Powered by Deep Web Technologies
Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater.  

E-Print Network (OSTI)

?? Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used… (more)

Hodzic, Elvisa

2011-01-01T23:59:59.000Z

2

Analysis of organic carbon and moisture in Hanford single-shell tank waste  

SciTech Connect

This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

1995-05-01T23:59:59.000Z

3

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

4

A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran  

Science Conference Proceedings (OSTI)

Total organic carbon (TOC) content present in reservoir rocks is one of the important parameters, which could be used for evaluation of residual production potential and geochemical characterization of hydrocarbon-bearing units. In general, organic-rich ... Keywords: Committee machine, Fuzzy logic, Genetic algorithm, Neural network, Neuro-fuzzy, Petrophysical data, South Pars Gas Field, Total organic carbon

Ali Kadkhodaie-Ilkhchi; Hossain Rahimpour-Bonab; Mohammadreza Rezaee

2009-03-01T23:59:59.000Z

5

Low level TOC measurement method  

DOE Patents (OSTI)

A method for the determination of total organic carbon in an aqueous sample by trapping the organic matter on a sorbent which is carbon free and analyzing the sorbent by combustion and determination of total CO.sub.2 by IR.

Ekechukwu, Amy A. (Augusta, GA)

2001-01-01T23:59:59.000Z

6

ARM - Measurement - Organic Carbon Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

7

UNCERTAINTIES OF ANION AND TOC MEASUREMENTS AT THE DWPF LABORATORY  

DOE Green Energy (OSTI)

The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) has identified a technical issue related to the amount of antifoam added to the Chemical Process Cell (CPC). Specifically, due to the long duration of the concentration and reflux cycles for the Sludge Receipt and Adjustment Tank (SRAT), additional antifoam has been required. The additional antifoam has been found to impact the melter flammability analysis as an additional source of carbon and hydrogen. To better understand and control the carbon and hydrogen contributors to the melter flammability analysis, SRR's Waste Solidification Engineering (WSE) has requested, via a Technical Task Request (TTR), that the Savannah River National Laboratory (SRNL) conduct an error evaluation of the measurements of key Slurry Mix Evaporator (SME) anions. SRNL issued a Task Technical and Quality Assurance Plan (TTQAP) [2] in response to that request, and the work reported here was conducted under the auspices of that TTQAP. The TTR instructs SRNL to conduct an error evaluation of anion measurements generated by the DWPF Laboratory using Ion Chromatography (IC) performed on SME samples. The anions of interest include nitrate, oxalate, and formate. Recent measurements of SME samples for these anions as well as measurements of total organic carbon (TOC) were provided to SRNL by DWPF Laboratory Operations (Lab OPS) personnel for this evaluation. This work was closely coordinated with the efforts of others within SRNL that are investigating the Chemical Process Cell (CPC) contributions to the melter flammability. The objective of that investigation was to develop a more comprehensive melter flammability control strategy that when implemented in DWPF will rely on process measurements. Accounting for the uncertainty of the measurements is necessary for successful implementation. The error evaluations conducted as part of this task will facilitate the integration of appropriate uncertainties for the measurements utilized in that control strategy. The flammability control strategy presented in relies on SME measurements of TOC and nitrate while one of the uses by WSE of the oxalate and formate measurement data will be the estimation of the amount of carbon coming from antifoam additions. The estimation is to be conducted by backing out contributions to the measured TOC concentration in the SME from the oxalate and the formate concentrations that are measured in the SME. The resulting adjusted TOC value will provide a basis for WSE to estimate the amount of antifoam that was added for that SME batch. The uncertainties of the oxalate, formate, and TOC measurements provided by the evaluations conducted as part of this task will allow for the propagation of their uncertainties into the estimated quantity of carbon coming from the added antifoam. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for recent SME batches, to conduct an evaluation of their uncertainties, and to provide the approach for propagating the uncertainties associated with these measurements into DWPF's strategies for controlling melter flammability and for monitoring antifoam additions. JMP Version 7.0.2 was used to support the analyses presented in this report.

Edwards, T.

2011-04-07T23:59:59.000Z

8

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

9

Soil organic carbon – A Western Australian perspective Soil organic carbon A Western Australian perspective  

E-Print Network (OSTI)

Sequestering carbon in soils is being investigated worldwide as a way to remove carbon dioxide from the atmosphere and provide land managers with extra income from the sale of carbon offsets or credits. In theory, the opportunity exists for farmers and other land managers to be paid via voluntary trades or carbon trading schemes to implement land management changes that sequester soil carbon, with additional benefits gained in improving the biological, chemical and physical health of their soils. The concept of increasing soil organic carbon is very attractive because it seemingly provides a ‘win-win’ situation in which farmers earn extra income for removing greenhouse gas emissions from the atmosphere while simultaneously lifting the productivity of arable soils. But how realistic is this concept and what opportunities and risks does it present to farmers? Soil organic carbon is part of the global carbon cycle The soil can either represent an enormous ‘source’ or ‘sink ’ of carbon – with more carbon contained in the soil than in the world’s vegetation and atmosphere combined. Soil organic carbon represents a critical component

Janet Paterson; Dr. Fran Hoyle; Department Of Agriculture

2011-01-01T23:59:59.000Z

10

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network (OSTI)

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

11

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Descriptions Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (Site Descriptions) West, T.O., and W.M. Post. 2002. Soil Organic Carbon...

12

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

DOE Green Energy (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

13

Challenges for improving estimates of soil organic carbon stored in  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

14

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering  

E-Print Network (OSTI)

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical matter yield induced by chemical weathering of carbonates and shales, considering their global surface carbonate rocks and shales weathering in major world watersheds, published by numerous authors. The results

Paris-Sud XI, Université de

15

Soil Organic Carbon Sequestration in Reclaimed Minesoils  

NLE Websites -- All DOE Office Websites (Extended Search)

The SOC dynamics in soil macro and micro-aggregate fractions and its effect on long-term carbon (C) sequestration are discussed. Introduction Carbon (C) management in the next...

16

Contribution of organic carbon to wood smoke particulate matter absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

17

Building and testing organized architectures of carbon nanotubes  

Science Conference Proceedings (OSTI)

This paper will focus on the directed assembly of multiwalled carbon nanotubes on various substrates into highly organized structures that include vertically and horizontally oriented arrays, ordered fibers and porous membranes. The concept of growing ...

R. Vajtai; Bingqing Wei; Yung Joon Jung; Anyuan Cao; S. K. Biswas; G. Ramanath; P. M. Ajayan

2003-12-01T23:59:59.000Z

18

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

19

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

20

Soil Organic Carbon Change Monitored Over Large Areas  

DOE Green Energy (OSTI)

Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

2010-11-23T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

Science Conference Proceedings (OSTI)

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-08-01T23:59:59.000Z

22

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

23

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

24

Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition  

E-Print Network (OSTI)

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

Rhodobacter Capsulatus Sb; Nicky C. Caiazza; Douglas P. Lies; Dianne K. Newman

2006-01-01T23:59:59.000Z

25

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices  

E-Print Network (OSTI)

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer and by the fabrica- tion of an organic thin film transistor. An organic solar cell was fabricated from these com

Hong, Soon Hyung

26

Soil Organic Carbon Change Monitored Over Large Areas  

Science Conference Proceedings (OSTI)

Soils account for the largest fraction of terrestrial carbon (C); thus, they are critically important in determining global C cycle dynamics. In North America, conversion of native prairies to agricultural land use over 150 years ago released 30-50% of the soil organic carbon (SOC). Improved agricultural practices have the capacity to recover much of this SOC, storing it in biomass and soil and thereby removing billions of tons of atmospheric CO2. These practices involve increasing C inputs to soil (e.g., by crop rotations, increased use of higher biomass crops, perennial crops) and decreased losses (e.g., reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007]. Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with a technical potential to offset as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; West, Tristram O.; Schumaker, Bonny L.

2010-08-31T23:59:59.000Z

27

Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program Abstract We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors...

28

Historical emissions of black and organic carbon aerosol from energy-related combustion, 18502000  

E-Print Network (OSTI)

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We-related combustion, 1850­2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. 1. Importance

Wisconsin at Madison, University of

29

Role of organic soils in the world carbon cycle: problem analysis and research needs  

SciTech Connect

In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

Armentano, T.V. (ed.)

1980-02-01T23:59:59.000Z

30

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

31

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

SciTech Connect

The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely moisture, and easy regenerability, were all addressed during this program. As predicted at the start of the program, MOFs have high potential for CO{sub 2} capture in the IGCC and flue gas applications.

Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

2008-02-04T23:59:59.000Z

32

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation with Separation with Novel Microporous Metal Organic Frameworks Background UOP LLC, the University of Michigan, and Northwestern University are collaborating on a three-year program to develop novel microporous metal organic frameworks (MOFs) suitable for CO 2 capture and separation. MOFs are hybrid organic/inorganic structures in which the organic moiety is readily derivatized. This innovative program is using sophisticated molecular modeling to evaluate the structurally

33

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network (OSTI)

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

34

Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage  

SciTech Connect

This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

Satcher, Jr., J H; Baumann, T F; Herberg, J L

2005-01-10T23:59:59.000Z

35

Stable carbon isotopic compositions of bacterial fatty acids in a seagrass dominated system  

E-Print Network (OSTI)

The major source of carbon to the bacterial community in a seagrass (Thalassia testudinum) dominated region of Lower Laguna Madre, Texas was determined with the isotopic composition of bacterial phospholipid fatty acids. Rough estimates of bacterial abundance were also obtained from total phospholipid fatty acid concentrations. Core samples came from three differing habitat types consisting of a bare area, a transitional area, and a vegetated area. Five depth intervals of 0-0.5 cm, 0.5-2.5 cm, 4.5-6.5 cm, 8.5-10.5 cm, and 18.5-20.5 cm from each core were used for analyses. Bacterial abundance was significantly higher in the vegetated habitat compared with bare or transitional habitats, which showed little difference from one another. The stable carbon isotope ratios ([ð]¹³C) of branched chain fatty acids, iso- and anteiso-15:0 (i&a15:0) found only in bacteria were used to assess carbon utilization. The [ð]¹³C of total organic carbon (TO¹³C) and the ubiquitous fatty acid 16:0 were used as a proxy of organic carbon sources to the sediment. T. testudinum above ground tissues averaged -11.8±0.3[0/00] and benthic microalgae, as represented by the fatty acid 20:5[]3, averaged -20.5±0.6[0/00]. The TO¹³C from all habitats and depths were within ±2[0/00] of T. testudinum above ground tissues suggesting the majority of organic carbon was derived from this source. The [ð]¹³C of i&a15:0 in all habitats and depths were within ±3[0/00] of TO¹³C. In bare and transitional habitats, ¹³C-enriched values of -9[0/00] were observed at the surface, possibly indicating the influence of degradation. These data suggest that seagrass carbon is entering the microbial loop, thereby making this carbon available to higher trophic levels.

Jones, Walter Brian

2001-01-01T23:59:59.000Z

36

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized… (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

37

Microsoft Word - Contract TOC Final SC.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

programs sponsored by major DOE organizations. Primary DOE sponsors include: * Office of Science * Environmental Management * Nuclear Energy Science and Technology * Energy...

38

TethyanMediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels  

E-Print Network (OSTI)

Tethyan­Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels KAY@geowiss.uni-hamburg.de) Geological Institute, ETH Zurich, Zurich, Switzerland ABSTRACT The Jurassic to Holocene record of black shale sections or drill cores. The term `black shale' is used here broadly for sediments with elevated organic

Gilli, Adrian

39

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

carbon particles in the Detroit urban area: Wintertimeparticulate concentrations in Detroit, Atmos. Environ. , 19,meteorological parameters in Detroit, Atmos. Environ. , 19,

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

40

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

Ryu (2004), Carbonaceous aerosol characteristics ofPM 2.5Allen (1990), Transported acid aerosols measured in southernconference international aerosol carbon round robin test

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations  

E-Print Network (OSTI)

: Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

Torres-Verdín, Carlos

42

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network (OSTI)

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks projects aimed at using hydrogen as a clean fuel for automobiles and producing clean energy by designing achieve higher storage capacities for hydrogen, (1) (a) Leaf, D.; Verolmec, H. J. H.; Hunt, W. F., Jr. En

Yaghi, Omar M.

43

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Paulson, S E

2012-05-30T23:59:59.000Z

44

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

45

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

NLE Websites -- All DOE Office Websites (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

46

Bioavailable organic carbon in wetland soils across a broad climogeographic area  

E-Print Network (OSTI)

Soils from a broad climogeographic region of the U.S., ranging from Alaska to Louisiana and Texas, were obtained from the NRCS National Soils Laboratory in Lincoln, Nebraska. Soils were also collected in the summer of 1996 from upland and poorly drained areas in northern Alaska for comparison of biological properties and to determine the effects of drying on estimation of microbial biomass and activity. Air-dried soils were moistened and incubated 48 h, during which time CO? evolution was measured. Following the preincubation, microbial biomass was determined using a modification of the chloroform-fumigation-incubation method to accommodate limited sample quantity. Carbohydrates were determined using bicinchoninic acid reagent and total extractable carbon was determined by analysis of 0.5-M K?SO? extracts with a total carbon analyzer. The objectives of this study were to elucidate geographical trends and meaningful relationships between the bioavailable C parameters. Soil microbial biomass, determined by chloroform fumigation incubation, correlated best with organic C and basal respiration with subtraction of unfumigated controls. Extraction of C with hot water was a rapid, simple procedure that provided the best predictor of soil respiration. Potassium sulfate-extractable carbon was consistently lower than hot water extractable C. Soils from northern states tended to contain more organic carbon than soils in southern states, however, not necessarily more bioavailable C. Detecting geographical trends for bioavailable C proved more difficult due to numerous factors such as topographic position, surface vegetation, climate, and land use.

Baker, Andrew Dwight

2002-01-01T23:59:59.000Z

47

Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes  

SciTech Connect

The Li-O2 chemistry in nonaqueous carbonate electrolytes and the underneath reason of its limited reversibility was exhaustively investigated. The discharge products collected from the air cathode in a Li-O2 battery at different depth of discharge (DOD) were systematically analyzed with X-ray diffraction. It is revealed that, independent of the discharge depth, lithium alkylcarbonate (either lithium propylenedicarbonate - LPDC, or lithium ethylenedicarbonate - LEDC, with other related derivatives) and lithium carbonate (Li2CO3) are always the main products, obviously originated from the electrolyte solvents propylene carbonate (PC) and ethylene carbonate (EC). These lithium alkylcarbonates are obviously generated from the single-electron reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. On the other hand, neither lithium peroxide (Li2O2) nor lithium oxide (Li2O) is detected. More significantly, from in situ gas chromatography/mass spectroscopy it is found that Li2CO3 and Li2O cannot be oxidized even when charged up to 4.6 V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily able to, with CO2 and CO released with the re-oxidation of LPDC and LEDC. It is therefore concluded that the quasi-reversibility of Li-O2 chemistry observed hitherto in an organic carbonate-based electrolyte is actually reliant on the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharge process and the subsequent oxidation of these same alkylcarbonates during charge process. It is the poor oxidizability of these alkylcarbonate species that constitutes the obstruction to an ideal rechargeable Li-O2 battery.

Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Jiguang

2011-11-15T23:59:59.000Z

48

Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska  

E-Print Network (OSTI)

High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This dissertation summarizes the results of the first study to look at long term, fine scale organic carbon delivery by the high-Arctic Colville River into Simpson’s Lagoon in the near-shore Beaufort Sea. Modern delivery of organic carbon to the Lagoon was determined to come from a variety of sources through the use of a three end-member mixing model and sediment biomarker concentrations. These sources include the Colville River in the western area of the Lagoon near the river mouth, marine sources in areas of the Lagoon without protective barrier islands, and coastal erosional sources and the Mackenzie River in the eastern area of the Lagoon. Downcore organic carbon delivery was measured on two cores in the Lagoon, one taken near the mouth of the Colville River (spans about 1800 years of history) and one taken on the eastern end of the Lagoon (spans about 600 years of history). Bulk organic parameters and biomarkers were measured in both cores and analyzed with Principle Component Analysis to determine long-term trends in organic carbon delivery. It was shown that at various times in the past, highly degraded organic carbon inputs of what is likely soil and peat carbon were delivered to the Lagoon. At other times, inputs of fresher, non-degraded, terrestrially-derived organic carbon inputs of what are likely higher amounts of plant and vegetative material was delivered to the Lagoon. Inputs of degraded soil carbon were also shown to correspond to higher temperatures on the North Slope of Alaska, likely indicating that warmer temperatures lead to a thawing of permafrost and in turn organic carbon mobilization to the coastal Beaufort Sea.

Schreiner, Kathryn 1983-

2013-05-01T23:59:59.000Z

49

Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils  

Science Conference Proceedings (OSTI)

Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

2014-01-01T23:59:59.000Z

50

Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode  

Science Conference Proceedings (OSTI)

The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical ...

Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

2012-01-01T23:59:59.000Z

51

EVOLUTIONARY AND GEOLOGIC CONSEQUENCES OF ORGANIC CARBON FIXING IN THE PRIMITIVE ANOXIC OCEAN  

E-Print Network (OSTI)

photosynthesis primary carbon dioxide-fixing mechanism.trophic bacteria to fix carbon dioxide. These bacteria toas the primary energy fix carbon dioxide. The free source to

Berry, W.B.N.

2013-01-01T23:59:59.000Z

52

OBSERVATION Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

E-Print Network (OSTI)

ABSTRACT The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85 % of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. IMPORTANCE Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-01-01T23:59:59.000Z

53

Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment  

Science Conference Proceedings (OSTI)

Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

2008-05-15T23:59:59.000Z

54

Sources and Fates of Dissolved Organic Carbon in Rural and Urban Watersheds in Brazos County, Texas  

E-Print Network (OSTI)

The Bryan/College Station (B/CS) region has been reported to have elevated concentrations of dissolved organic carbon (DOC) in surface water. Increased DOC concentrations are worrisome as DOC has been shown to be an energy source for the recovery and regrowth of E. coli and many watersheds are impaired by high bacteria levels. To examine the sources and fates of DOC in rural and urban regions to better understand DOC movement though the environment, seven watersheds were studied. To investigate source, streams were analyzed using diffuse reflectance near infrared spectroscopy (DR-NIR) and carbon isotopes. Fate of DOC was determined through monthly streams samples, gathered between March 2011 and February 2012, which were incubated for biodegradable DOC (BDOC). Soil in the region was sampled based on land use categories. Soil was analyzed for DOC and BDOC as well as DOC adsorption, the other major fate of DOC. Above ground vegetation was sampled in conjunction with soil and analyzed for BDOC. Data indicated that fecal matter from cliff swallows provided considerable organic material to streams in the B/CS region as shown through DR-NIR. Carbon isotope values in streams ranged from -23.5 +/- 0.7% to -26.8 +/- 0.5%. Stream spectra may be able to predict carbon isotope values in streams (Adj. R2 = 0.88). Mean annual stream DOC concentrations ranged from 11 +/- 3 mg/L to 31 +/- 12 mg/L, which represents a significant decrease in DOC between 2007 and 2011. Concurrent increases in pH and conductivity were also recorded. The decrease in DOC and the increases in pH and conductivity may be due to impacts of high sodium irrigation tap water. Biodegradable DOC was low in streams, which is likely due to DOC being present in streams in refractory forms that are resistant to microbial breakdown. Soil chemistry, including soil adsorption, was greatly influenced by sodium. The elevated adsorption coefficients and release values seen in highly developed and urban open areas can be attributed to frequent exposure to high sodium irrigation water. The results indicate that sodium is a major driver of DOC in the system. Sound management decisions concerning irrigation water chemistry and urban development might eventually emerge to protect water quality as a result of this research.

Cioce, Danielle

2012-08-01T23:59:59.000Z

55

Comparison of sampling methods for semi-volatile organic carbonAssociated with PM2.5  

SciTech Connect

This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders and impregnated back-up filters in two different samplers, the VAPS and the PC-BOSS. The two organic diffusion denuders were XAD-coated glass annular denuders and charcoal-impregnated cellulose fiber filter(CIF) denuders. In addition, recently developed XAD-impregnated quartz filters were compared to CIF filters as back-up filter collection media. The two denuder types resulted in equivalent measurement of particulate organic carbon and particle mass. The major difference observed between the XAD and charcoal BOSS denuders is the higher efficiency of charcoal for collection of more volatile carbon. This more volatile carbon does not contribute substantially to the particle mass or SVOC measured as OC on quartz filters downstream of the denuders. This volatile carbon does result in high OC concentrations observed in charcoal filters placed behind quartz filters downstream of the XAD denuders and would result in overestimating the SVOC in that configuration.

Lewtas, Joellen; Booth, Derrick; Pang, Yanbo; Reimer, Steve; Eatough, Delbert J.; Gundel, Lara A.

2001-06-29T23:59:59.000Z

56

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

57

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

58

Predicting Agricultural Management Influence on Long-Term Soil Organic Carbon Dynamics: Implications for Biofuel Production  

SciTech Connect

Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1 19 C), precipitation (402 973 mm), and SOC (5.89 33.58 g SOC kg 1) at the LTE sites were significantly related (r 2 = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks

Gollany, H. T. [USDA ARS; Rickman, R. W. [USDA ARS; Albrecht, S. L. [USDA ARS; Liang, Y. [University of Arkansas; Kang, Shujiang [ORNL; Machado, S. [Oregon State University, Corvallis

2011-01-01T23:59:59.000Z

59

Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well  

E-Print Network (OSTI)

, and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, and mineral composition is an integral part of unconventional shale reservoir formation evaluation. Porosity requirement for economically viable flow of gas in very-low permeability shales. Brittle shales are favorable

Torres-Verdín, Carlos

60

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network (OSTI)

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape Topographic Positions at the Molecular Scale  

E-Print Network (OSTI)

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape spectra and maps were collected. Results: C Distribution and Associations with the Major Elements in Soil Clay Particles Fig.1. Relative elemental distribution maps (9µm�6µm) of clay fractions from the A

Sparks, Donald L.

62

Article Geography doi: 10.1007/s11434-012-5529-9 Preliminary estimation of the organic carbon pool in China’s wetlands  

E-Print Network (OSTI)

Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans. The inventory approach is a realistic method for estimating the organic carbon pool in China’s wetlands at the national scale. An updated data and inventory approach were used to estimate the amount of organic carbon stored in China’s wetlands. Primary results are as follows: (1) the organic carbon pool of China’s wetlands is between 5.39 and 7.25 Pg, accounting for 1.3%–3.5 % of the global level; (2) the estimated values and percentages of the organic carbon contained in the soil, water and vegetation pools in China’s wetlands are 5.04–6.19 Pg and 85.4%–93.5%, 0.22–0.56 Pg and 4.1%–7.7%, 0.13–0.50 Pg and 2.4%–6.9%, respectively. The soil organic carbon pool of China’s wetlands is greater than our previous estimate of 3.67 Pg, but is lower than other previous estimates of 12.20 and 8–10 Pg. Based on the discussion and uncertainty analysis, some research areas worthy of future attention are presented. wetland carbon pool, inventory approach, remote sensing, soil carbon density, wetland vegetation Citation: Zheng Y M, Niu Z G, Gong P, et al. Preliminary estimation of the organic carbon pool in China’s wetlands. Chin Sci Bull,

Zheng Yaomin; Niu Zhenguo; Gong Peng; Dai Yongjiu; Shangguan Wei

2012-01-01T23:59:59.000Z

63

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

64

Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321  

DOE Green Energy (OSTI)

Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

Olson, D.

2012-04-01T23:59:59.000Z

65

Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia  

E-Print Network (OSTI)

The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant pigment, black carbon (BC) on ECS sediments sampled in winter 2009 and 2010 in order to study the OC cycling under the influence of natural and anthropogenic disturbance. Low-oxygen tolerant foraminiferal microfossils were analyzed in another two sediment cores to study the historical hypoxia events in the Changjiang LDE. Bulk carbon to nitrogen (C/N) ratio and stable isotope ?13C in the surface sediment samples indicated a mixture source of terrestrial, deltaic and marine derived OC. Refractory BC and reworked marine OC seemed to comprise most of the OC pool with older, less reactive signatures as deduced from ?14C, and BC analyses. Winter wind/wave energy and hydrodynamic sorting had a substantial winnowing effect on surface sediment OC redistribution. As a result, the highest lignin concentration shifted to the south during the 2010 cruise after the summer flood event. In addition, algal inputs from local deltaic lakes due to eutrophication and/or lateral transport likely caused the observed lack of benthic-pelagic coupling of pigment concentrations between the surface sediments and the water column after the summer flood in 2010. For the down-core sediment, the mass accumulation rate distribution followed the dispersal pathway of the ECS sediment. Terrestrial and marine derived OC showed significant spatial and temporal distribution. Lignin rich materials were better preserved in sediments closer to the coast while offshore sediments tended to be composed of lignin-poor, degraded OC, that were likely hydrodynamically sorted to a long distance during transport. Besides eutrophication, plant pigments indicated that marine-derived OC was mostly deposited in the sediment mixed layer with decay in the underlying sediment accumulation layer. The total OC standing stock since 1900 is approximately 1.62±1.15 kgC m^-2, about 1/10 of the total OC stock in all the middle and lower lakes in the Changjiang catchment. There has been an increase in the number of hypoxic bottom water events on the Changjiang LDE over the past 60 yrs indicated from the increases in low-oxygen tolerant foraminiferal microfossils due to excess deposition of OC and summer stratification.

Li, Xinxin

2013-05-01T23:59:59.000Z

66

Low dissolved organic carbon input from fresh litter to deep mineral soils  

SciTech Connect

Dissolved organic carbon (DOC) leached from recent litter in the forest floor has been suggested to be an important source of C to the mineral soil of forest ecosystems. In order to determine the rate at which this flux of C occurs we have taken advantage of a local release of 14C at Oak Ridge National Laboratory Reservation, USA (latitude N 35 58'; longitude W 84 16'). Eight replicate 7x7 m plots were estab lished at four field sites on the reservation in an upland oak forest setting. Half of the plots were provided with 14C-enriched litter (?14C ?1000 ), and the other half with near-background litter (?14C ?220 ) over multiple years. Differences in the labeled leaf litter were used to quantify the movement of litter derived DOC through the soil profile. Soil solutions were collected over several years with tension lysimeters at 15 and 70 cm depth and measured for DOC concentration and 14C abundance. The net amount of DOC retained between 15 and 70 cm was 1.5-6 g m-2 y-1. There were significant effects of the litter additions on the 14C abundance in the DOC, but the net transport of 14C from the added litter was small. The difference in ?14C between the treatments with enriched and near-background litter was only about 130 at both depths, which is small compared with the difference in ?14C in the added litter. The primary source of DOC within the mineral soil must therefore have been either the Oe/Oa horizon or the organic matter in the mineral soil. Over a 2-year time frame, leaching of DOC from recent litter did not have a major impact on the C stock in the mineral soil below 15 cm in this ecosystem.

Froeberg, Mats J [ORNL; Jardine, Philip M [ORNL; Hanson, Paul J [ORNL; Swanston, Christopher [ORNL; Todd Jr, Donald E [ORNL; Phillips, Jana Randolph [ORNL; Garten Jr, Charles T [ORNL

2007-01-01T23:59:59.000Z

67

Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico  

E-Print Network (OSTI)

The distribution of particulate matter (PM) and particulate organic carbon (POC) was determined during the Northeast Gulf of Mexico Chemical Oceanography and Hydro-graphy program (NEGOM). The hydrography and physical forcing functions were examined to explain particulate matter distribution. PM and POC were determined for discrete samples, and PM was also compared with in situ beam attenuation measure-ments in order to make estimations of continuous particle concentration profiles. Measurements were made three times per year for three years, during 1997-1998, 1998-1999, and 1999-2000, but only the first two years' worth of results are reported here. PM distributions vary seasonally and interannually. General patterns tend to be fairly consistent spatially and temporally during fall and spring, but intensity changes accord-ing to season. Differences present at the surface appear to be due mainly to riverine input of nutrients and particles from the several major rivers that flow into the northeastern Gulf of Mexico. Wind-forced circulation appears to be a minor influence on surface particulate distribution. Secondary eddies can have an effect upon distribution, as seen with an anticyclonic feature over the upper slope during Summer 1998 which entrained less saline, high particulate river water offshore. A similar effect was noted during Summer 1999, but to a lesser degree. A shelf edge current associated with anticyclonic flow seems to be a mechanism responsible for the appearance of nepheloid layers on the outer shelf.

