National Library of Energy BETA

Sample records for organic chemical compound

  1. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, ?-caryophyllene) as well as previously studied VOCs (i.e., isoprene, ?-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt?1) to DMS, isoprene, and ?-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through amorecombination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (R2=0.80) over a wide range of sampling conditions.less

  2. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  3. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combinationmore » of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  4. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-01-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combination of ligand-switching and directmore » charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  5. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  6. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect (OSTI)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  7. ARM - Measurement - Volatile organic compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVolatile organic compounds ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Volatile organic compounds The quantity or concentration measure of volatile organic compounds including both man-made and naturally occurring chemical compounds (this is inclusive of hydrocarbons). Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following

  8. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOE Patents [OSTI]

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  9. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, Richard A.; Lambrecht, Richard M.; Bloomer, William D.

    1989-05-02

    Methods and kits for incorporating a radioactive astatine isotope (particularly .sup.211 At) into an organic compound by electrophilic astatodestannylation of organostannanes.

  10. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  11. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  12. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  13. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  14. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  15. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  16. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  17. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Photochemical dimerization of organic compounds

    DOE Patents [OSTI]

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  19. Volatile organic compound sensing devices

    DOE Patents [OSTI]

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  20. Volatile organic compound sensing devices

    DOE Patents [OSTI]

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  1. Methods of making organic compounds by metathesis

    DOE Patents [OSTI]

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  2. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  3. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  4. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  7. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  8. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  9. Alkylation of organic aromatic compounds

    DOE Patents [OSTI]

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  10. Method for halogenating or radiohalogenating a chemical compound

    DOE Patents [OSTI]

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  11. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  12. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  13. Device for collecting chemical compounds and related methods

    DOE Patents [OSTI]

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  14. Organic photosensitive devices using subphthalocyanine compounds

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R.; Mutolo, Kristin L.; Mayo, Elizabeth; Thompson, Mark E.

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  15. Methods and compounds for chemical ligation

    DOE Patents [OSTI]

    Church, George M.; Sismour, A. Michael

    2013-07-09

    Compositions and methods for chemical ligation are provided. Methods for nucleic acid sequencing, nucleic acid assembly and nucleic acid synthesis are also provided.

  16. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOE Patents [OSTI]

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  17. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOE Patents [OSTI]

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  18. Process for preparing a chemical compound enriched in isotope content

    DOE Patents [OSTI]

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  19. Handbook of environmental data on organic chemicals

    SciTech Connect (OSTI)

    Verschueren, K.

    1983-01-01

    This text presents essential data on over 2,000 organic chemicals: synonyms, formulas, properties; effects on plants, animals, people, air, water.

  20. Methods and compounds for chemical ligation (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Methods and compounds for chemical ligation Citation Details In-Document Search Title: ... DOE Contract Number: FG02-02ER63445 Resource Type: Patent Research Org: Harvard College ...

  1. Tritium labeling of organic compounds deposited on porous structures

    DOE Patents [OSTI]

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  2. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect (OSTI)

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.; Williams, R.D.

    1996-12-31

    In 1992, a chemical sensor was developed which showed almost perfect selectivity to vapors of chlorinated solvents. When interfaced to an instrument, a chemical analyzer will be produced that has near- absolute selectivity to vapors of volatile chlorinated organic compounds. TRI has just completed the second of a 2-phase program to develop this new instrument system, which is called the RCL MONITOR. In Phase II, this instrument was deployed in 5 EM40 operations. Phase II applications covered clean-up process monitoring, environmental modeling, routine monitoring, health and safety, and technology validation. Vapor levels between 0 and 100 ppM can be determined in 90 s with a lower detection limit of 0.5 ppM using the hand-portable instrument. Based on the favorable performance of the RCL MONITOR, the commercial instrument was released for commercial sales on Sept. 20, 1996.

  3. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  4. Method and reaction pathway for selectively oxidizing organic compounds

    DOE Patents [OSTI]

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  5. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect (OSTI)

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  6. Structural and property studies on metal-organic compounds with...

    Office of Scientific and Technical Information (OSTI)

    with 3-D supramolecular network Citation Details In-Document Search Title: Structural and property studies on metal-organic compounds with 3-D supramolecular network Two ...

  7. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect (OSTI)

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  8. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    SciTech Connect (OSTI)

    Davisson, M L; Love, A H; Vance, A; Reynolds, J G

    2005-02-08

    Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions. Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were based on

  9. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect (OSTI)

    Hauschild, Veronique; Watson, Annetta Paule

    2013-01-01

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  10. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOE Patents [OSTI]

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  11. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOE Patents [OSTI]

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  12. Process for reducing organic compounds with calcium, amine, and alcohol

    DOE Patents [OSTI]

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  13. Process for reducing organic compounds with calcium, amine, and alcohol

    DOE Patents [OSTI]

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  14. SEPARATION OF URANIUM HEXAFLUORIDE FROM ORGANIC FLUORO COMPOUNDS

    DOE Patents [OSTI]

    Libby, W.F.

    1958-10-01

    A method is presented for removing perfiuoroorganic compounds such as C/ sub 7/F/sub 16/ from UF/sub 6/. The physical and chemical properties of the perfluoro compounds are such as to render their removal from UF/sub 6/ difficulty by conventional techniques. The mixture containing UF/sub 6/ and the perfluoro compounds is pyrolyzed in an inert container at high temperature and pressure. The properties of the products obtained by pyrolysis differ from the properties of UF/sub 6/ to a sufficient degree to render their separation possible by ordinary methods.

  15. Methods and systems for chemoautotrophic production of organic compounds

    DOE Patents [OSTI]

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2013-01-08

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  16. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOE Patents [OSTI]

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  17. Membrane-Organized Chemical Photoredox Systems

    SciTech Connect (OSTI)

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  18. Fate of hazardous waste derived organic compounds in Lake Ontario

    SciTech Connect (OSTI)

    Jaffe, R.; Hites, R.A.

    1986-03-01

    Dated sediment cores from Lake Ontario's four sedimentation basins and sedentary fish from tributaries and embayments were analyzed by gas chromatographic, methane-enhanced, negative ion mass spectrometry for a group of fluorinated aromatic compounds. The historical record of these chemicals in Lake Ontario sediments agrees well with the use of the Hyde Park dump in the city of Niagara Falls, NY. These compounds first appeared in sediments in 1958 and rapidly increased until 1970. These dates coincide with the onset of dumping at Hyde Park and remedial action undertaken when this dump was closed, respectively. Chemicals introduced into Lake Ontario by the Niagara River distribute throughout the lake rapidly and uniformly and accumulate in sedentary fish taken from remote locations in the lake. 24 references, 9 figures, 4 tables.

  19. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  20. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    SciTech Connect (OSTI)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B.; Worsnop, Douglas R.; Kulmala, M.; Ehn, Mikael K.; Sipila, Mikko

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework shows that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.

  1. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  2. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    SciTech Connect (OSTI)

    Maddalena, Randy; Li, Na; Hodgson, Alfred; Offermann, Francis; Singer, Brett

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  3. Process for removing an organic compound from water

    DOE Patents [OSTI]

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  4. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOE Patents [OSTI]

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  5. Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactions for Latent Heat Storage | Department of Energy Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage Los Alamos National Lab logo Los Alamos National Laboratory, under an ARRA CSP Award, is developing a thermally stable, working heat transfer fluid (HTF) that is integrated with chemical reactions as a methodology to store large amounts

  6. Chemical microsensors

    DOE Patents [OSTI]

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  7. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOE Patents [OSTI]

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  8. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect (OSTI)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  9. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  10. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site`s 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE`s Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  11. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  12. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    SciTech Connect (OSTI)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  13. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOE Patents [OSTI]

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  14. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    SciTech Connect (OSTI)

    Farha, Omar K.; Hupp, Joseph T.

    2012-09-11

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  15. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    SciTech Connect (OSTI)

    Farha, Omar K; Hupp, Joseph T

    2013-06-25

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  16. Study on removal of organic sulfur compound by modified activated carbon

    SciTech Connect (OSTI)

    Fan Huiling; Li Chunhu; Guo Hanxian [Taiyuan Univ. of Technology (China). Research Inst. for Chemical Engineering of Coal

    1997-12-31

    With the price of coal increasing in China, more and more small and medium scale chemical plants are turning to high sulfur coal as the raw material in order to cut cost. However, the major drawback is that the lifetime of the ammonia synthesis catalyst is then reduced greatly because of the high concentration of the sulfur compounds in the synthesis gas, especially organic sulfur, usually CS{sub 2} and COS. The effects of water vapor and experimental temperature on removal of organic sulfur compounds by using a modified activated carbon were studied in this paper. It was found that water vapor had a negative effect on removal of carbon disulfide by activated carbon impregnated with organic amine. The use of activated carbon impregnated with K{sub 2}CO{sub 3} for removal of carbonyl sulfide was also investigated over the temperature range 30--60, the results show a favorable temperature (40) existing for carbonyl sulfide removal. Fixed-bed breakthrough curves for the adsorbent bed were also offered in this paper.

  17. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  18. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOE Patents [OSTI]

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  19. Investigations of release phenomenon of volatile organic compounds and particulates from residual storage chip piles

    SciTech Connect (OSTI)

    Mohan, S.; Nagarkatti, M.

    1996-12-31

    This paper outlines the method for estimating Particulate Matter and Volatile Organic Compounds (VOCs) emissions from wood handling and storage operations at a pulp mill. Fugitive particulate matter emissions from wood handling and storage operations are due to material load/dropout operations, wind erosion from storage piles and vehicular traffic on paved roads. The particulate matter emissions are a function of a number of variables like windspeed, surface moisture content, material silt content, and number of days of precipitation. Literature review attributes VOC emissions to biological, microbiological, chemical, and physical processes occurring in wood material storage pile. The VOC emissions are from the surface of these piles and the VOC released during retrieval of chips from the pile. VOC emissions are based on the chip throughput, number of turnovers, moisture content and surface area of the pile. The emission factors with the requisite calculation methodology to be utilized for quantifying VOC emissions from chip piles has been discussed in this paper.

  20. RADIOLYSIS OF ORGANIC COMPOUNDS IN THE ADSORBED STATE

    DOE Patents [OSTI]

    Sutherland, J.W.; Allen, A.O.

    1961-10-01

    >A method of forming branch chained hydrocarbons by means of energetic penetrating radiation is described. A solid zeolite substrate is admixed with a cobalt ion and is irradiated with a hydrocarbon adsorbed therein. Upon irradiation with gamma rays, there is an increased yield of branched and lower molecular straight chain compounds. (AEC)

  1. Apparatus for sensing volatile organic chemicals in fluids

    DOE Patents [OSTI]

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  2. Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

    SciTech Connect (OSTI)

    Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T.; Sheldon, R.I.

    1999-05-14

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell

  3. Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

    SciTech Connect (OSTI)

    Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T.; Sheldon, R.I.

    1999-06-03

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. Our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell

  4. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOE Patents [OSTI]

    Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

    1996-07-23

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound are disclosed. 4 figs.

  5. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOE Patents [OSTI]

    Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.

    1996-01-01

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.

  6. APPLICATION OF STIR BAR SORPTIVE EXTRACTION TO ANALYSIS OF VOLATILE AND SEMIVOLATILE ORGANIC CHEMICALS OF POTENTIAL CONCERN IN SOLIDS AND AQUEOUS SAMPLES FROM THE HANFORD SITE

    SciTech Connect (OSTI)

    FRYE JM; KUNKEL JM

    2009-03-05

    Stir bar sorptive extraction was applied to aqueous and solid samples for the extraction and analysis of organic compounds from the Hanford chemicals of potential concern list, as identified in the vapor data quality objectives. The 222-S Laboratory analyzed these compounds from vapor samples on thermal desorption tubes as part of the Hanford Site industrial hygiene vapor sampling effort.

  7. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  8. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOE Patents [OSTI]

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  9. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    SciTech Connect (OSTI)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

  10. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  11. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOE Patents [OSTI]

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  12. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOE Patents [OSTI]

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  13. Composites for removing metals and volatile organic compounds and method thereof

    DOE Patents [OSTI]

    Coronado, Paul R.; Coleman, Sabre J.; Reynolds, John G.

    2006-12-12

    Functionalized hydrophobic aerogel/solid support structure composites have been developed to remove metals and organic compounds from aqueous and vapor media. The targeted metals and organics are removed by passing the aqueous or vapor phase through the composite which can be in molded, granular, or powder form. The composites adsorb the metals and the organics leaving a purified aqueous or vapor stream. The species-specific adsorption occurs through specific functionalization of the aerogels tailored towards specific metals and/or organics. After adsorption, the composites can be disposed of or the targeted metals and/or organics can be reclaimed or removed and the composites recycled.

  14. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect (OSTI)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  15. A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds

    SciTech Connect (OSTI)

    Tian, Dan; Chen, Rong-Ying; Xu, Jian; Bu, Xian-He; Li, Yun-Wu

    2014-12-01

    A 3D metal–organic framework [NH{sub 2}(CH{sub 3}){sub 2}][Cd{sub 6}(L){sub 4}(DMF){sub 6}(HCOO)](DMF = N,N-dimethylformamide) (1) has been synthesized using a tripodal ligand H{sub 3}L (2,4,6-tris[1-(3-carboxylphenoxy)ylmethyl]mesitylene). The obtained complex exhibits a 3D framework containing hexanuclear (Cd{sub 6}) building units formed by two trinuclear (Cd{sub 3}) clusters that are connected via HCOO{sup −} anions. For complex 1, the participation of the fluorescent ligand H{sub 3}L not only gives rise to a strong photoluminescence emission as expected, but more interestingly, that ligand originated characteristic band could be quenched selectively by nitrobenzene with a low detection limit, showing its potential as a highly sensitive and selective sensor for nitrobenzene. Based on an electron transfer quenching mechanism, the fluorescence sensing ability of 1 is also applicable for other electron-deficient nitroaromatic compounds with high selectivity and sensitivity, i.e., 1,4-dinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, and 4-nitrotoluene, suggesting 1 a promising fluorescence sensor for detecting and recognizing the same kind of chemicals.

  16. Mass transport of volatile organic compounds between the saturated and vadose zones. Master`s thesis

    SciTech Connect (OSTI)

    Harner, M.S.

    1996-12-01

    Volatile organic compounds (VOCs) dissolved in the saturated zone are transported into the vadose zone primarily by gaseous phase diffusion. If the saturated zone is remediated, VOCs present in the vadose zone may become a secondary source of contamination for the groundwater. The amount of VOCs that remain in the vadose zone is dependent on site hydrology, soil properties, and the chemical properties of the contaminants. The purpose of this study was to determine what conditions caused VOC concentrations in the vadose zone to significantly recontaminate the saturated zone. A one-dimensional numerical model was developed to investigate the transport of a VOC, trichioroethylene, between the saturated and vadose zones under a variety of conditions. The model featured steady-state unsaturated water flow and transient contaminant transport. Transport mechanisms included aqueous phase advection-dispersion and gaseous phase diffusion. Partitioning between the water, gas, and soil compartments were modeled as equilibrium processes. Sensitivity analyses were performed on several variables including soil type (homogeneous and heterogeneous profiles), water infiltration rate and vadose zone depth. Results indicated that recontamination was most significant rate, and vadose zone depth. Results indicated that recontamination was most significant in the presence of heterogeneous soils, low infiltration rates and deep vadose zones.

  17. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    SciTech Connect (OSTI)

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  18. Mechanical-chemical coupling and self-organization in mudstones.

    SciTech Connect (OSTI)

    Heath, Jason E.; Dewers, Thomas A.

    2010-06-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO{sub 2} sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from the nonlinear coupling of mechanics with chemistry. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

  19. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; Campuzano-Jost, P.; Zhao, Y.; Day, D. A.; Kaser, L.; Karl, T.; Hansel, A.; Teng, A. P.; et al

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range are complexmore » in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C15H24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C15H22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m–3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  20. Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound

    DOE Patents [OSTI]

    Marling, John B.; Herman, Irving P.

    1981-01-01

    A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.

  1. In Vitro Genotoxicity of Particulate and Semi-Volatile Organic Compound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30°F | Department of Energy Particulate and Semi-Volatile Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30°F In Vitro Genotoxicity of Particulate and Semi-Volatile Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30°F 2003 DEER Conference Presentation: Centers for Disease Control and

  2. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOE Patents [OSTI]

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  3. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect (OSTI)

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  4. Chemiluminescent detection of organic air pollutants (Conference...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 ENVIRONMENTAL SCIENCES; POLLUTANTS; CHEMILUMINESCENCE; AIR POLLUTION; CHEMICAL COMPOSITION; ORGANIC COMPOUNDS; AIR POLLUTION MONITORING; OZONE; ...

  5. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2015-09-01

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. The model combines Khler theory with semi-empirical group contribution methods to estimate molar volumes, activity coefficients and liquid-liquid phase boundaries tomorepredict the effective hygroscopicity parameter, kappa. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of two. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging testbeds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger scale models.less

  6. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Köhler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. The model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  7. Prediction of cloud condensation nuclei activity for organic compounds using functional group contribution methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petters, M. D.; Kreidenweis, S. M.; Ziemann, P. J.

