, and it apparently has no high temperature solubility limitations. Measurements were made of the concentrations of monomeric silica and the effect of addition of inhibitor at various points in the Brine Treatment Test System. Five different silane compounds showed no activity toward silica.

Harrar, J.E.; Locke, F.E.; Otto, C.H. Jr.; Lorensen, L.E.; Frey, W.P.

1979-06-01T23:59:59.000Z

155

TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS  

SciTech Connect

This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

DOUGLAS, J.G.

2006-07-06T23:59:59.000Z

156

Chemical Pretreatment And Enzymatic Hydrolysis Of Mixed Source-Separated Organic (SSO) And Wood Waste.  

E-Print Network (OSTI)

??This paper examines the effectiveness of two pretreatments on Source-Separated Organic waste (SSO) mixed with wood wastes: long term lime for SSO mixed with forestry… (more)

Faye, Michael

2010-01-01T23:59:59.000Z

157

Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations  

SciTech Connect

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.

Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

2005-09-30T23:59:59.000Z

158

Chemical stability of salt cake in the presence of organic materials. [Detonation hazard  

DOE Green Energy (OSTI)

High-level waste stored as salt cake is principally NaNO/sub 3/. Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450/sup 0/C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175/sup 0/C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig. (DLC)

Beitel, G.A.

1976-04-01T23:59:59.000Z

159

Polymers via chemical vapor deposition and their application to organic photovoltaics  

E-Print Network (OSTI)

There is emerging interest in the ability to fabricate organic photovoltaics (OPVs) on flexible, lightweight substrates, which could lower the cost of installation and enable new form factors for deployment. However, ...

Barr, Miles Clark

2012-01-01T23:59:59.000Z

160

Oxidative and initiated chemical vapor deposition for application to organic electronics  

E-Print Network (OSTI)

Since the first discovery of polymeric conductors in 1977, the research area of "organic electronics" has grown dramatically. However, methods for forming thin films comprised solely of conductive polymers are limited by ...

Im, Sung Gap

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Complete detoxification of short chain chlorinated aliphatic compounds: Isolation of halorespiring organisms and biochemical studies of the dehalogenating enzyme systems. 1998 annual progress report  

SciTech Connect

'Widespread use and careless handling, storage and disposal practices, have lead to the dissemination of chlorinated short chain aliphatics into groundwater systems. These compounds are toxic and the presence of chlorinated ethenes and chlorinated propanes in the environment is of public concern. Halorespiration is a newly recognized anaerobic process by which certain bacteria use chlorinated compounds as terminal electron acceptors in their energy metabolism. In contrast to co-metabolic dechlorination, which is fortuitous, slow, and without benefit to the organisms, halorespiration, characterized by high dechlorination rates, is a specific metabolic process beneficial to the organism. The goals are to isolate and characterize organisms which use chlorinated ethenes (including tetrachloroethene [PCE], trichloroethene [TCE], cis-dichloroethene [cis-DCE], and vinyl chloride [VC], or 1,2-dichloropropane [1,2-D]) as electron acceptors in their energy metabolism. Better understanding of the physiology and phylogeny of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems, will greatly enhance the authors knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites. This report summarizes the results of 1.5 years of a 2-year project. Anaerobic microcosms were established using a variety of geographically distinct sediments. In several microcosms complete dechlorination of PCE to ethene (ETH), and 1,2-D to propene was observed. Upon subsequent transfers to anaerobic medium, four sediment-free, methanogenic enrichment cultures were obtained that dechlorinated PCE to ETH, and two cultures that dechlorinated 1,2-D to propene. 2-Bromoethanesulfonate (BES), a well known inhibitor of methanogens, did not inhibit the dechlorination of 1,2-D to propene or the dechlorination of PCE to cis-DCE. However, the complete dechlorination of PCE to VC and ETH was severely inhibited. They could also show that BES inhibited the dechlorination of chloroethenes in cultures without methanogens. Therefore, BES should not be used to attribute dechlorination activities to methanogens.'

Tiedje, J.M.

1998-06-01T23:59:59.000Z

162

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

163

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

The design of a low temperature Rankine cycle system using R-113 working fluid for recovery and conversion of process waste heat is described for typical applications in oil refineries and chemical plants. The system is designed to produce electric power from waste heat available in a temperature range from 180oF to 400oF. The design of a new ORC turbo generator uniquely adapted to applications of this type is presented. The unit has been designed for power outputs from 3/4 to 2 1/2 MW and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW and waste heat streams from 20 to 130 million BTU/hr.

Meacher, J. S.

1981-01-01T23:59:59.000Z

164

Embracing Complexity: Deciphering Origins and Transformations of Atmospheric Organics through Speciated Measurements  

E-Print Network (OSTI)

oxidation processes. Organic compounds are emitted to the atmosphere from a variety of natural and man temporal resolution are necessary to adequately observe variations in chemical composition caused analytical tools. Current gas and particle-phase instrumentation has focused on measuring organic compounds

Silver, Whendee

165

ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition  

SciTech Connect

We report a breakthrough in fabricating ZnO homojunction light-emitting diode by metal organic chemical vapor deposition. Using NO plasma, we are able to grow p-type ZnO thin films on n-type bulk ZnO substrates. The as-grown films on glass substrates show hole concentration of 10{sup 16}-10{sup 17} cm{sup -3} and mobility of 1-10 cm{sup 2} V{sup -1} s{sup -1}. Room-temperature photoluminescence spectra reveal nitrogen-related emissions. A typical ZnO homojunction shows rectifying behavior with a turn-on voltage of about 2.3 V. Electroluminescence at room temperature has been demonstrated with band-to-band emission at I=40 mA and defect-related emissions in the blue-yellow spectrum range.

Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

2006-04-24T23:59:59.000Z

166

The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol  

Science Conference Proceedings (OSTI)

The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

2011-10-03T23:59:59.000Z

167

Influence of Wetting and Mass Transfer Properties of Organic Chemical Mixtures in Vadose Zone Materials on Groundwater Contamination by Nonaqueous Phase Liquids  

Science Conference Proceedings (OSTI)

Previous studies have found that organic acids, organic bases, and detergent-like chemicals change surface wettability. The wastewater and NAPL mixtures discharged at the Hanford site contain such chemicals, and their proportions likely change over time due to reaction-facilitated aging. The specific objectives of this work were to (1) determine the effect of organic chemical mixtures on surface wettability, (2) determine the effect of organic chemical mixtures on CCl4 volatilization rates from NAPL, and (3) accurately determine the migration, entrapment, and volatilization of organic chemical mixtures. Five tasks were proposed to achieve the project objectives. These are to (1) prepare representative batches of fresh and aged NAPL-wastewater mixtures, (2) to measure interfacial tension, contact angle, and capillary pressure-saturation profiles for the same mixtures, (3) to measure interphase mass transfer rates for the same mixtures using micromodels, (4) to measure multiphase flow and interphase mass transfer in large flow cell experiments, all using the same mixtures, and (5) to modify the multiphase flow simulator STOMP in order to account for updated P-S and interphase mass transfer relationships, and to simulate the impact of CCl4 in the vadose zone on groundwater contamination. Results and findings from these tasks and summarized in the attached final report.

Charles J Werth; Albert J Valocchi, Hongkyu Yoon

2011-05-21T23:59:59.000Z

168

Study of volatile organic compound emissions from consumer and commercial products. Economic incentives to reduce VOC emissions from consumer and commercial products  

Science Conference Proceedings (OSTI)

The report presents a preliminary assessment of the feasibility and desirability of employing Federal economic incentive programs to reduce volatile organic compound (VOC) emissions from the use of consumer and commercial products. The principal tasks of the study are to examine alternative economic incentives and to compare them to a hypothetical command-and-control program, VOC content standards, which would consist of product-specific limitations on maximum VOC content (grams of VOC per unit of product). It is the basis of comparison because the ultimate purpose of this investigation is to search for the most desirable instrument in the set of potential instruments, which obviously would include instruments based on command-and-control. The purposes of comparison are to determine how well the instruments accomplish certain policy objectives and to appraise their ability to cope with the complexities inherent in the task of environmental regulation.

NONE

1995-03-01T23:59:59.000Z

169

Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

170

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes  

SciTech Connect

Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

Alam, Todd M.; Henry, Marc

1999-08-05T23:59:59.000Z

171

Program on Technology Innovation: Health Effects of Organic Aerosols: An EPRI/NARSTO Workshop  

Science Conference Proceedings (OSTI)

The EPRI-NARSTO Health Effects of Organic Aerosols Workshop was held in Palo Alto, California on October 24-25, 2006. The workshop was intended to further our understanding of the organic fraction of ambient particulate matter (PM) and associated organic gases. The composition of organic aerosol is very complex, varying in accordance with physical and chemical processes in the atmosphere and comprising numerous organic compounds of both anthropogenic and natural origin. The workshop focused on organic ae...

2007-03-27T23:59:59.000Z

172

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 1. Project summaries. Final report  

SciTech Connect

The objectives of the Phase II research project on emission of potentially toxic organic compounds (PTOCs) from wastewater treatment plants were fivefold: (1) assessment of the importance of gaseous emissions from municipal wastewater collection systems; (2) resolution of the discrepancy between the measured and estimated emissions (Phase I), from the Joint Water Pollution Control Plant (JWPCP) operated by the County Sanitation Districts of Los Angeles County (CSDLAC); (3) determination of airborne concentrations of PTOCS immediately downwind of an activated sludge aeration process at the City of Los Angeles' Hyperion Treatment Plant (HTP); (4) a modeling assessment of the effects of transient loading on emissions during preliminary and primary treatment at a typical municipal wastewater treatment plant (MWTP); (5) a preliminary investigation of effects of chlorination practices on haloform production. Volume 1, for which the abstract was prepared, contains a summary of results from each project; Volume 2 contains the discussion regarding the modeling of collection system emissions; Volume 3 addresses methods development and field sampling efforts at the JWPCP and HTP, data on emissions from a mechanically ventilated sewer and results of some preliminary haloform formation studies in wastewaters; and Volume 4 discusses aspects of the emissions modeling problem.

Chang, D.P.Y.; Schroeder, E.D.; Corsi, R.L.; Guensler, R.; Meyerhofer, J.A.

1991-08-01T23:59:59.000Z

173

Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution  

Science Conference Proceedings (OSTI)

Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

2011-03-16T23:59:59.000Z

174

Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}  

SciTech Connect

A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as a combination of two known compounds. Black-Right-Pointing-Pointer Theoretical calculations indicated that the Fermi level was located near the pseudogap.

Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo [Department of Chemistry, Chungbuk National University, Cheongju, 410 Seungbong-ro Heungduk-gu Chungbuk 361-763 (Korea, Republic of)] [Department of Chemistry, Chungbuk National University, Cheongju, 410 Seungbong-ro Heungduk-gu Chungbuk 361-763 (Korea, Republic of); You, Tae-Soo, E-mail: tsyou@chungbuk.ac.kr [Department of Chemistry, Chungbuk National University, Cheongju, 410 Seungbong-ro Heungduk-gu Chungbuk 361-763 (Korea, Republic of)] [Department of Chemistry, Chungbuk National University, Cheongju, 410 Seungbong-ro Heungduk-gu Chungbuk 361-763 (Korea, Republic of)

2012-12-15T23:59:59.000Z

175

Polyethylene passive samplers for measuring hydrophobic organic chemical concentrations in sediment porewaters and their use in predicting bioaccumulation in soft-shell clams (Mya arenaria) from sites near Boston, MA  

E-Print Network (OSTI)

In order to determine the hazards posed by hydrophobic organic compounds (HOCs) in sediment beds, the following areas of research were explored: (1) the use of polyethylene (PE) sheets as passive sampling devices in ...

Fernandez, Loretta A. (Loretta Ana)

2010-01-01T23:59:59.000Z

176

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

177

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot

2004-06-30T23:59:59.000Z

178

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network (OSTI)

Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide guidance for land and water resources management. Atmospheric pressure and water table fluctuations are two important natural processes at the upper and lower boundaries of the unsaturated zone, respectively. However, their significance has been neglected in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi-analytical and numerical solutions are developed to calculate the subsurface gas flow field and the gas phase transport of VOCs in active soil vapor extraction (SVE), barometric pumping (BP) and natural attenuation taking into account the atmospheric pressure and the water table fluctuations. The accuracy of the developed solutions are checked by comparing with published analytical solutions under extreme conditions, newly developed numerical solutions in COMSOL Multiphysics and field measured data. Results indicate that both the atmospheric pressure and the tidal-induced water table fluctuations significantly change the gas flow field in active SVE, especially when the vertical gas permeability is small (less than 0.4 Darcy). The tidal-induced downward moving water table increases the depth-averaged radius of influence (ROI) for the gas pumping well. However, this downward moving water table leads to a greater vertical pore gas velocity away from the gas pumping well, which is unfavorable for removing VOCs. The gas flow rate to/from the barometric pumping well can be accurately calculated by our newly developed solutions in both homogeneous and multi-layered unsaturated zones. Under natural unsaturated zone conditions, the time-averaged advective flux of the gas phase VOCs induced by the atmospheric pressure and water table fluctuations is one to three orders of magnitude less than the diffusive flux. The time-averaged advective flux is comparable with the diffusive flux only when the gas-filled porosity is very small (less than 0.05). The density-driven flux is negligible.

You, Kehua

2013-05-01T23:59:59.000Z

179

COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols  

E-Print Network (OSTI)

), 31-36. (35) Daylight Theory Manual, Daylight Chemical Information Systems, Inc., release date August, for example, the formation of nitrogen-containing organic compounds (NOC).9-11 Recent advances in high such as hemiacetal formation29-31 are quite common in both organic aerosols and in aqueous solutions of OA. Advanced

Nizkorodov, Sergey

180

Polybenzimidazole compounds  

DOE Patents (OSTI)

A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Jones, Michael G. (Chubbuck, ID); Wertsching, Alan K. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID); Trowbridge, Tammy L. (Idaho Falls, ID)

2011-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Spatial chemical distance based on atomic property fields  

E-Print Network (OSTI)

009-9316-x Spatial chemical distance based on atomicSimilarity of compound chemical structures often leads tonot always true, as distinct chemical scaffolds can exhibit

Grigoryan, A. V.; Kufareva, I.; Totrov, M.; Abagyan, R. A.