Bernal, Christina Estefana

2001-01-01T23:59:59.000Z

68

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

69

Influence of Dissolved Organic Carbon and pH on Containment Sorption to Sediment  

DOE Green Energy (OSTI)

Low-Level Waste buried on the SRS contains cellulosic materials, Including wood, paper, and cardboard. Once buried, these materials are expected to degrade to form cellulose degradation products (CDP). Such materials are expected to influence radionuclide speciation in such a way that the radionuclides will sorb less to SRS Subsurface sediments and therefore would migrate more rapidly from the disposal site. The objective of this study was to quantify through laboratory work the influence of CDP and pH on radionuclide sorption to SRS subsurface sediments. The intent of this work was to create a Kd look-up table as a function of radionuclide, pH, and CDP concentration that could be used in future performance assessment calculations. Previous CDP-impacted Kd values were generated using two chemical analogues, UO2 2+ and Eu3+. This study collected data from a wider range of analogues to validate and/or refine this approach. An incomplete-randomized-block-statistical design was used in a laboratory sorption study involving 2 soil types (sandy and clay textured), 5 dissolved organic carbon concentrations (a measure of CDP), and 3 pH levels. Nonradioactive solutes were used as chemical analogues to the radionuclides of interest to the Low-Level Waste Performance Assessment: monovalent cations (K+ and Cs+), divalent cations (Ni2+ and Sr2+), trivalent cations (Ce3+ and Eu3+), tetravalent cations (Th4+ and Zr4+), and an anion (ReO4-). Analogues were matched to approximately 30 radionuclides based on similarities in periodicity and chemical properties. All CDP-impacted Kd values generated from this study were equal to or greater than those used in previous performance assessments. These larger Kd values may result in a greater Waste Acceptance Criteria (WAC), which in turn may permit greater amounts of Low-Level Waste to be safely disposed on site, saving the site the expense of shipping the waste off-site for disposal.

KAPLAN, DANIEL

2004-09-30T23:59:59.000Z

70

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018  

SciTech Connect

We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M. [University of Illinois, Urbana, IL (USA). Dept. of Civil & Environmental Engineering

2007-05-15T23:59:59.000Z

71

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

72

Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling).  

E-Print Network (OSTI)

??It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and… (more)

Sabouni, Rana

2013-01-01T23:59:59.000Z

73

Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water  

Science Conference Proceedings (OSTI)

An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

Chan, Wai Kit, E-mail: kekyeung@ust.hk [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Joueet, Justine; Heng, Samuel; Yeung, King Lun [Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Schrotter, Jean-Christophe [Water Research Center of Veolia, Anjou Recherche, Chemin de la Digue, BP 76. 78603, Maisons Laffitte, Cedex (France)

2012-05-15T23:59:59.000Z

74

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

Science Conference Proceedings (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

75

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

76

Resolution of Hanford tanks organic complexant safety issue  

SciTech Connect

The Hanford Site tanks have been assessed for organic complexant reaction hazards. The results have shown that most tanks contain insufficient concentrations of TOC to support a propagating reaction. It has also been shown that those tanks where the TOC concentration approaches levels of concern, degradation of the organic complexants to less energetic compounds has occurred. The results of the investigations have been documented. The residual organic complexants in the Hanford Site waste tanks do not present a safety concern for long-term storage.

Kirch, N.W.

1998-05-14T23:59:59.000Z

77

Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento-San Joaquin Delta  

E-Print Network (OSTI)

Wang, and S. Rojstaczer. 1998. Subsidence of organic soils,Prokopovich, N.P. 1985. Subsidence of peat in California andDeverel, S.J. 1998. Subsidence mitigation in the Sacramento-

Deverel, Steven J; Leighton, David A; Finlay, Mark R

2007-01-01T23:59:59.000Z

78

Impact of Post-Synthesis Modification of Nanoporous Organic Frameworks on Selective Carbon Dioxide Capture.  

E-Print Network (OSTI)

??Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation applications that impact the environment and… (more)

?slamo?lu, Timur

2013-01-01T23:59:59.000Z

79

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

Sun, Y. et al. Size-resolved aerosol chemistry on Whistlerwith a high-resolution aerosol mass spectrometer duringBasis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos.

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

80

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

Kroll, Jesse

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Patents (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

Pekala, R.W.

1998-04-28T23:59:59.000Z

82

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Green Energy (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

Pekala, Richard W. (Pleasant Hill, CA)

1998-04-28T23:59:59.000Z

83

Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

84

Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide  

SciTech Connect

Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

Schilling, J.B.

1997-09-01T23:59:59.000Z

85

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

86

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

87

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

Science Conference Proceedings (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

88

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents (OSTI)

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

89

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

SciTech Connect

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

90

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

91

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot

2004-06-30T23:59:59.000Z

92

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An OI Analytical 1020A Total Organic Carbon (TOC) Analyzer is used to measure the TOC in the samples. The liquid TOC analyzer directly measures An OI Analytical 1020A Total Organic Carbon (TOC) Analyzer is used to measure the TOC in the samples. The liquid TOC analyzer directly measures both total carbon (TC) and total inorganic carbon (TIC). The CO2 released following combustion is measured to determine the quantity of total carbon in the sample. TIC measurements require an additional sample uptake followed by acidification of the sample with phosphoric acid. The acid reacts with any inorganic carbon in the sample (e.g., carbonate ion or bicarbonate ion) to form CO2 which is measured by the analyzer as the TIC. TOC is determined by manually subtracting the TIC from the TC. Total Carbon Analysis of Liquid Environmental Samples Savannah River Site Aiken South Carolina TC - A - 2009 - 170, Rev. 0

93

TOC for Website  

Science Conference Proceedings (OSTI)

... Thurmont. Howard. Virginia. Mexico; Costa Rica. South America: Paraguay; Brazil; Argentina. Antarctica. End of Table of Contents

94

expbook.toc - CECM  

E-Print Network (OSTI)

... Considerations 6 section 1.3Proof Versus Truth 9 section 1.4Paradigm Shifts .... Examples 611 chapter List of Figures 629 chapter List of Tables 631 chapter ...

95

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network (OSTI)

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

96

Efficient Organic Excitonic Solar Cells with Carbon Nanotubes Replacing In2O3:Sn as the Transparent Electrode (Presentation)  

DOE Green Energy (OSTI)

The conclusions of this report are that: (1) organic solar cells with efficiencies of up to 1.43% conversion efficiency that use no ITO and no PEDOT:PSS, are demonstrated; (2) a cell without ITO, but with PEDOT:PSS gave 2.6% conversion efficiency; (3) due to porous nature of SWCNT substrates, optimization of the active layer is essential; and (4) SWCNT electrodes bring one step closer the goal of a fully printable, organic solar cell.

van de Lagemaat, J.; Barnes, T.; Rumbles, G.; Shaheen, S.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.

2006-05-01T23:59:59.000Z

97

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

98

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

99

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

100

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium ...

102

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

103

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

104

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

NLE Websites -- All DOE Office Websites (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

105

System to Continuously Produce Carbon Fiber via Microwave-Assisted ...  

Biomass and Biofuels; Building ... Carbon and graphite fibers are conventionally produced through the controlled pyrolysis of fibrous organic carbon precursors ...

106

Tuning the Gate Opening Pressure of Metal Organic Frameworks (MOFs) for the Selective Separation of Hydro-carbons  

E-Print Network (OSTI)

Separation of hydrocarbons is one of the most energy demanding processes. The need to develop materials for the selective adsorption of hydrocarbons, under reasonable conditions, is therefore of paramount importance. This work unveils unexpected hydrocarbon selectivity in a flexible Metal Organic Framework (MOF), based on differences in their gate opening pressure. We show selectivity dependence on both chain length and specific framework-gas interaction. Combining Raman spectroscopy and theoretical van der Waals Density Functional (vdW-DF) calculations, the separation mechanisms governing this unexpected gate opening behavior are revealed.

Nijem, Nour; Canepa, Pieremanuele; Marti, Anne; Balkus,, Kenneth J; Thonhauser, T; Li, Jing; Chabal, Yves J; 10.1021/ja305754f

2012-01-01T23:59:59.000Z

107

Influence of temperature, moisture, and organic carbon on the flux of H/sub 2/ and CO between soil and atmosphere: field studies in subtropical regions  

Science Conference Proceedings (OSTI)

Production and deposition rates of atmospheric hydrogen and carbon monoxide were studied during field measurements in subtropical regions, i.e., Transvaal (South Africa), Andalusia (Spain), and the Karoo (South Africa). Measurements were carried out by applying static and equilibrium box techniques. The equilibrium technique has been introduced as a novel method to measure production and destruction rates simultaneously even when soil conditions (e.g., temperature) change during the course of the measurements. Deposition velocities of H/sub 2/ and CO were virtually independent of the soil temperature measured in 3- to 10-mm depths and agreed with those measured in the temperate regions. The deposition velocities were inhibited or stimulated by irrigation water depending on the conditions of the individual field sites. H/sub 2/ production by soil was not observed. By contrast, CO was produced by soil in a dark chemical reaction. Production rates increased exponentially with soil temperatures, giving activation energies of 57-110 kJ mol/sup -1/ and increased linearly with soil organic carbon content. CO production rates followed a diel rhythm parallel to soil surface temperatures. Production generally exceeded CO deposition during the hot hours of the day, so that arid subtropical soils act as a net source of atmospheric CO during this time. On a global basis, CO production by soil may reach source strengths of 30 Tg yr/sup -1/, which is considerably less than the global deposition of CO estimated to be 190-580 Tg yr/sup -1/. Global H/sub 2/ deposition rates were estimated to 70-110 Tg yr/sup -1/.

Conrad, R.; Seiler, W.

1985-06-20T23:59:59.000Z

108

Carbon Accounting in Forest Ecosystems  

E-Print Network (OSTI)

. Carbon Pools: Above ground biomass Belowground BiomassBelowground Biomass Soil Organic Carbon Dead: · Aboveground biomassAboveground biomass · Belowground biomass · Soil Organic Carbon · Litter · Dead Wood· Dead Wood · (Wood Products) T�V S�D Industrie Service GmbH #12;Principles · Biomass is usually measured

Pettenella, Davide

109

Microsoft Word - toc.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Appendix H Procedures for the Transportation of Radioactive Materials U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Rev. 0 Doc. No. S0038700 Rev. Date: June 25, 2007 Page H-3 H1.0 Purpose The purpose of this procedure is to ensure that radioactive material is transported (1) using best management practices, (2) in compliance with U.S. Department of Transportation (DOT) requirements, and (3) with minimal risk to human health and the environment. For the purposes of this procedure, radioactive material refers to uranium mill tailings (UMT)-related material, unless stated otherwise. H1.1 Scope * Establishes the requirements for transporting radioactive material on public highways

110

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

F F Radiological Survey Procedures U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Rev. 0 Doc. No. S0038700 Rev. Date: June 25, 2007 Page F-3 F.1 Radiological Survey Procedures This section describes the actions and method used by the Monticello Legacy Management (LM) Representative when conducting radiological surveys for the purpose of identifying radiologically contaminated material and determining the Radium-226 (Ra-226) concentration of that material. This section applies to all radiological surveys on Monticello supplemental standards properties and the temporary storage facility. F.1.1 Responsibilities Monticello LM Representative⎯Will be responsible for: * Performing radiological surveys in accordance with this procedure,

111

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

D D Photographs of Utah and San Juan County-Listed Noxious Weeds and Undesirable Weeds Photographs taken from: Weeds of the West, Tom D. Whitson, Editor published by The Western Society of Weed Science, Newark, California 9th Edition, 2002 U n c o n t r o l l e d c o p y Annual sunflower, Helianthus annuus Undesirable Bermudagrass, Cynodon dactylon Noxious (on list) U n c o n t r o l l e d c o p y Buffalobur, Solanum rostratum Noxious (found near site) Camelthorn, Alhagi maurorum Noxious (on list) U n c o n t r o l l e d c o p y Canada thistle, Cirsium arvense Noxious (found near site) Cheatgrass, Bromus tectorum Undesirable U n c o n t r o l l e d c o p y Diffuse knapweed, Centaurea diffusa Noxious (on list) Dyer's woad, Isatis tinctoria Noxious (on list) U n c o n t r o l l e d c o p y Field bindweed, Convolvulus arvense

112

Microsoft Word - toc.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

K K MMTS and MVP Site Inspection Checklists U n c o n t r o l l e d c o p y MMTS Annual Inspection Checklist U n c o n t r o l l e d c o p y MMTS Annual Inspection Checklist Page 1 of 38 I. MMTS Site Information Site name: Monticello Mill Tailings (USDOE) Site; Operable Units I, II, and III Date of inspection: Site Location: Monticello, Utah: EPA Region 8 EPA ID: UT 3890090035 Lead Agency: U.S. Department of Energy Office of Legacy Management (DOE-LM) PCOR Date: September 2004 Operational and Functional Date: September 29, 2004 (construction complete date) NPL Deletion Date: 2045 (projected time for ground water and surface water restoration) Partial Deletion: October 13, 2003 (deletion of properties not impacted by surface water and ground water contamination). Current Year O&M Budget:

113

Microsoft Word - toc.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

B B Document Control and Records Management Procedures U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Rev. 0 Doc. No. S0038700 Rev. Date: June 25, 2007 Page B-3 B1.0 Document Control and Records Management Procedures Administrative procedures have been developed to define responsibilities, establish documentation and change control requirements, and employ standard work processes in implementing the monitoring, inspection and review requirements established in the Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites (LTS&M Plan). Included within this appendix are (1) the document control procedures that will be used in managing the LTS&M Plan, (2) the records management procedures that will be used in developing,

114

Microsoft Word - toc.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

y y Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Office of Legacy Management DOE M/1465 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy U n c o n t r o l l e d c o p y Copy No. _______ Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites U n c o n t r o l l e d c o p y Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites

115

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

I Ground Water Management Policy for the MMTS and Adjacent Areas U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the...

116

February 2010 TOC.indd  

Science Conference Proceedings (OSTI)

Feb 2, 2010 ... and geothermal power is available. Ad- ditional sources of hydro power are be- ing developed in China and Brazil and this trend is expected to ...

117

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

Louise Jones San Juan County Monticello, UT Utah Department of Transportation UDOT Price District Director Hugh Kirkham UDOT Price, UT UDOT Monticello Station Supervisor Chet...

118

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

J Ground Water Remedy Performance Evaluation Plan U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for Monticello NPL Sites...

119

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

y Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Office of Legacy Management DOE M1465 2007 - -L Work Performed Under DOE Contract No. for the U.S....

120

spread_comp_02 TOC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a central net- work security location for verification and fulfillment. People can be a weak link in an otherwise secure network. Conduct training and information awareness...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft Word - toc.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

G G Uranium Scanning Procedure U n c o n t r o l l e d c o p y U.S. Department of Energy Long-Term Surveillance and Maintenance Plan for the Monticello NPL Sites Rev. 0 Doc. No. S0038700 Rev. Date: June 25, 2007 Page G-3 Uranium Scanning Procedure for Property MP-00211 1. Select a Ludlum Model 12 ratemeter with a 44-9 pancake Geiger-Mueller beta-gamma detector or equivalent instrument capable of meeting detection limit criteria. 2. Check that the ratemeter and the detector have calibration stickers attached and that both calibration intervals are valid. Record the calibration due dates in the appropriate section of the Operational Check form (Figure G-1). 3. Check and inspect the instrument for any physical damage. Check the face of the detector to confirm the absence of holes and/or contamination.