    2016-01-19

    A wealth of recent laboratory and field experiments demonstrate that organic aerosol composition evolves with time in the atmosphere, leading to changes in the influence of the organic fraction to cloud condensation nuclei (CCN) spectra. There is a need for tools that can realistically represent the evolution of CCN activity to better predict indirect effects of organic aerosol on clouds and climate. This work describes a model to predict the CCN activity of organic compounds from functional group composition. Following previous methods in the literature, we test the ability of semi-empirical group contribution methods in Kohler theory to predict themore » effective hygroscopicity parameter, kappa. However, in our approach we also account for liquid–liquid phase boundaries to simulate phase-limited activation behavior. Model evaluation against a selected database of published laboratory measurements demonstrates that kappa can be predicted within a factor of 2. Simulation of homologous series is used to identify the relative effectiveness of different functional groups in increasing the CCN activity of weakly functionalized organic compounds. Hydroxyl, carboxyl, aldehyde, hydroperoxide, carbonyl, and ether moieties promote CCN activity while methylene and nitrate moieties inhibit CCN activity. Furthermore, the model can be incorporated into scale-bridging test beds such as the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to evaluate the evolution of kappa for a complex mix of organic compounds and to develop suitable parameterizations of CCN evolution for larger-scale models.« less

  8. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    SciTech Connect (OSTI)

    Barney, G.S.

    1996-04-26

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 {degree}C, 30 {degree}C, 40 {degree}C, and 50 {degree}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  9. Volatile organic chemical emissions from carpet cushions: Screening measurements. Final report

    SciTech Connect (OSTI)

    Hodgson, A.T.; Phan, T.A.

    1994-05-01

    The US Consumer Product Safety Commission (CPSC) has received complaints from consumers regarding the occurrence of adverse health effects following the installation of new carpeting (Schachter, 1990). Carpet systems are suspected of emitting chemicals which may be the cause of these complaints, as well as objectionable odors. Carpets themselves have been shown to emit a variety of volatile organic compounds (VOCs). The objective of this study was to screen the representative samples of carpet cushions for emissions of individual VOCS, total VOCs (TVOC), formaldehyde, and, for the two types of polyurethane cushions, isomers of toluene diisocyanate (TDI). The measurements of VOCS, TVOC and formaldehyde were made over six-hour periods using small-volume (4-L) dynamic chambers. Sensitive gas chromatography-mass spectrometry (GC-MS) techniques were used to identify many of the VOCs emitted by the cushion samples and to obtain quantitative estimates of the emission rates of selected compounds. Separate screening measurements were conducted for TDI. The data from the screening measurements were used by the CPSC`s Health Sciences Laboratory to help design and conduct week-long measurements of emission rates of selected compounds.

  10. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore »and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  11. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A.; Daumit, K.; Hunter, J.; et al

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  12. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, Th. F.; Carrasquillo, A. J.; Daumit, K. E.; Hunter, J. F.; et al

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the

  13. Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OSc), and mass yield. The OA oxidation state generally increased duringmore » photo-oxidation, and the final OA OSc ranged from -0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  14. Stress-induced chemical detection using flexible metal-organic frameworks.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Hesketh, Peter J.; Gall, Kenneth A.; Choudhury, A.; Pikarsky, J.; Andruszkiewicz, Leanne; Houk, Ronald J. T.; Talin, Albert Alec

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  15. Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

    SciTech Connect (OSTI)

    Peters, R.W.; Manning, J.; Hoffman, M.R.; Gorelick, S.

    1997-01-01

    'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'

  16. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2000-01-01

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  17. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  18. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOE Patents [OSTI]

    Golden, Jeffry

    2007-02-13

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  19. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determinemore » elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  20. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios, reproduces known molecular O :more » C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13

  1. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. Hildebrandt; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmoreintensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMSvacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion

  2. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  3. Reducing Emissions of Volatile Organic Compounds - Final Report - 08/15/1997 - 02/14/2001

    SciTech Connect (OSTI)

    Stensel, H. David; Strand, Stuart E.

    2001-03-14

    The overall objective of this research was to determine if the shallow suspended growth reactor (SSGR) could provide sufficient treatment performance of organic and reduced sulfur (TRS) compounds, at 50 C to meet the EPA ''cluster rule'' regulatory limits. The biodegradation of a mixture of organic compounds that could be present in pulp and paper high volume low concentration gas streams was evaluated at 50 C in a bench-scale SSGR. The removal of methanol was followed in particular, and was mathematically modeled to evaluate the effect of process design and operating parameters on methanol removal. Additional tests were performed to obtain mass transfer and biodegradation kinetic parameters for the model. The acclimation of microbial populations capable of degrading TRS compounds from various seed sources was studied in batch reactors at 30 and 50 C. The degradation of TRS compounds in bench-scale SSGR was studied at 20-50 C. Also, the biodegradation kinetic and mass transfer coefficients for alpha-terpinene and gamma-terpinene were studied. Finally, a pilot plant was constructed and operated at Simpson pulp and paper mill in Tacoma, WA.

  4. Separation of polar compounds using a flexible metal-organic framework

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; Annapureddy, Harsha V.; Dang, Liem X.; Krishna, Rajamani; Nune, Satish K.; Fernandez, Carlos A.; Liu, Jian; McGrail, B. Peter

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds by exploiting the differences in the saturation capacities of the constituents. The separation possibilities with the flexible MOF include mixtures of propanol isomers, and various azeotropes. Transient breakthrough simulations show that these sorption-based separations are in favor of the component with higher saturation capacity.

  5. Microsoft Word - NRAP_TRS_III_Mobilization_and_Transport_of_Organic_Compound_final.20150515.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobilization and Transport of Organic Compounds from Geologic Carbon Sequestration Reservoirs 21 May 2015 Office of Fossil Energy NRAP-TRS-III-002-2015 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  6. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  7. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A.; Tunesi, Simonetta; Xu, Qunyin

    1991-01-01

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

  8. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    SciTech Connect (OSTI)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Tropsha, Alexander

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  9. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gasmore » chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  10. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  11. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Tunesi, S.; Xu, Q.

    1991-07-30

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

  12. NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET ANALYTE LIST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET ANALYTE LIST OTHER CHANGES TO VOC MONITORING PROGRAM Page 1 of 21 VOC 3*1: PMR Section 3, Topic 1, Table 1 Recalculated Waste Matrix Code Group Weighting Factors based on the 2004 Compliance Recertification Contact Handled (CH) Transuranic (TRU) Waste Inventory (m 3 ) The new weighting factors appear to be based on CH TRU waste only and do not include remote handled (RH) TRU waste. There was no discussion in the PMR addressing

  13. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    SciTech Connect (OSTI)

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2015-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus).

  14. Analysis of volatile organic compounds in groundwater samples by gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Bernhardt, J.

    1995-08-23

    The Savannah River Site contains approximately 1500 monitoring wells from which groundwater samples are collected. Many of these samples are sent off-site for various analyses, including the determination of trace volatile organic compounds (VOCs). This report describes accomplishments that have been made during the past year which will ultimately allow VOC analysis to be performed on-site using gas chromatography-mass spectrometry. Through the use of the on-site approach, it is expected that there will be a substantial cost savings. This approach will also provide split-sample analysis capability which can serve as a quality control measure for off-site analysis.

  15. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect (OSTI)

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  16. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    SciTech Connect (OSTI)

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-15

    Metal-free organic compounds 24-SC ((E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC ((E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, {sup 1}H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  17. Implementation of a solvent management program to control paint shop volatile organic compounds

    SciTech Connect (OSTI)

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Waste Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.

  18. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    DOE Patents [OSTI]

    Lovley, Derek R; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2013-12-03

    In preferred embodiments, the present invention provides new isolated strains of Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. In other aspects, other preferred embodiments of the present invention include methods of making such strains and methods of using such strains. In general, the wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors in metabolic steps such as the reduction of metallic ions. The inventive strains of microorganisms are useful improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic sensors, and electric vehicles.

  19. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    DOE Patents [OSTI]

    Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2016-03-01

    In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.

  20. Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis

    SciTech Connect (OSTI)

    Ouellette, B.A.

    1994-09-01

    In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which represent a cross section of the current inventory of USAF wastewater plants in ozone nonattainment areas. From these calculations, maximum facility emissions are determined which represent the upper limit for the potential VOC emissions from these wastewater plants. Based on the calculated emission estimates, each selected wastewater facility is evaluated as a potential major stationary source of volatile organic emissions under both Title I of the 1990 CAAA and the plant's governing Clean Air Act state implementation plan. Next, the potential impact of the specific volatile organics being emitted is discussed in terms of their relative reactivity and individual contribution to tropospheric ozone formation. Finally, a relative comparison is made between the estimated VOC emissions for the selected wastewater facilities and the total VOC emissions for their respective host installations.

  1. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect (OSTI)

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  2. Ozone-forming potential of a series of oxygenated organic compounds

    SciTech Connect (OSTI)

    Japar, S.M.; Wallington, T.J.; Rudy, S.J.; Chang, Tai Y. )

    1991-03-01

    An incremental reactivity approach has been used to assess the relative ozone-forming potentials of various important oxygenated fuels/fuel additives, i.e., tert-butyl alcohol (TBA), dimethyl ether (DME), diethyl ether (DEE), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE), in a variety of environments. Calculations were performed using a single-cell trajectory model, combined with the Lurmann-Carter-Coyner chemical mechanism, with (NMOC)/(NO{sub x}) ratios ranging from 4 to 20. This work provides the first quantitative assessment of the air quality impact of release of these important oxygenated compounds. ETBE and DEE are the two most reactive compounds on a per carbon equivalent basis, while TBA is the least reactive species. At a (NMOC)/(NO{sub x}) ratio of 8, which is generally typical of polluted urban areas in the United States, TBA, DME, MTBE, and ETBE all have incremental reactivities less than or equal to that of the urban NMHC mix. Thus, use of these additives in fuels may have a beneficial impact on urban ozone levels.

  3. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect (OSTI)

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  4. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms

    SciTech Connect (OSTI)

    Nevin, KP; Hensley, SA; Franks, AE; Summers, ZM; Ou, JH; Woodard, TL; Snoeyenbos-West, OL; Lovley, DR

    2011-04-20

    Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

  5. Technology projects for characterization--monitoring of volatile organic compounds (VOCs)

    SciTech Connect (OSTI)

    Junk, G.A.; Haas, W.J. Jr.

    1992-07-01

    One hundred thirty technology project titles related to the characterization of volatile organic compounds (VOCs) at an arid site are listed alphabetically by first contact person in a master compilation that includes phone numbers, addresses, keywords, and short descriptions. Separate tables are presented for 62 field-demonstrated, 36 laboratory-demonstrated, and 35 developing technology projects. The technology projects in each of these three categories are also prioritized in separate summary tables. Additional tables are presented for a number of other categorizations of the technology projects: In Situ; Fiberoptic; Mass Spectrometer; Optical Spectroscopy; Raman or SERS; Ion Mobility or Acoustic; Associated; and Commercial. Four lists of contact person names are provided so details concerning the projects that deal with sampling, and VOCs in gases, waters, and soils (sediments) can be obtained. Finally, seven wide-ranging conclusions based on observations and experiences during this work are presented.

  6. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geron, Chris; Gu, Lianhong; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas

    2016-12-17

    Here, leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower – NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for themore » species in the red oak subgenus (Erythrobalanus).« less

  7. Comparison of non-thermal plasma techniques for abatement of volatile organic compounds and nitrogen oxides

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-01-11

    Non-thermal plasma processing is an emerging technology for the abatement of dilute concentrations of volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}) and other hazardous air pollutants (HAPs) in atmospheric-pressure gas streams. Either electrical discharge or electron beam methods can produce these plasmas. Recent laboratory-scale experiments show that the electron beam method is remarkably more energy efficient than competing non-thermal plasma techniques based on pulsed corona and other types of electrical discharge plasma. Preliminary cost analysis based on these data also show that the electron beam method may be cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  8. ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2006-07-10

    Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

  9. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    DOE Patents [OSTI]

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  10. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    SciTech Connect (OSTI)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  11. Aging of secondary organic aerosol from small aromatic VOCs. Changes in chemical composition, mass yield, volatility and hygroscopicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K.; Nenes, A.; Donahue, N. M.; Pandis, S. N.

    2014-12-12

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form and transform SOA from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NOx. The effects of chemical aging on organic aerosol (OA) composition, mass yield, volatility and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state OSC) and mass yield. The OA oxidation state generally increased during photo-oxidation, and the final OA OSmore » C ranged from -0.29 to 0.45 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have significantly different saturation concentration. There was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  12. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect (OSTI)

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  13. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOE Patents [OSTI]

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  14. Single-reactor process for producing liquid-phase organic compounds from biomass

    SciTech Connect (OSTI)

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  15. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    SciTech Connect (OSTI)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi; Russell, Marion L.; Maddalena, Randy L.; Singer, Brett C.

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levels and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange

  16. Measuring indigenous photosynthetic organisms to detect chemical warefare agents in water

    DOE Patents [OSTI]

    Greenbaum, Elias; Sanders, Charlene A.

    2005-11-15

    A method of testing water to detect the presence of a chemical or biological warfare agent is disclosed. The method is carried out by establishing control data by providing control water containing indigenous organisms but substantially free of a chemical and a biological warfare agent. Then measuring photosynthetic activity of the control water with a fluorometer to obtain control data to compare with test data to detect the presence of the chemical or agent. The test data is gathered by providing test water comprising the same indigenous organisms as contained in the control water. Further, the test water is suspected of containing the chemical or agent to be tested for. Photosynthetic activity is also measured by fluorescence induction in the test water using a fluorometer.

  17. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    SciTech Connect (OSTI)

    Roberts, Scott D; Hatten, Jeffrey A

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  18. Volatile organic compounds (VOCs): Remediation for wastewater. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning wastewater contamination by volatile organic materials and the technology for reclamation. Remediation techniques discussed include use of activated carbon, activated sludge, oxidation, scrubbing, vapor stripping, biodegradation, and other degradative treatments. Articles include remediation of soils contaminated by volatile wastes. The citations examine a variety of compounds, including aromatic hydrocarbons, petroleum wastes, chlorinated organics, and other volatile materials. (Contains a minimum of 215 citations and includes a subject term index and title list.)

  19. Source profiles for nonmethane organic compounds in the atmosphere of Cairo, Egypt.

    SciTech Connect (OSTI)

    Doskey, P. V.; Fukui, Y.; Sultan, M.; Maghraby, A. A.; Taher, A.; Environmental Research; Cairo Univ.

    1999-07-01

    Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas (LPG), and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C{sub 5} and C{sub 6} saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C{sub 2}-C{sub 4} saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.

  20. Modeling ambient air concentrations of volatile organic compounds via digitally filtered FTIR spectra

    SciTech Connect (OSTI)

    Kaltenbach, T.

    1994-12-31

    As part of an agreement with the New York State Department of Environmental Conservation, Eastman Kodak Company has a program to monitor ambient air concentrations of volatile organic compounds at its fence lines. Currently, canister-based point sensors are used to collect a time-averaged sample every sixth day. The staff required to position, retrieve, and analyze these canisters makes this procedure expensive. Alternative methods are being investigated that can provide similar results in real time, while also saving costs. One such method is Fourier transform infrared (FTIR) spectroscopy. Radian Corporation performed a series of FTIR fence-line monitoring experiments at Kodak about one year ago. The spectra collected during this experiment are complicated by the presence of water vapor bands. Digital filtering techniques utilizing the Fourier transform are being explored as a means of removing the interference due to water vapor. When a digital filter is used as a spectral preprocessor, partial least squares (PLS) techniques can be employed to provide a powerful prediction pool. This seminar will describe the operation of the Fourier filters and present some encouraging preliminary results from PLS models.

  1. Power consumption and byproducts in electron beam and electrical discharge processing of volatile organic compounds

    SciTech Connect (OSTI)

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.

    1996-02-20

    Among the new methods being investigated for the post-process reduction of volatile organic compounds (VOCs) in atmospheric-pressure air streams are based on non-thermal plasmas. Electron beam, pulsed corona and dielectric-barrier discharge methods are among the more extensively investigated techniques for producing non-thermal plasmas. In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. In this paper the authors present experimental results using a compact electron beam reactor, a pulsed corona and a dielectric-barrier discharge reactor. They have used these reactors to study the removal of a wide variety of VOCs. The effects of background gas composition and gas temperature on the decomposition chemistry have been studied. They present a description of the reactions that control the efficiency of the plasma process. They have found that pulsed corona and other types of electrical discharge reactors are most suitable only for processes requiring O radicals. For VOCs requiring copious amounts of electrons, ions, N atoms or OH radicals, the use of electron beam reactors is generally the best way of minimizing the electrical power consumption. Electron beam processing is remarkably more effective for all of the VOCs tested. For control of VOC emissions from dilute, large volume sources such as paint spray booths, cost analysis shows that the electron beam method is cost-competitive to thermal and catalytic methods that employ heat recovery or hybrid techniques.

  2. Response threshold levels of selected organic compounds for rainbow trout (Oncorhynchus mykiss)

    SciTech Connect (OSTI)

    Kaiser, K.L.E.; McKinnon, M.B.; Stendahl, D.H.; Pett, W.B.

    1995-12-01

    The responses of 27 organic compounds, mainly chloromethanes, -ethanes, -ethenes, and -phenols, were investigated by exposing rainbow trout fingerlings to low microgram-per-liter concentrations in a darkened flow-through system for up to 1 h. Responses by the fish were followed continuously by observing ventilation rates (frequency and amplitude), swimming patterns, and general activity using the low-voltage electric fields generated by the fishes` activity. The lowest level of response was found for trichloroethylene at 5 {micro}g/L. Dichloromethane, 1,1- and 1,2-dichloroethane, 1,1,1- and 1,1,2-trichloroethane, cis-1,2-dichloroethylene, 1,3-dichloropropene, and allyl acetate were responded to at concentrations of 10 {micro}g/L, carbon tetrachloride at 15 {micro}g/L, and 4-chlorophenol and 2,4-dichlorophenol at levels of 30 {micro}g/L. Unsubstituted phenol was not responded to at levels of up to 50 {micro}g/L.