2010-01-01T23:59:59.000Z

182

Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines  

E-Print Network (OSTI)

engines Aftertreatment technology Diesel particulate filter Chemical speciation a b s t r a c t To meet by individual aftertreatment components using the same engine and fuel has been assessed and published engine emissions have made it necessary to implement exhaust aftertreat- ment technology to lower

Wu, Mingshen

183

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

184

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

185

Complete Detoxification of Short Chain Chlorinated Aliphatic Compounds: Isolation of Halorespiring Organisms and Biochemical Studies of the Dehalogenating Enzyme Systems - Final Report  

DOE Green Energy (OSTI)

Work focused on the isolation and characterization of halorespiring populations, and the initial investigation of the dechlorinating enzyme systems. In addition, tools to evaluate the presence/activity to halorespiring populations in the environment were developed. The tools developed in this work (measurements of hydrogen consumption thresholds, molecular probes) are relevant for regulatory agencies in order to facilitate decisions on which bioremediation technology (biostimulation or bioaugmentation) is most promising at a particular site. In addition, a better understanding of the physiology of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems enhances our knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites.

Tiedje, J.M.

1999-10-01T23:59:59.000Z

186

ARM - Measurement - Organic Carbon Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

187

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network (OSTI)

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

188

Candidate chemical systems for air cooled solar powered, absorption air conditioner design. Part I. Organic absorbent systems  

DOE Green Energy (OSTI)

All the available experimental evidence suggests that the optimum ''organic'' absorbent/refrigerant combination would be a methane derivative with a single hydrogen atom with chlorine and fluorine atoms in the other sites, as refrigerant. This would be hydrogen bonded to an absorbent molecule containing the group =NC/sup -/O, with the substituent groups being such that no steric hindrance took place. Cycle analyses showed that the ratio of internal heat transfer to cooling would be large, probably impractically so in view of the high coefficient of performance needed for solar driven cooling and the additional handicap of heat rejection to the atmosphere. A more promising approach would be to reduce the internal heat transfer per unit of space cooling by selecting a refrigerant with a high latent heat of vaporization and selecting an absorbent with suitable properties.

Biermann, W.J.

189

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

190

High-temperature chemical and microstructural transformations of an organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide  

Science Conference Proceedings (OSTI)

The thermal evolution of a crystalline organic-inorganic nanohybrid captopril intercalated Mg-Al layered double hydroxide (LDH) [Mg{sub 0.68}Al{sub 0.32}(OH){sub 2}] (C{sub 9}H{sub 13}NO{sub 3}S){sub 0.130}(CO{sub 3}){sub 0.030}.0.53H{sub 2}O obtained by coprecipitation method is studied based upon in situ high-temperature X-ray diffraction, in situ infrared and thermogravimetric analysis coupled with mass spectroscopy analysis. The results reveal that a metastable quasi-interstratified layered nanohybrid involving carbonate-LDH and reoriented less ordered captopril-LDH was firstly observed as captopril-LDH heat-treated between 140 and 230 deg. C. The major decomposition/combustion of interlayer organics occur between 270 and 550 deg. C. A schematic model on chemical and microstructural evolution of this particular drug-inorganic nanohybrid upon heating in air atmosphere is proposed.

Zhang Hui [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)], E-mail: huizhang67@gst21.com; Guo Shaohuan; Zou Kang; Duan Xue [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029 (China)

2009-05-06T23:59:59.000Z

191

Organic Tanks Safety Program: Waste aging studies  

Science Conference Proceedings (OSTI)

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

192

PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION  

DOE Patents (OSTI)

This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

Wolter, F.J.; Diehl, H.C. Jr.

1958-01-01T23:59:59.000Z

193

Vibronic states in organic semiconductors based on non-metal naphthalocyanine. Detection of heterocyclic phthalocyanine compounds in a flexible dielectric matrix  

Science Conference Proceedings (OSTI)

The vibronic properties of semiconductor structures based on non-metal naphthalocyanine molecules are studied using IR and Raman spectroscopy methods. New absorption lines in the transmission spectra of such materials are detected and identified. Three transmission lines are observed in the range 2830-3028 cm{sup -1}, which characterize carbon-hydrogen bonds of peripheral molecular groups. Their spectral positions are 2959, 2906, and 2866 cm{sup -1}. It is detected that the phthalocyanine ring can also exhibit its specific vibronic properties in the Raman spectra at 767, 717, and 679 cm{sup -1}. The naphthalocyanine molecule in the organic dielectric matrix of microfibers is described using IR spectroscopy. It is shown that the set of vibrations characterizing the isoindol group, pyrrole ring, naphtha group, and C-H bonds, allows an accurate enough description of the vibronic states of the naphthalocyanine complex in complex heterostructures to be made. The spectral range with fundamental modes, characterizing a naphthalocyanine semiconductor in a heterostructure, is 600-1600 cm{sup -1}. A comparison of the compositions of complex systems with a similar heterostructure containing lutetium diphthalocyanine demonstrated few errors.

Belogorokhov, I. A., E-mail: jugqwerty@mail.ru [State Research and Project Institute of Rare-Metal Industry GIREDMET (Russian Federation); Tikhonov, E. V. [Moscow State University (Russian Federation); Dronov, M. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Belogorokhova, L. I. [Moscow State University (Russian Federation); Ryabchikov, Yu. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Tomilova, L. G.; Khokhlov, D. R. [Moscow State University (Russian Federation)

2012-01-15T23:59:59.000Z

194

Low temperature hydrothermal destruction of organics in Hanford tank wastes  

SciTech Connect

The objective of this work is to evaluate and develop a low temperature hydrothermal process (HTP) for the destruction of organics that are present wastes temporarily stored in underground tanks at the Hanford Site. Organic compounds contribute to tank waste safety issues, such as hydrogen generation. Some organic compounds act as complexants, promoting the solubility of radioactive constituents such as {sup 90}Sr and {sup 241}Am, which is undesirable for waste pretreatment processing. HTP is thermal-chemical autogenous processing method that is typically operated between 250{degrees}C and 375{degrees}C and approximately 200 atm. Testing with simulated tank waste, containing a variety of organics has been performed. The distribution of strontium, cesium and bulk metals between the supernatant and solid phases as a function of the total organic content of the waste simulant will be presented. Test results using simulant will be compared with similar tests conducted using actual radioactive waste.

Orth, R.J.; Elmore, M.R.; Zacher, A.H.; Neuenschwander, G.G.; Schmidt, A.J.; Jones, E.O.; Hart, T.R.; Poshusta, J.C.

1994-08-01T23:59:59.000Z

195

Bismaleimide compounds  

DOE Patents (OSTI)

Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

Adams, Johnnie E. (Grandview, MO); Jamieson, Donald R. (Merriam, KS)

1986-01-14T23:59:59.000Z

196

Organic Chemical Metrology Group Homepage  

Science Conference Proceedings (OSTI)

... labeling laws, provide traceability for food exports, improve the … ... Comprehensive Two-Dimensional Gas Chromatography/Time of Flight Mass ...

2012-10-23T23:59:59.000Z

197

As-grown deep-level defects in n-GaN grown by metal-organic chemical vapor deposition on freestanding GaN  

SciTech Connect

Traps of energy levels E{sub c}-0.26 and E{sub c}-0.61 eV have been identified as as-grown traps in n-GaN grown by metal-organic chemical vapor deposition by using deep level transient spectroscopy of the Schottky contacts fabricated by resistive evaporation. The additional traps of E{sub c}-0.13 and E{sub c}-0.65 eV have been observed in samples whose contacts are deposited by electron-beam evaporation. An increase in concentration of the E{sub c}-0.13 and E{sub c}-0.65 eV traps when approaching the interface between the contact and the GaN film supports our argument that these traps are induced by electron-beam irradiation. Conversely, the depth profiles of as-grown traps show different profiles between several samples with increased or uniform distribution in the near surface below 50 nm. Similar profiles are observed in GaN grown on a sapphire substrate. We conclude that the growth process causes these large concentrations of as-grown traps in the near-surface region. It is speculated that the finishing step in the growth process should be an essential issue in the investigation of the surface state of GaN.

Chen Shang; Ishikawa, Kenji; Hori, Masaru [Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Honda, Unhi; Shibata, Tatsunari; Matsumura, Toshiya; Tokuda, Yutaka [Aichi Institute of Technology, Yakusa, Toyota 470-0392 (Japan); Ueda, Hiroyuki; Uesugi, Tsutomu; Kachi, Tetsu [Toyota Central R and D Laboratories, Inc., Yokomichi, Nagakute 480-1192 (Japan)

2012-09-01T23:59:59.000Z

198

Pyrolitic Uranium Compound (PYRUC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrolitic Uranium Compound Pyrolitic Uranium Compound (PYRUC) PYRolitic Uranium Compound (PYRUC) is a shielding material consisting of depleted uranium UO2 or UC in either pellet...

199

Boron-nitrogen-hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses  

Science Conference Proceedings (OSTI)

The strong efforts devoted to the exploration of BNH compounds for hydrogen storage have led to impressive advances in the field of boron chemistry. This review summarizes progress in this field from three aspects. It starts with the most recent developments in using BNH compounds for hydrogen storage, covering NH3BH3, B3H8Ż containing compounds, and CBN compounds. The following section then highlights interesting applications of BNH compounds in hydrogenation and catalysis. The last part is focused on breakthroughs in the syntheses and discovery of new BNH organic analogues. The role of N?H?+•••H?-?B dihydrogen interactions in molecule packing, thermal hydrogen evolution, and syntheses is also discussed within the review. Part of this research is supported by the U.S. Department of Energy’s Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. Pacific Northwest National Laboratory is operated by Battelle.

Huang, Zhenguo; Autrey, Thomas

2012-11-15T23:59:59.000Z

200

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Indoor Air Quality and Volatile Organic Compounds  

Science Conference Proceedings (OSTI)

... The unit was sized to comply with the outdoor air requirements in ASHRAE Standard 62.2 Ventilation and Acceptable Indoor Air Quality in Low ...

2013-03-12T23:59:59.000Z

202

Volatile Organic Compound Concentrations and Emission ...  

Science Conference Proceedings (OSTI)

... 4 Page 5. and air conditioning equipment, and price. ... quantified. Acetic acid, an apparently abundant VOC, also was not quantified. The target VOCs ...

2007-08-16T23:59:59.000Z

203

Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements  

E-Print Network (OSTI)

Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to ...

Tsimpidi, A. P.

204

Monitoring Data from the Chemical Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico (2003 - 2006)  

DOE Data Explorer (OSTI)

The Chemical Waste Landfill (CWL) was a 1.9 acre site used from 1962 until 1985 for disposal of chemical wastes. The wastes were generated by research at Sandia's laboratories. The excavation of the CWL and the removal of 2000 intact chemical containers was completed safely and successfully. Contaminated soils were also removed for treatment or disposal. An "in-site" chemiresistor sensor was developed for the project that provided continuous monitoring of volatile organic compounds in the air, soil, and water. The monitoring data, collected from March, 2003 through April, 2006 is summarized and presented at this website.

Ho, Cliff (Sandia National Laboratories)

205

Evaluation of radionuclide, inorganic constituent, and organic compound data from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1989--1992  

Science Conference Proceedings (OSTI)

The U.S. Geological Survey and the Idaho Department of Water Resources, in cooperation with the U.S. Department of Energy, evaluated the water quality data collected from 55 wells and springs during 1989 and 1990 through 1992 from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho. Water samples collected in 1989-92 were analyzed for selected radionuclides, inorganic constituents, and organic compounds. A statistical comparison between data collected in 1989 and data collected in 1990-92 along with a comparison of replicate pairs was used to evaluate changes in water quality between samples and to assess sampling and analysis precision for individual constituents. The comparisons of radionuclide data showed no pattern of water quality change between samples as concentrations randomly increased or decreased. Tritium concentrations did show a consistent pattern with location in the aquifer. The largest tritium concentrations occurred in water from wells in the Big Wood and Little Wood River drainages and in the southern part of the study area where heavy irrigation occurs. The variability of radionuclide concentrations may be attributed to the change in the contract laboratory used for radiochemical analyses between 1989 and 1990. The replicate data for radionuclides showed better overall reproducibility for data collected in 1990-92 than for 1989, as 70 of 76 replicate pairs were statistically equivalent for 1990-92 data whereas only 55 of 73 replicate pairs were equivalent for 1989 data. The comparisons of most of the inorganic constituent data showed no statistical change between samples. Exceptions include nitrite plus nitrate as nitrogen and orthophosphate as phosphorus data. Fifteen sample pairs for nitride plus nitrate and 18 sample pairs for orthophosphate were not statistically equivalent and concentrations randomly increased or decreased.

Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

1997-01-01T23:59:59.000Z

206

Method for conversion of .beta.-hydroxy carbonyl compounds  

DOE Patents (OSTI)

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

2010-03-30T23:59:59.000Z

207

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or… (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

208

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

209

Applied Chemicals and Materials Staff Directory  

Science Conference Proceedings (OSTI)

Applied Chemicals and Materials Staff Directory. ... accept either a name, organizational name, or ... MML Organization. Contact. Material Measurement ...

2012-10-12T23:59:59.000Z

210

Probing Complex Free-Radical Reaction Pathways of Fuel Model Compounds  

Science Conference Proceedings (OSTI)

Fossil (e.g. coal) and renewable (e.g. woody biomass) organic energy resources have received considerable attention as possible sources of liquid transportation fuels and commodity chemicals. Knowledge of the reactivity of these complex materials has been advanced through fundamental studies of organic compounds that model constituent substructures. In particular, an improved understanding of thermochemical reaction pathways involving free-radical intermediates has arisen from detailed experimental kinetic studies and, more recently, advanced computational investigations. In this presentation, we will discuss our recent investigations of the fundamental pyrolysis pathways of model compounds that represent key substructures in the lignin component of woody biomass with a focus on molecules representative of the dominant beta-O-4 aryl ether linkages. Additional mechanistic insights gleaned from DFT calculations on the kinetics of key elementary reaction steps will also be presented, as well as a few thoughts on the significant contributions of Jim Franz to this area of free radical chemistry.

Buchanan III, A C [ORNL; Kidder, Michelle [ORNL; Beste, Ariana [ORNL; Britt, Phillip F [ORNL

2012-01-01T23:59:59.000Z

211

Chemical pathways for the formation of ammonia in Hanford wastes  

SciTech Connect

This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important).