122

Microsoft Word - toc.doc  

Office of Legacy Management (LM)

C Site Specific Emergency Response and Hazard Survey Information U n c o n t r o l l e d c o p y U n c o n t r o l l e d c o p y U n c o n t r o l l e d c o p y U n c o n t r o l l...

123

NSLS 1997 Activity Report TOC  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Editor: J.B. Hastings Production Assistants: L. Feierabend, L. Rogers, N. Wright Abstract Submission System: P. Sutherland (BNL Information Systems Division) You need...

124

NSLS 1998 Activity Report TOC  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Editor: J.B. Hastings Production Assistants: L. Feierabend, L. Rogers, N. Wright Abstract Submission System: P. Sutherland (BNL Information Services Division)...

125

Hierarchical Template of Porous Carbon for Multifunctional ...  

Science Conference Proceedings (OSTI)

Hierarchical Template of Porous Carbon for Multifunctional Applications · Interstitial Hydride ... Structurally Dynamic Metal Organic Frameworks for CO2 Capture.

126

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

127

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

128

STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES  

Science Conference Proceedings (OSTI)

Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

2005-04-01T23:59:59.000Z

129

 

NLE Websites -- All DOE Office Websites (Extended Search)

An OI Analytical Solids Total Organic Carbon (TOC) Analyzer measures both total carbon (TC) and total organic carbon (TOC) in solid, semi-solid, or An OI Analytical Solids Total Organic Carbon (TOC) Analyzer measures both total carbon (TC) and total organic carbon (TOC) in solid, semi-solid, or slurry samples. TC is determined by measuring the quantity of carbon dioxide (CO2) devolved when the sample is heating to approximately 900°C in an oxygen atmosphere, which removes all carbon present as CO2 gas. TOC measurements require preacidification of the sample with hydrochloric acid followed by heating at 250°C in an oxygen atmosphere to purge the sample of total inorganic carbon (TIC). The sample is then heated to 950°C and the quantity of CO2 released is measured, which relates only to the TOC as all of the inorganic carbon has been removed. TIC is determined by manually subtracting the TOC from the TC.

130

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An OI Analytical Solids Total Organic Carbon (TOC) Analyzer measures both total carbon (TC) and total organic carbon (TOC) in solid, semi-solid, or An OI Analytical Solids Total Organic Carbon (TOC) Analyzer measures both total carbon (TC) and total organic carbon (TOC) in solid, semi-solid, or slurry samples. TC is determined by measuring the quantity of carbon dioxide (CO2) devolved when the sample is heating to approximately 900°C in an oxygen atmosphere, which removes all carbon present as CO2 gas. TOC measurements require preacidification of the sample with hydrochloric acid followed by heating at 250°C in an oxygen atmosphere to purge the sample of total inorganic carbon (TIC). The sample is then heated to 950°C and the quantity of CO2 released is measured, which relates only to the TOC as all of the inorganic carbon has been removed. TIC is determined by manually subtracting the TOC from the TC.

131

The effect of elevated atmospheric carbon dioxide mixing ratios on the emission of Volatile organic compounds from Corymbia citriodora and Tristaniopsis laurina.  

E-Print Network (OSTI)

??Bibliography: p. 120-124. Introduction  – Environmental factors affecting the emission of biogenic Volatile organic compounds  – Materials and experimental procedures  – Quantification using sold-phase microextraction… (more)

Camenzuli, Michelle

2008-01-01T23:59:59.000Z

132

Philippines-Low Carbon Plan (LCP) | Open Energy Information  

Open Energy Info (EERE)

Philippines-Low Carbon Plan (LCP) Jump to: navigation, search Name Philippines-Low Carbon Plan (LCP) AgencyCompany Organization World Wildlife Fund Sector Energy Topics...

133

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

134

CarbonSolve | Open Energy Information  

Open Energy Info (EERE)

CarbonSolve CarbonSolve Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarbonSolve Agency/Company /Organization: CarbonSolve Sector: Climate Focus Area: Greenhouse Gas Resource Type: Software/modeling tools User Interface: Website Website: www.carbonsolve.com Web Application Link: www.carbonsolve.com Cost: Paid CarbonSolve Screenshot References: CarbonSolve[1] Logo: CarbonSolve The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability objectives - including carbon, water, waste, employee engagement, or supply chain related initiatives into measureable metrics and trackable processes. Overview The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability

135

Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes  

DOE Green Energy (OSTI)

The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

2011-04-15T23:59:59.000Z

136

Energy-efficient indoor volatile organic compound air cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficient indoor volatile organic compound air cleaning using activated carbon fiber media with nightly regeneration Title Energy-efficient indoor volatile organic compound...

137

Methods and systems for chemoautotrophic production of organic compounds  

SciTech Connect

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

138

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

139

Secondary Organic Aerosol Formation From Radical-Initiated Reactions of Alkenes: Development of Mechanisms  

E-Print Network (OSTI)

and Secondary Organic Aerosols in Southern California duringSources of Organic Carbon Aerosols in the Free Troposphere21 co-authors), 2005. Organic Aerosol and Global Climate

Matsunaga, Aiko

2009-01-01T23:59:59.000Z

140

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

142

NETL: News Release - Carbon Sequestration Regional Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

June 10, 2004 Carbon Sequestration Regional Partnership Program Adds Partners Seven States, Thirteen Organizations Added; Will Help Develop Sequestration Options WASHINGTON, DC -...

143

Global climate change and pedogenic carbonates  

SciTech Connect

Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H. [eds.

1999-11-01T23:59:59.000Z

144

Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China  

Science Conference Proceedings (OSTI)

Two field microcosm experiments and 15N labeling techniques were used to investigate the first-year effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by 15N-enriched wheat biochar (7.8803 atom% 15N) and fertilizer urea (5 atom% 15N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg ha-1 to study their effects on GHG emissions (Experiment II). Biochar had no significant impact on rice production and less than 2% of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE.. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. Soil emissions of N2O with biochar amendment were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C. Low bio-availability of biochar N did not make a significant impact on rice production or N nutrition during the first year.. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.

Xie, Zubin; Xu, Yanping; Liu, Gang; Liu, Qi; Zhu, Jianguo; Tu, Cong; Amonette, James E.; Cadisch, Georg; Yong, Jean W.; Hu, Shuijin

2013-09-01T23:59:59.000Z

145

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

146

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

147

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

148

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

149

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

150

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

151

Treatment of organic waste  

DOE Patents (OSTI)

An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

Grantham, LeRoy F. (Calabasas, CA)

1979-01-01T23:59:59.000Z

152

Forest Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Portal Forest Carbon Portal Jump to: navigation, search Tool Summary Name: Forest Carbon Portal Agency/Company /Organization: United Nations Development Programme, United States Agency for International Development, United Kingdom Department for International Development, Forest Trends Sector: Land Focus Area: Forestry Topics: GHG inventory Resource Type: Lessons learned/best practices Website: www.forestcarbonportal.com/ Forest Carbon Portal Screenshot References: FCP[1] "Ecosystem Marketplace's Forest Carbon Portal is a clearinghouse of information, feature stories, event listings, project details, 'how-to' guides, news, and market analysis on forest-based carbon sequestration projects. Deforestation and land-use change are responsible for 17% of the

153

Common Carbon Metric | Open Energy Information  

Open Energy Info (EERE)

Common Carbon Metric Common Carbon Metric Jump to: navigation, search Tool Summary Name: Common Carbon Metric Agency/Company /Organization: United Nations Environment Programme, World Resources Institute Sector: Energy Focus Area: Buildings, Energy Efficiency, Industry Topics: GHG inventory, Implementation Resource Type: Guide/manual, Publications Website: www.unep.org/sbci/pdfs/Common-Carbon-Metric-for_Pilot_Testing_220410.p Common Carbon Metric Screenshot References: Common Carbon Metrics [1] "This paper is offered by the United Nations Environment Programme's Sustainable Buildings & Climate Initiative (UNEP-SBCI), a partnership between the UN and public and private stakeholders in the building sector, promoting sustainable building practices globally. The purpose of this

154

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

155

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

156

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

157

Dissolved organic matter and lake metabolism. Technical progress report, 1 April 1973--31 March 1974  

SciTech Connect

A detailed temporal and spatial carbon budget, essentially a functional detrital carbon budget, was evaluated for an oligotrophic lake system. Emphasis was placed on the fate and mechanisms regulating the qualitative and quantitative utilization and losses of organic carbon. (CH)

Wetzel, G.H.

1974-01-01T23:59:59.000Z

158

ENERGY STAR Update: ENERGY STAR Low Carbon IT Campaign Kicks...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon IT Campaign Kicks Off 2013 with Organizations Pledging to Power Manage 360,000 Computers The ENERGY STAR Low Carbon IT (LCIT) Campaign, a nationwide effort to assist and...

159

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

and Mission Organization Staff - Organization Chart About Us Bob Cottingham, 865-241-0554 Computational Biology and Bioinformatics Meghan Drake 865-241-8288 Michael...

160

Science Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations Science Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Metal Organic Clathrates for Carbon Dioxide Removal  

removal from coal-fired power plant flue gas streams.  Modified variations of the materials can be used in a variety of other fields as well, ...

162

Worldwide Organic Soil Carbon and Nitrogen Data  

NLE Websites -- All DOE Office Websites (Extended Search)

of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from...

163

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network (OSTI)

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD… (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

164

Soil Organic Carbon in Canadian Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

A. J. VandenBygaart, E. G. Gregorich, and D. A. Angers Agriculture and Agri-Food Canada 960 Carling Avenue Ottawa, Ontario K1A 0C5 Abstract To fulfill commitments under the...

165

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

166

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET ...

167

The temporal dynamics of terrestrial organic matter transfer to the oceans : initial assessment and application  

E-Print Network (OSTI)

This thesis employs compound-specific stable carbon and radiocarbon isotopic analysis of organic biomarkers to (a) resolve petrogenic from pre-aged vascular plant organic carbon (OC) in continental margin sediments, (b) ...

Drenzek, Nicholas J

2007-01-01T23:59:59.000Z

168

Microsoft Word - TOC&Units.doc  

Office of Legacy Management (LM)

Table of Contents May 2005 Table of Contents May 2005 2004 Site Environmental Report i Table of Contents List of Figures.................................................................................................................. iv List of Tables................................................................................................................... iii List of Acronyms...............................................................................................................v Units (Abbreviations) and Conversion Table ........................................................................ vii ES 1.0 Executive Summary ES-1 ES 1.1 Liquid Pathway Highlights...................................................................................ES-2 ES 1.1.1 Groundwater Pathway.........................................................................ES-2

169

ATFR Summary Report--TOC/List, ES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPREHENSIVE ASSESSMENT OF TOXIC EMISSIONS FROM COAL-FIRED POWER PLANTS: PHASE I RESULTS FROM THE U.S. DEPARTMENT OF ENERGY STUDY Final Report Prepared for: Pittsburgh Energy...

170

Microsoft Word - tb47_TOC.html  

NLE Websites -- All DOE Office Websites (Extended Search)

MRS Bull. 26, 19-23 (2001). S. R. Stock, K. Ignatiev, W.- K. Lee, K. Fezzaa, G. R. Davis, J. C. Elliott, "Comparison of Crack Geometry Determined with Phase Contrast...

171

USPS Update report cvr and toc  

NLE Websites -- All DOE Office Websites (Extended Search)

UNITED STATES POSTAL SERVICE ELECTRIC CARRIER ROUTE VEHICLE PROGRAM 500 VEHICLE FLEET DEPLOYMENT REPORT M A Y 2 0 0 3 Prepared By Ryerson, Master and Associates, Inc. 735 State...

172

USPS Update report appendices cvr and toc  

NLE Websites -- All DOE Office Websites (Extended Search)

POSTAL SERVICE ELECTRIC CARRIER ROUTE VEHICLE PROGRAM 500 VEHICLE FLEET DEPLOYMENT REPORT APPENDICES M A Y 2 0 0 3 Prepared By Ryerson, Master and Associates, Inc. 735 State...

173

Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report  

SciTech Connect

The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

Lara-Curzio, Edgar [ORNL

2007-06-01T23:59:59.000Z

174

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

175

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

176

Sandbag Carbon Offset Map | Open Energy Information  

Open Energy Info (EERE)

Sandbag Carbon Offset Map Sandbag Carbon Offset Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sandbag Carbon Offset Map Agency/Company /Organization: Sandbag Sector: Energy, Land Focus Area: Renewable Energy, Biomass, Energy Efficiency, Forestry, Geothermal, Hydrogen, Industry, Solar, Wind Topics: Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: sandbag.org.uk/carbondata/cers Sandbag Carbon Offset Map Screenshot References: Sandbag Carbon Offset Map[1] Thinking about climate change can be a depressing occupation. It's a massive issue and personal actions like switching off lights and unplugging televisions can feel like small contributions. Background "Thinking about climate change can be a depressing occupation. It's a

177

Low Carbon World | Open Energy Information  

Open Energy Info (EERE)

Low Carbon World Low Carbon World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: LowCarbonWorld Agency/Company /Organization: LowCarbonEconomy Partner: United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset, Maps Website: www.lowcarboneconomy.com/Low_Carbon_World/Data/Home LowCarbonWorld Screenshot References: LowCarbonWorld[1] Background The idea behind this project was conceived at the 2008 United Nations Conference of Parties (COP14) event in Poznan (Poland). By listening to many speeches by energy ministers from numerous countries in the high level segment of the event, Toddington Harper Managing Director of The Low Carbon Economy Ltd (TLCE) became aware of the depth of valuable information being

178

Organization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us Organization Organization Leadership Organization History Careers Contact Us Organization...

179

Enhancing Low-carbon Development by Greening the Economy: Policy...  

Open Energy Info (EERE)

to: navigation, search Name Enhancing Low-carbon Development by Greening the Economy: Policy Dialogue, Advisory Services, Benchmarking AgencyCompany Organization Deutsche...

180

Enhancing low-carbon development by greening the economy: policy...  

Open Energy Info (EERE)

to: navigation, search Name Enhancing low-carbon development by greening the economy: policy dialogue, advisory services, benchmarking AgencyCompany Organization Deutsche...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Numerical Simulation of Carbon and Nitrogen Profiles Produced by ...  

Science Conference Proceedings (OSTI)

In advance of the nitrogen diffusion zone the carbon concentration is as high as 10 at. pct. ... Discovery of Efficient Metal-Organic Frameworks for CO2 Capture.