  3. Chemiresistor microsensors for in-situ monitoring of volatile organic compounds : final LDRD report.

    SciTech Connect (OSTI)

    Thomas, Michael Loren; Hughes, Robert Clark; Kooser, Ara S.; McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.; Davis, Chad Edward

    2003-09-01

    This report provides a summary of the three-year LDRD (Laboratory Directed Research and Development) project aimed at developing microchemical sensors for continuous, in-situ monitoring of volatile organic compounds. A chemiresistor sensor array was integrated with a unique, waterproof housing that allows the sensors to be operated in a variety of media including air, soil, and water. Numerous tests were performed to evaluate and improve the sensitivity, stability, and discriminatory capabilities of the chemiresistors. Field tests were conducted in California, Nevada, and New Mexico to further test and develop the sensors in actual environments within integrated monitoring systems. The field tests addressed issues regarding data acquisition, telemetry, power requirements, data processing, and other engineering requirements. Significant advances were made in the areas of polymer optimization, packaging, data analysis, discrimination, design, and information dissemination (e.g., real-time web posting of data; see www.sandia.gov/sensor). This project has stimulated significant interest among commercial and academic institutions. A CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to investigate manufacturing methods, and a Work for Others contract was established between Sandia and Edwards Air Force Base for FY02-FY04. Funding was also obtained from DOE as part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06. Contracts were also established for collaborative research with Brigham Young University to further evaluate, understand, and improve the performance of the chemiresistor sensors.

  4. Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration

    SciTech Connect (OSTI)

    Riley, R.G.

    1993-06-01

    The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

  5. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1995-08-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  6. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R.

    1998-06-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  7. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J.; Djordjevic, S.M.; Loehr, C.A. Spangler, L.R.

    1995-12-01

    In the conditional no-migration determination (NMD) for the test phase of the Waste isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. The EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is unnecessary. A test program was conducted to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative.

  8. Corrosion inhibition of mild steel in acidic media using newly synthesized heterocyclic organic molecules: Correlation between inhibition efficiency and chemical structure

    SciTech Connect (OSTI)

    Ouici, H. B. Guendouzi, A.; Benali, O.

    2015-03-30

    The corrosion inhibition of mild steel in 5% HCl solutions by some new synthesized organic compounds namely 3-(2-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (2-MMT), 3-(3-methoxyphenyl) 5-mercapto-1. 2. 4-triazole (3-MMT) and 3-(2-hydroxyphenyl) 5-mercapto-1. 2. 4-triazole (2-HMT) was investigated using weight loss and potentiostatic polarization techniques. These measurements reveal that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follows the order 2-MMT >3-MMT >2-HMT. Polarization studies show that these compounds are of the mixed type but dominantly act as a cathodic inhibitors for mild steel in 5% HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. Activation energy and Gibbs free energy for adsorption of inhibitors are calculated. Molecular modeling has been conducted to correlate the corrosion inhibition properties with the calculated quantum chemical parameters.

  9. Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; et al

    2015-08-06

    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio–hydro–atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Organic Carbonmore » Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.« less

  10. Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest

    SciTech Connect (OSTI)

    Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, M.; Karl, T.; Boy, M.

    2015-08-06

    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio–hydro–atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.

  11. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    SciTech Connect (OSTI)

    Lehtinen, Jenni; Tolvanen, Outi; Nivukoski, Ulla; Veijanen, Anja; Hnninen, Kari

    2013-04-15

    Highlights: ? Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ? VOC concentrations did not exceed occupational exposure limit concentrations. ? 2,3-Butanedione as the health effecting compound is discussed. ? Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvink and at the optic separation plant in Hmeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes. In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The most problematic

  12. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    SciTech Connect (OSTI)

    Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.

    2010-03-01

    Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X-ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3-2.6 kg L{sup -1} density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest {sup 14}C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O-alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O-alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a {sup 14}C age associated with 'passive' pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed of

  13. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    SciTech Connect (OSTI)

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-04

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment.

  14. Semi volatile organic compounds in ambient PM2.5. Seasonal trends and daily resolved source contributions

    SciTech Connect (OSTI)

    Juergen Schnelle-Kreis; Martin Sklorz; Juergen Orasche; Matthias Stoelzel; Annette Peters; Ralf Zimmermann

    2007-06-01

    Concentrations of ambient semivolatile organic compounds (SVOC) in the PM2.5 fraction of Augsburg, Germany, have been monitored on a daily basis from January 2003 through December 2004. Samples were taken in a large garden in the city center. Quantitative analysis of n-alkanes, alkanones, alkanoic acid methylesters, long chain linear alkyl benzenes and toluenes, hopanes, polycyclic aromatic hydrocarbons (PAH) and oxidized PAH, and some abietan type diterpenes was done. All compounds showed distinct seasonal variations in concentration. Most compounds showed highest concentrations during the cold seasons, but some n-alkanones and 6,10,14-trimethylpentadecanone showed maximum concentration during summer. Changes in patterns between and within compound classes were obvious, e.g., the hopane pattern exhibited a strong seasonal variation. The main source related contributions to changes observed were discussed. Using positive matrix factorization (PMF) for the statistical investigation of the data set, five factors have been separated. These factors are dominated by the pattern of single sources or groups of similar sources: factor 1, lubricating oil; factor 2, emissions of unburned diesel and heating oil consumption; factor 3, wood combustion; factor 4, brown coal combustion; and factor 5, biogenic emissions and transport components. Like the SVOC, the factors showed strong seasonality with highest values in winter for factors 1-4 and in summer for factor 5. 56 refs., 3 figs., 1 tab.

  15. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect (OSTI)

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  16. Volatilization of selected organic compounds from a creosote-waste land-treatment facility. Master's thesis

    SciTech Connect (OSTI)

    Scott, E.J.

    1989-01-01

    The purpose of this research was to evaluate the emissions of volatile and semi-volatile compounds which are constituents of a complex creosote waste from laboratory simulations of a land treatment system to assess the potential human exposure to hazardous compounds from this source. In addition, the Thibodeaux-Hwang Air Emission Release Rate (AERR) model was evaluated for its use in predicting emission rates of hazardous constituents of creosote wood preservative waste from land treatment facilities. A group of hazardous volatile and semi-volatile constituents present in the creosote waste was selected for evaluation in this study and included a variety of polynuclear aromatic hydrocarbons (PNA's), phenol, and chlorinated and substituted phenols.

  17. Program of technical assistance to the organization for the prohibition of chemical weapons, informal report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    Currently, U.S. organizations provide technical support to the U.S. Delegation for its work as part of the Preparatory Commission (PrepCom) of the Organization for the Prohibition of Chemical Weapons (OPCW) in The Hague. The current efforts of the PrepCom are focussed on preparations for the Entry-Into-Force (EIF) of the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons (often referred to as the {open_quotes}Chemical Weapons Convention{close_quotes} (CWC)). EIF of the CWC is expected in 1995, and shortly thereafter the PrepCom will cease to exist, with the OPCW taking over responsibilities under the CWC. A U.S. program of technical assistance to the OPCW for its verification responsibilities may be created as part of U.S. policy objectives after EIF of the CWC. In the summary below, comments by participants are presented in Square Brackets Some of the same points arose several times during the discussions; they are grouped together under the most pertinent heading.

  18. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  19. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect (OSTI)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  20. Method of making AlInSb by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  1. Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Chapman, J.N.

    1999-07-13

    The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

  2. Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter

    SciTech Connect (OSTI)

    Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D.; Lemasters, John J.

    2013-11-15

    Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 μM of each tetracycline-derived compound 20 min prior to exposure to 500 μM iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective

  3. Final Report on Testing of Off-Gas Treatment Technologies for Abatement of Atmospheric Emissions of Chlorinated Volatile Organic Compounds

    SciTech Connect (OSTI)

    Jarosch, T.R.; Haselow, J.S.; Rossabi, J.; Burdick, S.A.; Raymond, R.; Young, J.E.; Lombard, K.H.

    1995-01-23

    The purpose of this report is to summarize the results of the program for off-gas treatment of atmospheric emissions of chlorinated volatile organic compounds (CVOCs), in particular trichloroethylene (TCE) and perchloroethylene (PCE). This program was funded through the Department of Energy Office of Technology Development`s VOC`s in Non-Arid Soils Integrated Demonstration (VNID). The off-gas treatment program was initiated after testing of in-situ air stripping with horizontal wells was completed (Looney et al., 1991). That successful test expectedly produced atmospheric emissions of CVOCs that were unabated. It was decided after that test that an off-gas treatment is an integral portion of remediation of CVOC contamination in groundwater and soil but also because several technologies were being developed across the United States to mitigate CVOC emissions. A single platform for testing off-gas treatment technologies would facilitate cost effective evaluation of the emerging technologies. Another motivation for the program is that many CVOCs will be regulated under the Clean Air Act Amendments of 1990 and are already regulated by many state regulatory programs. Additionally, compounds such as TCE and PCE are pervasive subsurface environmental contaminants, and, as a result, a small improvement in terms of abatement efficiency or cost will significantly reduce CVOC discharges to the environment as well as costs to United States government and industry.

  4. Purity analyses of high-purity organic compounds with nitroxyl radicals based on the Curie–Weiss law

    SciTech Connect (OSTI)

    Matsumoto, Nobuhiro Shimosaka, Takuya

    2015-05-07

    This work reports an attempt to quantify the purities of powders of high-purity organic compounds with stable nitroxyl radicals (namely, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl benzoate (4-hydroxy-TEMPO benzoate)) in terms of mass fractions by using our “effective magnetic moment method,” which is based on both the Curie–Weiss law and a fundamental equation of electron paramagnetic resonance (ESR). The temperature dependence of the magnetic moment resulting from the radicals was measured with a superconducting quantum interference device magnetometer. The g value for each compound was measured with an X-band ESR spectrometer. The results of the purities were (0.998 ± 0.064) kg kg{sup −1} for TEMPO, (1.019 ± 0.040) kg kg{sup −1} for TEMPOL, and (1.001 ± 0.048) kg kg{sup −1} for 4-hydroxy-TEMPO benzoate. These results demonstrate that this analytical method as a future candidate of potential primary direct method can measure the purities with expanded uncertainties of approximately 5%.

  5. Polybenzimidazole compounds

    DOE Patents [OSTI]

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  6. Chemical and isotopic kinetics of sulfate reduction by organic matter under hydrothermal conditions

    SciTech Connect (OSTI)

    Kaiser, C.J.

    1988-01-01

    This study investigated the feasibility of nonbacterial sulfate reduction by organic matter in geologic environments. Sulfate is reduced by dextrose under acidic conditions at temperatures of 230-270 C. Reaction products include sulfide and organic-sulfur compounds; sulfite, thiosulfate and elemental sulfur were not detected. The rate law for the initial one- or two-electron reduction of sulfate at 250C is first-order in bisulfate and about one-half-order in initial dextrose concentration, and shows a very strong dependence on pH. The kinetics of sulfate reduction by fructose at 250C are virtually the same. The lack of sulfate reduction by formaldehyde, methanol, ethanol and acetic acid at 250 C indicates that the reducing power of dextrose and fructose cannot be attributed to carbonyl, carboxyl or hydroxyl functional groups. The form of the rate law for sulfate reduction by dextrose and the presence of an induction period rather suggest that the initial reduction of sulfate occurs with free radicals derived from the thermal decomposition of the hexoses or their alteration products. The inferred sulfate-reduction reaction mechanism suggest that aqueous sulfate may be reduced to sulfide in geologic environments such as deep sedimentary basins. The observed acid-catalysis of the reaction in the laboratory may be supplanted by clay-mineral catalysis in geologic environments. Sulfur isotopes are fractionated during the reduction of sulfate by dextrose under hydrothermal conditions. Computer simulations of the isotopic evolution of the experiments suggest that sulfate-sulfide isotopic exchange largely controls the isotopic composition of sulfate and sulfide. The extent of isotopic fractionation due solely to sulfate reduction thus cannot be determined from the experiments

  7. Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

    2001-07-01

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene

  8. Chemical sensing of copper phthalocyanine sol-gel glass through organic vapors

    SciTech Connect (OSTI)

    Ridhi, R.; Gawri, Isha; Abbas, Saeed J.; Saini, G. S. S.; Tripathi, S. K.

    2015-05-15

    The sensitivities of metallophthalocyanine to vapor phase electron donors has gained significance in many areas and disciplines due to their sensing properties and ease of operation. In the present study the interaction mechanism of organic vapors in Copper Phthalocyanine (CuPc) sol-gel glass has been studied. The interaction mechanism is affected by many factors like morphology, electrical or optical properties of film. CuPc sol-gel glass has been synthesized using chemical route sol-gel method. Its structural characterization was conducted using XRD and the amorphous nature of the silicate glass was observed with characteristic α polymorph phase of CuPc at around 6.64° with 13.30Å interplanar spacing. The size of the particle as determined using Debbye Scherre’s formula comes out around 15.5 nm. The presence of α phase of CuPc was confirmed using FTIR with the appearance of crystal parameter marker band at 787 cm-1. Apart from this A2u and Eu symmetry bands of CuPc have also been observed. The UV absorption spectrum of CuPc exhibits absorption peaks owing to π→ π* and n→ π* transitions. A blue shift in the prepared CuPc glass has been observed as compared to the dopant CuPc salt indicating increase of band gap. A split in B (Soret) band and Q band appears as observed with the help of Lorentzian fitting. CuPc sol gel glass has been exposed with chemical vapors of Methanol, Benzene and Bromine individually and the electrical measurements have been carried out. These measurements show the variation in conductivity and the interaction mechanism has been analyzed.

  9. Extending the Range of Organic Compounds that Can Be Destroyed Using the Process of Adsorption Coupled with Electrochemical Regeneration - 13054

    SciTech Connect (OSTI)

    Brown, Nigel; Lodge, Mike; Hilton, Linda; Adams, Alex [Arvia Technology Ltd, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4, 4FS (United Kingdom)] [Arvia Technology Ltd, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4, 4FS (United Kingdom); Vaudey, Claire-Emilie [AREVA CL BU, AREVA BUA STMI ZAC de Courcelle 1 route de la Noue 91196 Gif-sur-Yvette (France)] [AREVA CL BU, AREVA BUA STMI ZAC de Courcelle 1 route de la Noue 91196 Gif-sur-Yvette (France); Toulemonde, Valerie [AREVA DRD, Tour AREVA, 1, place Jean Millier, 92084 Paris La Defense Cedex (France)] [AREVA DRD, Tour AREVA, 1, place Jean Millier, 92084 Paris La Defense Cedex (France)

    2013-07-01

    The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has been investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)

  10. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD

  11. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds

  12. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  13. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect (OSTI)

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition

  14. Implementation of passive samplers for monitoring volatile organic compounds in ground water at the Kansas City Plant

    SciTech Connect (OSTI)

    Gardner, F.G.; Korte, N.E.; Wilson-Nichols, M.J.; Baker, J.L.; Ramm, S.G.

    1998-06-01

    Passive sampling for monitoring volatile organic compounds (VOCs) has been suggested as a possible replacement to the traditional bailer method used at the Department of Energy Kansas City Plant (KCP) for routine groundwater monitoring. To compare methods, groundwater samples were collected from 19 KCP wells with VOC concentrations ranging from non-detectable to > 100,000 {micro}g/L. Analysis of the data was conducted using means and medians of multiple measurements of TCE, 1,2-DCE, 1,1-DCE and VC. All 95% confidence intervals of these VOCs overlap, providing evidence that the two methods are similar. The study also suggests that elimination of purging and decontamination of sampling equipment reduces the labor required to sample by approximately 32%. Also, because the passive method generates no waste water, there are no associated disposal costs. The results suggest evidence to continue studies and efforts to replace traditional bailer methods with passive sampling at KCP based on cost and the similarity of the methods.

  15. Reduced weight decontamination formulation utilizing a solid peracid compound for neutralization of chemical and biological warfare agents

    DOE Patents [OSTI]

    Tucker, Mark D.

    2011-09-20

    A reduced weight decontamination formulation that utilizes a solid peracid compound (sodium borate peracetate) and a cationic surfactant (dodecyltrimethylammonium chloride) that can be packaged with all water removed. This reduces the packaged weight of the decontamination formulation by .about.80% (as compared to the "all-liquid" DF-200 formulation) and significantly lowers the logistics burden on the warfighter. Water (freshwater or saltwater) is added to the new decontamination formulation at the time of use from a local source.

  16. Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faiola, C. L.; Wen, M.; VanReken, T. M.

    2015-04-01

    The largest global source of secondary organic aerosol (SOA) in the atmosphere is derived from the oxidation of biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. Alterations to the biogenic volatile organic compound (BVOC) profile could impact the characteristics of the SOA formed from those emissions. This study investigated the impacts of one global change stressor, increased herbivory, on the composition of SOA derived from real plant emissions. Herbivory was simulated via application of methyl jasmonate (MeJA), a proxy compound. Experiments were repeated under pre- andmore » post-treatment conditions for six different coniferous plant types. Volatile organic compounds (VOCs) emitted from the plants were oxidized to form SOA via dark ozone-initiated chemistry. The SOA chemical composition was measured using a Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The aerosol mass spectra of pre-treatment biogenic SOA from all plant types tended to be similar with correlations usually greater than or equal to 0.90. The presence of a stressor produced characteristic differences in the SOA mass spectra. Specifically, the following m/z were identified as a possible biogenic stress AMS marker with the corresponding HR ion(s) shown in parentheses: m/z 31 (CH3O+), m/z 58 (C2H2O2+, C3H6O+), m/z 29 (C2H5+), m/z 57 (C3H5O+), m/z 59 (C2H3O2+, C3H7O+), m/z 71 (C3H3O2+, C4H7O+), and m/z 83 (C5H7O+). The first aerosol mass spectrum of SOA generated from the oxidation of the plant stress hormone, MeJA, is also presented. Elemental analysis results demonstrated an O : C range of baseline biogenic SOA between 0.3 and 0.47. The O : C of standard MeJA SOA was 0.52. Results presented here could be used to help identify a biogenic plant stress marker in ambient data sets collected in forest environments.« less

  17. Effects of aqueous-soluble organic compounds on the removal of selected radionuclides from high-level waste part I: Distribution of Sr, Cs, and Tc onto 18 absorbers from an irradiated, organic-containing leachate simulant for Hanford Tank 101-SY

    SciTech Connect (OSTI)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions. In this investigation, we measured the effect of some aqueous-soluble organic compounds on the sorption of strontium, cesium, and technetium onto 18 absorbers that offer high sorption of strontium from organic-free solutions. For our test solution we used a leachate from a simulated slurry for Hanford Tank 101-SY that initially contained ethylenediaminetetraacetic acid (EDTA) and then was gamma-irradiated to 34 Mrads. We measured distribution coefficients (Kds) for each element/absorber combination for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. To facilitate comparisons, we include Kd values for these same element/absorber combinations from three organic-free simulant solutions. The Kd values for strontium sorption from the simulant that contained the degraded organics usually decreased by large factors, whereas the Kd values for cesium and technetium sorption were relatively unaffected.