Stock, L.M.; Pederson, L.R.

1997-12-01T23:59:59.000Z

212

PRODUCTION OF URANIUM AND THORIUM COMPOUNDS  

DOE Patents (OSTI)

Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

1955-12-27T23:59:59.000Z

213

Novel amine-based presursor compounds and composite membranes thereof  

DOE Patents (OSTI)

Novel amine-based precursor compounds comprising the condensation products of dialkylenetriamine and alpha, beta-unsaturated acid halides are disclosed, as well as composite membranes containing such compounds, the membranes being useful in RO-type processes for desalination and the removal of low molecular weight organic compounds such as phenols and carboxylic acids.

Lee, Eric K. L. (Wilmington, DE); Tuttle, Mark E. (Bend, OR)

1989-01-01T23:59:59.000Z

214

Indoor Residential Chemical Emissions as Risk Factors for Children's  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Residential Chemical Emissions as Risk Factors for Children's Indoor Residential Chemical Emissions as Risk Factors for Children's Respiratory Health Speaker(s): Mark Mendell Date: February 23, 2007 - 12:00pm Location: 90-3122 Most research into the effects of residential indoor air exposures on asthma and allergies has focused on exposures to biologic allergens, moisture and mold, endotoxin, or combustion byproducts. A growing body of research suggests that chemical emissions from common indoor materials and finishes have adverse effects, including increased risk of asthma, allergies, and pulmonary infections. The identified risk factors include specific organic compounds such as formaldehyde, benzene, and phthalates, as well as indoor materials or finishes such as vinyl flooring, carpet, paint, and plastics. This presentation presents a brief review of studies

215

Process for reducing aromatic compounds in ethylenediamine with calcium  

DOE Patents (OSTI)

Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

Benkeser, R.A.; Laugal, J.A.; Rappa, A.

1985-08-06T23:59:59.000Z

216

Process for reducing aromatic compounds in ethylenediamine with calcium  

DOE Patents (OSTI)

Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

1985-01-01T23:59:59.000Z

217

Apparatus and methods for detecting chemical permeation  

DOE Patents (OSTI)

Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

Vo-Dinh, Tuan (Knoxville, TN)

1994-01-01T23:59:59.000Z

218

SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF  

DOE Patents (OSTI)

The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

Crandall, H.W.; Thomas, J.R.

1959-06-30T23:59:59.000Z

219

Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity  

DOE Green Energy (OSTI)

The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

Stuart E. Strand

2001-12-06T23:59:59.000Z

220

XAFS Model Compound Library  

DOE Data Explorer (OSTI)

The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

Newville, Matthew

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Physical and Chemical Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

data image data image Physical and Chemical Applications Research in this area includes: Chemical analysis (femtosecond laser ablation). Advanced sensors (laser ultrasonics). Advanced materials and nanotechnology for clean energy- hydrogen storage, nanostructured organic light-emitting diodes, nanowires, and nanoparticles). Photons to fuels (biosynthetic pathways for generating hydrocarbon biofuels in photosynthetic organisms). Advanced Sensor Development Sensor-based control of industrial processes can help companies: Decrease production costs; Reduce waste of raw materials on manufacturing lines; Lower manufacturing downtime from equipment maintenance; Increase the energy efficiency of manufacturing processes; Detect equipment failure early, before it becomes a major liability;

222

Preparation of uranium compounds  

SciTech Connect

UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

2013-02-19T23:59:59.000Z

223

Device for aqueous detection of nitro-aromatic compounds  

DOE Patents (OSTI)

This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

1994-04-26T23:59:59.000Z

224

Survey of Alternative Feedstocks for Commodity Chemical Manufacturing  

Science Conference Proceedings (OSTI)

The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

2008-02-01T23:59:59.000Z

225

Partially fluorinated ionic compounds  

DOE Patents (OSTI)

Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

Han, legal representative, Amy Qi (Hockessin, DE); Yang, Zhen-Yu (Hockessin, DE)

2008-11-25T23:59:59.000Z

226

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

227

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

228

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

229

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

230

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Europium Intermetallic Compounds Print Towards Heavy Fermions in Europium Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

231

Towards Heavy Fermions in Europium Intermetallic Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Heavy Fermions in Towards Heavy Fermions in Europium Intermetallic Compounds Towards Heavy Fermions in Europium Intermetallic Compounds Print Wednesday, 29 July 2009 00:00 For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron correlations in solids. Nowadays rare-earth intermetallics are often treated as model systems for studies of zero-temperature quantum critical phase transitions, since heavy-fermion rare-earth compounds (in which the electron effective mass is orders of magnitude larger than the bare electron mass) have provided the clearest evidence for these continuous phase transitions, which are controlled by such parameters as chemical composition, magnetic field, and pressure, rather than temperature. A new study of a europium-based compound by an international team led by researchers from the Technische Universität Dresden in Germany hints that this compound could join well-known compounds of cerium, ytterbium, and uranium as a new material suitable for research on quantum critical transitions. This finding is exciting, since physicists hope that the use of a new material will give an additional degree of freedom for researching quantum critical behavior.

232

Heterogeneous organic acid uptake on soot surfaces  

E-Print Network (OSTI)

Atmospheric particulates have been known to act as cloud condensation nuclei (CCN) and therefore their presence can indirectly affect important processes such as global radiation balance through cloud formation. Soot particles are well known to be atmospheric constituents, but the hydrophobic nature of fresh soot likely prohibits them from encouraging cloud development. Soot aged through contact with oxygenated organic compounds may become hydrophilic enough to promote water uptake. In this study I have observed the interaction between a number of carboxylic acids and soot from different fuel sources and formation mechanisms. A low pressure fast flow reactor was used to control the contact between the solid phase soot and gas phase organics, while chemical ionization-mass spectrometry was utilized to monitor concentrations of gas phase organics. Most acids irreversibly deposited on the soot surfaces, and the uptake coefficient was measured in the wide range of 9.0 x 10-4 to 1.0 x 10-1. The Brunauer, Emmett, and Teller (BET) surface areas of the soots were measured and the soot bulk and surface chemical compositions were investigated with Fourier transform infrared (FTIR) spectroscopy and attenuated total reflection (ATR) spectroscopy to help explain differences in uptake. By comparing the mono and dicarboxylic acids and the information gathered from soot physiochemical properties I have discussed possible uptake mechanisms.

Levitt, Nicholas Paul

2007-05-01T23:59:59.000Z

233

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

234

Chemical Stimulation of Engineered Geothermal Systems  

DOE Green Energy (OSTI)

The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

Rose, Peter, E.

2008-08-08T23:59:59.000Z

235

Heart testing compound  

DOE Patents (OSTI)

The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

Knapp, F.F. Jr.; Goodman, M.M.

1983-06-29T23:59:59.000Z

236

Heart testing compound  

DOE Patents (OSTI)

The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

Knapp, Jr., Furn F. (Oak Ridge, TN); Goodman, Mark M. (Knoxville, TN)

1985-01-01T23:59:59.000Z

237

Evaluating Chemical Persistence in a Multimedia Environment: A CART Analysis  

E-Print Network (OSTI)

Multimedia Fate Of Organic Chemicals - A Level- Ill FugacityBennett DH, McKone TE. 1998. Chemical Dynamics of PersistentLBNL-42897 Evaluating Chemical Persistence in a Multimedia

Bennett, D.H.

2011-01-01T23:59:59.000Z

238

Radiolabelling of chemicals. [Chemical additives used in geothermal operations  

DOE Green Energy (OSTI)

Labeling of chemical additives with radioactive isotopes can solve numerous problems in geothermal operations. The physical and chemical behavior of many chemicals slated for geothermal operations can be studied with the required detail at the extremely low concentration of the commercially available (non-labeled) compounds. The problems of labeling and the basics of these radioactively labeled chemicals are described in this report. Conclusions of this study are: (1) chemicals labeled with radioactive isotopes can be used to investigate the chemical and physical behavior of chemical additives used in geothermal operations. The high detection limits make this technology superior to conventional analytical and monitoring methods; (2) severe difficulties exist for utilizing of radioactively labeled chemicals in geothermal operations. The labeling itself can cause technical problems. Another host of problems is caused by the reluctance of chemical manufacturers to release the necessary proprietary information on their chemicals required for proper labeling; and (3) previous attempts to manufacture radioactively labeled flocculants and to utilize them in a geothermal operation were prematurely abandoned for a number of reasons.

Vetter, O.J.; Kandarpa, V.

1982-06-22T23:59:59.000Z

239

Method of manipulating the chemical properties of water to improve the effectiveness of a desired process  

DOE Patents (OSTI)

The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

Hawthorne, Steven B. (Grand Forks, ND); Miller, David J. (Grand Forks, ND); Lagadec, Arnaud Jean-Marie (Grand Forks, ND); Hammond, Peter James (York, GB); Clifford, Anthony Alan (Leeds, GB)

2002-01-01T23:59:59.000Z

240

INSENSITIVE HIGH-NITROGEN COMPOUNDS  

DOE Green Energy (OSTI)

The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB--the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it too is a better explosive performer. The recently discovered tetrazol derivative, 3,6-bis-(1H-1,2,3,4-tetrazol-5-ylamino)-s-tetrazine (BTATz) was measured to have exceptional positive heats of formation and to be insensitive to explosive initiation. Because of its high burn rate with low sensitivity to pressure, this material is of great interest to the propellant community.

D. CHAVEZ; ET AL

2001-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

None

2010-08-01T23:59:59.000Z

242

Reactive Distillation for Esterification of Bio-based Organic Acids  

DOE Green Energy (OSTI)

The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

2008-09-23T23:59:59.000Z

243

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

244

HML Organic Chemical Metrology Program Areas  

Science Conference Proceedings (OSTI)

... Gas chromatography with electron capture detection; Liquid chromatography (including nano-liquid chromatography) with linear ion trap mass ...

2012-11-16T23:59:59.000Z

245

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

246

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

247

Properties of Uranium Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Triuranium Octaoxide (U3O8) Uranium Dioxide (UO2) Uranium Tetrafluoride (U4) Uranyl Fluoride (UO2F2) The physical properties of the pertinent chemical forms of uranium are...

248

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

249

8-fluoropurine compounds  

DOE Patents (OSTI)

An efficient, regiocontrolled approach to the synthesis of 8-fluoropurines by direct fluorination of purines with dilute elemental fluorine, or acetyl hypofluorite, is provided. In a preferred embodiment, a purine compound is dissolved in a polar solvent and reacted with a dilute mixture of F.sub.2 in He or other inert gas.

Barrio, Jorge R. (Agoura Hills, CA); Satyamurthy, Nagichettiar (Los Angeles, CA); Namavari, Mohammad (Los Angeles, CA); Phelps, Michael E. (Encino, CA)

2001-01-01T23:59:59.000Z

250

Compound semiconductor MOSFETs  

Science Conference Proceedings (OSTI)

Enhancement mode, high electron mobility MOSFET devices have been fabricated using an oxide high-@k gate dielectric stack developed using molecular beam epitaxy. A template layer of Ga"2O"3, initially deposited on the surface of the III-V device unpins ... Keywords: Compound semiconductors, GaAs gate dielectric, III-V MOSFETs

R. Droopad; K. Rajagopalan; J. Abrokwah; P. Zurcher; M. Passlack

2007-09-01T23:59:59.000Z

251

A compound parabolic concentrator  

SciTech Connect

A compound parabolic concentrator (CPC) for solar energy applications is presented in this work. A prototype was built and its thermal performance was determined. Operating temperatures of the order of 150 /sup 0/C with a reasonable efficiency can be attained by means of a fixed CPC.

Manrique, J.A.

1984-05-01T23:59:59.000Z

252

Indoor Residential Chemical Emissions as Risk Factors for Children...  

NLE Websites -- All DOE Office Websites (Extended Search)

The identified risk factors include specific organic compounds such as formaldehyde, benzene, and phthalates, as well as indoor materials or finishes such as vinyl flooring,...

253

Sorption of organic gases in residential bedrooms and bathrooms  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorption of organic gases in residential bedrooms and bathrooms Sorption of organic gases in residential bedrooms and bathrooms Title Sorption of organic gases in residential bedrooms and bathrooms Publication Type Conference Paper LBNL Report Number LBNL-56787 Year of Publication 2005 Authors Singer, Brett C., Alfred T. Hodgson, Toshifumi Hotchi, Katherine Y. Ming, Richard G. Sextro, Emily E. Wood, and Nancy J. Brown Conference Name Proceedings of the 10th International Conference on Indoor Air Quality and Climate - Indoor Air 2005 Volume 2(9) Publisher Tsinghua University Press Conference Location Beijing, China Abstract Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied "as-is" with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapour pressure within each chemical class.

254

Chemical Engineering 2013-2014 Catalog  

E-Print Network (OSTI)

Chemical Engineering 2013-2014 Catalog 129 Total Credits First Year Semester 1 Semester 2 4 Math Lab I) 5 Phys 221 (Classical Physics I) 3 Ch E 160 (Chemical Engr Problems) 3 SSH Elective 1 Lib 160 II) 3 Chem 331 (Organic Chemistry I) 3 Chem 325 (Chemical Thermodynamics) 1 ChE 202 (ChE Engr Seminar

Lin, Zhiqun

255

Direct radiative forcing of anthropogenic organic aerosol  

E-Print Network (OSTI)

[1] This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity–dependent hygroscopic growth by employing a functional group– based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as 0.34 and 0.71 W m 2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are 0.63 and 0.98 W m 2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clearsky TOA forcing estimates by 18 % and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18 % and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47 % and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Yi Ming; V. Ramaswamy; Paul A. Ginoux; Larry H. Horowitz

2005-01-01T23:59:59.000Z

256

Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography  

SciTech Connect

In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

1995-06-01T23:59:59.000Z

257

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

258

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

259

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

260

Reactive codoping of GaAlInP compound semiconductors  

DOE Patents (OSTI)

A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

2008-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen in compound semiconductors  

DOE Green Energy (OSTI)

Progress in the understanding of hydrogen and its interactions in III/V and II/VI compound semiconductors is reviewed. Donor, acceptor and deep level passivation is well established in III/V compounds based on electrical measurements and on spectroscopic studies. The hydrogen donor levels in GaAs and GaP are estimated to lie near E{sub v}+0.5 eV and E{sub v}+0.3 eV, respectively. Arsenic acceptors have been passivated by hydrogen in CdTe and the very first nitrogen-hydrogen local vibrational model spectra in ZnSe have been reported. This long awaited result may lead to an explanation for the poor activation of nitrogen acceptors in ZnSe grown by techniques which involve high concentrations of hydrogen.