182

Investigation of the stress induced properties of coke during carbonization.  

E-Print Network (OSTI)

??The large polycyclic aromatic plates within coal tar pitches do not flow freely enough to organize into large anisotropic domains during pyrolytic carbonization. It was… (more)

Maybury, James Joshua.

2007-01-01T23:59:59.000Z

183

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in  

Open Energy Info (EERE)

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Agency/Company /Organization: Asian Development Bank Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Low emission development planning, Policies/deployment programs, Background analysis Resource Type: Publications, Case studies/examples Website: www.adb.org/documents/studies/carbon-efficiency-prc/carbon-efficiency- Country: China UN Region: Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Organic aerogel microspheres  

Science Conference Proceedings (OSTI)

Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

1999-06-01T23:59:59.000Z

185

Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs  

Science Conference Proceedings (OSTI)

This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

2009-01-07T23:59:59.000Z

186

Carbon stored in human settlements: the conterminous  

E-Print Network (OSTI)

Urban areas are home to more than half of the world’s people, responsible for 470 % of anthropogenic release of carbon dioxide and 76 % of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70 % worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23–42 kg C m 2 urban areas and 7–16 kg C m 2 exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4–25 kg C m 2). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18 Pg of carbon or 10 % of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20 % to vegetation, 11 % to landfills, and 5 % to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed.

unknown authors

2009-01-01T23:59:59.000Z

187

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

188

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

189

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

190

NIST Organization  

Science Conference Proceedings (OSTI)

... What We Do; Organization Chart; Budget Information; Office of the Director; Laboratories & Major Programs; Locations; Staff Directory; Working With ...

2013-02-19T23:59:59.000Z

191

Symposium Organizer  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Symposium Organizer. Online Training Module. March 2013 ...

192

Gas adsorption on metal-organic frameworks  

SciTech Connect

The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

2012-07-24T23:59:59.000Z

193

Method of stripping metals from organic solvents  

DOE Patents (OSTI)

A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

2009-02-24T23:59:59.000Z

194

Allied Carbon Credit GmbH | Open Energy Information  

Open Energy Info (EERE)

Carbon Credit GmbH Carbon Credit GmbH Jump to: navigation, search Name Allied Carbon Credit GmbH Place Hessen, Germany Sector Carbon Product Frankfurt-based carbon advisory and consultancy firm. References Allied Carbon Credit GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Allied Carbon Credit GmbH is a company located in Hessen, Germany . References ↑ "Allied Carbon Credit GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Allied_Carbon_Credit_GmbH&oldid=342020" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

195

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

196

NETL: Carbon Storage - Southwest Regional Partnership on Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwest Regional Partnership on Carbon Sequestration Southwest Regional Partnership on Carbon Sequestration MORE INFO Additional information related to ongoing SWP efforts can be found on their website. The Southwest Regional Partnership on Carbon Sequestration (SWP) is led by the New Mexico Institute of Mining and Technology and represents a coalition composed of a diverse group of experts in geology, engineering, economics, public policy, and outreach. The 50 SWP partners represent state and federal agencies, universities, electric utilities, non-governmental organizations, coal, oil and gas companies, and the Navajo Nation. The partners are engaged in several aspects of SWP projects and contribute to the efforts to deploy carbon capture and storage (CCS) projects in the southwestern region of the United States. SWP encompasses Arizona,

197

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

198

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

Tan, M.X.

1999-07-29T23:59:59.000Z

199

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

200

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

202

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

203

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

204

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

205

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

206

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

207

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer About DOE Organization News Contact Us Search Search Go spacer U.S. Department of Energy header image Science & Technology Energy Sources Energy Efficiency...

208

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

209

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles  

SciTech Connect

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-04-01T23:59:59.000Z

210

Forest Carbon Partnership Facility | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Partnership Facility Forest Carbon Partnership Facility Jump to: navigation, search Logo: Forest Carbon Partnership Facility Name Forest Carbon Partnership Facility Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Co-benefits assessment, Finance Resource Type Lessons learned/best practices, Training materials Website http://www.forestcarbonpartner Country Argentina, Bolivia, Cambodia, Cameroon, Central African Republic, Chile, Colombia, Costa Rica, Democratic Republic of Congo, El Salvador, Equatorial Guinea, Ethiopia, Gabon, Ghana, Guatemala, Guyana, Honduras, Indonesia, Kenya, Laos, Laos, Liberia, Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam

211

Low Carbon Economy Index 2010 | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Economy Index 2010 Low Carbon Economy Index 2010 Jump to: navigation, search Tool Summary Name: Low Carbon Economy Index 2010 Agency/Company /Organization: PricewaterhouseCoopers Sector: Energy, Land Topics: Co-benefits assessment, Low emission development planning Resource Type: Publications Website: www.pwc.co.uk/ Low Carbon Economy Index 2010 Screenshot References: Low Carbon Economy Index 2010[1] "PwC re-examines the progress of the G20 economies against the Low Carbon Achievement and Low Carbon Challenge Index. This post- Copenhagen report provides an update on the progress over 2009." Low Carbon Economy Index 2010 References ↑ "Low Carbon Economy Index 2010" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Economy_Index_2010&oldid=3841

212

Major role of marine vegetation on the oceanic carbon cycle  

E-Print Network (OSTI)

Abstract. The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests) to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y ?1. The total burial in unvegetated sediments was estimated to be 126 Tg C y ?1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y ?1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon

C. M. Duarte; J. J. Middelburg; N. Caraco

2005-01-01T23:59:59.000Z

213

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

Science Conference Proceedings (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

214

Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration  

SciTech Connect

The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2002-12-01T23:59:59.000Z

215

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

216

Low Carbon Development: Planning & Modelling Course | Open Energy  

Open Energy Info (EERE)

Low Carbon Development: Planning & Modelling Course Low Carbon Development: Planning & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course Agency/Company /Organization: World Bank Sector: Climate Focus Area: Renewable Energy, Economic Development, People and Policy Topics: Low emission development planning, Pathways analysis, Resource assessment Resource Type: Training materials, Workshop Website: einstitute.worldbank.org/ei/course/low-carbon-development Cost: Paid References: Low Carbon Development: Planning & Modelling[1] Program Overview This course has the following modules - (i) Introduction to Low Carbon Development Planning; (ii) Overview for Policymakers; (iii) Power; (iv) Household; (v) Transport - which introduce you to climate change

217

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

218

Forest Carbon Index | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Index Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index Agency/Company /Organization: Resources for the Future Partner: United Nations Foundation Sector: Land Focus Area: Forestry Topics: Finance, GHG inventory, Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.forestcarbonindex.org/ Web Application Link: www.forestcarbonindex.org/maps.html Cost: Free References: Forest Carbon Index [1] The Forest Carbon Index (FCI) compiles and displays global data relating to biological, economic, governance, investment, and market readiness conditions for every forest and country in the world, revealing the best places and countries for forest carbon investments. Please use this site to

219

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

220

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS  

DOE Patents (OSTI)

A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

Crouse, D.J. Jr.

1962-09-01T23:59:59.000Z

222

Black carbon in Arctic snow and its effect on surface albedo  

E-Print Network (OSTI)

1 Black carbon in Arctic snow and its effect on surface albedo Stephen Warren, University wavelengths: ice is nearly transparent. Absorptive impurities: Black carbon (soot) Brown carbon (organics broadband albedo: 83% 71% (2) by addition of black carbon (BC) (20 ppb): 0.5% for r = 100 µm 1.6% for r

223

Carbon Value Analysis Tool (CVAT) | Open Energy Information  

Open Energy Info (EERE)

Carbon Value Analysis Tool (CVAT) Carbon Value Analysis Tool (CVAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Value Analysis Tool (CVAT) Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, Finance, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.wri.org/publication/carbon-value-analysis-tool Cost: Free Carbon Value Analysis Tool (CVAT) Screenshot References: CVAT[1] he Carbon Value Analysis Tool (CVAT) is a screening tool to help companies integrate the value of carbon dioxide emissions reductions into energy-related investment decisions. The tool has two main purposes: To test the sensitivity of a project's internal rate of return (IRR) to "carbon value" (the value of GHG emissions reductions). CVAT integrates this value into traditional financial analysis by ascribing a market price, either actual or projected, to carbon emissions reductions.

224

Tools for Forest Carbon Inventory, Management, and Reporting | Open Energy  

Open Energy Info (EERE)

Tools for Forest Carbon Inventory, Management, and Reporting Tools for Forest Carbon Inventory, Management, and Reporting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tools for Carbon Inventory, Management, and Reporting Agency/Company /Organization: United States Forest Service, United States Department of Agriculture Sector: Land Focus Area: Forestry Topics: GHG inventory, Resource assessment Resource Type: Guide/manual, Lessons learned/best practices, Publications, Training materials, Software/modeling tools User Interface: Desktop Application, Website Website: nrs.fs.fed.us/carbon/tools/ Cost: Free Tools for Carbon Inventory, Management, and Reporting Screenshot References: Carbon Tools[1] Logo: Tools for Carbon Inventory, Management, and Reporting "Accurate estimates of carbon in forests are crucial for forest carbon

225

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

226

AirShares EU Carbon Allowances Fund | Open Energy Information  

Open Energy Info (EERE)

AirShares EU Carbon Allowances Fund AirShares EU Carbon Allowances Fund Jump to: navigation, search Name AirShares EU Carbon Allowances Fund Place New York, New York Zip 10170 Product AirShares is a commodity pool for exchange-traded futures contracts for EUAs. References AirShares EU Carbon Allowances Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AirShares EU Carbon Allowances Fund is a company located in New York, New York . References ↑ "AirShares EU Carbon Allowances Fund" Retrieved from "http://en.openei.org/w/index.php?title=AirShares_EU_Carbon_Allowances_Fund&oldid=341942" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

227

China-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

China-NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name China-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

228

Understanding and engineering interfacial charge transfer of carbon nanotubes and graphene for energy and sensing applications  

E-Print Network (OSTI)

Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless ...

Paulus, Geraldine L. C. (Geraldine Laura Caroline)

2013-01-01T23:59:59.000Z

229

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

230

A multi-component partitioning model to predict organic leaching from stabilized/solidified oily wastes  

E-Print Network (OSTI)

Stabilization/Solidification (S/S) is an established remediation process in hazardous waste management. Recently this process has been applied to hazardous organic wastes with mixed results. These results have prompted further studies to examine the effectiveness of this process in containing organic contaminants. The primary goal of S/S is to contain the contaminants in a solidified form, removing them from the environment. This is accomplished by decreasing the contaminant surface area and chemically converting the waste by reducing the contaminant solubility. The most common S/S processes utilize the chemical reactions achieved in cement-based and pozzolanic mixes. The effectiveness of this process is determined by the degree to which contaminants will leach from the waste end-product. Leach models, therefore, are an effective way to predict the leaching of contaminants and to describe the immobilization and binding mechanisms that take place. The multi-component nature of oily wastes requires that a multi-component approach be taken to describe the partitioning between the aqueous and non-aqueous phases. The heterogeneous nature of these wastes precludes analysis of partitioning of all chemical species. Thus a pseudo-component model has been developed that describes the partitioning of TOC as caused by the partitioning of a small number of pseudo-components. A pseudo-component is used to represent a group of chemical species that have similar tendencies to partition between the aqueous and non-aqueous phases. A linear partitioning relationship is used to develop the partitioning model, with the values of the partitioning coefficients chosen to represent strongly sorbed, moderately sorbed, and weakly sorbed components. The partitioning characteristics of the waste were determined in a series of sequential experiments in which different amounts of water were added. After each addition, the system was allowed to equilibrate, the added water removed by centrifugation and its TOC measured. The model predicts that the measured concentrations of TOC are due to the sum of all pseudo-components in the aqueous or mobile phase.

O'Cleirigh, Declan Ronan

1997-01-01T23:59:59.000Z

231

On carbon footprints and growing energy use  

SciTech Connect

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

232

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

233

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

1997-01-01T23:59:59.000Z

234

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

Greinke, R.A.; Lewis, I.C.

1997-10-14T23:59:59.000Z

235

Autonomous observations of the ocean biological carbon pump  

Science Conference Proceedings (OSTI)

Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

Bishop, James K.B.

2009-03-01T23:59:59.000Z

236

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

237

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

238

Photophysics of carbon nanotubes  

E-Print Network (OSTI)

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

239

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

240

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Catalyzing Low Carbon Growth in Developing Countries | Open Energy  

Open Energy Info (EERE)

Catalyzing Low Carbon Growth in Developing Countries Catalyzing Low Carbon Growth in Developing Countries Jump to: navigation, search Tool Summary Name: Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Finance, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Website: sefi.unep.org/fileadmin/media/sefi/docs/publications/PublicPrivateWeb. Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Screenshot References: Catalyzing Low Carbon Growth in Developing Countries[1]

242

Carbon Initiative for Development (Ci-Dev) | Open Energy Information  

Open Energy Info (EERE)

Ci-Dev) Ci-Dev) Jump to: navigation, search Name Carbon Initiative for Development (Ci-Dev) Agency/Company /Organization World Bank Sector Climate Topics Finance, GHG inventory, Low emission development planning Website http://wbcarbonfinance.org/Rou References Carbon Initiative for Development (Ci-Dev)[1] "The World Bank is proposing a new initiative, the Carbon Initiative for Development (Ci-Dev), which aims at helping low-income countries create sustainable access to financing for low-carbon investments through carbon markets. This initiative has three components: A Readiness Fund will support carbon capacity building, knowledge development and advocacy work for improving carbon market mechanisms, asset creation, and developing innovative approaches to leveraging carbon

243

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

244

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Organizations and Networks Organizations and Networks (Redirected from Gateway:International/Networks) Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and

245

Method for catalytic destruction of organic materials  

DOE Patents (OSTI)

A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

Sealock, Jr., L. John (Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1997-01-01T23:59:59.000Z

246

Method for catalytic destruction of organic materials  

DOE Patents (OSTI)

A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

1997-05-20T23:59:59.000Z

247

Brazil-Pathways to a Low Carbon Economy | Open Energy Information  

Open Energy Info (EERE)

search Name Pathways to a Low Carbon Economy for Brazil AgencyCompany Organization McKinsey and Company Topics Implementation, Low emission development planning, Policies...

248

Carbon Nanotube Nanocomposites, Methods of Making Carbon ...  

This technology describes methods to fabricate supercapacitors using aligned carbon nanotubes that are decorated with metal oxide or nitride ...

249

DOE Carbon Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Program Charles E. Schmidt Carbon Sequestration Product Manager National Energy Technology Laboratory David J. Beecy Director, Office of Environmental Systems...