  18. Double-sided reel-to-reel metal-organic chemical vapor deposition...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BARIUM OXIDES; CHEMICAL VAPOR DEPOSITION; COPPER OXIDES; CRITICAL CURRENT; HIGH-TC SUPERCONDUCTORS; ...

  19. Testing of a model to estimate vapor concentration of various organic chemicals. Master's thesis

    SciTech Connect (OSTI)

    Bakalyar, S.M.

    1990-01-01

    A model developed by Dr. Parker C. Reist to predict the build-up and decay rates of vapor concentrations following a chemical spill and clean-up was tested. The chemicals tested were: acetone, butyl acetate, ethyl acetate, hexane, methylene chloride, methyl ethyl ketone, and toluene. The evaporation rates of these chemicals were determined both by prediction, using a model developed by I. Kawamura and D. Mackay, and empirically and these rates were used in the Reist model. Chamber experiments were done to measure actual building-up and decay of vapor concentrations for simulated spills and simulated clean-up.

  20. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  1. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    SciTech Connect (OSTI)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating

  2. The apparent absence of chemical sensitivity in the 4d and 5d X-ray absorption spectroscopy of uranium compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tobin, J. G.

    2013-05-03

    X-ray absorption spectroscopy (XAS) and related derivative measurements have been used to demonstrate that the Pu 5f states are strongly relativistic and have a 5f occupation number near 5. Owing to the success in this regime, it has been argued that the XAS measurements should be a powerful tool to probe 5f occupation variation, both as a function of elemental nature (actinide atomic number) and as a function of physical and chemical perturbation, e.g., oxidation state. We show that XAS and its related measurements fail in this latter aspect for a wide variety of uranium compounds and materials. Possible causesmore » will be discussed.« less

  3. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    SciTech Connect (OSTI)

    Kratzer, Markus Teichert, Christian; Bayer, Bernhard C.; Kidambi, Piran R.; Matkovi?, Aleksandar; Gaji?, Rado; Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Hofmann, Stephan

    2015-03-09

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.

  4. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  5. Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes

    SciTech Connect (OSTI)

    Kondakov, Denis Y.

    2008-10-15

    We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

  6. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    SciTech Connect (OSTI)

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  7. Process for forming a metal compound coating on a substrate

    DOE Patents [OSTI]

    Sharp, Donald J.; Vernon, Milton E.; Wright, Steven A.

    1991-01-01

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  8. Process for forming a metal compound coating on a substrate

    DOE Patents [OSTI]

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  9. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  10. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  11. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect (OSTI)

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  12. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect (OSTI)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  13. Henry's law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting

    SciTech Connect (OSTI)

    Kim, B.R.; Kalis, E.M.; DeWulf, T.; Andrews, K.M.

    2000-02-01

    This paper describes experimental results of equilibrium partitioning of several significant paint solvents and formaldehyde between air and water to quantify the potential for capturing and retaining the constituents in spraybooth scrubber water during automotive painting. The compounds studied are toluene, n-butanol, methyl ethyl ketone methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, and n-methyl-2-pyrrolidinone. A set of field data collected at a Ford Motor Company assembly plant was also analyzed to determine whether data were consistent with the equilibrium phenomenon. The primary findings include: (a) There were more than six orders of magnitude difference in the Henry's law constants among the solvents studied. A solvent with a smaller constant is less easily stripped from water. The Henry's law constants decrease in the following order: toluene and xylenes > methyl ethyl ketone > n-butanol > butyl cellosolve acetate > butyl cellosolve > formaldehyde > butyl carbitol > n-methyl-2-pyrrolidinone. (b) Field data showed accumulation of n-methyl-2-pyrrolidinone and stable concentrations of butyl carbitol, butyl cellosolve, and n-butanol in the paint-sludge pit water during a 2-month period. Stable concentrations indicate a continuous, balanced capture and stripping of the solvents. Data were consistent with measured Henry's law constants. (c) The low Henry's law constant for formaldehyde is the result of the fact that it is hydrated when dissolved in water.

  14. Characterization of low-VOC latex paints: Volatile organic compound content, VOC and aldehyde emissions, and paint performance. Final report, January 1997--January 1999

    SciTech Connect (OSTI)

    Fortmann, R.; Lao, H.C.; Ng, A.; Roache, N.

    1999-04-01

    The report gives results of laboratory tests to evaluate commercially available latex paints advertised as `low-odor,` `low-VOC (volatile organic compound),` or `no-VOC.` Measurements were performed to quantify the total content of VOCs in the paints and to identify the predominant VOCs and aldehydes in the emissions following application to test substrates. The performance of the paints was evaluated and compared to that of commonly used conventional latex paints by American Society for Testing and Materials (ASTM) standard methods that measured parameters such as scrubbability, cleanability, and hiding power. The report describes the paints that were tested, the test methods, and the experimental data. Results are presented that can be used to evaluate the low-odor/low-VOC paints as alternatives to conventional latex wall paints that contain and emit higher concentrations of VOCs.

  15. Modification of silica gel by organotitanium compounds

    SciTech Connect (OSTI)

    Khrustaleva, E.A.; Abramova, V.I.; Suvorov, A.L.; Fridman, L.I.

    1988-05-10

    The study of the modification of silica gels by various organotitanium compounds (OTC) is of interest in connection with their possible use as specific adsorbents, catalysts in the preparation of filled polymeric materials. The authors studied the modification of silica gel by OTC of different types in order to obtain reactive functional organic groups bound to titanium atoms on its surface. During treatment of silica gel with organotitanium compounds of different types in an organic solvent, these react chemically with the hydroxylic groups of silica gel to form Si-O-Ti groups on the surface, containing organic radicals bound to the titanium atom. In the case of coordinatively unsaturated OTC, increase in the time of interaction of the components on heating and excess OTC lead to partial splitting of the Si-O-Ti bonds, which is not observed for coordinatively saturated OTC.

  16. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    SciTech Connect (OSTI)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  17. Inorganic-organic composite polymers and methods of making

    DOE Patents [OSTI]

    Josowicz, Mira A.; Exarhos, Gregory J.

    1996-01-01

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell.

  18. Inorganic-organic composite polymers and methods of making

    DOE Patents [OSTI]

    Josowicz, M.A.; Exarhos, G.J.

    1996-10-29

    The invention is a composition of an inorganic-organic polymer composite and a method of making it. The inorganic portion of the fundamental polymer composite polymer repeat is a speciated inorganic heterocyclic compound, and the organic portion of the polymer repeat is a cyclic organic radical anion compound having at least two charged sites. The composition of the present invention is made by combining a cyclic organic radical anion compound with a speciated inorganic heterocyclic compound by a nucleophilic substitution thereby forming a polymer of an inorganic-organic composite. The cyclic organic radical anion compound is preferably generated electrochemically. The nucleophilic substitution is alternately carried out chemically or electrochemically. A preferred embodiment of the present invention includes performing the nucleophilic substitution at the cathode of an electrochemical cell. 2 figs.

  19. Biological production of organic compounds

    DOE Patents [OSTI]

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  20. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect (OSTI)

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  1. Host compounds for red phosphorescent OLEDs

    SciTech Connect (OSTI)

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  2. Volatile organic compound and particulate emission studies of AF (Air Force) paint-booth facilities. Phase 1. Final report, February-December 1987

    SciTech Connect (OSTI)

    Ayer, J.; Wolbach, D.

    1988-07-01

    This study presents the results of volatile organic compound (VOC) and particulate emission surveys performed at three Air Force painting facilities. The three facilities -- one in McClellan AFB buildings 655 and two at Travis AFB in buildings 550 and 1014 -- did not meet local VOC emission standards. The possibility of reducing these emissions with recirculation modifications and various VOC reduction and control strategies is discussed. Although VOC emissions from paint spray booths can be controlled by add-on control systems, control is expensive for present air flow rates. The use of air recirculation within the spray booth can reduce the cost of VOC emission controls by reducing the quantity of air that requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the systems, various criteria such as paint booth VOC concentrations and health and safety standards were considered. Add-on VOC emission-control systems that can be used in conjunction with the recirculation system are evaluated. The devices of interest are a solvent incineration system and an activated-carbon adsorption bed. The VOC removal efficiency, initial capital investment and operating costs for both of these technologies are discussed.

  3. Evaluation of innovative volatile organic compound and hazardous air-pollutant-control technologies for U. S. Air Force paint spray booths. Final report, Aug 88-Aug 89

    SciTech Connect (OSTI)

    Ritts, D.H.; Garretson, C.; Hyde, C.; Lorelli, J.; Wolbach, C.D.

    1990-10-01

    Significant quantities of volatile organic compounds (VOCs) and hazardous air pollutants are released into the atmosphere during USAF maintenance operations. Painting operations conducted in paint spray booths are major sources of these pollutants. Solvent based epoxy primers and solvent-based polyurethane coatings are typically used by the Air Force for painting aircraft and associated equipment. Solvents used in these paints include methyl ethyl ketone (MEK), toluene, lacquer thinner, and other solvents involved in painting and component cleaning. In this report, carbon paper adsorption/catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) were evaluated as control technologies to destroy VOC emissions from paint spray booths. Simultaneous testing of pilot-scale units was performed to evaluate the technical performance of both technologies. Results showed that each technology maintained greater than 99 percent Destruction and Removal Efficiencies (DREs). Particulate emissions from both pilot-scale units were less than 0.08 grains/dry standard cubic foot. Emissions of the criteria pollutants--sulfur oxides, nitrogen oxides, and carbon monoxide--were also below general regulatory standards for incinerators. Economic evaluations were based on a compilation of manufacturer-supplied data and energy consuption data gathered during the pilot scale testing. CPACM and FBCI technologies are less expensive than standard VOC control technologies when net present costs for a 15-year equipment life are compared.

  4. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  5. Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    SciTech Connect (OSTI)

    Fares, Silvano; Schnitzhofer, Ralf; Xiaoyan, Jiang; Guenther, Alex B.; Hansel, Armin; Loreto, Francesco

    2013-09-04

    Most vascular plants species, especially trees, emit biogenic volatile organic compounds (BVOC). Global estimates of BVOC emissions from plants range from 1 to 1.5 Pg C yr?1.1 Mediterranean forest trees have been described as high BVOC emitters, with emission depending primarily on light and temperature, and therefore being promoted by the warm Mediterranean climate. In the presence of sufficient sunlight and nitrogen oxides (NOx), the oxidation of BVOCs can lead to the formation of tropospheric ozone, a greenhouse gas with detrimental effects on plant health, crop yields, and human health. BVOCs are also precursors for aerosol formation, accounting for a significant fraction of secondary organic aerosol (SOA) produced in the atmosphere. The presidential Estate of Castelporziano covers an area of about 6000 ha located 25 km SW from the center of Rome, Italy (Figure 1) and hosts representative forest ecosystems typical of Mediterranean areas: holm oak forests, pine forests, dune vegetation, mixed oak and pine forests. Between 1995 and 2011, three intensive field campaigns were carried out on Mediterranean-type ecosystems inside the Estate. These campaigns were aimed at measuring BVOC emissions and environmental parameters, to improve formulation of basal emission factors (BEFs), that is, standardized emissions at 30 C and 1000 ?mol m?2s?1 of photosynthetic active radiation (PAR). BEFs are key input parameters of emission models. The first campaign in Castelporziano was a pioneering integrated study on biogenic emissions (1993? 19964). BVOC fluxes from different forest ecosystems were mainly investigated using plant- and leaf enclosures connected to adsorption tubes followed by GC?MS analysis in the laboratory. This allowed a first screening of Mediterranean species with respect to their BVOC emission potential, environmental control, and emission algorithms. In particular, deciduous oak species revealed high isoprene emissions (Quercus f rainetto, Quercus petrea

  6. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution

    SciTech Connect (OSTI)

    Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.

    2011-03-16

    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.

  7. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect (OSTI)

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought

  8. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect (OSTI)

    Seco, Roger; Karl, Thomas; Guenther, Alex B.; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegeta-tion and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately repre-sented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diur-nal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were domi-nated by isoprene, which attained high emission rates of up to 35.4 mg m-2h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which high-lights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Never-theless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, conflrming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement cam-paign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes

  9. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene,more » which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.« less

  10. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Bergman, Robert C.; Klei, Steven R.

    2004-09-21

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  11. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Bergman, Robert C.; Klei, Steven R.

    2006-05-16

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  12. Process for preparing a deuterated or tritiated compound

    DOE Patents [OSTI]

    Klei, Steven R.; Bergman, Robert C.

    2006-06-06

    A process for labeling organic compounds with deuterium and tritium is described using specific catalysts.

  13. Two-Step Process Converts Lignin into Simple Aromatic Compounds - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Two-Step Process Converts Lignin into Simple Aromatic Compounds Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignin is a major component of non-edible biomass. It is a cheap byproduct of pulp and biofuel production and is one of the few naturally occurring sources of valuable aromatic compounds. Converting lignin's complex biopolymer structure into simple organic chemicals has attracted major interest. For example,

  14. Hyperpolarizable compounds and devices fabricated therefrom

    DOE Patents [OSTI]

    Therien, M.J.; DiMagno, S.G.

    1998-07-21

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core. 13 figs.

  15. Hyperpolarizable compounds and devices fabricated therefrom

    DOE Patents [OSTI]

    Therien, Michael J.; DiMagno, Stephen G.

    1998-01-01

    Substituted compounds having relatively large molecular first order hyperpolarizabilities are provided, along with devices and materials containing them. In general, the compounds bear electron-donating and electron-withdrawing chemical substituents on a polyheterocyclic core.

  16. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect (OSTI)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27

    plants used in the rooftop greenhouse and on the floors were made up of a number of species selected for the following functions: daytime metabolic carbon dioxide (CO{sub 2}) absorption, nighttime metabolic CO{sub 2} absorption, and volatile organic compound (VOC) and inorganic gas absorption/removal for air cleaning. The building contains a reported 910 indoor plants. Daytime metabolic species reported by the PBC include Areca Palm, Oxycardium, Rubber Plant, and Ficus alii totaling 188 plants (21%). The single nighttime metabolic species is the Sansevieria with a total of 28 plants (3%). The 'air cleaning' plant species reported by the PBC include the Money Plant, Aglaonema, Dracaena Warneckii, Bamboo Palm, and Raphis Palm with a total of 694 plants (76%). The plants in the greenhouse (Areca Palm, Rubber Plant, Ficus alii, Bamboo Palm, and Raphis Palm) numbering 161 (18%) of those in the building are grown hydroponically, with the room air blown by fan across the plant root zones. The plants on the building floors are grown in pots and are located on floors 1-6. We conducted a one-day monitoring session in the PBC on January 1, 2010. The date of the study was based on availability of the measurement equipment that the researchers had shipped from Lawrence Berkeley National Lab in the U.S.A. The study date was not optimal because a large proportion of the regular building occupants were not present being New Year's Day. An estimated 40 people were present in the building all day during January 1. This being said, the building systems were in normal operations, including the air handlers and other HVAC components. The study was focused primarily on measurements in the Greenhouse and 3rd and 5th floor environments as well as rooftop outdoors. Measurements included a set of volatile organic compounds (VOCs) and aldehydes, with a more limited set of observations of indoor and outdoor particulate and carbon dioxide concentrations. Continuous measurements of Temperature (T

  17. Characterization of hydrogenated amorphous germanium compounds obtained by x-ray chemical vapor deposition of germane: Effect of the irradiation dose on optical parameters and structural order

    SciTech Connect (OSTI)

    Arrais, Aldo; Benzi, Paola; Bottizzo, Elena; Demaria, Chiara

    2007-11-15

    Hydrogenated nonstoichiometric germanium materials have been produced by x-ray activated-chemical vapor deposition from germane. The reactions pattern leading to the solid products has been investigated. The dose effect on the composition, the local bonding configuration, and structural characteristics of the deposited solids has been studied using infrared absorption and Raman spectroscopy and has been discussed. Optical parameters have been also determined from ultraviolet-visible spectrophotometry data. The results show that the solids are formed by a random bound network of germanium and hydrogen atoms with a-Ge zones dispersed in the matrix. The Raman results and optical parameters indicate that the structural order, both short-range and intermediate-range, decreases with increasing irradiation time. This behavior suggests that the solid is involved in the reactions leading to the final product and indicates that the formation of amorphous germanium zones is stimulated by postdeposition irradiation, which induces compositional and structural modifications.