Haller, E.E.

1993-05-01T23:59:59.000Z

262

Injection Molding Compounds  

Science Conference Proceedings (OSTI)

Table 5   Common thermoplastic and thermoset molding compounds...(r) (s) (t) Phenolic Distributor caps, plastic ash trays (a) (b) (g) (h) (i) (j) (k) (l) (m) (n) (o) (q) (r) (s) (t) Urethane Automotive body panels, bumpers (a) (d) (e) (g) (i) (l) (m) (o) (q) (r) (t) Vinyl ester Composite car/truck springs, wheels (b) (d) (e) (g) (i) (j) (k) (l) (m) (n) (o) (p)...

263

Yellow phosphorus process to convert toxic chemicals to non-toxic products  

DOE Patents (OSTI)

The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

Chang, S.G.

1994-07-26T23:59:59.000Z

264

Organic solvent topical report  

Science Conference Proceedings (OSTI)

This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

Cowley, W.L.

1998-04-30T23:59:59.000Z

265

Definition: Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Compound and Elemental Analysis Jump to: navigation, search Dictionary.png Compound and Elemental Analysis Compound and elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elements and compounds and sometimes its isotopic composition. Elemental analysis can be qualitative (determining what elements are present), and it can also be quantitative (determining how much of each type are present).[1] View on Wikipedia Wikipedia Definition References ↑ http://en.wikipedia.org/wiki/Elemental_analysis Ret Like Like You like this.Sign Up to see what your friends like. rieved from

266

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

267

Chemical pathways for the formation of ammonia in Hanford wastes  

SciTech Connect

This report reviews chemical reactions leading to the formation of ammonia in Hanford wastes. The general features of the chemistry of the organic compounds in the Hanford wastes are briefly outlined. The radiolytic and thermal free radical reactions that are responsible for the initiation and propagation of the oxidative degradation reactions of the nitrogen-containing complexants, trisodium HEDTA and tetrasodium EDTA, are outlined. In addition, the roles played by three different ionic reaction pathways for the oxidation of the same compounds and their degradation products are described as a prelude to the discussion of the formation of ammonia. The reaction pathways postulated for its formation are based on tank observations, laboratory studies with simulated and actual wastes, and the review of the scientific literature. Ammonia derives from the reduction of nitrite ion (most important), from the conversion of organic nitrogen in the complexants and their degradation products, and from radiolytic reactions of nitrous oxide and nitrogen (least important). Reduction of nitrite ions is believed to be the most important source of ammonia. Whether by radiolytic or thermal routes, nitrite reduction reactions proceed through nitrogen dioxide, nitric oxide, the nitrosyl anion, and the hyponitrite anion. Nitrite ion is also converted into hydroxylamine, another important intermediate on the pathway to form ammonia. These reaction pathways additionally result in the formation of nitrous oxide and molecular nitrogen, whereas hydrogen formation is produced in a separate reaction sequence.

Stock, L.M.; Pederson, L.R.

1997-09-01T23:59:59.000Z

268

Small-Chamber Measurements of Chemical-Specific Emission Factors for  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Chamber Measurements of Chemical-Specific Emission Factors for Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall Title Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall Publication Type Report Year of Publication 2010 Authors Maddalena, Randy L., Marion L. Russell, Moya Melody, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations

269

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

270

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

and Mission Organization Staff - Organization Chart About Us Bob Cottingham, 865-241-0554 Computational Biology and Bioinformatics Meghan Drake 865-241-8288 Michael...

271

Science Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations Science Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place...

272

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

Chemical Industries Chemical Industries Jump to: navigation, search Name Sanyo Chemical Industries Place Tokyo, Japan Zip 103-0023 Product String representation "Sanyo is a petr ... uction process." is too long. References Sanyo Chemical Industries[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanyo Chemical Industries is a company located in Tokyo, Japan . References ↑ "Sanyo Chemical Industries" Retrieved from "http://en.openei.org/w/index.php?title=Sanyo_Chemical_Industries&oldid=350614" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

273

ESS 2012 Peer Review - Single Substance Organic Redox Flow Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Z Z - + Z + E 0 -2.8V A Single Substance Organic Redox Flow Battery -+- -+- Components Compound Z Tetraethylammonium Tetrafluoroborate (TEA-BF 4 )...

274

DOE workshop: Sedimentary systems, aqueous and organic geochemistry  

SciTech Connect

A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

Not Available

1993-07-01T23:59:59.000Z

275

Ventilation Control of Volatile Organic Compounds in New U  

NLE Websites -- All DOE Office Websites (Extended Search)

methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate...

276

Hydrogen-Evolving Organic Compounds - Energy Innovation Portal  

Benefits A hydrogen storage method that requires neither pressurized gas nor liquid hydrogen. Applications and Industries Transportation Patents and ...

277

Method for isotopic analysis of chlorinated organic compounds  

DOE Patents (OSTI)

The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

Holt, Ben D. (Hindsdale, IL); Sturchio, Neil C. (Oswego, IL)

1999-01-01T23:59:59.000Z

278

NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Hydrogen and Methane Data Validation Checklist (WP 12-VC3209) * EDD Review and Data Package Validation Table (WP 12-VC3209) * VacuumPressure Comparison between Field and...

279

Determinants for nasal trigeminal detection of volatile organic compounds.  

E-Print Network (OSTI)

FIGURE 2b-APPENDIX – Small jars nonanal 1-octanol eugenollarge vessels or small jars. Notice that the same order ofversus when using the small jars. Each point represents the

Cometto-Muńiz, J Enrique; Cain, William S; Abraham, Michael H

2005-01-01T23:59:59.000Z

280

CATALYTIC CONVERSION OF ORGANIC COMPOUNDS USING PENETRATING RADIATION  

DOE Patents (OSTI)

A method of hydrogenating an olefinic hydrocarbon by irradiating a substrate catalyst and increasing its catalytic activity is described. Ferric oxide with about 0.005% by weight of at least one oxide of a metal selected from the group consisting of aluminum, magnesium, nickel, zirconium, and manganese incorporated therein is irradiated. Then an alkane is placed upon the surface of the catalyst and irradiated in an atmosphere of hydrogen. Any olefin produced from this radiolysis becomes hydrogenated. (AEC)

Caffrey, J.M. Jr.

1961-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

METHODS OF MAKING ORGANIC COMPOUNDS BY METATHESIS - Energy ...  

Abraham, Timothy W. (Minnetonka, MN), Kaido, Hiroki (Eden Prairie, MN), Lee, Choon Woo (La Canada, CA), Pederson, Richard L. (San Gabriel, CA), ...

282

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...

283

Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research  

SciTech Connect

This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

Riley, R.G.; Zachara, J.M. (Pacific Northwest Lab., Richland, WA (United States))

1992-04-01T23:59:59.000Z

284

Review of BEIS3 Formulation and Consequences Relative to Air Quality Standards: Estimation of Effects of Uncertainties in BEIS3 Emissions on Uncertainties in Ozone Predictions by Chemical Transport Models  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) developed the Biogenics Emissions Inventory System, Version 3 (BEIS3) to estimate emissions of biogenic substances such as isoprene, monoterpenes, oxygenated volatile organic compounds, and biogenic nitric oxide. These biogenic emissions are inputs to chemical transport models (CTMs) used for calculating ambient concentrations of ozone and other pollutants. The outputs of the CTMs are then used to set policies concerning emission reductions needed from indus...

2003-07-17T23:59:59.000Z

285

Organization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us Organization Organization Leadership Organization History Careers Contact Us Organization...

286

A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate  

NLE Websites -- All DOE Office Websites (Extended Search)

A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate A Neo-Rumsfeldian Framework for the Thermodynamics of Organic Particulate Matter Formation in the Atmosphere: Successes and Challenges Speaker(s): James F. Pankow Date: March 6, 2008 - 12:00pm Location: 90-3122 James F. Pankow. The thermodynamic principles according to which organic particulate matter (OPM) forms in the atmosphere have become well identified because of research progress made since about the mid 1990s. These are, ahem, known knowns. However, many unknowns exist regarding the concentrations and chemical characteristics of the biogenic and anthropogenic compounds present in the atmosphere that are important in OPM formation. In this context, since we know what we need to know more about, these are, well, known unknowns. Other known important unknowns are

287

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al.,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Yellowstone Region (Hurwitz, Et Al., 2007) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes In this paper, we present and evaluate a chemical dataset that includes the concentrations and fluxes of HCO3_, SO42_, Cl_, and F_ in rivers draining YNP for the 2002-2004 water years (1 October 2001 - 30 September 2004). These solutes were chosen because they are likely derived in part, from the magmatic volatiles CO2, SO2, H2S, HCl, HF (Symonds et al., 2001). Weekly to

288

Modular Chemical Descriptor Language (MCDL): Stereochemical modules  

Science Conference Proceedings (OSTI)

In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

Gakh, Andrei A [ORNL; Burnett, Michael N [ORNL; Trepalin, Sergei V. [Institute Physiologically Active Compouds, Russian Academy of Sciences, Moscow; Yarkov, Alexander V [Institute Physiologically Active Compouds, Russian Academy of Sciences, Moscow

2011-01-01T23:59:59.000Z

289

High-Value Fluorine Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Compounds Baseline plans call for production of anhydrous or aqueous Hydrogen Fluoride (HF) from the DU hexafluoride conversion plant and subsequent recycle of these...

290

06-10-10_Dow_Chemical.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A. Viola Title: Senior Policy Advisor Firm or Organization, if applicable Holland & Knight 2099 Pennsylvania Avenue, NW 100 Washington DC, 20006 Client: The Dow Chemical Company...

291

Sandia National Labs: Physical, Chemical and Nano Sciences Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

About IMRL > About CSRL > About IBL > About CINT Organization Chart Departments News Partnering Research About Us Resources Facilities The Physical, Chemical, and Nano Sciences...

292

Sandia National Labs: Physical, Chemical and Nano Sciences Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Chart Departments News Partnering Research About Us Vision & Mission The Physical, Chemical, and Nano Sciences Center provides new scientific knowledge in support of...

293

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Science Chemical Science Compton double ionization of helium in the region of the cross-section maximum B. Krässig, R.W. Dunford, D.S. Gemmell, S. Hasegawa, E.P. Kanter, H. Schmidt-Böcking, W. Schmitt, S.H. Southworth, Th. Weber, and L. Young Crystal structure analysis of microporous Na16Nb12.8Ti3.2O44.8(OH)3.2l8H2O and Na/Nb/Zr/O/H2O phases A. Tripathi, J. Parise, M. Nyman, T.M. Nenoff, and W. Harrison Double K-photoionization of heavy atoms R.W. Dunford, D.S. Gemmell, E.P. Kanter, B. Krässig, and S.H. Southworth Forward-backward asymmetries of atomic photoelectrons S.H. Southworth, B. Krässig, E.P. Kanter, J.C. Bilheux, R.W. Dunford, D.S. Gemmell, S. Hasegawa, and L. Young In situreduction of various iron oxides to form high-surface-area Fe-metal catalysts as studied by high-resolution powder diffraction

294

Excursions in Chemical Dynamics  

E-Print Network (OSTI)

2009). [118] F. A. Cotton, Chemical Applications of GroupExcursions in Chemical Dynamics by Shervin Fatehi AFall 2010 Excursions in Chemical Dynamics Copyright 2010 by

Fatehi, Shervin

2010-01-01T23:59:59.000Z

295

NIST Organization  

Science Conference Proceedings (OSTI)

... What We Do; Organization Chart; Budget Information; Office of the Director; Laboratories & Major Programs; Locations; Staff Directory; Working With ...

2013-02-19T23:59:59.000Z

296

Symposium Organizer  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Symposium Organizer. Online Training Module. March 2013 ...

297

Chemical Biodynamics Division. Annual report 1979  

DOE Green Energy (OSTI)

The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

Not Available

1980-08-01T23:59:59.000Z

298

Raman studies of organic superconductors.  

SciTech Connect

The temperature-dependence of the frequency of one of the components of the v9 (Ag) doublet in the Raman spectra of several organic superconductors has been measured. The frequency of this mode was observed to soften below 100K, in those compounds in which NMR data indicates antiferromagnetic oscillations in the same temperature range. This is evidence for spin-phonon interactions.

Lin, Y.; Eldridge, J. E.; Wang, H. H.; Kini, A. M.; Schlueter, J. A.; Materials Science Division; Univer. of British Columbia

2001-03-15T23:59:59.000Z

299

Chemical Emissions of Residential Materials and Products: Review of  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Emissions of Residential Materials and Products: Review of Chemical Emissions of Residential Materials and Products: Review of Available Information Title Chemical Emissions of Residential Materials and Products: Review of Available Information Publication Type Report LBNL Report Number LBNL-3938E Year of Publication 2010 Authors Willem, Henry, and Brett C. Singer Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords resave Abstract This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

300

METHOD OF REDUCING PLUTONIUM COMPOUNDS  

DOE Patents (OSTI)

A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

Johns, I.B.

1958-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chemical Technology Division annual technical report, 1990  

DOE Green Energy (OSTI)

Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

Not Available

1991-05-01T23:59:59.000Z

302

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

303

Method for treatment of soils contaminated with organic pollutants  

SciTech Connect

A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

Wickramanayake, Godage B. (Cranbury, NJ)

1993-01-01T23:59:59.000Z

304

Effect of sequential removal of organic matter on the surface morphology of humin  

SciTech Connect

Natural organic matter in soils interacts with surfaces of inorganic materials, primarily aluminosilicates or clay minerals, to form a strongly associated organo-mineral composite known as humin. Because of humin`s insolubility, it is recognized as the primary sorbent of many anthropogenic organic compounds (AOCs) introduced into soil systems. This recognition has significant implications for understanding the fate and transport of AOCs, the effective remediation of contaminated sites, and the formulation and application of various agrochemicals. Humin was isolated from four soil samples. Surface area, surface charge, porosity measurements, and fractal analysis of small-angle X-ray scattering data were used to characterize changes in the surface properties resulting from selective removal of the various components of organic matter from humin. Organic matter was removed selectively from humin by Soxhlet extraction, disaggregation with the methylisobutylketone (MIBK) method, and bromine oxidation. The surface fractal dimensions decreased while surface area increased, and surface pore size decreased upon removal of organic matter. These results suggest that the mineral components of humin have smooth surfaces over length scales of {approximately}1 to 15 run, and that it is the organic matter coatings that are responsible for their surface roughness. The surfaces of all the components of humin were found to be dominated by micro and mesopores that could be responsible for humin`s high sorptive uptake of organic chemicals.