250

Property:Event/Organizer | Open Energy Information  

Open Energy Info (EERE)

Organizer Organizer Jump to: navigation, search Property Name Event/Organizer Property Type String Description The entity or entities responsible for organizing the event. This is typically a person or organization. More than one organizer can be attributed to each event. Pages using the property "Event/Organizer" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + International Energy Agency (IEA) + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + International Energy Agency (IEA) + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + German Agency for International Cooperation (GIZ) + 18th Africa Partnership Forum + African Partnership Forum +

251

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

252

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon

253

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.1 July.6 Monitoring 8 2.7 Carbon statements and reporting 8 2.8 Woodland Carbon Code trademark 9 3. Carbon sequestration 10 3.1 Units of carbon calculation 10 3.2 Carbon baseline 10 3.3 Carbon leakage 11 3.4 Project

254

Applicant Organization: | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicant Organization: Applicant Organization: Applicant Organization: More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: Applicant Organization:...

255

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

256

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

257

Overview of Carbon Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

258

Diverse Chemiresistors Based upon Covalently Modified Multiwalled Carbon Nanotubes  

E-Print Network (OSTI)

A diverse array of multiwalled carbon nanotube (MWCNT) sensory materials have been synthesized and used to create sensors capable of identifying volatile organic compounds (VOCs) on the basis of their functional groups. ...

Swager, Timothy Manning

259

Synthesis of Amides and Lactams in Supercritical Carbon Dioxide  

E-Print Network (OSTI)

Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

Mak, Xiao Yin

260

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2003-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2004-10-30T23:59:59.000Z

262

CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J.Fabry

2004-01-30T23:59:59.000Z

263

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-12-15T23:59:59.000Z

264

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-07-15T23:59:59.000Z

265

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-09-10T23:59:59.000Z

266

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-04-15T23:59:59.000Z

267

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2005-04-29T23:59:59.000Z

268

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-12-15T23:59:59.000Z

269

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2006-06-30T23:59:59.000Z

270

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-07-09T23:59:59.000Z

271

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2005-01-24T23:59:59.000Z

272

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2001-07-01T23:59:59.000Z

273

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-04-05T23:59:59.000Z

274

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

275

Mechanomutable Carbon Nanotube Arrays  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Polymer Nanocomposites. Presentation Title, Mechanomutable Carbon ...

276

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

277

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Carbon Capture and Storage Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration...

278

Acid sorption regeneration process using carbon dioxide  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

2001-01-01T23:59:59.000Z

279

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

280

A Low Carbon Economic Strategy for Scotland | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Economic Strategy for Scotland Low Carbon Economic Strategy for Scotland Jump to: navigation, search Name A Low Carbon Economic Strategy for Scotland Agency/Company /Organization Government of Scotland Sector Energy, Land Topics Market analysis, Background analysis Website http://www.scotland.gov.uk/Res Country United Kingdom UN Region Western Europe References A Low Carbon Economic Strategy for Scotland[1] Abstract The Low Carbon Economic Strategy is an integral part of the Government's Economic Strategy (GES) to secure sustainable economic growth, and is a key component of our broader approach to meeting Scotland's climate change targets and securing the transition to a low carbon economy in Scotland "The Low Carbon Economic Strategy is an integral part of the Government's

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mexico-Low-Carbon Development | Open Energy Information  

Open Energy Info (EERE)

Mexico-Low-Carbon Development Mexico-Low-Carbon Development Jump to: navigation, search Logo: Mexico-ESMAP Low Carbon Growth Studies Program Name Mexico-ESMAP Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Biomass, Industry, Forestry Topics GHG inventory, Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country Mexico Central America References Low Carbon Development for Mexico[1] Abstract The Mexico study involves the preparation of a comprehensive package comprising: a low carbon strategy; the identification of priority sectors for carbon abatement; pre-feasibility level analysis of specific investment options; a country specific Marginal Abatement Cost (MAC) curve; identification of implementation barriers and necessary policy responses; and a prioritized list of potent...

282

Event:IETA Carbon Forum North America | Open Energy Information  

Open Energy Info (EERE)

IETA Carbon Forum North America IETA Carbon Forum North America Jump to: navigation, search Calendar.png IETA Carbon Forum North America: on 2012/10/01 "Carbon Forum North America -IETA's flagship North American event-will be one of the best opportunities of the year to network with the North American and global carbon markets, browse exhibits showcasing the work of leading companies, and learn what you need to know about this rapidly evolving space." Event Details Name IETA Carbon Forum North America Date 2012/10/01 Location District of Columbia Organizer International Emissions Trading Association Tags LEDS, training, CLEAN Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:IETA_Carbon_Forum_North_America&oldid=472

283

Nepal-Climate and Carbon Unit | Open Energy Information  

Open Energy Info (EERE)

Nepal-Climate and Carbon Unit Nepal-Climate and Carbon Unit (Redirected from SNV-Climate and Carbon Unit) Jump to: navigation, search Name SNV-Climate and Carbon Unit Agency/Company /Organization Netherlands Development Organisation, United Kingdom Department for International Development Sector Energy, Climate Topics Finance, Low emission development planning Website http://www.aepc.gov.np/index.p Country Nepal UN Region Eastern Asia References CCU[1] SNV-Climate and Carbon Unit Screenshot "In order to connect to this potential, SNV (Netherlands Development Organisation), the UK's Department for International Development (DFID/UKAID) and Government of Nepal have launched a Climate and Carbon Unit (CCU) within the Nepal Ministry of Environment's Alternative Energy Promotion Centre (AEPC). The CCU establishes climate change and carbon

284

International Carbon Storage Body Praises Department of Energy Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Carbon Storage Body Praises Department of Energy International Carbon Storage Body Praises Department of Energy Projects International Carbon Storage Body Praises Department of Energy Projects November 8, 2012 - 12:00pm Addthis Washington, DC - Three U.S. Department of Energy (DOE) projects have been identified by an international carbon storage organization as an important advancement toward commercialization and large-scale deployment of carbon capture, utilization, and storage (CCUS) technologies. The projects were officially recognized by the Carbon Sequestration Leadership Forum (CSLF) at its recent meeting in Perth, Australia for making significant contributions to the development of global carbon dioxide (CO2) mitigation technologies. All three projects will appear in a yearly project portfolio on the CSLF website to keep the global community

285

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-12-31T23:59:59.000Z

286

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-01-01T23:59:59.000Z

287

Reading Comprehension - Organs and Organ Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

together in a group make up an organ system. Examples of organ systems are cats and dogs the circulatory system and the respiratory system the stomacular system and...

288

Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea  

E-Print Network (OSTI)

Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with ...

McCarren, Jay

289

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

290

Carbon Efficiency, Carbon Reduction Potential, and Economic Developmen...  

Open Energy Info (EERE)

Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary Name: Carbon Efficiency, Carbon Reduction...

291

Carbon Film Electrodes For Super Capacitor Applications  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-07-20T23:59:59.000Z

292

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

293

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

294

Carbon Management and Carbon Dioxide Reduction  

Science Conference Proceedings (OSTI)

Cost-Effective Gas Stream Component Analysis Techniques and Strategies for Carbon Capture Systems from Oxy-Fuel Combustion (An Overview).

295

Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes  

DOE Patents (OSTI)

Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

2010-01-26T23:59:59.000Z

296

Doping of carbon foams for use in energy storage devices  

DOE Patents (OSTI)

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

1994-10-25T23:59:59.000Z

297

Doping of carbon foams for use in energy storage devices  

SciTech Connect

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

298

Conductive Carbon Coatings for Electrode Materials  

SciTech Connect

A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO{sub 4} and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO{sub 4} suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10{sup -9} S cm{sup -1}). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures (<800 C) required to make LiFePO{sub 4}, however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density.

Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

2007-07-13T23:59:59.000Z

299

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

300

NETL: Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Carbon Storage Regional Carbon Sequestration Partnerships In 2003, the U.S. Department of Energy (DOE) awarded cooperative agreements to seven Regional Carbon Sequestration...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon Nanostructure-Based Sensors  

E-Print Network (OSTI)

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

302

Measurement of carbon for carbon sequestration and site monitoring  

Science Conference Proceedings (OSTI)

A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized by a high content of fulvic acids while the humus of peat and grassland soils is high in humic acids. Similarly it is well known that the amount of carbon present in forest soils is lower than the amount present in grassland soils.

Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Garten Jr, Charles T [ORNL; Palumbo, Anthony Vito [ORNL

2007-01-01T23:59:59.000Z

303

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

1990-01-01T23:59:59.000Z

304

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

Chum, H.L.; Filardo, G.

1990-10-23T23:59:59.000Z

305

ESMAP-Indonesia-Low Carbon Development Options Study | Open Energy  

Open Energy Info (EERE)

Low Carbon Development Options Study Low Carbon Development Options Study Jump to: navigation, search Name Indonesia-ESMAP Low Carbon Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Partner United Kingdom Department for International Development Sector Energy, Land Focus Area Energy Efficiency, Forestry Topics Background analysis, GHG inventory, Low emission development planning, Market analysis, Policies/deployment programs Website http://www-wds.worldbank.org/e Country Indonesia South-Eastern Asia References World Bank, ESMAP - Low Carbon Growth Country Studies - Getting Started[1] Overview "The Indonesia's study aimed to evaluate and develop strategic options to mitigate climate change without compromising the country's development

306

Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland, Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth_Country_Studies_Program&oldid=576259"

307

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

308

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

309

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

310

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

311

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

312

Carbon nanotube nanoelectrode arrays  

DOE Patents (OSTI)

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

313

Carbon Footprint and Carbon Deficit Analysis of Iron and Steel ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title ... Study on Capture, Recovery and Utilization of Carbon Dioxide.

314

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program ...

315

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

316

Carbon Mitigation Measurements  

Science Conference Proceedings (OSTI)

... sustainable technologies such as CO 2 capture and sequestration (CCS ... property diagnostic tools (under realistic conditions for carbon capture from ...

2012-10-04T23:59:59.000Z

317

Big Sky Carbon Atlas  

DOE Data Explorer (OSTI)

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

Carbon Sequestration Partnership, Big Sky [BSCSP; ,

318

Electrocatalysts on Carbon Nanoparticles  

Carbon nanostructures offer extremely high surface areas and so are attractive candidates to support dispersed catalysts. These nanostructures, ...

319

Low Carbon Fuel Standards  

E-Print Network (OSTI)

land-use changes. When biofuel production increases, land ison carbon releases. If biofuel production does not result in

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

320

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Path of Carbon in Photosynthesis. XIV.  

DOE Green Energy (OSTI)

It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W.; Tolbert, N.E.

1951-06-30T23:59:59.000Z

322

The Path of Carbon in Photosynthesis XIV.  

DOE R&D Accomplishments (OSTI)

It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

Calvin, Melvin; Bassham, J. A.; Benson, A. A.; Kawaguchi, S.; Lynch, V. H.; Stepka, W.; Tolbert, N. E.

1951-06-30T23:59:59.000Z

323

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

324

Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter  

DOE Green Energy (OSTI)

Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

Arndt Schimmelmann; Maria Mastalerz

2010-03-30T23:59:59.000Z

325

State of the Forest Carbon Markets 2009 | Open Energy Information  

Open Energy Info (EERE)

State of the Forest Carbon Markets 2009 State of the Forest Carbon Markets 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State of the Forest Carbon Markets 2009 Agency/Company /Organization: Forest Trends Sector: Land Focus Area: Forestry Topics: Market analysis Resource Type: Publications Website: moderncms.ecosystemmarketplace.com/repository/moderncms_documents/SFCM State of the Forest Carbon Markets 2009 Screenshot References: State of the Forest Carbon Markets 2009[1] Overview "This report was created to increase transparency and answer fundamental questions about the supply of forestry-based carbon credits, such as transaction volumes, credit prices, hectares influenced and tenure rights. It outlines the aggregate numbers from our survey of 61 project developers1

326

Regional Workshop on Opportunities and Priorities for Low Carbon Green  

Open Energy Info (EERE)

Regional Workshop on Opportunities and Priorities for Low Carbon Green Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Jump to: navigation, search Tool Summary Name: Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Agency/Company /Organization: Asian Development Bank Institute Topics: Policies/deployment programs, Pathways analysis Resource Type: Workshop, Training materials Website: www.adbi.org/cd-roms/2010/08/27/4054.low.carbon.green.growth.asia/ UN Region: Central Asia, Eastern Asia, South-Eastern Asia References: ADB Regional Workshop[1] Contents "Concepts of Low Carbon Green Growth: Challenges and Current Status in the Asia Pacific Region Inside the Low Carbon Green Growth: Innovations in Green Energy Supply Demand Side Energy Efficiency Solutions: A Low Hanging

327

Indonesia-Low Carbon Growth Project | Open Energy Information  

Open Energy Info (EERE)

Indonesia-Low Carbon Growth Project Indonesia-Low Carbon Growth Project Jump to: navigation, search Name Indonesia Low Carbon Growth Project Agency/Company /Organization United Kingdom Department for International Development Partner Ministry of Finance Sector Climate Focus Area Greenhouse Gas, People and Policy Topics Co-benefits assessment, Finance, Implementation, Low emission development planning Website http://projects.dfid.gov.uk/pr Program Start 2010 Program End 2012 Country Indonesia South-Eastern Asia References Indonesia Low Carbon Growth Project[1] Programme of support to the Ministry of Finance to support it to develop policies, structures and financing mechanisms integral to Indonesia's low-carbon growth strategy. References ↑ "Indonesia Low Carbon Growth Project"

328

NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

NIES Low-Carbon Society Scenarios 2050 NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name NIES Low-Carbon Society Scenarios 2050 Agency/Company /Organization National Institute for Environmental Studies Topics Background analysis, Low emission development planning Website http://2050.nies.go.jp/LCS/ind Program Start 2009 Country Bangladesh, China, India, Indonesia, Japan, Malaysia, Thailand, Vietnam UN Region Eastern Asia References 2050 Low-Carbon Society Scenarios (LCSs)[1] National and Local Scenarios National and local scenarios available from the activity webpage: http://2050.nies.go.jp/LCS/index.html References ↑ "2050 Low-Carbon Society Scenarios (LCSs)" Retrieved from "http://en.openei.org/w/index.php?title=NIES_Low-Carbon_Society_Scenarios_2050&oldid=553682"

329

Paving the Way for Low Carbon Development Strategies | Open Energy  

Open Energy Info (EERE)

Paving the Way for Low Carbon Development Strategies Paving the Way for Low Carbon Development Strategies Jump to: navigation, search Name Paving the Way for Low Carbon Development Strategies Agency/Company /Organization Energy Research Centre of the Netherlands Sector Energy Topics Background analysis, Low emission development planning Website http://www.ecn.nl/en/ Program Start 2009 Program End 2010 Country Indonesia, Ghana South-Eastern Asia, Western Africa References ECN Policy Studies[1] Paving the Way for Low Carbon Development Strategies[2] Overview The projects has three main goals: to provide input for a general methodology for developing Low Carbon Development Strategies to contribute to knowledge, mutual understanding and experience on the concept of Low Carbon Development Strategies with the aim to inform the