  18. Chemical inducible promoter used to obtain transgenic plants with a silent marker and organisms and cells and methods of using same for screening for mutations

    DOE Patents [OSTI]

    Zuo, Jianru; Chua, Nam-Hai

    2007-06-12

    Disclosed is a chemically inducible promoter for transforming plants or plant cells with genes which are regulatable by adding the plants or cells to a medium containing an inducer or by removing them from such medium. The promoter is inducible by a glucocorticoid, estrogen or inducer not endogenous to plants. Such promoters may be used with any plant genes that can promote shoot regeneration and development to induce shoot formation in the presence of a glucocorticoid, estrogen or inducer. The promoter may be used with antibiotic or herbicide resistance genes or other genes which are regulatable by the presence or absence of a given inducer. Also presented are organisms or cells comprising a gene wherein the natural promoter of the gene is disrupted and the gene is placed under the control of a transgenic inducible promoter. These organisms and cells and their progeny are useful for screening for conditional gain of function and loss of function mutations.

  19. Chemical Control of Charge Trapping and Charge Transfer Processes at the Organic-Inorganic Interface within Quantum Dot-Organic Complexes

    SciTech Connect (OSTI)

    Weiss, Emily A.

    2015-11-06

    Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial chemistry controls the electronic structure and dynamics of the excitonic state of the QD. The program included two main projects; (1) investigation of the mechanisms by which organic surfactants control the quantum confinement of excitonic charge carriers; and (2) development of models for electron transfer between QDs and adsorbed molecules as a function of interfacial chemistry. This project was extremely successful in that our achievements in those two areas addressed the great majority of questions we outlined in the original proposal and answered questions I did not think to ask in that original proposal. Our work led to the discovery of “exciton delocalizing ligands”, which change the electronic structure of colloidal semiconductor nanocrystals by altering, with small synthetic modifications to their surfaces, their most defining characteristic – the quantum confinement of their excited states. It also led to detailed, quantitative descriptions of how the surface chemistry of a QD dictates, thermodynamically and kinetically, the probability of exchange of electrons between the QD and a small molecule. We used two of the three major techniques in the proposal (transient photoluminescence and transient absorption). Electrogenerated chemiluminescence was also proposed, but was too technically difficult with these systems to be useful. Instead, NMR spectroscopy emerged as a major analytical tool in our studies. With the fundamental advancements we made with this project, we believe that we can design QDs to be the next great class of visible-light photocatalysts.

  20. Chemical changes to nonagrregtaed particulate soil organic matter following grassland-to woodland transition ina subtropical savanna.

    SciTech Connect (OSTI)

    Filley, T. R.; Boutton, T. W.; Liao, J. D.; Jastrow, J. D.; Gamblin, D. E.; Biosciences Division; Purdue Univ.; Texas A&M

    2008-07-19

    Encroachment of thorn woodlands into grasslands of southern Texas has resulted in greater aboveground and belowground biomass and greater soil organic carbon (SOC) stocks. Our previous studies showed that a large percentage of the SOC accrued under invading woody clusters was not stabilized within protective soil aggregates or on mineral-surfaces. Here we evaluated lignin and cutin- and suberin-derived substituted fatty acid (SFA) chemistry to determine if the accrual of nonaggregated particulate organic matter (POM) in woodlands was promoted by inherently greater recalcitrance of tissues from woody versus grass species, and if there was selective input of aboveground versus belowground plant carbon to POM. Woody clusters exhibited reduced concentrations of cutin-derived SFA and cinnamyl phenols within surface litter compared to fresh aboveground plant material. However, root litter exhibited relatively minor changes in biopolymer chemistry compared to fresh root tissue, suggesting it was either more stable or was refreshed at a greater rate. Between 14 and 105 years of woody plant encroachment, SFA in free POM fractions appeared to be consistently derived from root material while SFA within intraaggregate POM were increasingly derived from cutin sources. In addition, the shift from herbaceous to woody input was accompanied by enrichment in the amount of cutin and suberin-derived aliphatics with respect to lignin in both root and surface litter as well as nonaggregated POM. Woody plant encroachment at this site results in the rapid accrual of POM pools that are biochemically recalcitrant, providing a mechanism by which soil organic carbon can accumulate in this sandy soil system. Our results also lend further credence to the hypothesis that aliphatic biopolymers, particularly root-derived suberin, are important components of long-term soil organic carbon stabilization.

  1. Polybenzimidazole compounds

    DOE Patents [OSTI]

    Klaehn, John R. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Orme, Christopher J. (Shelley, ID); Jones, Michael G. (Chubbuck, ID); Wertsching, Alan K. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID); Trowbridge, Tammy L. (Idaho Falls, ID)

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  2. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  3. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurten, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. Lastly, we describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  4. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    SciTech Connect (OSTI)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S.

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  5. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ?10{sup 7?}cm{sup ?2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300?cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  6. Interfacial chemical reaction and multiple gap state formation on three layer cathode in organic light-emitting diode: Ca/BaF{sub 2}/Alq{sub 3}

    SciTech Connect (OSTI)

    Kim, Tae Gun; Kim, Jeong Won; Lee, Hyunbok; Yi, Yeonjin; Lee, Seung Mi

    2015-07-14

    A three layer cathode is a promising stack structure for long lifetime and high efficiency in organic light-emitting diodes. The interfacial chemical reactions and their effects on electronic structures for alkaline-earth metal (Ca, Ba)/Alq{sub 3} [tris(8-hydroxyquinolinato)aluminum] and Ca/BaF{sub 2}/Alq{sub 3} are investigated using in-situ X-ray and ultraviolet photoelectron spectroscopy, as well as molecular model calculation. The BaF{sub 2} interlayer initially prevents direct contact between Alq{sub 3} and the reactive Ca metal, but it is dissociated into Ba and CaF{sub 2} by the addition of Ca. As the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with the underlying Alq{sub 3}. This series of chemical reactions takes place irrespective of the BaF{sub 2} buffer layer thickness as long as the Ca overlayer thickness is sufficient. The interface reaction between the alkaline-earth metal and Alq{sub 3} generates two energetically separated gap states in a sequential manner. This phenomenon is explained by step-by-step charge transfer from the alkaline-earth metal to the lowest unoccupied molecular orbital states of Alq{sub 3}, forming new occupied states below the Fermi level.

  7. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect (OSTI)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  8. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4}

    SciTech Connect (OSTI)

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-04-21

    [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} hybrid compound is crystallized at room temperature (T ? 300?K) in the orthorhombic system with Pnma space group. Five phase transitions (T{sub 1}?=?255?K, T{sub 2}?=?282?K, T{sub 3}?=?302?K, T{sub 4}?=?320?K, and T{sub 5}?=?346?K) have been proved by DSC measurements. The electrical technique was measured in the 10{sup ?1}-10{sup 7}?Hz frequency range and 233363?K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  9. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4}

    SciTech Connect (OSTI)

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-05-28

    The [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} crystallizes at room temperature in the monoclinic system with P2{sub 1}/{sub C} space group. Three phase transitions at T{sub 1}?=?226?K, T{sub 2}?=?264?K, and T{sub 3}?=?297?K have been evidenced by DSC measurements. The electrical technique was measured in the 10{sup ?1}10{sup 7}?Hz frequency range and 203313?K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  10. Semiconducting compounds and devices incorporating same

    DOE Patents [OSTI]

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  11. Titanium alkoxide compound

    DOE Patents [OSTI]

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  12. Bismaleimide compounds

    DOE Patents [OSTI]

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  13. Bismaleimide compounds

    DOE Patents [OSTI]

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  14. Organic Tanks Safety Program: Waste aging studies

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

  15. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    SciTech Connect (OSTI)

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionals for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.

  16. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    SciTech Connect (OSTI)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng E-mail: xd-zhangyachao@163.com; Hao, Yue E-mail: xd-zhangyachao@163.com

    2015-12-15

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  17. Low-temperature growth and orientational control in RuO{sub 2} thin films by metal-organic chemical vapor deposition

    SciTech Connect (OSTI)

    Bai, G.R.; Wang, A.; Foster, C.M.; Vetrone, J.; Patel, J.; Wu, X.

    1996-08-01

    For growth temperatures in the range of 275 C to 425 C, highly conductive RuO{sub 2} thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO{sub 2}/Si(001) and Pt/Ti/SiO{sub 2}/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO{sub 2} films. In the upper part of this growth temperature range ({approximately} 350 C) and at a low growth rate (< 30 {angstrom}/min.), the RuO{sub 2} films favored a (110)-textured. In contrast, at the lower part of this growth temperature range ({approximately} 300 C) and at a high growth rate (> 30 {angstrom}/min.), the RuO{sub 2} films favored a (101)-textured. In contrast, a higher growth temperatures (> 425 C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50--80 nm and a rms. surface roughness of {approximately} 3--10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34--40 {micro}{Omega}-cm ({at} 25 C).

  18. ARM - Measurement - Inorganic chemical composition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsInorganic chemical composition ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Inorganic chemical composition The chemical composition of an aerosol, with the exception of those with hydrocarbons, and usually including carbides, oxides of carbon, metallic carbonates, carbon sulfur compounds, and carbon nitrogen compounds. Categories Aerosols Instruments The above measurement is

  19. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditons. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  20. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  1. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1998-04-07

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  2. Chemical treatment for silica-containing glass surfaces

    DOE Patents [OSTI]

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1998-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  3. Method for chemical surface modification of fumed silica particles

    DOE Patents [OSTI]

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1999-05-11

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  4. Method for chemical surface modification of fumed silica particles

    DOE Patents [OSTI]

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  5. Crystallographic properties of fertilizer compounds

    SciTech Connect (OSTI)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  6. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium

    SciTech Connect (OSTI)

    Paszczynski, A.; Crawford, R.L.

    1995-07-01

    The white-rot fungi produce an unusual enzyme system, characterized by a specialized group of peroxidases, that catalyzes the degradation of the complex plant polymer lignin. This ligninolytic system shows a high degree of nonspecificity and oxidizes a very large variety of compounds in addition to lignin. Among these compounds are numerous environmental pollutants. Thus, the white-rot fungi show considerable promise as bioremediation agents for use in the restoration of environments contaminated by xenobiotic molecules. One white-rot fungus, Phanerochaete chrysosporium, has been studied in great detail with regard to ligninolytic enzymes and the degradation of anthropogenic chemicals. It has been widely promoted as a bioremediation agent. This article examines literature concerning the degradation of xenobiotic compounds by Phanerochaete chrysosporium and attempts to critically assess this organism`s real potential as a bioremediation tool. 130 refs., 5 figs.

  7. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmore » for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.« less

  8. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Organization Organization

  9. Fluorescence based chemical sensors for corrosion detection

    SciTech Connect (OSTI)

    Johnson, R.E.; Agarwala, V.S.

    1997-12-01

    Several fluorescent materials have been identified as possible corrosion sensing coatings. These are either redox or metal ion complex materials. The redox materials are nonfluorescent in the reduced state and become fluorescent upon oxidation. Incorporated into paint coatings, they provide an early warning of corrosive conditions at the metal or alloy surface. The metal ion complex materials only fluoresce when the organic compound complexes with metal ions such as those generated in corrosion reactions. Fluorescent materials have been incorporated into paint coatings and on metal surfaces for the detection of corrosion. Oxine reacts with aluminum oxide on corroded aluminum to give a fluorescence that can be photographed in UV light. Several other materials were found to have good fluorescence but cannot be reversibly oxidized or reduced at the present time. More work will be done with these compounds as well as with Schiff bases to develop new fluorescent chemical sensing materials for smart coating on alloy surfaces.

  10. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  11. Volatilization of organotin compounds from estuarine and coastal environments

    SciTech Connect (OSTI)

    Amouroux, D.; Tessier, E.; Donard, O.F.X.

    2000-03-15

    The occurrence and speciation of volatile tin compounds (Sn) have been investigated in a contaminated area of the Arcachon Bay (SW France) and in the water column of the Scheldt (Belgium/Netherlands) and Gironde (SW France) estuaries. This paper describes the application of a multi-isotope analytical method, using gas chromatography and inductively coupled plasma-mass spectrometry. Analytes were collected by cryogenic trapping of the gaseous species. This trapping has allowed the authors to probe volatile tin compounds by detecting both {sup 118}Sn and {sup 120}Sn isotopes. Volatile organic tin compounds have been determined in both sediment and water. They could result from both natural methylation and hybridization processes of inorganic tin and from anthropogenic butyltin derivatives released from ship antifouling paintings which have accumulated in sediments. The most ubiquitous species were found to be the methylated forms of butyltin derivatives. These results suggest that biological and/or chemical methylation mechanisms are likely to occur in sediments and to lead to remobilization of tin species into the water column and subsequently to the atmosphere. Finally, sediment-water and water-atmosphere fluxes have been calculated to assess the potential impact of these processes on the fate of organotin compounds in coastal environments.

  12. Quantitative genetic activity graphical profiles for use in chemical evaluation

    SciTech Connect (OSTI)

    Waters, M.D.; Stack, H.F.; Garrett, N.E.; Jackson, M.A.

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  13. Unit Price Scaling Trends for Chemical Products

    SciTech Connect (OSTI)

    Qi, Wei; Sathre, Roger; William R. Morrow, III; Shehabi, Arman

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviate from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.

  14. Bisfuel links - Professional organizations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professional organizations http://portal.acs.org/portal/acs/corg/content" target="_blank">American Chemical Society

  15. SEPARATION PROCESS FOR PROTACTINIUM AND COMPOUNDS THEREOF

    DOE Patents [OSTI]

    Van Winkle, A.

    1959-07-21

    The separation of protactinium from aqueous solutions from its mixtures with thorium, uranium and fission products is described. The process for the separation comprises preparing an ion nitric acid solution containing protactinium in the pentavalent state and contacting the solution with a fluorinated beta diketone, such as trifluoroacetylacetone, either alone or as an organic solvent solution to form a pentavalent protactinium chelate compound. When the organic solvent is present the chelate compound is extracted; otherwise it is separated by filtration.

  16. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  17. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    SciTech Connect (OSTI)

    1995-06-01

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  18. PRODUCTION OF URANIUM AND THORIUM COMPOUNDS

    DOE Patents [OSTI]

    Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.

    1955-12-27

    Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.

  19. Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics Demonstrates self-catalytic schemes for large-scale synthesis of compound semiconductor ...

  20. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  1. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  2. Novel amine-based presursor compounds and composite membranes thereof

    DOE Patents [OSTI]

    Lee, Eric K. L.; Tuttle, Mark E.

    1989-01-01

    Novel amine-based precursor compounds comprising the condensation products of dialkylenetriamine and alpha, beta-unsaturated acid halides are disclosed, as well as composite membranes containing such compounds, the membranes being useful in RO-type processes for desalination and the removal of low molecular weight organic compounds such as phenols and carboxylic acids.

  3. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOE Patents [OSTI]

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  4. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOE Patents [OSTI]

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  5. Chemical sensors technology development planning workshop

    SciTech Connect (OSTI)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  6. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  7. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  8. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOE Patents [OSTI]

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  9. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling and Simulation in the Chemical Sciences» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of different-size nanocrystals, each

  10. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect (OSTI)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  11. XAFS Model Compound Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  12. Formulations for neutralization of chemical and biological toxants

    DOE Patents [OSTI]

    Tadros, Maher E.; Tucker, Mark D.

    2003-05-20

    A formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents. The formulation of the present invention non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The at least one reactive compound can be an oxidizing compound, a nucleophilic compound or a mixture of both. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  13. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  14. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  15. Partially fluorinated ionic compounds

    DOE Patents [OSTI]

    Han, legal representative, Amy Qi; Yang, Zhen-Yu

    2008-11-25

    Partially fluorinated ionic compounds are prepared. They are useful in the preparation of partially fluorinated dienes, in which the repeat units are cycloaliphatic.

  16. Nitrodifluoraminoterphenyl compounds and processes

    DOE Patents [OSTI]

    Lerom, M.W.; Peters, H.M.

    1975-07-08

    This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)

  17. Physico-chemical and Bio-chemical Controls on Soil C Saturation Behavior

    SciTech Connect (OSTI)

    Six, Johan; Plante, Alain

    2011-06-02

    In this project, we tested through a multitude of lab and field experiments the concept of soil C stabilization and determined metrics for the level of C saturation across soils and soil organic matter fractions. The basic premise of the soil C saturation concept is that there is a maximum amount of C that can be stabilized within a soil, even when C input is further increased. In a first analysis, our results showed that linear regression models do not adequately predict maximal organic C stabilization by fine soil particles. Soil physical and chemical properties associated with soil clay mineralogy, such as specific surface area and organic C loading, should be incorporated into models for predicting maximal organic C stabilization. In a second analysis, we found significantly greater maximal C stabilization in the microaggregate-protected versus the non-microaggregate protected mineral fractions, which provides independent validation that microaggregation plays an important role in increasing the protection and stabilization of soil C leading to greater total soil C accumulation in these pools. In a third study, our results question the role of biochemical preference in mineral C stabilization and of the chemical recalcitrance of specific plant-derived compounds in non-protected soil C accumulation. Because C biochemical composition of slowly turning over mineral protected C pools does not change with C saturation, input C composition is unlikely to affect long-term C stabilization. Rather, C saturation and stabilization in soil is controlled only by the quantity of C input to the soil and the physical and chemical protection mechanisms at play in long-term C stabilization. In conclusion, we have further corroborated the concept of soil C saturation and elucidated several mechanisms underlying this soil C saturation.

  18. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  19. Atomic-scale chemical quantification of oxide interfaces using...

    Office of Scientific and Technical Information (OSTI)

    Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray ... ANTIFERROMAGNETISM; ASYMMETRY; BISMUTH COMPOUNDS; DIFFUSION; EPITAXY; ...

  20. Device for aqueous detection of nitro-aromatic compounds

    DOE Patents [OSTI]

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.

  1. Device for aqueous detection of nitro-aromatic compounds

    DOE Patents [OSTI]

    Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.

    1994-01-01

    This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.

  2. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect (OSTI)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  3. Sandia National Labs: PCNSC: Research: Compound Semiconductor Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound semiconductors that will enable us to invent integrated nano-technologies for the microsystems of the future. We will achieve this by advancing the frontiers of semiconductor research in areas such as quantum phenomena, defect physics, materials and device modeling, heteroepitaxy, and by discovering new

  4. Effect of Chemical Pressure on the Charge Density Wave Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Chemical Pressure on the Charge Density Wave Transition in Rare-Earth ... These compounds have the chemical formula RTe3, where R represents a rare earth element ...