Malekani, K.; Rice, J.A. [South Dakota State Univ., Brookings, SD (United States)] [South Dakota State Univ., Brookings, SD (United States); Lin, Jar-Shyong [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1997-05-01T23:59:59.000Z

305

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

1992) 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System, Valles Caldera, New Mexico

306

Organic aerogel microspheres  

Science Conference Proceedings (OSTI)

Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

1999-06-01T23:59:59.000Z

307

Polishing compound for plastic surfaces  

DOE Patents (OSTI)

A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

Stowell, Michael S. (New Ellenton, SC)

1995-01-01T23:59:59.000Z

308

Polishing compound for plastic surfaces  

DOE Patents (OSTI)

A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

Stowell, M.S.

1993-01-01T23:59:59.000Z

309

Chemical plating method of preparing radiation source material  

DOE Patents (OSTI)

A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

1973-12-11T23:59:59.000Z

310

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer About DOE Organization News Contact Us Search Search Go spacer U.S. Department of Energy header image Science & Technology Energy Sources Energy Efficiency...

311

A Radically Configurable Six-State Compound  

SciTech Connect

Most organic radicals possess short lifetimes and quickly undergo dimerization or oxidation. Here, we report on the synthesis by radical templation of a class of air- and water-stable organic radicals, trapped within a homo[2]catenane composed of two rigid and fixed cyclobis(paraquat-p-phenylene) rings. The highly energetic octacationic homo[2]catenane, which is capable of accepting up to eight electrons, can be configured reversibly, both chemically and electrochemically, between each one of six experimentally accessible redox states (0, 2+, 4+, 6+, 7+, and 8+) from within the total of nine states evaluated by quantum mechanical methods. All six of the observable redox states have been identified by electrochemical techniques, three (4+, 6+, and 7+) have been characterized by x-ray crystallography, four (4+, 6+, 7+, and 8+) by electron paramagnetic resonance spectroscopy, one (7+) by superconducting quantum interference device magnetometry, and one (8+) by nuclear magnetic resonance spectroscopy.

Barnes, J.C.; Fahrenbach, Albert C.; Cao, Dennis; Dyar, Scott M.; Frasconi, M.; Giesener, M. A.; Benítez, D.; Tkatchouk, E.; Li, H.; Stern, Charlotte L.; Sarjeant, Amy A.; Hartlieb, K.J.; Liu, Z.; Carmieli, Raanan; Botros, Y.Y.; Wasielewski, M. R.; Goddard III, W.A.; Stoddart, J. Fraser

2013-01-01T23:59:59.000Z

312

Polishing compound for plastic surfaces  

DOE Patents (OSTI)

This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

Stowell, M.S.

1991-01-01T23:59:59.000Z

313

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

314

Detection of chlorinated aromatic compounds  

DOE Patents (OSTI)

A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

Ekechukwu, A.A.

1996-02-06T23:59:59.000Z

315

Detection of chlorinated aromatic compounds  

SciTech Connect

A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

Ekechukwu, Amy A. (Augusta, GA)

1996-01-01T23:59:59.000Z

316

Aza compounds as anion receptors  

SciTech Connect

A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY)

1998-01-06T23:59:59.000Z

317

Capture and release of mixed acid gasses with binding organic liquids  

DOE Patents (OSTI)

Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

2010-09-21T23:59:59.000Z

318

ORGANICS CHARACTERIZATION OF DWPF ALTERNATIVE REDUCTANT SIMULANTS, GLYCOLIC ACID, AND ANTIFOAM 747  

SciTech Connect

The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.

White, T.; Wiedenman, B.; Lambert, D.; Crump, S.; Fondeur, F.

2013-10-01T23:59:59.000Z

319

Possible explosive compounds in the Savannah River Site waste tank farm facilities  

Science Conference Proceedings (OSTI)

This report will be revised upon completion of current testing investigating the radiolytic stability of additional energetic materials and the analysis of tank farm samples for volatile and semi-volatile organic compounds.

Hobbs, D.T.

2000-04-13T23:59:59.000Z

320

Chemically modified carbonic anhydrases useful in carbon capture systems  

Science Conference Proceedings (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

322

Characterization of Waste Tar Associated with Abandoned Wood Chemical Plant Sites in Northwest Pennsylvania, USA  

SciTech Connect

Over 70 wood chemical plants operated in northern Pennsylvania between ca. 1890 and 1950, all located within 72 km of the New York state border. Their original purpose was to salvage the small unwanted hardwood trees left behind by the lumber mills, and to make charcoal, calcium acetate and methanol for a number of industrial uses via destructive distillation. At many old wood chemical plant sites, unknown quantities of wood tar remain as a residual contaminant and pose a pollution threat to aquatic life in nearby streams. Research on the composition and properties of residual wood tars from five abandoned industrial sites in Pennsylvania are described. Weathered wood tars were more viscous and contained fewer volatile and semivolatile organic compounds than did soil-buried tars. Phenol, 2-methylphenol (o-cresol), 4-methylphenol (p-cresol), and 2, 4-dimethylphenol were found in all sampled tars. These water-soluble phenolic compounds were released quasi-instantaneously in aqueous solution, followed by a slower rate of release, consistent with the behavior of similar compounds in other dense non-aqueous liquids. Air-exposed wood tar deposits developed a hard crust, which contained fewer volatiles and semivolatiles and had a higher softening point than other samples. These tars eroded to form a powdered soil colonized by lichens and mosses. Residual wood tar material found at one site was shown to be thermally altered, likely during the historical destruction of the chemical plant by fire. Recovered wood tar wastes have a relatively high heating value and may have use as a potential, but limited, alternate energy source.

Edendorn, H.M.; Severson, D. (Allegheny Institute of Natural History, Bradford, PA)

2007-07-01T23:59:59.000Z

323

Conversion of radioactive ferrocyanide compounds to immobile glasses  

DOE Patents (OSTI)

Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

Schulz, Wallace W. (Richland, WA); Dressen, A. Louise (Richland, WA)

1977-04-26T23:59:59.000Z

324

Aromatic nitrogen compounds in fossil fuels: a potential hazard  

DOE Green Energy (OSTI)

To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

1979-01-01T23:59:59.000Z

325

The cost effectiveness of reducing public exposure to carcinogens in Harris County by a abating chemical plant emissions  

SciTech Connect

The work examines the engineering reasonableness and the cost effectiveness of reducing public exposure to carcinogens n ambient air by abating emissions of organic chemicals in waste gas streams from chemical plants in Harris County, Texas, which contains the large chemical manufacturing complex in the Houston ship channel areas. The work also examined the cost effectiveness of reducing public exposure through changing the way vent streams are released to the atmosphere. The achievable exposure reductions are estimated by use of 1980 census data and of ambient concentration estimates. The ambient concentration estimates are calculated using the Texas Climatological Model Version 2 (TCM-2) and publicly available emissions inventory collected by the Texas Air Control Board. The TCM-2 is based on the steady state Gaussian plume hypothesis, Briggs plume rise formations, Pasquill-Gifford dispersion coefficient approximations, and first order pollutant decay. The cost estimates rely on published studies and on the waste gas stream parameters of the chemical plant vents. The cost effectiveness results are compared with the cost effectiveness of controls typically applied to new sources of volatile organic compounds (VOCs) that are controlled because of their contribution to ozone air pollution, not because of the carcinogenicity of their emissions.

Price, J.H. Jr.

1989-01-01T23:59:59.000Z

326

The Importance of Markush Searching for Chemical Entities  

E-Print Network (OSTI)

• What are the patentability requirements of chemical entities? • Why search the patent and non-patent literature? • Why is structure searching essential for chemical entities? • What are the two types of structuresearchable databases for patent and non-patent literature? • How do exemplified compound databases and Markush databases differ? • What value does Markush searching provide? CAS is a division of the American Chemical Society. 2

Elaine Cheeseman Ph. D

2010-01-01T23:59:59.000Z

327

Chemical Biology DOI: 10.1002/anie.201005461  

E-Print Network (OSTI)

Chemical Biology DOI: 10.1002/anie.201005461 Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research S. Elizabeth Hulme and George M. Whitesides* Angewandte Chemie Keywords: biochemistry · Caenorhabditis elegans · chemical biology · model organisms

Church, George M.

328

Flash vacuum pyrolysis of lignin model compounds  

DOE Green Energy (OSTI)

Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

1997-03-01T23:59:59.000Z

329

Method for purifying bidentate organophosphorus compounds  

DOE Patents (OSTI)

Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

Schulz, Wallace W. (Richland, WA)

1977-01-01T23:59:59.000Z

330

New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter  

E-Print Network (OSTI)

This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size-resolved agricultural aerosols collected from a ground site at the nominally downwind and upwind edge of a feedlot in West Texas were reported. High volume cascade impactor samplers were used for the collection of the particles, and two major analytical methods were applied to characterize different components of the aerosols, ion chromatography (IC ) was used to measure ionic composition with the main targets being ammonium (NH4 ), nitrate (NO3 -), and sulfate (SO4 2-), direct thermal desorption gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) methodology was used to identify and quantify organic compounds in the aerosol particles. For the urban aerosols, I report the measurement of mass, and the chemical composition of size-resolved aerosols collected from two different locations in Houston, analyzed by the thermal desorption GC-MS/FID method. The investigation of single particle composition using RM is reported as well: RM and chemical mapping techniques have been applied for the qualitative analysis of components in the samples of air particulate matter collected in downtown Houston.

Zhou, Lijun

2010-08-01T23:59:59.000Z

331

In-situ deposition of high-k dielectrics on III-V compound semiconductor in MOCVD system  

E-Print Network (OSTI)

In situ deposition of high-k materials to passivate the GaAs in metal organic chemical vapor deposition (MOCVD) system was well demonstrated. Both atomic layer deposition (ALD) and chemical vapor deposition (CVD) methods ...

Cheng, Cheng-Wei, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

332

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network (OSTI)

by one of us for devices that produce beams of chemically interesting species at relative kinetic energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical. It is obvious that while some methods of theoretical chemical kinetics (for instance, "absolute" rate theory

Zare, Richard N.

333

Articles of protective clothing adapted for deflecting chemical permeation and methods therefor  

DOE Patents (OSTI)

Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

Vo-Dinh, Tuan (Knoxville, TN)

1996-01-01T23:59:59.000Z

334

VHF EPR analysis of organic sulfur in coal. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

A direct and non-destructive technique called very High Frequency Electron Paramagnetic Resonance (VHF EPR) utilizing instrumentation and application techniques developed in this laboratory, is proving to be a practical and sensitive analytical method for the organic sulfur in coal. Research during this past year (1992--1993) was very successful in terms of obtaining spectrochemical information on organic sulfur in coal both quantitatively (amount of organic sulfur) and qualitatively (form and distribution of organic sulfur). Starting in this funding year, the authors have begun to develop and use a two-species model (non-exchanging and axially symmetric) for the simulation of VHF EPR coal spectra. Such a model provides quantitative information on the total concentration of sulfur species that can be directly related to the organic sulfur content as measured by conventional chemical methods. Utilizing the newly developed method, they have analyzed the VHF EPR spectra from some sub-bituminous coals containing organic sulfur in the range from 2% to 12% and a number of maceral blends. Excellent quantitative agreement is achieved between VHF EPR results and chemical analyses. In addition, the modelling of VHF EPR spectra of coal provides detailed spectral parameters. These parameters can be related to the molecular structures of the paramagnetic species giving rise to the EPR signals, as demonstrated by our study of the model compounds. The foundation of VHF EPR analysis of aromatic sulfur radicals has been firmly established based on careful investigations of the molecular and electronic structures of the thiophenic model compounds. The results validate the theoretical soundness of the method and carry important practical implications.

Clarkson, R.B.; Belford, R.L. [Illinois Univ., Urbana, IL (United States)

1993-12-31T23:59:59.000Z

335

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

336

compound queries | OpenEI Community  

Open Energy Info (EERE)

- 15:22 Multicolor Maps from Compound Queries ask queries compound queries developer Google maps maps multicolor result formats results Semantic Mediawiki Hi all, Recently, a...

337

Syntheses and studies of organosilicon compounds  

SciTech Connect

The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

Xie, R.

1999-02-12T23:59:59.000Z

338

Laser induced chemical reactions  

E-Print Network (OSTI)

of Basic Energy Sciences, Chemical Sciences Division of theINFRARED LASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D.Laser Inhibition of Chemical Reaction Effect of Isotopic

Orel, Ann E.

2010-01-01T23:59:59.000Z

339

Microfluidic chemical reaction circuits  

DOE Patents (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

340

Exhibitor: MURLIN CHEMICAL INC.  

Science Conference Proceedings (OSTI)

Murlin Chemical, Inc. manufactures Bone Ash at its plant located in West Conshohocken, Pennsylvania, USA. Established in 1978, Murlin Chemical supplies ...

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

342

Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols  

Science Conference Proceedings (OSTI)

The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

2012-06-13T23:59:59.000Z

343

Organization and control of genes encoding catabolic enzymes in Rhizobiaceae  

DOE Green Energy (OSTI)

Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

Parke, D.; Ornston, L.N.

1993-03-01T23:59:59.000Z

344

Chapter 13. Chemical Kinetics  

E-Print Network (OSTI)

of chemical reactions. · Only gases, for which the kinetic theory of Chapter 4 is applicable, are consideredChapter 13. Chemical Kinetics #12;· Why do some chemical reactions proceed with lighting speed when the way in which molecules combine to form products? · All of these questions involve chemical kinetics

Ihee, Hyotcherl

345

and Chemical Engineering  

E-Print Network (OSTI)

Biological and Chemical Engineering Building #12;2 Biological and Chemical Engineering Building sta is constructing a new building that will house the Department of Chemical Engineering and the Department and Chemical Engineering Building will provide critically needed space for innovators in multiple disciplines

Prinz, Friedrich B.