330

UNDP-Low Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

UNDP-Low Carbon Portal UNDP-Low Carbon Portal Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNDP Low Carbon Portal Agency/Company /Organization: United Nations Development Programme Sector: Energy, Land Topics: Low emission development planning Resource Type: Guide/manual, Lessons learned/best practices Website: europeandcis.undp.org/lowcarbon/?event=advancedSearch UNDP Low Carbon Portal Screenshot References: UNDP Low Carbon Portal[1] Logo: UNDP Low Carbon Portal Tool Overview "The primary purpose of this website is to disseminate knowledge and expertise in developing the capacity of national and sub-national governments to formulate, finance, and implement low-emission, climate-resilient development strategies (LECRDS). UNDP's technical and finance services strengthen the capacity of developing countries to

331

International Low-Carbon Energy Technology Platform | Open Energy  

Open Energy Info (EERE)

International Low-Carbon Energy Technology Platform International Low-Carbon Energy Technology Platform Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Low-Carbon Energy Technology Platform Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iea.org/platform.asp International Low-Carbon Energy Technology Platform Screenshot References: International Low-Carbon Energy Technology Platform[1] Logo: International Low-Carbon Energy Technology Platform "The Technology Platform's central aim is to accelerate and scale-up action for the development and deployment of clean energy technologies. It will do this by creating a forum that:

332

Development of the Electricity Carbon Emission Factors for Russia | Open  

Open Energy Info (EERE)

the Electricity Carbon Emission Factors for Russia the Electricity Carbon Emission Factors for Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics GHG inventory Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Russia Eastern Europe References Development of the Electricity Carbon Emission Factors for Russia[1] References ↑ "Development of the Electricity Carbon Emission Factors for Russia" Retrieved from "http://en.openei.org/w/index.php?title=Development_of_the_Electricity_Carbon_Emission_Factors_for_Russia&oldid=383164" Category: Programs What links here Related changes Special pages

333

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

334

Nepal-Climate and Carbon Unit | Open Energy Information  

Open Energy Info (EERE)

Nepal-Climate and Carbon Unit Nepal-Climate and Carbon Unit Jump to: navigation, search Name SNV-Climate and Carbon Unit Agency/Company /Organization Netherlands Development Organisation, United Kingdom Department for International Development Sector Energy, Climate Topics Finance, Low emission development planning Website http://www.aepc.gov.np/index.p Country Nepal UN Region Eastern Asia References CCU[1] SNV-Climate and Carbon Unit Screenshot "In order to connect to this potential, SNV (Netherlands Development Organisation), the UK's Department for International Development (DFID/UKAID) and Government of Nepal have launched a Climate and Carbon Unit (CCU) within the Nepal Ministry of Environment's Alternative Energy Promotion Centre (AEPC). The CCU establishes climate change and carbon

335

Low-Carbon Energy: A Roadmap | Open Energy Information  

Open Energy Info (EERE)

Low-Carbon Energy: A Roadmap Low-Carbon Energy: A Roadmap Jump to: navigation, search Tool Summary Name: Low-Carbon Energy: A Roadmap Agency/Company /Organization: World Watch Institute Sector: Energy Topics: Implementation, Low emission development planning, Pathways analysis Resource Type: Publications Website: www.worldwatch.org/node/7069#summary Cost: Free, Paid Low-Carbon Energy: A Roadmap Screenshot References: Low-Carbon Energy: A Roadmap[1] Logo: Low-Carbon Energy: A Roadmap Summary "Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be

336

Organic fuel cells and fuel cell conducting sheets  

DOE Patents (OSTI)

A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

2007-10-16T23:59:59.000Z

337

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

338

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria New Species of Cyanobacteria Forms Intracellular Carbonates New Species of Cyanobacteria Forms Intracellular Carbonates Print Wednesday, 30 January 2013 00:00 A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

339

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

340

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network (OSTI)

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

Das, Suman

342

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

343

Warming mineralises young and old soil carbon equally  

E-Print Network (OSTI)

Abstract. The temperature sensitivity of soil organic carbon decomposition is critical for predicting future climate change because soils store 2-3 times the amount of atmospheric carbon. Of particular controversy is the question, whether temperature sensitivity differs between young or labile and old or more stable carbon pools. Ambiguities in experimental methodology have so far limited corroboration of any particular hypothesis. Here, we show in a clear-cut approach that differences in temperature sensitivity between young and old carbon are negligible. Using the change in stable isotope composition in transitional systems from C3 to C4 vegetation, we were able to directly distinguish the temperature sensitivity of carbon differing several decades in age. This method had several advantages over previously followed approaches. It allowed to identify release of much older carbon, avoided un-natural conditions of long-term incubations and did not require arguable curve-fitting. Our results demonstrate that feedbacks of the carbon cycle on climate change are driven equally by young and old soil organic carbon. 1

F. Conen; J. Leifeld; B. Seth; C. Alewell

2006-01-01T23:59:59.000Z

344

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION  

Science Conference Proceedings (OSTI)

The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

2004-11-01T23:59:59.000Z

345

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

346

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

347

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

348

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

349

Mesoporous carbon materials  

SciTech Connect

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

350

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

351

Organization | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Leadership Organization Contact Us The Office of Economic Impact and Diversity is comprised of six offices: The Office of the Director- contact us Office of...

352

SSRL Users' Organization Ballot  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 SSRL Users' Organization Executive Committee (SSRLUO-EC) Ballot The SSRL Users' Organization Executive Committee represents the scientific user community to the SSRL...

353

Using Renewable Energy Purchases to Achieve Institutional Carbon Goals: A Review of Current Practices and Considerations  

SciTech Connect

With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

Bird, L.; Sumner, J.

2011-01-01T23:59:59.000Z

354

Would Border Carbon Adjustments prevent carbon leakage and heavy industry  

E-Print Network (OSTI)

No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

Recanati, Catherine

355

Quantification of the Effects of Organic and Carbonate Buffers on  

E-Print Network (OSTI)

) (>SO)2POOH + 2H2O 1.6 log K>SOPO4 3- >SOH + H3PO4 0 ) >SOPO3 2- + 2H+ + H2O -0.1 log K>SOCOO- >SOH + H

Sverjensky, Dimitri A.

356

Unburned lubricant produces 60%90% of organic carbon emissions.  

E-Print Network (OSTI)

as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE vehicles without aftertreatment emission control systems exhibited OC emissions approxi- mately one order

357

Soil Organic Carbon Change Monitored Over Large Areas  

Science Conference Proceedings (OSTI)

Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with the technical potential to sequester as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

Brown, David J.; Hunt, Earle R.; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; schumaker, Bonny L.; West, Tristram O.

2010-11-23T23:59:59.000Z

358

Organic light-emitting diodes with carbon nanotube cathode ...  

parent indium-tin-oxide !IT O " anode in combination with ... OfÞce of Ener gy EfÞciency and Renewable Ener gy , under Contract No. DE-AC02-05CH1 1231. 1C. W .

359

Soil Organic Carbon Dynamics for Different Land Uses and Soil...  

NLE Websites -- All DOE Office Websites (Extended Search)

by two or three mechanical cultivation before 1960 and by using herbicides since 1960. Corn was harvested in early October with a mechanical picker, and the stover was chopped...

360

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

NT soybean na 1986 7.5-15 7.5 1.10 KA01 NT soybean na 1986 15-30 15 1.00 KA01 CT sorghum-soybean na 1986 0-2.5 2.5 1.25 KA01 CT sorghum-soybean na 1986 2.5-7.5 5 1.23 KA01...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon ï‚· Renewables ï‚· Nuclear ï‚· Fuel Switching ï‚· Demand Side ï‚· Supply Side ï‚· Capture & Store ï‚· Enhance Natural Sinks Reduce Carbon Intensity All options needed to: ï‚· Affordably meet energy demand ï‚· Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

362

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

363

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Production Refineries Etc.... C Capture & Storage, Austin, TX Nov. 13-15, 2007 Carbon Sequestration Program Goals * Deliver technologies & best practices that validate:...

364

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

365

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

366

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

367

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

368

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and… (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

369

Reinforced Carbon Nanotubes.  

DOE Patents (OSTI)

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

370

Carbon Nanomaterials and Heterostructures  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... This presentation aims to capture those recent research efforts in synthesis and applications of carbon nanotubes in Li-ion battery, bioelectronic ...

371

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

372

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and for technology roadmaps and deployment programs. Renewable Energy Policy Network for the 21st Century (REN21)

373

FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS  

DOE Patents (OSTI)

The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

Moore, R.H.

1960-05-10T23:59:59.000Z

374

Event:Latin American Carbon Forum 2013 | Open Energy Information  

Open Energy Info (EERE)

3 3 Jump to: navigation, search Calendar.png Latin American Carbon Forum 2013: on 2013/03/25 The Seventh Latin American and Caribbean Carbon Forum (LACF) will discuss prospects for carbon projects in Latin America. The Forum is co-organized by the Inter-American Development Bank (IDB), the Latin American Development Bank (CAF), the World Bank, the International Emissions Trading Association (IETA), the Latin American Energy Organization (OLADE), the UN Environment Programme (UNEP) Risø Centre and the UN Framework Convention on Climate Change (UNFCCC). Event Details Name Latin American Carbon Forum 2013 Date 2013/03/25 Location Rio de Janeiro, Brazil Tags LEDS, Training, CLEAN Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

375

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

376

Microsoft Word - Vol 2 Appendices TOC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE OF CONTENTS vii TABLE OF CONTENTS Volume 2 Appendices A through I Table of Contents ........................................................................................................................................................ vii List of Figures ............................................................................................................................................................ xiii List of Tables ............................................................................................................................................................... xv Acronyms, Abbreviations, and Conversion Charts .................................................................................................. xxiii

377

Cover Sheet-Executive Summary_TOC_041912_MM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement Grapevine Canyon Wind Project May 2012 Lead Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agencies: U.S. Department of Agriculture, Forest Service, Coconino National Forest Arizona State Land Department Volume II AREA POWER ADMINISTRATION DOCUMENT CONTENTS VOLUME I Cover Sheet Front Matter: Table of Contents, List of Figures and Tables, Index, Acronyms and Units of Measure Executive Summary Chapter 1: Purpose and Need Chapter 2: Proposed Action and Alternatives Chapter 3: Affected Environment and Environmental Consequences

378

Microsoft Word - BPA DEIS TOC Abstract Summary.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement July 2010 DOE/EIS-0422 Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project Draft Environmental Impact Statement Bonneville Power Administration July 2010 Abstract DEIS i Central Ferry - Lower Monumental 500-kilovolt Transmission Line Project Responsible Agency: U.S. Department of Energy (DOE), Bonneville Power Administration (BPA) Cooperating Agency: Washington Energy Facility Site Evaluation Council (EFSEC) Title of Proposed Project: Central Ferry-Lower Monumental 500-kilovolt Transmission Line Project, DOE/EIS - 0422 State Involved: Washington Abstract: BPA is proposing to construct, operate, and maintain a 38- to 40-mile-long 500-kilovolt (kV) transmission line in Garfield, Columbia, and Walla Walla counties, Washington. The proposed line would

379

Microsoft Word - Volume 1 TOC_Post-MC.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume 1 - Chapters Volume 1 - Chapters Cover photos courtesy of (left to right): Southeast Renewable Fuels, LLC DOE National Renewable Energy Laboratory Public domain Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas August 2010 Environmental Impact Statement for the U.S. Department of Energy Golden Field Office Office of Energy Efficiency and Renewable Energy DOE/EIS-0407 Final Volume 1 - Chapters DOE/EIS-0407 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) COOPERATING AGENCY: The U.S. Department of Agriculture-Rural Development is a cooperating agency in the preparation of the Abengoa Biorefinery Project EIS. TITLE: Final Environmental Impact Statement for the Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas (DOE/EIS-0407) (Abengoa Biorefinery Project EIS).

380

Microsoft Word - Vol 2 Appendices TOC.doc  

National Nuclear Security Administration (NNSA)

sound energy resources, including renewable energy resources such as solar and geothermal energy systems. The NNSS has a long history of supporting national security...

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - Vol 1 Chapters TOC.doc  

National Nuclear Security Administration (NNSA)

sound energy resources, including renewable energy resources such as solar and geothermal energy systems. The NNSS has a long history of supporting national security...

382

Microsoft Word - FY11_TOC_Master.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Web pages are in the process of being updated, and a National Environmental Policy Act (NEPA) Web page has been developed and is accessible from the EC Web page. Comprehensive...

383

Microsoft Word - Vol 1 Chapters TOC.doc  

National Nuclear Security Administration (NNSA)

chemistry and materials characterization work in the Chemical and Metallurgy Research Building (CMR) at LANL. CMR supports various national security missions including nuclear...

384

toc_foreword to printer.p65  

Science Conference Proceedings (OSTI)

... 16 Giant Anharmonicity and Electron-Phonon Mediated Superconductivity in ... 18 Polaron Formation and Colossal Magnetoresistance in Manganites ...

2002-03-18T23:59:59.000Z

385

Microsoft PowerPoint - CD TOC revised.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Sub-economic Resources EG&G Services: Ray Boswell, Ashley Douds, Skip Pratt, Kelly Rose, Jim Pancake & Kathy Bruner Advanced Resources International: Vello Kuuskraa & Randy Billingsley Phase I: Greater Green River and Wind River Basins -Fall 2002- Table of Contents * Summary & Background Materials Overview of Past Resource Assessments GSAM Facts Sheet GasTIPS article, Summer 2002 PowerPoint Presentation, presented at the August 2002 COGA conference, Denver, CO * Detailed Geologic Analyses Greater Green River Basin (GGRB) Wind River Basin (WRB) * Model Inputs and Analyses Greater Green River Basin (GGRB) Wind River Basin (WRB) Final Report, GGRB & WRB Type Log Lines of Section Reference Map * Net Sandstone Isopach Maps Lewis 3 Lewis 4 Lewis 5 Lewis 6

386

Microsoft Word - FY11_TOC_Master.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 1-September 30, 2011 U.S. Department of Energy July 1-September 30, 2011 U.S. Department of Energy Doc. No. S08238 October 2011 Page 8 Environmental Compliance All EC activities are performed in such a manner that the safety of workers and the public and the protection of the environment are given the highest priority. EC is committed to complying with all applicable environmental regulations and requirements, policy directives, contracts, and to using best management practices as deemed necessary to achieve protection of the environment and to ensure conformance with both the letter and spirit of regulatory requirements. The EC team has consistently met regulatory-compliance permitting and reporting requirements and provided regulatory updates and expertise as requested. During this reporting quarter, the EC

387

Electrochemical oxidation of organic materials  

DOE Patents (OSTI)

This invention is a method and apparatus for the direct oxidation of organic materials, especially organic wastes, in an electrochemical cell. It fulfills the need for a simple, cost-effective way for generators of small quantities of waste to deal with that waste. It does not use an electron transfer agent, which may be a source of additional hazardous waste. The anode is made of carbon felt; the cathode is platinum; and the electrolyte is a strong oxidizer, preferably nitric acid. The potential difference is 2 to 3 volts; the current density is 0.15 to 0.25 A/cm{sup 2}. The porous barrier is a medium grade alumina frit or an ion exchange membrane. The organic materials are fed to the anode compartment; the resulting oxygen bubbling circumvents the need for stirring or circulating the waste. Many different types of waste (e.g. rubber gloves, TBP, process solutions, etc.) can be fed to the anode compartment without the need to process or store it. 3 figs. (DLC)

Almon, A.C.