  5. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  6. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  7. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  8. Chemical production processes and systems

    DOE Patents [OSTI]

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  9. Chemical production processes and systems

    SciTech Connect (OSTI)

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  10. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical

  11. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore » OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions

  12. Extended Research on Detection of Deception Using Volatile Organic...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; CENTRAL NERVOUS SYSTEM; DETECTION; ORGANIC COMPOUNDS; TESTING; VOLATILE MATTER deception, ...

  13. Partitioning of Volatile Organics in Diesel Particulate and Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of how sampling details affect the measurement of volatile organic compounds in ... Identification of the Soluble Organic Fraction of Particulate Matter on DPF ...

  14. Beta cell device using icosahedral boride compounds

    DOE Patents [OSTI]

    Aselage, Terrence L.; Emin, David

    2002-01-01

    A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15compound self-heals, resisting degradation from radiation damage.

  15. EERE Success Story-New Software Will Enable Chemical Manufacturers...

    Office of Environmental Management (EM)

    Photo courtesy of Organic Chemistry (McMurray). Distillation columns like this one are used in a variety of chemical manufacturing applications. Photo courtesy of Organic Chemistry ...

  16. AMO Success Story: New Software Will Enable Chemical Manufacturers...

    Office of Environmental Management (EM)

    Photo courtesy of Organic Chemistry (McMurray). Distillation columns like this one are used in a variety of chemical manufacturing applications. Photo courtesy of Organic Chemistry ...

  17. Differences in serum concentrations of organochlorine compounds by occupational social class in pancreatic cancer

    SciTech Connect (OSTI)

    Porta, Miquel Bosch de Basea, Magda; Benavides, Fernando G.; Lopez, Tomas; Fernandez, Esteve; Marco, Esther; Alguacil, Juan; Grimalt, Joan O.; Puigdomenech, Elisa

    2008-11-15

    Background: The relationships between social factors and body concentrations of environmental chemical agents are unknown in many human populations. Some chemical compounds may play an etiopathogenic role in pancreatic cancer. Objective: To analyze the relationships between occupational social class and serum concentrations of seven selected organochlorine compounds (OCs) in exocrine pancreatic cancer: dichlorodiphenyltrichloroethane (p,p'-DDT), dichlorodiphenyldichloroethene (p,p'-DDE), 3 polychlorinated biphenyls (PCBs), hexachlorobenzene, and {beta}-hexachlorocyclohexane. Methods: Incident cases of exocrine pancreatic cancer were prospectively identified, and interviewed face-to-face during hospital admission (n=135). Serum concentrations of OCs were analyzed by high-resolution gas chromatography with electron-capture detection. Social class was classified according to occupation. Results: Multivariate-adjusted concentrations of all seven compounds were higher in occupational social classes IV-V (the less affluent) than in classes I-II; they were higher as well in class III than in classes I-II for four compounds. Concentrations of six OCs were higher in manual workers than in non-manual workers (p<0.05 for PCBs). Social class explained statistically between 3.7% and 5.7% of the variability in concentrations of PCBs, and 2% or less variability in the other OCs. Conclusions: Concentrations of most OCs were higher in the less affluent occupational social classes. In pancreatic cancer the putative causal role of these persistent organic pollutants may not be independent of social class. There is a need to integrate evidence on the contribution of different social processes and environmental chemical exposures to the etiology of pancreatic and other cancers.

  18. Chemical Characterization of Individual Particles and Residuals...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chemical Characterization of Individual ... Collected On Board Research Aircraft in the ISDAC ... inorganic or black carbon cores coated by organic materials. ...

  19. Chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  20. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  1. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  2. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  3. Heart testing compound

    DOE Patents [OSTI]

    Knapp, Jr., Furn F.; Goodman, Mark M.

    1985-01-01

    The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  4. Heart testing compound

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  5. Charge Density Wave Compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The

  6. A novel inorganic-organic compound: Synthesis and structural characterization of tin(II) phenylbis(phosphonate), Sn{sub 2}(PO{sub 3}C{sub 6}H{sub 4}PO{sub 3})

    SciTech Connect (OSTI)

    Subbiah, Ayyappan; Bhuvanesh, Nattamai; Clearfield, Abraham . E-mail: clearfield@mail.chem.tamu.edu

    2005-04-15

    A novel tin(II) phenylbis(phosphonate) compound has been synthesized hydrothermally and its structure has been determined by single crystal X-ray diffraction. The structure is monoclinic, space group P2{sub 1}/c (no. 14), a=4.8094(4), b=16.2871(13), c=6.9107(6)A; {beta}=106.292(6){sup o}, V=519.59(7)A{sup 3}, Z=2. The three-dimensional structure consists of 3-coordinated tin and 4-coordinated phosphorus double layers separated (pillared) by phenyl rings. These phenyl rings are placed 4.8A apart along the a-axis in the structure resulting in lower surface area ({approx}14m{sup 2}/g). The porosity has been increased by replacing phenyl groups by methyl groups ({approx}31m{sup 2}/g)

  7. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  8. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  9. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  10. Method of manipulating the chemical properties of water to improve the effectiveness of a desired process

    DOE Patents [OSTI]

    Hawthorne, Steven B.; Miller, David J.; Lagadec, Arnaud Jean-Marie; Hammond, Peter James; Clifford, Anthony Alan

    2002-01-01

    The method of the present invention is adapted to manipulate the chemical properties of water in order to improve the effectiveness of a desired process. The method involves heating the water in the vessel to subcritical temperatures between 100.degree. to 374.degree. C. while maintaining sufficient pressure to the water to maintain the water in the liquid state. Various physiochemical properties of the water can be manipulated including polarity, solute solubility, surface tension, viscosity, and the disassociation constant. The method of the present invention has various uses including extracting organics from solids and semisolids such as soil, selectively extracting desired organics from liquids, selectively separating organics using sorbent phases, enhancing reactions by controlling the disassociation constant of water, cleaning waste water, removing organics from water using activated carbon or other suitable sorbents, and degrading various compounds.

  11. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  12. Microoptical compound lens

    DOE Patents [OSTI]

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  13. High energy chemical laser system

    DOE Patents [OSTI]

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  14. Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical 'Sponges' Could Make Chemo Safer Chemical 'Sponges' Could Make Chemo Safer July 8, 2016 - 4:22pm Addthis A sample of a polymer-based membrane material created at Berkeley Lab. It’s designed to soak up cancer drugs and limit their side effects. | Photo by Roy Kaltschmidt, Berkeley Lab. A sample of a polymer-based membrane material created at Berkeley Lab. It's designed to soak up cancer drugs and limit their side effects. | Photo by Roy Kaltschmidt, Berkeley Lab. Glenn Roberts Jr.

  15. Aminopropyl thiophene compounds

    DOE Patents [OSTI]

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation of regional blood flow by radioimaging of the brain.

  16. Compound floating pivot micromechanisms

    DOE Patents [OSTI]

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  17. 8-fluoropurine compounds

    DOE Patents [OSTI]

    Barrio, Jorge R.; Satyamurthy, Nagichettiar; Namavari, Mohammad; Phelps, Michael E.

    2001-01-01

    An efficient, regiocontrolled approach to the synthesis of 8-fluoropurines by direct fluorination of purines with dilute elemental fluorine, or acetyl hypofluorite, is provided. In a preferred embodiment, a purine compound is dissolved in a polar solvent and reacted with a dilute mixture of F.sub.2 in He or other inert gas.

  18. Giant magnetoresistive cobalt oxide compounds

    DOE Patents [OSTI]

    Schultz, P.G.; Xiang, X.; Goldwasser, I.

    1998-07-07

    Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.

  19. Giant magnetoresistive cobalt oxide compounds

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1998-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Organic Molecule Functionalized Zn3P2 Nanowire Inorganic-Organic Hybrid Thermoelectrics

    Broader source: Energy.gov [DOE]

    Demonstrates self-catalytic schemes for large-scale synthesis of compound semiconductor nanowire powders for inorganic-organic hybrid thermoelectric cells

  1. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    SciTech Connect (OSTI)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate daily intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.

  2. Risk-based high-throughput chemical screening and prioritization using exposure models and in vitro bioactivity assays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Hyeong -Moo; Ernstoff, Alexi; Arnot, Jon A.; Wetmore, Barbara A.; Csiszar, Susan A.; Fantke, Peter; Zhang, Xianming; McKone, Thomas E.; Jolliet, Olivier; Bennett, Deborah H.

    2015-05-01

    We present a risk-based high-throughput screening (HTS) method to identify chemicals for potential health concerns or for which additional information is needed. The method is applied to 180 organic chemicals as a case study. We first obtain information on how the chemical is used and identify relevant use scenarios (e.g., dermal application, indoor emissions). For each chemical and use scenario, exposure models are then used to calculate a chemical intake fraction, or a product intake fraction, accounting for chemical properties and the exposed population. We then combine these intake fractions with use scenario-specific estimates of chemical quantity to calculate dailymore » intake rates (iR; mg/kg/day). These intake rates are compared to oral equivalent doses (OED; mg/kg/day), calculated from a suite of ToxCast in vitro bioactivity assays using in vitro-to-in vivo extrapolation and reverse dosimetry. Bioactivity quotients (BQs) are calculated as iR/OED to obtain estimates of potential impact associated with each relevant use scenario. Of the 180 chemicals considered, 38 had maximum iRs exceeding minimum OEDs (i.e., BQs > 1). For most of these compounds, exposures are associated with direct intake, food/oral contact, or dermal exposure. The method provides high-throughput estimates of exposure and important input for decision makers to identify chemicals of concern for further evaluation with additional information or more refined models.« less

  3. Chemical reformer

    SciTech Connect (OSTI)

    Baker, D.L.

    1987-01-13

    This patent describes the process of producing liquid oils from organic waste materials, which comprises: mixing an oil-based carrier with organic waste material selected from the group consisting of organic garbage, raw sewage, sewage sludge and waste paper. The waste material contains at least about 10 weight percent water. The amount of oil-based carrier present is sufficient to permit the mixture to be a more readily flowable material that the corresponding waste material free of oil carrier. The flowable material is pyrolyzed at elevated temperature and pressure to produce the liquid oils. 17. The process of producing liquid oils from organic waste materials selected from the group consisting of organic garbage, raw sewage, sewage sludge, and waste paper, which comprises: mixing an oil-based carrier with organic waste material, the waste material containing at least about 10 weight percent water, the amount of oil-based carrier present being sufficient to permit the mixture to be more readily flowable material than the corresponding waste material free of oil carrier, pyrolysing the flowable material at a temperature of 700/sup 0/ to 950/sup 0/F. and a pressure of 700 to 2,500 p.s.i. to produce the liquid oils, and thereafter passing the heated, substantially continuous stream through heat exchange means to recover heat and to transfer it to an upstream portion of the substantially continuous stream.

  4. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  5. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C.

    1995-12-01

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  6. Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture

    SciTech Connect (OSTI)

    2010-08-01

    IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

  7. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the

  8. In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin

    SciTech Connect (OSTI)

    Thorsteinson, Nels; Ban, Fuqiang; Santos-Filho, Osvaldo; Tabaei, Seyed M.H. [Prostate Centre at the Vancouver General Hospital, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6 (Canada); Miguel-Queralt, Solange; Underhill, Caroline [Department of Obstetrics and Gynecology, University of British Columbia, Child and Family Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4 (Canada); Cherkasov, Artem [Prostate Centre at the Vancouver General Hospital, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6 (Canada)], E-mail: artc@interchange.ubc.ca; Hammond, Geoffrey L. [Department of Obstetrics and Gynecology, University of British Columbia, Child and Family Research Institute, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4 (Canada)

    2009-01-01

    Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [{sup 3}H]5{alpha}-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 {mu}M concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.

  9. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  10. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  11. Multicylinder compound engine

    SciTech Connect (OSTI)

    Paul, M.A.; Paul, A.

    1990-10-23

    This patent describes a compound, rotary-reciprocal engine. It comprises: a two-cycle reciprocator having cylinders, each cylinder having at least one piston arranged for reciprocation in the cylinder in a cycled operation with a timed air input to the cylinder and a timed exhaust from the cylinder; a compressed air intake and combustion gas exit in each cylinder of the reciprocator; fuel injection means for injecting fuel into the cylinders at appropriate times in the cycled operation; and, a rotocharger.

  12. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Thornberg, Steven Michael; Lee, J. -H.; Robinson, Alex Lockwood; Hesketh, Peter J.; Greathouse, Jeffery A.; Houk, Ronald J. T.

    2010-03-01

    In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

  13. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  14. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  15. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  16. Innovative permeable cover system to reduce risks at a chemical munitions burial site

    SciTech Connect (OSTI)

    Powels, C.C.; Bon, I.; Okusu, N.M.

    1997-12-31

    An innovative permeable sand cover with various integrated systems has been designed to contain and treat the Old O-Field chemical munitions landfill at Aberdeen Proving Ground, Maryland. The 18,200 m{sup 2} (4.5 acre) landfill was used from the mid 1930s to the mid 1950s for the disposal of chemical, incendiary, and explosive munitions from domestic and foreign origins, together with contaminated wastes associated with the development and production of chemical warfare agents (CWA). The site is suspected to be contaminated with white phosphorous (WP) (which when dry, spontaneously burns when exposed to air), shock sensitive picric acid fuses and has the potential to contain large quantities of CWA-filled munitions. Historically, one to three explosions or fires occurred per ten-year period at the landfill. Such events have the potential to cause a CWA release to the environment, which could potentially affect densely populated areas. Recovery and decontamination projects conducted at the site in the late 1940s and early 1950s used large amounts of decontamination chemicals (containing solvents) and fuels which further contaminated the area. The groundwater downgradient of the landfill is contaminated with volatile organic compounds, metals, explosives and CWA degradation compounds and is currently being contained by a groundwater extraction and treatment system. This report describes a remedial action program for the site.

  17. Direct synthesis of catalyzed hydride compounds

    DOE Patents [OSTI]

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  18. Boronated porphyrin compounds

    DOE Patents [OSTI]

    Kahl, S.B.; Koo, M.S.

    1992-09-22

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  19. Boronated porphyrin compounds

    DOE Patents [OSTI]

    Kahl, Stephen B.; Koo, Myoung-Seo

    1992-01-01

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  20. Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography

    SciTech Connect (OSTI)

    Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P.; Cofer, W.R. III; Levine, J.S.; Winstead, E.L.

    1995-06-01

    In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

  1. Sorption of organic gases in residential bedrooms andbathrooms

    SciTech Connect (OSTI)

    Singer, B.C.; Hodgson, A.T.; Hotchi, T.; Ming, K.Y.; Sextro,R.G.; Wood, E.E.; Brown, N.J.

    2005-01-05

    Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied ''as-is'' with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapor pressure within each chemical class.

  2. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  3. ARM - Evaluation Product - Organic Aerosol Component VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass spectral matrix data collected by the aerosol chemical speciation monitor and multivariate analysis to obtain an estimate of the types of organic aerosols. Currently, time...

  4. Observation of heavy metal compounds in suspended particulate matter at East Helena, Montana

    SciTech Connect (OSTI)

    Davis, B.L.; Maughan, A.D.

    1984-12-01

    X-ray diffraction, x-ray transmission, and x-ray fluorescence procedures have been used to evaluate quantitatively the chemical species for 24 ambient filter samples taken from receptor sites at East Helena, Montana. Twenty-five distinct chemical compounds representing various smelting processes, atmospheric chemical reactions, local fugitive dust sources, and possible filter artifacts have been observed. These compounds include the common crustal silicates and carbonates, and industrial sulfides, sulfates, and oxides. In addition, elemental cadmium and copper have been observed in a number of ambient samples. The soils and some accumulated residential dust of the East Helena area contain relatively high levels of lead and copper compounds.

  5. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  6. Experiences with a compost biofilter for VOC control from batch chemical manufacturing operations

    SciTech Connect (OSTI)

    Gilmore, G.L.; Briggs, T.G.

    1997-12-31

    The Synthetic Chemicals Division of Eastman Kodak Company makes a large number of complex organic chemicals using batch reactor syntheses. Exhaust gas, resulting from batch reactor operations, typically contains many different volatile organic chemicals with dynamic concentration profiles. Exhaust streams of this type have been considered difficult to treat effectively by biofiltration. Eastman Kodak Company was interested in exploring the applicability of biofiltration to treat these types of off-gas streams as an alternative to more costly control technologies. To this end, a 20,000 cfm capacity BIOTON{reg_sign} biofilter was installed in December 1995 in Kodak Park, Rochester, New York. A study was initiated to determine the overall efficiency of the biofilter, as well as the chemical specific efficiencies for a number of organic compounds. Flame ionization detectors operated continuously on the inlet and outlet of the biofilter to measure total hydrocarbon concentrations. A process mass spectrometer was installed to simultaneously monitor the concentrations of seven organics in the inlet and outlet of the biofilter. In addition, the process control software for the biofilter continuously recorded pressure drop, temperature, and moisture content of the bed. This paper presents operating and performance data for the BIOTON biofilter from start-up through about eleven months of continuous operation. Included are data collected over a wide range of loading conditions, during initial start-up, and during start-up after shutdown periods. Data for total hydrocarbons, methanol, acetone, and heptane are presented. The relationship between organic loading and removal efficiency is discussed in the biofilter, which typically operates significantly below its design loading specification. The overall control efficiency of the biofilter at design loadings exceeds the design control efficiency of 90%.