346

Chemical Sciences Division Homepage  

Science Conference Proceedings (OSTI)

... Development of Measurements and Standards for Biofuels; Chemical Metrology in Support of the US Hydrogen Infrastructure; ...

2013-06-07T23:59:59.000Z

347

Organic materials with nonlinear optical properties  

DOE Patents (OSTI)

The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

Stupp, Samuel I. (Champaign, IL); Son, Sehwan (Savoy, IL); Lin, Hong-Cheu (Taipei, TW)

1995-01-01T23:59:59.000Z

348

Organic materials with nonlinear optical properties  

DOE Patents (OSTI)

The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

Stupp, S.I.; Son, S.; Lin, H.C.

1995-05-02T23:59:59.000Z

349

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in our homes and can result in serious injuries if not properly handled. Household items such as bleach can result in harmful chlorine gas or hydrochloric acid if carelessly used. Gasoline fumes from containers for lawnmowers or boats can result in major health hazards if inhaled. DOE Oak Ridge uses thousands of chemicals in its varied research and other operations. New chemicals are or can be created as a result of the research or other activities. DOE follows national safety requirements in storing and handling these chemicals to minimize the risk of injuries from its chemical usage. However, accidents can occur despite careful attention to proper handling and storage procedures.

350

Chemical Emissions of Residential Materials and Products: Review of Available Information  

SciTech Connect

This report is prepared in the context of a larger program whose mission is to advance understanding of ventilation and indoor air quality in U.S. homes. A specific objective of this program is to develop the scientific basis ? through controlled experiments, monitoring and analysis ? for health risk-based ventilation standards. Appropriate and adequate ventilation is a basic element of a healthy home. Ventilation provides outdoor air and in the process removes indoor odors and contaminants including potentially unhealthful chemicals emitted by indoor materials, products and activities. Ventilation traditionally was assured to occur via infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope. As building air tightness is improved for energy efficiency, infiltration can be reduced to inadequate levels. This has lead to the development of standards requiring mechanical ventilation. Though nominally intended to ensure acceptable indoor air quality, the standards are not explicitly tied to health risk or pollutant exposure targets. LBNL is currently designing analyses to assess the impact of varying ventilation standards on pollutant concentrations, health risks and energy use. These analyses require information on sources of chemical pollutant emissions, ideally including emission rates and the impact of ventilation on emissions. Some information can be obtained from recent studies that report measurements of various air contaminants and their concentrations in U.S. residences. Another way to obtain this information is the bottom-up approach of collecting and evaluating emissions data from construction and interior materials and common household products. This review contributes to the latter approach by summarizing available information on chemical emissions from new residential products and materials. We review information from the scientific literature and public sources to identify and discuss the databases that provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

Willem, Henry; Singer, Brett

2010-09-15T23:59:59.000Z

351

Physical-chemical studies of transuranium elements  

SciTech Connect

Major advances in our continuing program to determine, interpret, and correlate the basic chemical and physical properties of the transuranium elements are summarized. Research topics include: Molar enthalpies of formation of BaCmO{sub 3} and BaCfO{sub 3}; luminescence of europium oxychloride at various pressures; and anti-stokes luminescence of selected actinide (III) compounds. 42 refs., 4 figs., 2 tabs.

Peterson, J.R.

1991-01-01T23:59:59.000Z

352

Chemical Sciences Division annual report 1994  

SciTech Connect

The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

NONE

1995-06-01T23:59:59.000Z

353

Definition: Chemical Logging | Open Energy Information  

Open Energy Info (EERE)

Logging Logging Jump to: navigation, search Dictionary.png Chemical Logging Chemical logging produces a chemical profile of the formation fluid within a well based on the measurement of changes in the chemical composition of the drilling fluid during drilling operations.[1] References ↑ http://www.osti.gov/bridge/servlets/purl/6076582-xtVTIk/6076582.pdf Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Chemical_Logging&oldid=600357" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

354

Chemical Sciences Division: Annual report 1992  

Science Conference Proceedings (OSTI)

The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

Not Available

1993-10-01T23:59:59.000Z

355

Chemical deposition methods using supercritical fluid solutions  

DOE Patents (OSTI)

A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

Sievers, Robert E. (Boulder, CO); Hansen, Brian N. (Boulder, CO)

1990-01-01T23:59:59.000Z

356

Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing  

SciTech Connect

Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

2002-06-01T23:59:59.000Z

357

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. Chemicals--Safety measures. 3. Hazardous wastes. I. National Research Council (U.S.). Committee on Prudent) produced two major reports on laboratory safety and laboratory waste disposal: Prudent Practices Nanomaterials, 77 4.G Biohazards, 79 4.H Hazards from Radioactivity, 79 5 Management of Chemicals 83 5.A

Tai, Yu-Chong

358

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Broin Companies Broin Companies Corporate HQ: Sioux Falls, South Dakota Facility Location: Emmetsburg, Palo Alto County, Iowa Description: This Midwest-based company is an innovative corn dry mill technology provider and ethanol plant builder/owner. Their proposal will demonstrate the benefits of integrating an innovative corn waste to ethanol biochemical process into an existing dry corn mill infrastructure. CEO or Equivalent: Jeff Broin Participants: E. I. du Pont de Nemours and Company; Novozymes North America, Inc.; National Renewable Energy Laboratory Production: * 125 million gallons/year of ethanol, of which roughly 25 percent will be from lignocellulosics. * Ethanol from lignocellulosic stream and ethanol, chemicals and animal feed from

359

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Range Fuels, Inc. Range Fuels, Inc. (formerly Kergy, Inc.) Corporate HQ: Broomfield, CO Proposed Facility Location: Near Soperton, Treutlen County, Georgia Description: This venture has developed a promising thermo-chemical conversion process, whose success could expand the range of feedstocks available for ethanol production. CEO or Equivalent: Mitch Mandich Participants: Merrick and Company, PRAJ Industries Ltd., Western Research Institute, Georgia Forestry Commission, Yeomans Wood and Timber; Truetlen County Development Authority; BioConversion Technology; Khosla Ventures; CH2MHill, Gillis Ag and Timber Production: * 10 million gallons/year from first unit; ~40 million gallons/year of ethanol and about 9 million gallons/year of methanol from commercial unit

360

Chemical Reference Data Group Homepage  

Science Conference Proceedings (OSTI)

Chemical Reference Data Group. Welcome. The Chemical Reference Data Group compiles, evaluates, correlates and measures ...

2013-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Possible explosive compounds in the Savannah River Site waste tank farm facilities  

DOE Green Energy (OSTI)

Based on a comparison of the known constituents in high-level nuclear waste stored at the Savannah River Site (SRS) and explosive compounds reported in the literature, only two classes of explosive compounds (metal NO{sub x} compounds and organic compounds) were identified as requiring further work to determine if they exist in the waste, and if so, in what quantities. Of the fourteen classes of explosive compounds identified as conceivably being present in tank farm operations, nine classes (metal fulminates, metal azides, halogen compounds, metal-amine complexes, nitrate/oxalate mixtures, metal oxalates, metal oxohalogenates, metal cyanides/cyanates, and peroxides) are not a hazard because these classes of compounds cannot be formed or accumulated in sufficient quantity, or they are not reactive at the conditions which exist in the tank farm facilities. Three of the classes (flammable gases, metal nitrides, and ammonia compounds and derivatives) are known to have the potential to build up to concentrations at which an observable reaction might occur. Controls have been in place for some time to limit the formation or control the concentration of these classes of compounds. A comprehensive list of conceivable explosive compounds is provided in Appendix 3.

Hobbs, D.T.

1992-03-15T23:59:59.000Z

362

DEVELOPMENT OF CHEMICAL REDUCTION AND AIR STRIPPING PROCESSES TO REMOVE MERCURY FROM WASTEWATER  

SciTech Connect

This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

Jackson, D.; Looney, B.; Craig, B.; Thompson, M.; Kmetz, T.

2013-07-10T23:59:59.000Z

363

The temporal dynamics of terrestrial organic matter transfer to the oceans : initial assessment and application  

E-Print Network (OSTI)

This thesis employs compound-specific stable carbon and radiocarbon isotopic analysis of organic biomarkers to (a) resolve petrogenic from pre-aged vascular plant organic carbon (OC) in continental margin sediments, (b) ...

Drenzek, Nicholas J

2007-01-01T23:59:59.000Z

364

Introduction to the proceedings of the sixteenth symposium on biotechnology for fuels and chemicals  

DOE Green Energy (OSTI)

Biotechnology can be defined as the use of biologically derived materials and biocatalysts to carry out desired transformations from one material to another. These biocatalysts can be enzymes or microorganisms. The transformation may be of raw materials into useful compounds or for the destruction of industrial wastes. One use of biotechnology is for the production of fuels and chemicals. This has been the broad area focused on by this Symposium for the past 16 years. The Symposium on Biotechnology for Fuels and Chemicals presents both applied and fundamental work in this area performed by universities, industries, and government institutions. The goal, whether near term or long term, is to find and demonstrate efficient, economical methods for the use of biotechnology to supply society`s needs for fuels and chemicals. The Symposium allows interactions among the researchers in an intimate setting to foster the interactions that will be necessary to commercialize and use these technologies. Efforts presented include all aspects of the process: the pretreatment and beneficiation of the raw material, the biological conversion in some reactor, the separation and recovery of the desired product, and the treatment of the waste streams from this and earlier legacy processes. There are also efforts of the sensing, monitoring, and control of the process and well and the economic analysis to estimate the overall utility and impact. The Sixteenth Symposium on Biotechnology for Fuels and Chemicals provided a forum for the exchange of ideas. There were 34 oral presentations and 81 poster presentations. These were organized into sessions of thermal, chemical, and biological processing; bioprocessing research; process economics and commercialization; and environmental biotechnology.

Davison, B.H. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

365

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

366

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network (OSTI)

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of ChemicalD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description of chemical engineering: "chemical engineers seek to understand, manipulate, and control the molecular basis

Collins, Gary S.

367

Cleaning oil contaminated beaches with chemicals  

SciTech Connect

Oil-dispersing chemicals were treated for cleaning persistent-type crude oil from experimentally contaminated New Jersey coastal beaches and were found to be generally ineffective. Although they completely cleaned the surface of the oiled sand, they removed little of the total oil. Instead they caused the oil to penetrate more deeply into the underlying sand, thereby compounding the pollution problem by expanding the zone of pollution, complicating any subsequent mechanical removal and, possibly, causing the oil to persist longer. Chemical treatment failed to induce quicksand or cause perceptible erosion of beach sand. A decrease in the cohesiveness of the sand was observed, but this also occurred in the presence of oil alone and could not be attributed to the presence of chemical.

1969-08-01T23:59:59.000Z

368

Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds  

Science Conference Proceedings (OSTI)

Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.

Cavestri, R.C. [Imagination Resources, Inc., Dublin, OH (United States)

1996-11-01T23:59:59.000Z

369

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

370

Chemical kinetics and oil shale process design  

SciTech Connect

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

371

Chemically modified electrodes: molecular design for electroanalysis  

Science Conference Proceedings (OSTI)

Electrochemical methods traditionally have found important applications in sample analysis and organic and inorganic synthesis. The electrode surface itself can be a powerful tool. This article is an update of chemically modified electrodes (CMEs) and rational molecular design of electrode surfaces.

Murray, R.W.; Ewing, A.G.; Durst, R.A.

1987-03-01T23:59:59.000Z

372

Applicant Organization: | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicant Organization: Applicant Organization: Applicant Organization: More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: Applicant Organization:...

373

Chemical Physics Portal  

Science Conference Proceedings (OSTI)

... spectroscopy. Ultrafast lasers are used to … more. >> see all Chemical Physics programs and projects ... *. Bookmark and Share. ...

2010-10-01T23:59:59.000Z

374

Applicant Organization:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abengoa Bioenergy Biomass of Kansas, LLC Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Colwich, Kansas Description: This project from a committed long-term player has the potential to demonstrate dual biochemical and thermochemical capabilities. CEO or Equivalent: Javier Salgado (CEO of Abengoa Bioenergy) Gerson Santos-Leon, Director ABBK Participants: Abengoa Bioenergy R&D, Abengoa Engineering, Antares Corp., Taylor Enegineering Production: * 11. 4 million gallons/year and sufficient energy to power the operation and sell excess energy to the co-located dry-grind ethanol production plant * Both ethanol and syngas production, with long term strategy of using the syngas for ethanol and chemicals production

375

Chemical Transformations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Chemical Transformations Chemical Transformations Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Chemical Transformations Print Text Size: A A A RSS Feeds FeedbackShare Page Research themes include the characterization, control, and optimization of chemistry in many forms. Catalysis science underpins the design of new catalytic methods for the clean and efficient production of fuels and chemicals and emphasizes inorganic and organic complexes; interfacial chemistry, nanostructured and supramolecular catalysts, photocatalysis and electrochemistry, and bio-inspired catalytic processes. Heavy element

376

CHEMICAL SAFETY Emergency Numbers  

E-Print Network (OSTI)

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

377

Chemical biology drug discovery  

E-Print Network (OSTI)

Keywords Chemical biology drug discovery high-throughput screening protein ligands proteases novel chemical and biochemical methods for the identification and optimization of protein ligands us of pro- tein ligands. Results of this research are translated into protein-specific, chemical probes

SchĂĽler, Axel

378

Chemical engineering Research !!  

E-Print Network (OSTI)

Chemical engineering Research !! www.chemeng.lth.se Updated August 2012 #12;WWT Fermentation University/Faculty of Engineering-LTH/Department of Chemical Engineering Membrane Group Ann-Sofi Jönsson More research projects. #12;Lund University/Faculty of Engineering-LTH/Department of Chemical Engineering

379

Chemical Zeolites Combinatorial . . .  

E-Print Network (OSTI)

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

Servatius, Brigitte

380

CHEMICAL AND PAPER ENGINEERING  

E-Print Network (OSTI)

SAFETY HANDBOOK For CHEMICAL AND PAPER ENGINEERING 2010-2011 #12;Page 1 Safety Guidelines Department of Chemical and Paper Engineering Miami University - Oxford, Ohio 45056 The following safety and Laboratory Coordinator Responsibilities III. Emergency Procedures IV. Chemical Storage V. Routine

Dollar, Anna

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CCE CHEMICAL SAFETY MANUAL CHEMICAL SAFETY MANUAL  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . 11 VIII. Electrical Equipment . . . . . . . . . . . . . . . . . . . . . . . . 12 IX. Hazardous Waste: Hazardous Chemicals Data . . . . . . . . . . . . . . . . . . 51 Appendix B: Means of Lab Waste Disposal . . . . . . . . . . . . . . . . . 53 Appendix C: Where to put specific wastes . . . . . . . . . . . . . . . . . . 54 Appendix D

Elowitz, Michael

382

Mild, Nontoxic Production of Fuels and Chemicals from Biomass  

Fossil fuel resources supply almost 90 percent of the world’s energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an ...

383

Chemical vapor deposition of organosilicon and sacrificial polymer thin films  

E-Print Network (OSTI)

Chemical vapor deposition (CVD) produced films for a wide array of applications from a variety of organosilicon and organic precursors. The structure and properties of thin films were controlled by varying processing ...

Casserly, Thomas Bryan

2005-01-01T23:59:59.000Z

384

Thin films of mixed metal compounds  

DOE Patents (OSTI)

A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

385

The Compound Capacity of Polar Codes  

E-Print Network (OSTI)

We consider the compound capacity of polar codes under successive cancellation decoding for a collection of binary-input memoryless output-symmetric channels. By deriving a sequence of upper and lower bounds, we show that in general the compound capacity under successive decoding is strictly smaller than the unrestricted compound capacity.

Hassani, S Hamed; Urbanke, Ruediger

2009-01-01T23:59:59.000Z

386

Influence of algae on photolysis rates of chemicals in water  

SciTech Connect

Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green algae, at concentrations of 1-10 mg of chlorophyll a/L, accelerate photoreaction of certain polycylic aromatic hydrocarbons, organophosphorus compounds, and anilines in water. The rate of change in aniline concentration, (P), in the aniline-Chlamydomonas photoreaction can be described by the following expression: rate = A(1 + B/(P))-1. At low substrate concentrations, the reaction rate is first order with respect to both algae and substrate concentration. Methyl parathion and parathion photoreacted 390 times more rapidly when sorbed by algae than in distilled water, and aniline and m-toluidine reacted over 12000 times faster, indicating that light-induced algal transformations of certain pollutants may be significant. Other results indicated that reaction rates are unaffected by heat-killing the algae. 27 references

Zepp, R.G.; Schlotzhauer, P.F.

1983-08-01T23:59:59.000Z

387

Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors  

DOE Patents (OSTI)

Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

Johnson, Jr., Alan T. (Philadelphia, PA); Gelperin, Alan (Princeton, NJ); Staii, Cristian (Madison, WI)

2011-07-12T23:59:59.000Z

388

Siphons in Chemical Reaction Networks  

E-Print Network (OSTI)

credited. Siphons in Chemical Reaction Networks Referencesfor a class of nonlinear chemical equations. SIAM J. Appl.to persistence analysis in chemical reaction networks. In:

Shiu, Anne; Sturmfels, Bernd

2010-01-01T23:59:59.000Z

389

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

V. , Ed. , Safety in the Chemical Laboratory. J. Chem.Łd. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

Ricks Editor, R.

2009-01-01T23:59:59.000Z

390

Evaluation of the Science in Support of Human Health Ambient Water Criteria Values for Boron Compounds  

Science Conference Proceedings (OSTI)

This study evaluated the available human health water quality criteria for boron and boron compounds and critically reviewed the science that results in different water quality criteria recommended by different regulatory bodies. Currently, water quality criteria for boron and boron compounds are recommended by several regulatory bodies, including EPA, the World Health Organization, Health Canada, the Dutch National Institute for Public Health and the Environment, California Department of Public Health, ...

2011-12-16T23:59:59.000Z

391

Bibliography of work on the photocatalytic removal of hazardous compounds from water and air  

DOE Green Energy (OSTI)

This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

Blake, D.M.

1994-05-01T23:59:59.000Z

392

Chemical exchange program analysis.  

SciTech Connect

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

393

Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter  

DOE Green Energy (OSTI)

Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

Arndt Schimmelmann; Maria Mastalerz

2010-03-30T23:59:59.000Z

394

Annual Report 2000. Chemical Structure and Dynamics  

Science Conference Proceedings (OSTI)

This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

Colson, Steven D.; McDowell, Robin S.

2001-04-15T23:59:59.000Z

395

Organic tank safety project: Preliminary results of energetics and thermal behavior studies of model organic nitrate and/or nitrite mixtures and a simulated organic waste  

SciTech Connect

As a result of years of production and recovery of nuclear defense materials and subsequent waste management at the Hanford Site, organic-bearing radioactive high-level wastes (HLW) are currently stored in large (up to 3. ML) single-shell storage tanks (SSTs). Because these wastes contain both fuels (organics) and the oxidants nitrate and nitrite, rapid energetic reactions at certain conditions could occur. In support of Westinghouse Hanford Company`s (WHC) efforts to ensure continued safe storage of these organic- and oxidant-bearing wastes and to define the conditions necessary for reactions to occur, we measured the thermal sensitivities and thermochemical and thermokinetic properties of mixtures of selected organics and sodium nitrate and/or nitrite and a simulated Hanford organic-bearing waste using thermoanalytical technologies. These thermoanalytical technologies are used by chemical reactivity hazards evaluation organizations within the chemical industry to assess chemical reaction hazards.

Scheele, R.D.; Sell, R.L.; Sobolik, J.L.; Burger, L.L.

1995-08-01T23:59:59.000Z

396

Thin films of mixed metal compounds  

DOE Patents (OSTI)

Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

Mickelsen, R.A.; Chen, W.S.

1985-06-11T23:59:59.000Z

397

An automatic analysis of Norwegian compounds  

E-Print Network (OSTI)

Introduction The University of Oslo is currently developing an automatic morphosyntactic tagger for Norwegian. 2 A very important module is one which can analyse compounds. Compounding is extremely productive in Norwegian, and it is futile to ever hope for a lexicon (dictionary) that will contain all or even most of the compounds that occr in actual texts. Since the tagger we are developing is based on the possibility of recognising words by the help of a lexicon, it is of great importance to have a module that recognises new compounds. According to Munthe (1972), 10.4 per cent of all words in running text are compounds. Any text sample will contain a greatnumber of compounds. This statistics is true even for small samples. I took an arbitrary 440-word article from the newspaper Aftenposten from September this year, Full penhet om passunion (Full openness on passport union), and I quickly counted 47 compounds. Many of them a

Janne Bondi Johannessen; Helge Hauglin

1996-01-01T23:59:59.000Z

398

Possible explosive compounds in the Savannah River Site Tank Farm facilities. Revision 1  

SciTech Connect

Since 1970, many studies have been conducted concerning the potential for explosive compounds in tank farm operations including ammonium nitrate, metal oxalates, and silver and mercury compounds. The study currently in progress is the most comprehensive to date, encompassing all previous studies and extending the scope to include all compounds that could be formed from the known species in SRS wastes. In addition to waste storage, the study also considers waste removal and waste processing operations. The total number of possible explosive compounds is so large that it would not be useful to list them all here. Instead, only those compounds are listed that are known to be present or could conceivably be formed from material that is known to be present in the waste. The general approach to the problem is: identify all of the constituents that are known to be present in the waste together with those that might be present from possible chemical and radiolytic reactions, determine the compounds that could be formed from these constituents, compare these compounds with those listed in the literature, and assess the formation and stability of these compounds against the conditions existing in the tank farm facilities.

Hobbs, D.T.

1995-04-27T23:59:59.000Z

399

METHOD OF RECOVERING URANIUM COMPOUNDS  

DOE Patents (OSTI)

S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

Poirier, R.H.

1957-10-29T23:59:59.000Z

400

Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. First quarterly report, July 1, 1994--September 30, 1994  

Science Conference Proceedings (OSTI)

This project is designed to study the nature of sulphur-containing organic compounds and their respective linkages in coals and related materials using a variety of microscale pyrolysis techniques combined with gas chromatography, gas chromatography -- mass spectrometry, and gas chromatography -- mass spectrometry/mass spectrometry. The majority of the work will be undertaken using a PYRAN pyrolysis system purchased with funds from the DOE University Instrumentation Program. Although significant studies in the past have examined hydrocarbons produced from the pyrolysis of coals, little attention has been directed at studying the heteroatomic components produced in this way. With the use of carefully controlled temperature-programmed pyrolysis reactions it should be possible to obtain information on the relative bond energies of the C-S and S-S bonds being cleaved during coal pyrolysis and to provide a better understanding on the nature of the sulphur bonding in coals. In the experiments performed with Raney nickel and coal, the results showed that while Raney nickel was indeed and excellent degrader of organic sulphur compounds in oils and coal extracts, the recovery from a high sulphur Oklahoman coal was negligible. Following the realization that Raney nickel is of little use in cleaving organosulphur compounds from coals, a new literature review was initiated to determine which possible sulphur chemical degradation method would be an appropriate replacement. After careful consideration of the various possible methods, it would appear that the procedure which will work on solid phases (i.e., coal), will give similar results to the Raney nickel method, and which we may be able to perform here with the least level of expenditure on new equipment, is the use of nickel(O)cene (bis[1,5-cyclopentadiene]nickel(O)) with lithium aluminum hydride (LiAlH{sub 4}).

Philp, R.P.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reading Comprehension - Organs and Organ Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

together in a group make up an organ system. Examples of organ systems are cats and dogs the circulatory system and the respiratory system the stomacular system and...

402

Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.

Fernandez, Jose M., E-mail: joseman@sas.upenn.edu [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States); Plaza, Cesar; Polo, Alfredo [Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientificas, Serrano 115 dpdo., 28006 Madrid (Spain); Plante, Alain F. [Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316 (United States)

2012-01-15T23:59:59.000Z

403

Organic tanks safety program FY95 waste aging studies  

SciTech Connect

This report gives the second year`s findings of a study of how thermal and radiological processes may change the composition of organic compounds in the underground tanks at Hanford. Efforts were focused on the global reaction kinetics in a simulated waste exposed to {gamma} rays and the reactions of organic radicals with nitrite ion. The gas production is predominantly radiolytic. Decarboxylation of carboxylates is probably an aging pathway. TBP was totaly consumed in almost every run. Radiation clearly accelerated consumption of the other compounds. EDTA is more reactive than citrate. Oximes and possibly organic nitro compounds are key intermediates in the radiolytic redox reactions of organic compounds with nitrate/nitrite. Observations are consistent with organic compounds being progressively degraded to compounds with greater numbers of C-O bonds and fewer C-H and C-C bonds, resulting in an overall lower energy content. If the radwaste tanks are adequately ventilated and continually dosed by radioactivity, their total energy content should have declined. Level of risk depends on how rapidly carboxylate salts of moderate energy content (including EDTA fragments) degrade to low energy oxalate and formate.

Camaioni, D.M.; Samuels, W.D.; Clauss, S.A.; Lenihan, B.D.; Wahl, K.L.; Campbell, J.A.; Shaw, W.J.

1995-09-01T23:59:59.000Z

404

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network (OSTI)

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

405

Chemical Biology Coop Program (New for January 2011) Students from the Chemical Biology Coop Program will be prepared to conduct work terms in areas such as  

E-Print Network (OSTI)

Program will be prepared to conduct work terms in areas such as biosensors, metabolomics, biomimeticsChemical Biology Coop Program (New for January 2011) Students from the Chemical Biology Coop of the Chemical Biology Coop Program: Bioanalytical Chemistry Organic Chemistry & synthesis Cellular & molecular

Hitchcock, Adam P.

406

Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments News Partnering Research J. Charles Barbour J. Charles Barbour Director Beverly Eppinga Beverly A. Eppinga Sr. Mgt. Asst. DOI Research Briefs CINT Physical, Chemical, and Nano Sciences Center The Physical, Chemical, and Nano Sciences Center supports Sandia's mission by providing new scientific knowledge.We have two key activities: Support the National Nuclear Security Administration's (NNSA) mission with our unique expertise in science-based solutions Perform long-term research, particularly in the physical, chemical, and nano sciences that will enable future microsystems We focus on five technical thrusts: Science-Based Solutions for NNSA Mission Needs Collective Hierarchical Systems Compound Semiconductor Science and Technology Nanosciences

407

Chemical Structure and Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

2154-3 2154-3 UC-400 Annual Report 2000 Chemical Structure and Dynamics Steven D. Colson, Associate Director Robin S. McDowell, Program Manager and the Staff of the Chemical Structure and Dynamics Program April 2001 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 Chemical Structure and Dynamics 2000 Annual Report Contents Chemical Structure and Dynamics 2000 Annual Report Chemical Structure and Dynamics 2000 Annual Report 1. Introduction Chemical Structure and Dynamics Program......................................................... 1-3 2. Reaction Mechanisms at Liquid Interfaces Structure and Reactivity of Ice Surfaces and Interfaces G. A. Kimmel, Z. Dohnálek, K. P. Stevenson, R. S. Smith,

408

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4channel and ~40% for the OIO forming channel (Saiz-Lopez etiodine oxide species, such as OIO, I 2 O 3 , I 2 O 4 , and I

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

409

Organic lateral heterojunction devices for vapor-phase chemical detection  

E-Print Network (OSTI)

As the U.S. is engaged in battle overseas, there is an urgent need for the development of sensors for early warning and protection of military forces against potential attacks. On the battlefields, improvised explosive ...

Ho, John C., 1980-

2009-01-01T23:59:59.000Z

410

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

mass and mobility for atmospheric particles: A new techniquemass and mobility for atmospheric particles: A new techniquemass and mobility for atmospheric particles: A new technique

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

411

Chemical anchoring of organic conducting polymers to semiconducting surfaces  

DOE Patents (OSTI)

According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

Frank, A.J.; Honda, K.