  7. Selective Conversion of Lignin into Simple Aromatic Compounds - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Selective Conversion of Lignin into Simple Aromatic Compounds Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignin is a major component of non-edible biomass (15-30 percent by weight; 40 percent by energy). It is a cheap byproduct of pulp and biofuel production and is one of the few naturally occurring sources of high-volume aromatic compounds. Converting lignin's complex biopolymer structure into simple organic

  8. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  9. Mass spectrometry in identification of ecotoxicants including chemical and biological warfare agents

    SciTech Connect (OSTI)

    Lebedev, Albert T. . E-mail: lebedev@org.chem.msu.ru

    2005-09-01

    Mass spectrometry is a unique tool to detect and identify trace levels of organic and bioorganic compounds as well as microorganisms in the environment. The range of potential chemical warfare (CW) and biological warfare (BW) agents is very broad. An important advantage of mass spectrometry over other techniques involves potential for full spectrum detection of chemical and biological agents including mid-spectrum materials (i.e. bioactive peptides, toxins, etc.) for which biological approaches are inadequate. Being very fast (seconds and minutes), extremely sensitive (zeptomoles 10{sup -21}), and informative (detailed qualitative and quantitative composition of mixtures containing hundreds of chemicals), mass spectrometry is a principal analytical tool at the sites of destruction of CW. Due to its unique features, mass spectrometry is applied not only for the detection of CW agents, but for the analysis of products of metabolism and degradation of these agents in organisms or environment as well. The present paper deals with some examples of successful application of mass spectrometry for the analyses of ecotoxicants, chemical warfare agents, explosives, and microorganisms including biology warfare agents.

  10. NMED COMMENTS ITEM 3 REVISE VOLATILE ORGANIC COMPOUND (VOC) TARGET...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ( ) ( ) ( ) ( ) 1 1 1 1.5 3 6 n Pvp Pc x VP A x VP B x VP C x VP D x - + + + - where, Appendix 3-B Page 3-B-4 of 16 VOC 3 x 1-TTc Pvp VOC vapor pressure at 303 K, ...

  11. Ecosystem-scale volatile organic compound fluxes during an extreme...

    Office of Scientific and Technical Information (OSTI)

    ... Resource Relation: Journal Name: Global Change Biology; Journal Volume: 21; Journal Issue: 10 Publisher: Wiley Research Org: Pacific Northwest National Lab. (PNNL), Richland, WA ...

  12. Ecosystem-scale volatile organic compound fluxes during an extreme...

    Office of Scientific and Technical Information (OSTI)

    ... Additional Journal Information: Journal Volume: 21; Journal Issue: 10; Journal ID: ISSN 1354-1013 Publisher: Wiley Research Org: Univ. of California, Irvine, CA (United States); ...

  13. Detection of Organic Compounds with Whole-Cell Bioluminescent...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 1149780 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Book Publisher: Springer-Verlag, Berlin Heidelberg, Germany Research Org: Oak Ridge National ...

  14. Energy Saving System to Remove Volatile Organic Compounds (VOCs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Berkeley Lab have developed a catalyst and deployment devices to improve indoor air quality and reduce ventilation energy needs.Description The catalyst, a manganese...

  15. Hydrogenolysis of 6-carbon sugars and other organic compounds

    DOE Patents [OSTI]

    Werpy, Todd A.; Frye, Jr., John G.; Zacher, Alan H.; Miller, Dennis J.

    2005-01-11

    Methods for hydrogenolysis are described which use a Re-containing multimetallic catalyst for hydrogenolysis of both C--O and C--C bonds. Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 6-carbon sugar, sugar alcohol, or glycerol are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol.

  16. Hydrogen-Evolving Organic Compounds - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources » Hydrogen Hydrogen August 11, 2016 A CO2 laser melts a rod of solid sapphire and draws a sapphire optical fiber. Sapphire has a high melting point, which can withstand the brutal conditions inside gas turbine engines and solid oxide fuel cells. | Photo courtesy of National Energy Technology Laboratory. The Rugged World of Harsh Environment Sensors National Lab scientists are building special sensors to see and hear inside turbine engines, boilers, gasifiers and fuel cells. July 19,

  17. Method for isotopic analysis of chlorinated organic compounds

    DOE Patents [OSTI]

    Holt, B.D.; Sturchio, N.C.

    1999-08-24

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO{sub 2} and CuCl. The CO{sub 2} is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH{sub 3}I to form CH{sub 3}Cl, extracted and analyzed for chlorine isotope ratio. 9 figs.

  18. Method for isotopic analysis of chlorinated organic compounds

    DOE Patents [OSTI]

    Holt, Ben D.; Sturchio, Neil C.

    1999-01-01

    The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.

  19. CATALYTIC CONVERSION OF ORGANIC COMPOUNDS USING PENETRATING RADIATION

    DOE Patents [OSTI]

    Caffrey, J.M. Jr.

    1961-10-01

    A method of hydrogenating an olefinic hydrocarbon by irradiating a substrate catalyst and increasing its catalytic activity is described. Ferric oxide with about 0.005% by weight of at least one oxide of a metal selected from the group consisting of aluminum, magnesium, nickel, zirconium, and manganese incorporated therein is irradiated. Then an alkane is placed upon the surface of the catalyst and irradiated in an atmosphere of hydrogen. Any olefin produced from this radiolysis becomes hydrogenated. (AEC)

  20. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect (OSTI)

    Riley, R.G.; Zachara, J.M. )

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  1. Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall

    SciTech Connect (OSTI)

    Maddalena, Randy; Russell, Marion; Apte, Michael G.

    2010-06-01

    Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers where emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.

  2. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    SciTech Connect (OSTI)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola; Roscioli, Kristyn M.; Anderton, Christopher R.; Pasa-Tolic, Ljiljana; Robinson, Errol W.; Hess, Nancy J.

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.

  3. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee R. Todd Anderson Program Manager, BER Climate and Environmental Sciences Anjuli Barnzai Program Manager, BER Climate and Environmental...

  4. Method of preparing metallocene compounds

    DOE Patents [OSTI]

    Rosenblum, Myron; Matchett, Stephen A.

    1992-01-01

    This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.

  5. Method of producing cyclohexasilane compounds

    DOE Patents [OSTI]

    Elangovan, Arumugasamy; Anderson, Kenneth; Boudjouk, Philip R; Schulz, Douglas L

    2015-03-10

    A method of preparing a cyclohexasilane compound from trichlorosilane is provided. The method includes contacting trichlorosilane with a reagent composition to produce a compound containing a tetradecahalocyclohexasilane dianion, such as a tetradecachlorocyclohexasilane dianion. The reagent composition typically includes (a) tertiary polyamine ligand; and (b) a deprotonating reagent, such as a tertiary amine having a pKa of at least about 10.5. Methods of converting the tetradecahalocyclohexasilane dianion-containing compound to cyclohexasilane or a dodecaorganocyclohexasilane are also provided.

  6. SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF

    DOE Patents [OSTI]

    Magnusson, L.B.

    1958-04-01

    A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.

  7. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect (OSTI)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  8. Columbia River monitoring: Summary of chemical monitoring along cross sections at Vernita Bridge and Richland

    SciTech Connect (OSTI)

    Dirkes, R.L.; Patton, G.W.; Tiller, B.L.

    1993-05-01

    This report presents the results of the chemical monitoring performed by the Surface Environmental Surveillance Project (SESP) along cross sections of the Columbia River established at Vernita Bridge and the Richland Pumphouse. Potential Hanford-origin chemical constituents of interest were selected based on their presence in ground water near the river, past surveillance efforts that have documented their entry into the river, and reviews of special study reports, CERCIA remedial investigation/feasibility study (RI/FS) documentation, RCRA facility investigation/corrective measure (FI/CW) study plans, and preliminary risk assessments. Results presented in this report include volatile organic compounds, metals, and anions. The data were generated as part of the routine Columbia River monitoring program currently conducted as part of the SESP.

  9. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides links to each partner's participating organizations. Argonne National Laboratory Chemical Sciences and Engineering Division Center for Nanoscale Materials Energy Systems...

  10. Chemical Industry Vision 2020. Annual Report 2004 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Industry; ITP; AMO; Chemicals; Vision Word Cloud More ...

  11. Mild, Nontoxic Production of Fuels and Chemicals from Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil fuel resources supply almost 90 percent of the world's energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, ...

  12. Standoff Detection of Chemicals Using Rydberg Fingerprint Spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well suited for detection of large organic molecules such as those of explosives or chemical warfare agents. The remarkable sensitivity of Rydberg electron to the molecular...

  13. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  14. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  15. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  16. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOE Patents [OSTI]

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  17. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  18. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  19. In Vitro Genotoxicity of Particulate and Semi-Volatile Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Compound Exhaust Materails from a Set of Gasoline and a Set of Diesel Engine Vehicles Operated at 30F In Vitro Genotoxicity of Particulate and Semi-Volatile Organic ...

  20. Certification of a Standard Reference Material for organics in crude oil

    SciTech Connect (OSTI)

    Not Available

    1983-06-20

    The objective of this program was to provide a complex matrix Standard Reference Material (SRM) certified for the concentrations of selected toxic organic compounds. This SRM will be useful in the chemical characterization and quality assurance efforts and methods development research of laboratories involved in the organic compound characterization of fuels. A petroleum crude oil (Wilmington crude) was selected as the matrix to be used in this effort. This material, when certified, will serve as a companion to SRM 1580, Organics in Shale Oil, that was certified in 1980 with Department of Energy support. The use of both SRM's will provide researchers with two points of calibration for analyses of compounds that are certified in both materials. In general, the certification of SRM's is accomplished through utilization of at least two totally independent techniques of analysis. In order for a parameter to be certified, the results of analyses by these independent methods must agree. The degree of agreement is specified as the uncertainty on the Certificate of Analysis. We have determined the concentrations of dibenzothiophene, phenol, o-cresol, and six polycyclic aromatic hydrocarbons by two independent analytical procedures each. Carbazole and benzo(e)pyrene were determined by electron impact gas chromatography/mass spectrometry (GC/MS) only. A summary of all results to date appears in the table appended to this report.

  1. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe

    SciTech Connect (OSTI)

    Dimamay, Mariel; Mayer, Thomas; Jaegermann, Wolfram; Hadziioannou, Georges

    2015-05-07

    Luminescent organic phases embedded in conductive inorganic matrices are proposed for hybrid organic-inorganic light-emitting diodes. In this configuration, the organic dye acts as the radiative recombination site for charge carriers injected into the inorganic matrix. Our investigation is aimed at finding a material combination where the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the organic dye are situated in between the valence and conduction bands of the inorganic matrix in order to promote electron and hole transfer from the matrix to the dye. Bilayer and composite thin films of zinc selenide (ZnSe) and a red iridium complex (Ir(BPA)) organic light emitter were prepared in situ via UHV thermal evaporation technique. The electronic and atomic structures were studied applying X-ray and ultraviolet photoelectron spectroscopies. The measured energy band alignments for the ZnSe/Ir(BPA) bilayer and ZnSe+Ir(BPA) composite reveal that the HOMO and LUMO of the organic dye are positioned in the ZnSe bandgap. For the initial steps of ZnSe deposition on a dye film to form Ir(BPA)/ZnSe bilayers, zinc atoms intercalate into the dye film leaving behind an excess of selenium at the interface that partly reacts with dye molecules. Photoelectron spectroscopy of the composites shows the same species suggesting a similar mechanism. This mechanism leads to composite films with increased content of amorphous phases in the inorganic matrix, thereby affecting its conductivity, as well as to the presence of nonradiative recombination sites provided by the intercalated Zn atoms.

  2. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect (OSTI)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  3. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; Ye, X. Philip; Borole, Abhijeet P.; Tsouris, Costas

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  4. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, Michael S.

    1995-01-01

    A polishing compound for plastic surfaces. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS.TM., LEXAN.TM., LUCITE.TM., polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  5. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1995-08-22

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains fine particles silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired. 5 figs.

  6. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1993-01-01

    A polishing compound for plastic surfaces is disclosed. The compound contains by weight approximately 4 to 17 parts at least one petroleum distillate lubricant, 1 to 6 parts mineral spirits, 2.5 to 15 parts abrasive particles, and 2.5 to 10 parts water. The abrasive is tripoli or a similar material that contains colloidal silica. Preferably, most of the abrasive particles are less than approximately 10 microns, more preferably less than approximately 5 microns in size. The compound is used on PLEXIGLAS{sup TM}, LEXAN{sup TM}, LUCITE{sup TM}, polyvinyl chloride (PVC) and similar plastic materials whenever a smooth, clear polished surface is desired.

  7. Generation of low work function, stable compound thin films by laser ablation

    DOE Patents [OSTI]

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2001-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  8. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  9. Intercalation compounds and electrodes for batteries

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  10. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  11. DOE - Office of Legacy Management -- Harshaw Chemical Co - OH 04

    Office of Legacy Management (LM)

    Harshaw Chemical Co - OH 04 FUSRAP Considered Sites Site: Harshaw Chemical Company, OH (OH.04 ) Cleanup in progress by U.S. Army Corps of Engineers. Designated Name: Not Designated Alternate Name: Filtrol Partners, Uranium Refinery Location: 1000 Harvard Avenue, Cleveland, Ohio OH.04-1 Evaluation Year: 1984 OH.04-1 Site Operations: Produced uranium compounds and other chemical compounds under MED and AEC contracts. OH.04-3 OH.04-4 Site Disposition: OH.04-5 Radioactive Materials Handled: Yes

  12. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  13. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  14. Chemical Management System

    Energy Science and Technology Software Center (OSTI)

    1998-10-30

    CMS provides an inventory of all chemicals on order or being held in the laboratory, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNNL staff with hazardous chemical information to better manage their inventories. CMS is comprised of five major modules: 1) chemical purchasing, 2) chemical inventory, 3) chemical names, properties, and hazard groups, 4) reporting, and 5) system administration.

  15. Detection of chlorinated aromatic compounds

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  16. Detection of chlorinated aromatic compounds

    DOE Patents [OSTI]

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  17. Polishing compound for plastic surfaces

    DOE Patents [OSTI]

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  18. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  19. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  20. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  1. Aza compounds as anion receptors

    DOE Patents [OSTI]

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  2. Aza compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  3. Chemical characteristics of urban stormwater sediments and implications for environmental management, Maricopa County, Arizona

    SciTech Connect (OSTI)

    Parker, J.T.C.; Fossum, K.D.; Ingersoll, T.L.

    2000-07-01

    Investigations of the chemical characteristics of urban stormwater sediments in the rapidly growing Phoenix metropolitan area of Maricopa County, Arizona, showed that the inorganic component of these sediments generally reflects geologic background values. Some concentrations of metals were above background values, especially cadmium, copper, lead, and zinc, indicating an anthropogenic contribution of these elements to the sediment chemistry. Concentrations, however, were not at levels that would require soil remediation according to guidelines of the US Environmental Protection Agency. Arsenic concentrations generally were above recommended values for remediation at a few sites, but these concentrations seem to reflect geologic rather than anthropogenic factors. Several organochlorine compounds no longer in use were ubiquitous in the Phoenix area, although concentrations generally were low. Chlordane, DDT and its decay products DDE and DDD, dieldrin, toxaphene, and PCBs were found at almost all sites sampled, although some of the pesticides in which these compounds are found have been banned for almost 30 years. A few sites showed exceptionally high concentrations of organochlorine compounds. On the basis of published guidelines, urban stormwater sediments do not appear to constitute a major regional environmental problem with respect to the chemical characteristics investigated here. At individual sites, high concentrations of organic compounds--chlordane, dieldrin, PCBs, and toxaphene--may require some attention. The possible environmental hazard presented by low-level organochlorine contamination is not addresses in this paper; however, high levels of toxicity in urban sediments are difficult to explain. Sediment toxicity varied significantly with time, which indicates that these tests should be evaluated carefully before they are used for management decisions.

  4. Method for treatment of soils contaminated with organic pollutants

    DOE Patents [OSTI]

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  5. Complex-compound low-temperature TES system

    SciTech Connect (OSTI)

    Rockenfeller, U.

    1989-03-01

    Development of a complex-compound low-temperature TES system is described herein from basic chemical principles through current bench scale system development. Important application engineering issues and an economic outlook are addressed as well. The system described uses adsorption reactions between solid metal inorganic salts and ammonia refrigerant. It is the coordinative nature of these reactions that allows for storage of ammonia refrigerant within the solid salt crystals that function as a chemical compressor during on peak periods (substituting the mechanical compressor) and release ammonia during off peak periods while a mechanical vapor compression system provides the necessary reactor pressure and heat.

  6. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes...

  7. Aquatic Pathways Model to predict the fate of phenolic compounds. Appendixes A through D

    SciTech Connect (OSTI)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.L.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. We have developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for the distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. The model was developed to estimate the fate of liquids derived from coal. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation of a spill of solvent-refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor. Results of a simulated spill of a coal liquid (SRC-II) into a pond show that APM predicted the allocation of 12 phenolic components among six compartments at 30 hours after a small spill. The simulation indicated that most of the introduced phenolic compounds were biodegraded. The phenolics remaining in the aquatic system partitioned according to their molecular weight and structure. A substantial amount was predicted to remain in the water, with less than 0.01% distributed in sediment or fish.

  8. Characterization of Soluble Organics in Produced Water

    SciTech Connect (OSTI)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion-selective electrodes and inductively

  9. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOE Patents [OSTI]

    Schulz, Wallace W.; Dressen, A. Louise

    1977-04-26

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

  10. Articles of protective clothing adapted for deflecting chemical permeation and methods therefor

    DOE Patents [OSTI]

    Vo-Dinh, Tuan

    1996-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  11. Articles of protective clothing adapted for deflecting chemical permeation and methods there for

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1996-02-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. 12 figs.

  12. Method for purifying bidentate organophosphorus compounds

    DOE Patents [OSTI]

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  13. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect (OSTI)

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  14. Multimedia regulated chemicals

    SciTech Connect (OSTI)

    Lee, C.C.; Huffman, G.L.; Mao, Y.L.

    1999-10-01

    This article examines those chemicals that are listed in either environmental laws or regulations. Its objective is to help readers determine which laws regulate what types of chemicals and which types of chemicals are regulated by what laws. It is multimedia in scope, describing the various chemicals that are regulated in the different media (i.e., air, water, or land).

  15. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  16. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  17. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  18. Lab Organizations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizations Lab Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Los Alamos National Security, LLC Leadership Team Organization Chart PRINCIPAL ASSOCIATE DIRECTORATES Capital Projects, Larry Simmons Global Security, Terry Wallace Operations and Business, Craig Leasure Science, Technology, and Engineering, Alan Bishop

  19. Towards Heavy Fermions in Europium Intermetallic Compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermetallic Compounds Print For decades, intermetallic compounds of rare-earth metals have been favorite systems of the research community studying strong electron...

  20. Cyanobacterium sp. for production of compounds

    DOE Patents [OSTI]

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2015-10-13

    A genetically enhanced cyanobacterial host cell, Cyanobacterium sp. ABICyano1, is disclosed. The enhanced Cyanobacterium sp. ABICyano1 produces a compound or compounds of interest.

  1. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Chin, Arthur Achhing; Jain, Puja; Linehan, Suzanne; Lipiecki, Francis Joseph; Maroldo, Stephen Gerard; November, Samuel J; Yamamoto, John Hiroshi

    2013-02-19

    A process for production of a borohydride compound. The process comprises combining a compound comprising boron and oxygen with an adduct of alane.

  2. Chemical Sciences Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation in the Chemical Sciences Capabilities Modeling and simulation help us transform chemical data into meaningful information: * Develop remote-sensors that detect nuclear materials * Perform large- or small-scaled process modeling * Simulate new chemicals with tailored properties for diverse applications * Analyze chemical reaction rates for complex modeling needs * Examine chemical-sciences data and modeling for nuclear forensics * Analyze high explosive data and perform

  3. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  4. Measurement of chemical emissions under the influence of low-NO{sub x} combustion modifications. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1993-10-08

    Effect of low-NO{sub x} firing. There was no clear-cut effect on the emission of trace metals or acid gases. The data give marginal evidence for a decreased emission of Cr(VI), which would be a favorable change but is not certain by any means. The effect on aldehydes and ketones cannot be stated because of the loss of samples for baseline conditions; no credible data on these compounds were obtained for baseline conditions. The change in volatile organics appeared to be a reduction in emissions, whereas that for semi-volatiles seemed to be an increase. Inasmuch as low-NO{sub x} firing is sometimes accompanied by large increases in the amount of unburned carbon in the ash, the result for semi-volatiles is more in line with expectation. Effect of the hot-side ESP. As indicated above, the hot-side ESP lowered trace-element emissions to the range roughly from 1 to 5% of the levels found in the inlet gas stream. Not surprisingly, the hot-side ESP had no measurable influence on the emissions of SO{sub x}, HF, and HCl. Quite surprisingly, on the other hand, the ESP seemed to suppress the emission of certain organic substances. Suppression of the emission of formaldehyde is particularly difficult to explain. Presumably, the apparent disappearance of organics in the vapor state may be due in part to chemical changes at the high temperature of the ESP or in the corona regions, where ozone and other high-energy reactants are present. Perhaps chemical destruction was aided in the instance of semi-volatile compounds by relatively long residence times at high temperature while the compounds were adsorbed on ash particles in the hoppers. Effect of the cold-side ESP. Limited data with the cold-side ESP in operation made it difficult to detect any but the most emphatic effect of that ESP. No dramatic effect was seen.

  5. Chemical distribution in high-solids paint overspray aerosols

    SciTech Connect (OSTI)

    D'Arcy, J.B.; Chan, T.L. )

    1990-03-01

    The chemical composition of high-solids basecoat paint overspray aerosols was determined as a function of particle size. Detailed information on the chemical composition of the overspray aerosols is important in health hazard evaluation since the composition and distribution within the airborne particles may differ significantly from the bulk paint material. This study was conducted in a typical down-draft paint booth equipped with air-atomized spray painting equipment. A fixed paint target was used to simulate typical overspray generation conditions and the aerosols were collected isokinetically with a seven-stage cascade impactor for size-fractionated analysis. The overspray aerosol from six paints consisted of organic paint binders with varying amounts of inorganic species as pigments or luster enhancers. These overspray aerosols had mass median aerodynamic diameters (MMAD) ranging from 2.9 to 9.7 microns. The size-fractionated paint samples collected on the impaction stages were analyzed by energy dispersive X-ray spectrometry on a scanning electron microscope (SEM-EDXRS) to identify the metallic elements. Atomic absorption spectrometry was used to determine the mass distribution of aluminum and iron as indicators of nonuniform distribution. Three of the aerosols containing aluminum were found to have bimodal distributions with most aluminum distributions having cumulative MMADs larger than the total aerosol. Iron in the aerosols was bimodal for three of the paints with all samples having an overall iron MMAD less than or equal to the overspray aerosol MMAD. Analysis using ultraviolet spectrometry revealed that the organic compounds present in the size-fractionated particulate samples consisted of a single, polydispersed mode with an MMAD similar to that of the total overspray aerosol.

  6. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  7. Method for digesting a nitro-bearing explosive compound

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  8. Direct Chemical Oxidation. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-12-01

    The DOE complex has a need to demonstrate technologies that are alternatives to incineration for the destruction of organic solvents, chlorinated hydrocarbons, plastics, and organic solids. The current industry practice for the targeted waste streams is treatment by incineration. There has been increased public concern on the use of incinerators because of the potential release of products of incomplete combustion, dioxins, furans, and emission of radionuclides. Direct Chemical Oxidation is a technology for the destruction of organic solids and liquids that uses peroxydisulfate as the oxidant to destroy organics and treats residue immobilized using phosphate ceramic solidification.

  9. Capture and release of mixed acid gasses with binding organic liquids

    DOE Patents [OSTI]

    Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  10. Particulate and gaseous organic receptor modeling for the southern California Air Quality Study. Final report

    SciTech Connect (OSTI)

    Watson, J.G.; Chow, J.G.; Lu, Z.; Gertler, A.W.

    1993-11-01

    The Chemical Mass Balance (CMB) receptor model was applied to the chemically-speciated diurnal particulate matter samples and volatile organic compound (VOC) acquired during the summer and fall campaigns of the Southern California Air Quality Study (SCAQS). Source profiles applicable to the Los Angeles area were used to apportion PM[sub (2.5)] and PM[sub (10)] to primary paved road dust, primary construction dust, primary motor vehicle exhaust, primary marine aerosol, secondary ammonium nitrate, and secondary ammonium sulfate. Nonmethane hydrocarbon was apportioned to motor vehicle exhaust, liquid fuel, gasoline vapor, gas leaks, architectural and industrial coatings, and biogenic emissions. Suspended dust was the major contributor to PM(10) during the summer, while secondary ammonium nitrate and primary motor vehicle exhaust contributions were high in the fall. Motor vehicle exhaust was the major contributor to nonmethane hydrocarbons, ranging from 30% to 70% of the total.

  11. Metal-Organic Framework Thin Films as Stationary Phases in Microfabricated Gas-Chromatography Columns.

    SciTech Connect (OSTI)

    Read, Douglas; Sillerud, Colin Halliday

    2016-01-01

    The overarching goal of this project is to integrate Sandia's microfabricated gas-chromatography ( GC) columns with a stationary phase material that is capable of retaining high-volatility chemicals and permanent gases. The successful integration of such a material with GCs would dramatically expand the repertoire of detectable compounds for Sandia's various microanalysis systems. One such promising class of candidate materials is metal-organic frameworks (MOFs). In this report we detail our methods for controlled deposition of HKUST-1 MOF stationary phases within GC columns. We demonstrate: the chromatographic separation of natural gas; a method for determining MOF film thickness from chromatography alone; and the first-reported GC x GC separation of natural gas -- in general -- let alone for two disparate MOF stationary phases. In addition we determine the fundamental thermodynamic constant for mass sorption, the partition coefficient, for HKUST-1 and several light hydrocarbons and select toxic industrial chemicals.

  12. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M.

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  13. Scientist Named an American Chemical Society Fellow - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist Named an American Chemical Society Fellow September 1, 2010 Helena Chum Dr. Helena Chum was named a 2010 Fellow by the American Chemical Society. Dr. Helena Chum, research fellow at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), was recently named a 2010 Fellow by the American Chemical Society (ACS). Dr. Chum's work includes the development of technologies for the conversion of biomass and organic wastes into liquid and gaseous fuels, chemicals and

  14. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Ted Barnes DOE Office of Nuclear Physics Yukiko Sekine NERSC Program Manager, DOE Office of Advanced Computational Research Kathy Yelick NERSC Director Richard Gerber NERSC User Services Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:21

  15. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    SciTech Connect (OSTI)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.; Crump, S. L.; Fondeur, F. F.; Papathanassiu, A. E.; Kot, W. K.; Pegg, I. L.

    2013-10-01

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tank farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts

  16. Fermilab | About | Organization | Fermilab Organization | Explanation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Symbols Line Organization: sectors, divisions, sections Line Organization Matrix Organization: centers, projects and programs utilizing resources spanning the entire...

  17. Separation of uranium isotopes by chemical exchange

    DOE Patents [OSTI]

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  18. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore » no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  19. CONVERSION; FLUORINE COMPOUNDS; SYNTHESIS; FUEL CELLS; ELECTROLYTES...

    Office of Scientific and Technical Information (OSTI)

    OXYGEN; REDUCTION; SOLUBILITY; SULFONIC ACIDS; ADDITIVES; CHEMICAL REACTION KINETICS; ELECTRIC CONDUCTIVITY; OPTIMIZATION; PROGRESS REPORT; CHEMICAL REACTIONS; DIRECT ENERGY...

  20. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Organization Organization Organization OCIO Organizational Chart (Printable) News & Blog CIO Leadership Organization Contact Us

  1. Chemical deposition methods using supercritical fluid solutions

    DOE Patents [OSTI]

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  2. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  3. Chemically modified graphite for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  4. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  5. Chemical Sciences Division: Annual report 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  6. Chemical characterization of fingerprints from adults and children

    SciTech Connect (OSTI)

    Buchanan, M.V.; Asano, K.; Bohanon, A.

    1996-12-31

    Observation that children`s fingerprints disappear from surfaces more quickly than adults`, initiated a study to characterize the chemical components in fingerprints. Samples were obtained from about 50 individuals ranging in age from 3 to 64 by extracting chemicals from the fingertips using rubbing alcohol. Using combined gas chromatography/mass spectrometry, a wide range of compounds were identified. Samples from children contained higher levels of relatively volatile free fatty acids, while those from adults had higher levels of less volatile long chain esters of fatty acids. These esters are thought to originate from sebaceous glands located on the face and levels of these compounds increase substantially after puberty. Also, other compounds were observed that could be used to develop improved methods for fingerprint detection at a crime scene. Further, observation of specific compounds raises the possibility of being able to identify personal traits (gender, habits, diseases, etc. ) via analysis of components in fingerprints and/or skin.

  7. Methods for isolation and viability assessment of biological organisms

    DOE Patents [OSTI]

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  8. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  9. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  10. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  11. Chemical Emissions of Residential Materials and Products: Review of Available Information

    SciTech Connect (OSTI)

    Willem, Henry; Singer, Brett

    2010-09-15

    provide information on new or low-emission materials and products. The review focuses on the primary chemical or volatile organic compound (VOC) emissions from interior surface materials, furnishings, and some regularly used household products; all of these emissions are amenable to ventilation. Though it is an important and related topic, this review does not consider secondary pollutants that result from reactions of ozone and unsaturated organics bound to or emitted from material surfaces. Semi-volatile organic compounds (SVOCs) have been largely excluded from this review because ventilation generally is not an effective way to control SVOC exposures. Nevertheless, health concerns about exposures to SVOCs emitted from selected materials warrant some discussion.

  12. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  13. Chemicals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace013_pitz_2010_o.pdf (1.44 MB) More Documents & Publications Chemical Kinetics Research on HCCI and Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Vehicle Technologies Office Merit Review 2014: Chemical Kinetic Models for Advanced Engine Combustion

    Discusses detailed chemical kinetics mechanisms for complex hydrocarbon fuels and

  14. 2. Chemical Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Lecture) Chung K. Law Robert H. Goddard Professor Princeton University Princeton-CEFRC-Combustion Institute Summer School on Combustion June 20-24, 2016 1 Day 1: Chemical Thermodynamics and Kinetics 1. Chemical Thermodynamics * Chemical equilibrium * Energy conservation & adiabatic flame temp., T ad 2. Chemical Kinetics * Reaction rates and approximations * Theories of reaction rates * Straight and branched chain reactions 3. Oxidation Mechanisms of Fuels * Hydrogen, CO, hydrocarbons 2 1.

  15. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  16. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2014-12-02

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, butmore » the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91–0.92, r2=0.93–0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are

  17. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Workshop January 5-6, 2011 Dr. Karen Pao ASCR Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services John Shalf NERSC Advanced Technologies Group Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:22

  18. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee R. Todd Anderson Program Manager, BER Climate and Environmental Sciences Anjuli Barnzai Program Manager, BER Climate and Environmental Sciences Susan Gregurick Program Manager, BER Biological Systems Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Harvey Wasserman NERSC System Architecture Last edited: 2016-04-29 11:35:21

  19. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Fusion Energy Science August 3-4, 2010 Dr. John Mandrekas Advanced Fusion Simulations; FES HPC Allocations Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Alice Koniges NERSC Advanced Technologies Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:21

  20. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Amber Boehnlein Division Scientist, Fermi National Accelerator Laboratory, on assignment to DOE Office of HEP. Glen Crawford Program Manager, Research and Technology Division, DOE Office of HEP. Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Harvey

  1. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Basic Energy Sciences An ASCR / BES / NERSC Workshop February 9-10, 2010 Jim Davenport Program Manager for Theoretical Condensed Material Physics Mark R. Pederson Program Manager for Theoretical and Computational Chemistry Nicholas B. Woodward Program Manager, Geosciences Research Program Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for

  2. Polybenzimidazole compounds, polymeric media, and methods of post-polymerization modifications

    DOE Patents [OSTI]

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2007-08-21

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2-- where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least 5 equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about 15.

  3. Work plan for preliminary investigation of organic constituents in ground water at the New Rifle site, Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    1996-01-01

    A special study screening for Appendix 9 (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the US Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water. The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described.

  4. Concentrated formulations and methods for neutralizing chemical and biological toxants

    DOE Patents [OSTI]

    Tucker, Mark D.; Betty, Rita G.; Tadros, Maher E.

    2004-04-20

    A formulation and method of making and using that neutralizes the adverse health effects of both chemical and biological toxants, especially chemical warfare (CW) and biological warfare (BW) agents. The aqueous formulation is non-toxic and non-corrosive and can be delivered as a long-lasting foam, spray, or fog. The formulation includes solubilizing compounds that serve to effectively render the CW or BW toxant susceptible to attack, so that a nucleophillic agent can attack the compound via a hydrolysis or oxidation reaction. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  5. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  6. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  7. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    SciTech Connect (OSTI)

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.

  8. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a ... TECHNOLOGY VISION 2020: The U.S. Chemical Industry Gasoline Biodesulfurization Fact Sheet ...

  9. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process ... ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying ...

  10. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.

  11. Fermilab | About | Organization | Fermilab Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Fermilab Organization < Back to About Fermilab Fermilab Org Chart Accelerator Division Accelerator Physics Center CMS Center Core Computing Division ESH&Q FESS Finance Section LBNF Project Far-Site LBNF Project Near-Site LBNF Project Office LBNF Project LCLS-II Project Neutrino Division Office of Communication Office of Integrated Planning and Performance Management Office of Project Support Services Office of the CFO Office of the CIO Office of the CPO PIP-II Project PPD

  12. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae

    SciTech Connect (OSTI)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the [beta]-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novel regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate [beta]-carboxy-cis,cis-muconate. [beta]-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for [beta]-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to [beta]-carboxy-cis,cis-muconate.

  13. Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Chart Organization Chart Organization Chart Printable PDF Mission Leadership

  14. Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater

    SciTech Connect (OSTI)

    Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

    2013-07-10

    This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

  15. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  16. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  17. Organic materials with nonlinear optical properties

    DOE Patents [OSTI]

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  18. Organic materials with nonlinear optical properties

    DOE Patents [OSTI]

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  19. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical ...

  20. Fiber optic spectrochemical emission sensor: Detection of volatile chlorinated compounds in air and water using ultra-thin membranes

    SciTech Connect (OSTI)

    Anheier, N.C. Jr.; Olsen, K.B.; Osantowski, R.E.; Evans, J.C. Jr.; Griffin, J.W.

    1993-05-01

    Prior work on the fiber optic spectrochemical emission sensor called HaloSnif{trademark} has been extended to include an ultra-thin membrane which allows passage of volatile organic chlorinated compounds (VOCl). The membrane has been demonstrated to exclude H{sub 2}O during VOCl monitoring. The system is capable of measuring VOCl in gas-phase samples or aqueous solutions over a wide linear dynamic range. The lower limit of detection for trichloroethylene (TCE), perchloroethylene (PCE), carbon tetrachloride (CCl{sub 4}), and other related compounds in the gas-phase is 1 to 5 ppm{sub v/v}, and in the aqueous-phase is 5 to 10 mg/L. Waste site characterization and remediation activities often require chemical analysis in the vadose zone and in groundwater. These analyses are typically performed in analytical laboratories using widely accepted standardized methods such as gas chromatography, gas chromatography/mass spectrometry. The new developments with HaloSnif provide rapid field screening which can augment the standardized methods.