1984-01-01T23:59:59.000Z

412

Chemical anchoring of organic conducting polymers to semiconducting surfaces  

DOE Patents (OSTI)

According to the present invention, an improved method of coating electrodes with conductive polymer films and/or preselected catalysts is provided. The charge-conductive polymer is covalently or coordinatively attached to the electrode surface to strengthen the adhesion characteristics of the polymer to the electrode surface or to improve charge-conductive properties between the conductive polymer and the electrode surface. Covalent or coordinative attachment is achieved by a number of alternative methods including covalently or coordinatively attaching the desired monomer to the electrode by means of a suitable coupling reagent and, thereafter, electrochemically polymerizing the monomer in situ.

Frank, Arthur J. (Lakewood, CO); Honda, Kenji (Wheatridge, CO)

1984-01-01T23:59:59.000Z

413

ENHANCED CHEMICAL CLEANING CORROSION TESTING  

Enhanced Chemical Cleaning Corrosion Testing 3 Background: Enhanced Chemical Cleaning Process Treatment Tank Deposition Tank 3000 gpm Mixers Oxalic ...

414

Chemical Hygiene and Safety Plan  

E-Print Network (OSTI)

Safety Plan m Chemical$torase Guidelines Chemical Is Incompatible llll i With ii Hydrocarbons (such as butane, propane,

Ricks Editor, R.

2009-01-01T23:59:59.000Z

415

Chemical Forms of Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

such as water vapor in the air, the UF6 and water react, forming corrosive hydrogen fluoride (HF) and a uranium-fluoride compound called uranyl fluoride (UO2F2). For this reason,...

416

Chlorine-resistant composite membranes with high organic rejection  

DOE Patents (OSTI)

A method for making a chlorine-resistant composite polyamide membrane having high organic rejection, the essential step of which comprises treating a conventional composite membrane with an acyl halide. The novel membrane is especially suitable for the treatment of water containing chlorine or lower molecular weight organic compounds.

McCray, Scott B. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Barss, Robert P. (Bend, OR); Nelson, Leslie D. (The Dalles, OR)

1996-01-01T23:59:59.000Z

417

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

418

Brookhaven Chemical Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Physics While the field of physics generally strives to find compact and universal explanations for how the components of our universe interact, chemistry is traditionally...

419

Chemical Name Search  

Science Conference Proceedings (OSTI)

... Enter a chemical species name or pattern: (eg, methane, *2-hexene); Select the desired units for thermodynamic data: SI calorie-based; ...

2013-07-15T23:59:59.000Z

420

Apparatus for chemical synthesis  

DOE Patents (OSTI)

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

422

Chemical Testing of Textiles  

Science Conference Proceedings (OSTI)

Chemical Testing of Textiles is edited by Qinguo Fan and covers more subjects than the title implies. These subjects include fiber and yarn identification, ...

423

American Chemical Society  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. American Chemical Society (ACS). Purpose: Air and water mediate chemistry on Earth. ... Related Project(s): ACS. Details: ...

2011-08-29T23:59:59.000Z

424

Z .Chemical Geology 181 2001 6771 www.elsevier.comrlocaterchemgeo  

E-Print Network (OSTI)

Z .Chemical Geology 181 2001 67­71 www.elsevier.comrlocaterchemgeo Hydrogen-isotope analysis Science B.V. All rights reserved. Keywords: Hydrogen; Isotopes; Organic; Toxic materials; Water 1. Introduction Hydrogen-isotope analysis of potentially haz- ardous organic materials is problematic. Conti

Edwards, Thomas W.D.

425

Consortium of Chemical International Ltd CCIL | Open Energy Information  

Open Energy Info (EERE)

of Chemical International Ltd CCIL of Chemical International Ltd CCIL Jump to: navigation, search Name Consortium of Chemical International Ltd (CCIL) Place New Delhi, Delhi (NCT), India Sector Biomass Product Setting up a 2MW biomass project in Haryana, India. References Consortium of Chemical International Ltd (CCIL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Consortium of Chemical International Ltd (CCIL) is a company located in New Delhi, Delhi (NCT), India . References ↑ "Consortium of Chemical International Ltd (CCIL)" Retrieved from "http://en.openei.org/w/index.php?title=Consortium_of_Chemical_International_Ltd_CCIL&oldid=343870" Categories: Clean Energy Organizations

426

Compound and Elemental Analysis At Geysers Area (Lambert & Epstein, 1992) |  

Open Energy Info (EERE)

Compound and Elemental Analysis At Geysers Area Compound and Elemental Analysis At Geysers Area (Lambert & Epstein, 1992) Exploration Activity Details Location Geysers Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Rocks and minerals were visually identified in cuttings, and identifications were confirmed through examination of thin sections. X-ray powder diffraction was used to test the purity of some mineral separates. The chemical compositions of some metamorphic minerals were determined by electron microprobe. References Steven J. Lambert, Samuel Epstein (1992) Stable-Isotope Studies Of Rocks And Secondary Minerals In A Vapor-Dominated Hydrothermal System At The Geysers, Sonoma County, California Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Geysers_Area_(Lambert_%26_Epstein,_1992)&oldid=510406"

427

Argonne Chemical Sciences & Engineering - About CSE  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Computational Postdoctoral Fellowships Contact Us CSE Intranet About CSE Director Emilio Brunel Director Emilio Bunel The Chemical Sciences and Engineering Division (CSE) is a science-based research, development, and early-stage engineering organization that conducts both fundamental and applied research using experimental, theoretical, and computational approaches. CSE research and development is distinguished by the development and application of fundamental understanding to yield transformational solutions that address issues of scientific and technological importance to

428

Decrease of Entropy and Chemical Reactions  

E-Print Network (OSTI)

The chemical reactions are very complex, and include oscillation, condensation, catalyst and self-organization, etc. In these case changes of entropy may increase or decrease. The second law of thermodynamics is based on an isolated system and statistical independence. If fluctuations magnified due to internal interactions exist in the system, entropy will decrease possibly. In chemical reactions there are various internal interactions, so that some ordering processes with decrease of entropy are possible on an isolated system. For example, a simplifying Fokker-Planck equation is solved, and the hysteresis as limit cycle is discussed.

Yi-Fang Chang

2008-07-01T23:59:59.000Z

429

Compound cryopump for fusion reactors  

E-Print Network (OSTI)

We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium "ash" is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15-22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly. The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce ...

Kovari, M; Shephard, T

2013-01-01T23:59:59.000Z

430

Reading Comprehension - Dissecting and Compound Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Dissecting and Compound Microscopes Two types of microscopes. _________ Dissecting and Compound Microscopes Two types of microscopes. _________ Dissecting Microscope Compound Microscope _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ Dissecting Microscope Compound Microscope _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light

431

Why Sequence Bacteria That Reduce Sulfur Compounds?  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria That Reduce Sulfur Compounds? Combustion of sulfur-containing fuels, such as coal, oil, and natural gas, contributes significantly to global environmental problems, such...

432

Modern Records of Radiatively Important Halogenated Compounds...  

NLE Websites -- All DOE Office Websites (Extended Search)

at CDIAC sites: Methane, Nonmethane Hydrocarbons, Alkyl Nitrates, and Chlorinated Carbon Compounds including three Chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) in...

433

Process for synthesizing compounds from elemental powders  

DOE Patents (OSTI)

A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in ratio a which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe{sub 3}Al and FeAl.

Rabin, B.H.; Wright, R.N.

1990-01-01T23:59:59.000Z

434

Hydrodesulfurization catalysis by Chevrel phase compounds  

DOE Patents (OSTI)

A process is disclosed for the hydrodesulfurization of sulfur-containing hydrocarbon fuel with reduced ternary molybdenum sulfides, known as Chevrel phase compounds. Chevrel phase compounds of the general composition M.sub.x Mo.sub.6 S.sub.8, with M being Ho, Pb, Sn, Ag, In, Cu, Fe, Ni, or Co, were found to have hydrodesulfurization activities comparable to model unpromoted and cobalt-promoted MoS.sub.2 catalysts. The most active catalysts were the "large" cation compounds (Ho, Pb, Sn), and the least active catalysts were the "small" cation compounds (Cu, Fe, Ni, Co.).

McCarty, Kevin F. (Livermore, CA); Schrader, Glenn L. (Ames, IA)

1985-12-24T23:59:59.000Z

435

Field Derived Emission Factors For Formaldehyde and other Volatile Organic  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Derived Emission Factors For Formaldehyde and other Volatile Organic Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units Title Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units Publication Type Report LBNL Report Number LBNL-4083E Year of Publication 2010 Authors Parthasarathy, Srinandini, Randy L. Maddalena, Marion L. Russell, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors were evaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature and relative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using the

436

Chemical Plume Source Localization  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the ... Keywords: Autonomous vehicles, Bayesian inference methods, chemical plume tracing, online mapping, online planning, plume source localization

Shuo Pang; J. A. Farrell

2006-10-01T23:59:59.000Z

437

Critical Analysis and Review of Flash Points of High Molecular Weight Poly-functional C, H, N, O Compounds  

E-Print Network (OSTI)

The research focuses on the critical review and prediction of flash points of high molecular weight compounds used mainly in the specialty chemical area. Thus far this area of high molecular weight specialty chemicals has not been thoroughly reviewed for flash point prediction; therefore critical review for accuracy of experimental values is difficult. Without critical review, the chance of hazards occurring in the processing and handling of these compounds increases. A reliable method for making predictions is important to efficiently review experimental values since duplicate experimentation can be time consuming and costly. The flash point is strongly correlated to the normal boiling point (NBP) but experimental NBP is not feasible for chemicals of high molecular weight. The reliability of existing NBP prediction methods was found inadequate for our compounds of interest therefore a new NBP prediction method was developed first. This method is based on ten simple group contributions and the molecular weight of the molecule. The training set included 196 high molecular weight C, H, N and O compounds. It produced an average absolute error (AAE) of 13K, superior to any other model tested so far. An accurate NBP is essential for critical review and new method development for flash point. A preliminary data analysis based on chemical family analysis allowed for detection of erroneous data points. These compounds were re-tested at a Huntsman facility. With a predicted normal boiling point, a new FP method that differentiates strong and iv weak hydrogen bonding compounds was developed. This was done because of the differences in entropy of vaporization for hydrogen bonding compounds. The training set consisted of 191 diverse C, H, N, O compounds ranging from 100 to 4000 g/mol in molecular weight. The test set consisted of 97 compounds of similar diversity. Both data sets produced an AAE of 5K and maximum deviation of 17.5K. It was also found that no substantial decomposition was found for these compounds at flash point conditions. These compounds appear to follow the same physical trends as lower molecular weight compounds. With this new method it is possible to critically review this class of chemicals as well as update NBP and other physical property data.

Thomas, Derrick

2011-05-01T23:59:59.000Z

438

Enhanced Chemical Cleaning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemical Cleaning Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process and plan 3 Chemical Cleaning * Oxalic Acid can get tanks clean - Tank 16 set a standard in 1982 - Tanks 5-6 Bulk OA cleaning results under evaluation * However, the downstream flowsheet and financial impacts of handling the spent acid were unacceptable Before After Tank 16 Tank 16 4 Oxalic Acid Flowsheet Impacts Evap Sludge Washing Evap Feed/Drop Tank 8 Wt% Oxalic Acid Neutralization Tank Solids Liquid High oxalate concentration Negligible oxalate concentration * Oxalates from chemical cleaning impact salt processing * A process change was needed Evaporator Saltstone Vaults DWPF Filled Canisters 5 Vision * Eliminate the impacts to the Tank Farm

439

Modelling the chemical evolution  

E-Print Network (OSTI)

Advanced observational facilities allow to trace back the chemical evolution of the Universe, on the one hand, from local objects of different ages and, secondly, by direct observations of redshifted objects. The chemical enrichment serves as one of the cornerstones of cosmological evolution. In order to understand this chemical evolution in morphologically different astrophysical objects models are constructed based on analytical descriptions or numerical methods. For the comparison of their chemical issues, as there are element abundances, gradients, and ratios, with observations not only the present-day values are used but also their temporal evolution from the first era of metal enrichment. Here we will provide some insight into basics of chemical evolution models, highlight advancements, and discuss a few applications.

Hensler, Gerhard

2010-01-01T23:59:59.000Z

440

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric ...

Note: This page contains sample records for the topic "organic chemical compounds" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Methods for chemical recovery of non-carrier-added radioactive tin from irradiated intermetallic Ti-Sb targets  

DOE Patents (OSTI)

The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

Lapshina, Elena V. (Troitsk, RU); Zhuikov, Boris L. (Troitsk, RU); Srivastava, Suresh C. (Setauket, NY); Ermolaev, Stanislav V. (Obninsk, RU); Togaeva, Natalia R. (Obninsk, RU)

2012-01-17T23:59:59.000Z

442

Detailed chemical characterization of unresolved complex mixtures in  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed chemical characterization of unresolved complex mixtures in Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation Title Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation Publication Type Journal Article Year of Publication 2013 Authors Chan, Arthur W. H., Gabriel Isaacman, Kevin R. Wilson, David R. Worton, Christopher R. Ruehl, Theodora Nah, Drew R. Gentner, Timothy R. Dallmann, Thomas W. Kirchstetter, Robert A. Harley, Jessica B. Gilman, William C. Kuster, Joost A. de Gouw, John H. Offenberg, Tadeusz E. Kleindienst, Ying H. Lin, Caitlin L. Rubitschun, Jason D. Surratt, Patrick L. Hayes, Jose L. Jimenez, and Allen H. Goldstein

443

Mass yields of secondary organic aerosols from the oxidation of alpha-pinene and real plant emissions  

E-Print Network (OSTI)

Biogenic volatile organic compounds (VOCs) are a significant source of global secondary organic aerosol (SOA); however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber ...

Kroll, Jesse

444

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles  

SciTech Connect

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-04-01T23:59:59.000Z

445

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical engineering Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

Wang, Hai

446

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network (OSTI)

. Enrollment by petition only. CHE 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor

Wang, Hai

447

Modeling Terrestrial Biogenic Sources of Oxygenated Organic Emissions  

Science Conference Proceedings (OSTI)

In recent years, oxygenated volatile organic chemicals (OVOCs) likeacetone have been recognized as important atmospheric constituents due to their ability to sequester reactive nitrogen in the form peroxyacetyl nitrate (PAN) and to be a source ...

Christopher Potter; Steven Klooster; David Bubenheim; Hanwant B. Singh; Ranga Myneni

2003-07-01T23:59:59.000Z

448

Chemical process hazards analysis  

SciTech Connect

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``