1991-01-01T23:59:59.000Z

388

Big Sky Carbon Sequestration Partnership  

Science Conference Proceedings (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

Susan M. Capalbo

2005-11-01T23:59:59.000Z

389

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network (OSTI)

Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

390

Organic Electronics: Organic thin-film magnetometers  

SciTech Connect

Magnetometry usually requires large probes and bulky instrumentation. Organic diodes have now been used in small probes that can measure moderate magnetic fields with 10 ppm precision.

Shinar, Joseph

2012-07-24T23:59:59.000Z

391

Standards Development Organization Overview  

Science Conference Proceedings (OSTI)

... Standards Organizations NFPA (National Fire Protection Association) ... Fire News – Annual directory – NFPA Buyer's Guide ... Headquarters ...

2010-04-28T23:59:59.000Z

392

Transportation Organization and Functions  

Energy.gov (U.S. Department of Energy (DOE))

Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

393

TREC Organization User Agreement  

Science Conference Proceedings (OSTI)

Organization Application to use the TREC Information- Retrieval Text Research Collections. The _____ ...

394

Hydrogen storage on activated carbon. Final report  

DOE Green Energy (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

395

Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification  

Science Conference Proceedings (OSTI)

We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

Rosenberg, Norman J.; Izaurralde, Roberto C.

2001-12-31T23:59:59.000Z

396

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

397

Carbon Films Produced from Ionic Liquid Carbon Precursors ...  

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ...

398

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

399

Fiber Bridging Model for Reinforced-Carbon-Carbon  

Science Conference Proceedings (OSTI)

Symposium, Professor K. K. Chawla Honorary Symposium on Fibers, Foams and ... fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (

400

Stabilization and carbonization studies of polyacrylonitrile /carbon nanotube composite fibers .  

E-Print Network (OSTI)

??Carbon fibers contain more than 90 wt. % carbon. They have low density, high specific strength and modulus, and good temperature and chemical resistance. Therefore,… (more)

Liu, Yaodong

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Novel method for carbon nanofilament growth on carbon fibers.  

E-Print Network (OSTI)

??Carbon nanofilaments were grown on the surface of microscale carbon-fibers at relatively low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures… (more)

Garcia, Daniel

2009-01-01T23:59:59.000Z

402

Synthesis of Carbon-Carbon Composite via Infiltration Process of ...  

Science Conference Proceedings (OSTI)

The carbon frame was first pyrolyzed from the wood template. The final composites were then obtained by infiltrating molten coal tar pitch into the carbon frame ...

403

Indonesia Low Carbon Growth Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Indonesia Low Carbon Growth Project Agency/Company /Organization United Kingdom Department for International Development Partner Ministry of Finance Sector Climate Focus Area Greenhouse Gas, People and Policy Topics Co-benefits assessment, Finance, Implementation, Low emission development planning Website http://projects.dfid.gov.uk/pr Program Start 2010 Program End 2012 Country Indonesia South-Eastern Asia References Indonesia Low Carbon Growth Project[1] Programme of support to the Ministry of Finance to support it to develop policies, structures and financing mechanisms integral to Indonesia's low-carbon growth strategy. References ↑ "Indonesia Low Carbon Growth Project" Retrieved from "http://en.openei.org/w/index.php?title=Indonesia_Low_Carbon_Growth_Project&oldid=407118"

404

Brazil-Low Carbon Growth Studies Program | Open Energy Information  

Open Energy Info (EERE)

Brazil-Low Carbon Growth Studies Program Brazil-Low Carbon Growth Studies Program Jump to: navigation, search Name Brazil-Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Partner United Kingdom Department for International Development Sector Energy, Land Focus Area Renewable Energy, Agriculture, Biomass, Energy Efficiency, Forestry Topics Background analysis, GHG inventory, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/filez/pub Country Brazil South America References World Bank, ESMAP - Low Carbon Growth Country Studies - Getting Started[1] Overview "Benefiting from a cooperative process with Brazilian authorities, the study covers four key areas with large potential for low-carbon options in

405

Toward Low Carbon and Climate Change Resilient Territories | Open Energy  

Open Energy Info (EERE)

Toward Low Carbon and Climate Change Resilient Territories Toward Low Carbon and Climate Change Resilient Territories Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Toward Low Carbon and Climate Change Resilient Territories Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme Topics: Low emission development planning, Pathways analysis Resource Type: Publications, Guide/manual, Training materials Website: www.undp.org/eu/documents/UNDP_low_carbon_regions_paper.pdf References: Toward Low Carbon and Climate Change Resilient Territories [1] Introduction "Climate change is today an undeniable reality, and the developing countries which have contributed the least to green house gas emissions will be the most vulnerable to its impacts. The 2007/2008 UNDP Human

406

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

407

China-Low Carbon Development Zones | Open Energy Information  

Open Energy Info (EERE)

China-Low Carbon Development Zones China-Low Carbon Development Zones Jump to: navigation, search Name China-Low Carbon Development Zones Agency/Company /Organization Third Generation Environmentalism (E3G) Sector Energy, Land Focus Area Energy Efficiency Topics Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.chathamhouse.org.uk Country China UN Region Eastern Asia References Low Carbon Development Zones in China[1] Overview "Building on the successful work of the Interdependencies on Energy and Climate Security for China and Europe project, this 18 month project with E3G, the Chinese Academy of Social Sciences (CASS) and the Chinese Energy Research Institute (ERI), will focus on four key areas - low carbon zones;

408

Electrochemical behavior of carbon aerogels derived from different precursors  

DOE Green Energy (OSTI)

The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-04-01T23:59:59.000Z

409

ESMAP-Low-Carbon Development for Mexico | Open Energy Information  

Open Energy Info (EERE)

Development for Mexico Development for Mexico Jump to: navigation, search Logo: Mexico-ESMAP Low Carbon Growth Studies Program Name Mexico-ESMAP Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Biomass, Industry, Forestry Topics GHG inventory, Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country Mexico Central America References Low Carbon Development for Mexico[1] Abstract The Mexico study involves the preparation of a comprehensive package comprising: a low carbon strategy; the identification of priority sectors for carbon abatement; pre-feasibility level analysis of specific investment options; a country specific Marginal Abatement Cost (MAC) curve; identification of implementation barriers and necessary policy responses; and a prioritized list of potent...

410

Carbon-free generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

411

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

412

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-04-08T23:59:59.000Z

413

carbon | OpenEI Community  

Open Energy Info (EERE)

carbon Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

414

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

415

Low Carbon Society Scenarios Towards 2050 | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Society Scenarios Towards 2050 Low Carbon Society Scenarios Towards 2050 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society Scenarios Towards 2050 Agency/Company /Organization: National Institute for Environmental Studies (NIES) Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, People and Policy, Solar Phase: Create a Vision, Determine Baseline, Evaluate Options, Develop Goals Topics: Adaptation, Baseline projection, GHG inventory, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Guide/manual, Lessons learned/best practices, Publications, Training materials Website: 2050.nies.go.jp/report.html Cost: Free

416

BioCarbon Fund Project Portfolio | Open Energy Information  

Open Energy Info (EERE)

Portfolio Portfolio Jump to: navigation, search Name BioCarbon Fund Project Portfolio Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Market analysis, Policies/deployment programs, Background analysis Website http://wbcarbonfinance.org/Rou Country Albania, China, Colombia, Costa Rica, Ethiopia, Honduras, India, Kenya, Madagascar, Mali, Moldova, Nicaragua, Niger, Uganda Southern Europe, Eastern Asia, South America, Central America, Eastern Africa, Central America, Southern Asia, Eastern Africa, Eastern Africa, Western Africa, Eastern Europe, Central America, Western Africa, Eastern Africa References BioFund Projects[1] Background "The BioCarbon Fund provides carbon finance for projects that sequester or conserve greenhouse gases in forests, agro- and other ecosystems. Through

417

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia |  

Open Energy Info (EERE)

for Low Carbon Growth in Developing Asia for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Indonesia, Malaysia, Philippines, Thailand, Vietnam South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

418

Colombian Low Carbon Development Strategy (CLCDS) | Open Energy Information  

Open Energy Info (EERE)

Colombian Low Carbon Development Strategy (CLCDS) Colombian Low Carbon Development Strategy (CLCDS) Jump to: navigation, search Name Colombian Low Carbon Development Strategy (CLCDS) Agency/Company /Organization The Children's Investment Fund Foundation (CIFF), SouthSouthNorth, the European Union Partner Ministry of Energy, Ministry of Finance, Ministry of Agriculture, Ministry of Environment, Ministry of Industry, Ministry of Transport, Ministry of Housing, National Planning Department Sector Climate, Energy Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Geothermal, Goods and Materials, Greenhouse Gas, Ground Source Heat Pumps, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

419

Low Carbon Society Vision 2050: India | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Society Vision 2050: India Low Carbon Society Vision 2050: India Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society Vision 2050: India Agency/Company /Organization: National Institute for Environmental Studies, Indian Institute of Management Ahmedabad, Kyoto University, Mizuho Information & Research Institute Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, Offsets and Certificates, People and Policy, Solar Phase: Determine Baseline, Evaluate Options, Develop Goals Topics: Background analysis, Baseline projection, GHG inventory, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Case studies/examples, Guide/manual, Lessons learned/best practices, Publications

420

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0--40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trails in the southeastern US. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75--90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C{sub 4}-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon (=12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil types and site management.

Garten, C.T. Jr.; Wullschleger, S.D.

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0-40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trials in the southeastern United States. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75-90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C4-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon ({approx}12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil type, and site management.

Garten Jr, Charles T [ORNL; Wullschleger, Stan D [ORNL

2000-04-01T23:59:59.000Z

422

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010...

423

Nanostructured Carbide Derived Carbon (CDC)  

... can be grown at rates up to 100 micrometers per hour and is composed of graphite, diamond, amorphous carbon and carbon "nano-onions" ...

424

Microfluidic Analysis for Carbon Management.  

E-Print Network (OSTI)

??This thesis focuses on applying microfluidic techniques to analyze two carbon management methods; underground carbon sequestration and enhanced oil recovery. The small scale nature of… (more)

Sell, Andrew

2012-01-01T23:59:59.000Z

425

Carbon International | Open Energy Information  

Open Energy Info (EERE)

International Place London, United Kingdom Zip NW1 8LH Sector Carbon Product London-based energy and communications agency specialising in low carbon energy and climate change....

426

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

427

Carbon Trust | Open Energy Information  

Open Energy Info (EERE)

company funded by the UK government to help business and the public sector cut carbon emissions and capture the commercial potential of low carbon technologies....

428

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

429

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

Susan M. Capalbo

2004-01-04T23:59:59.000Z

430

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

Susan M. Capalbo

2004-06-01T23:59:59.000Z

431

Big Sky Carbon Sequestration Partnership  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

432

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

433

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

434

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network (OSTI)

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

435

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas  

E-Print Network (OSTI)

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas Fluxes in Terrestrial Ecosystems, and Benjamin M. Sleeter Chapter 5 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes, carbon sequestration, and greenhouse-gas fluxes in terrestrial ecosystems of the Western United States

Fleskes, Joe

436

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

437

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31T23:59:59.000Z

438

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

Weaver, P.F.

1989-08-25T23:59:59.000Z

439

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

Weaver, Paul F. (Golden, CO)

1990-01-01T23:59:59.000Z

440

Electrofuels: Tiny Organisms Making a Big Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrofuels: Tiny Organisms Making a Big Impact Electrofuels: Tiny Organisms Making a Big Impact Electrofuels: Tiny Organisms Making a Big Impact February 16, 2012 - 12:30pm Addthis Electrofuels: Tiny Organisms Making a Big Impact Alexa McClanahan Communications Support Contractor to ARPA-E They say a picture is worth a thousand words - but what happens when what you want to look at is impossible to see? That's where the Advanced Research Projects Agency-Energy's Electrofuels program comes in. The 13 projects that make up the program seek to develop renewable liquid fuels that use microorganisms to harness chemical or electrical energy to convert carbon dioxide into liquid fuels, without using petroleum or biomass. For example, scientists at Columbia University are using bacteria to optimize the conversion of carbon dioxide and ammonia into a liquid transportation fuel

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Organic photovoltaics and concentrators  

E-Print Network (OSTI)

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

442

Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash  

E-Print Network (OSTI)

expression patterns. BioEssays 20, 116­125 (1998). 4. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From gene evolution. Nature 403, 661­665 (2000). 10. Grenier, J. K. & Carroll, S. B. Functional evolution expression clone; N. Dostatni and A. Laughon for plasmids; J. Grenier for advice; K. Vorwerk and V. Kassner

Columbia University

443

Endurance Test on Two Carbon Fiber Composite Core Conductors  

Science Conference Proceedings (OSTI)

Since organic matrix core (carbon fiber composite core) conductors may be able to operate at higher temperatures than conventional conductors, they could offer utilities the potential to upgrade the transfer capacity of selected lines through reconductoring. However, the industry has had little experience with the design and installation of these new conductors and little knowledge of how the conductors will perform over time. This report describes a study that applied endurance tests to two organic matr...

2010-12-14T23:59:59.000Z

444

Black carbon in marine sediments : quantification and implications for the sorption of polycyclic aromatic hydrocarbons  

E-Print Network (OSTI)

Sorption is a key factor in determining the fate of polycyclic aromatic hydrocarbons (PAHs) in the environment. Here, PAH sorption is proposed as the sum of two mechanisms: absorption into a biogenic, organic carbon (OC) ...

Accardi-Dey, AmyMarie, 1976-

2003-01-01T23:59:59.000Z

445

Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites  

E-Print Network (OSTI)

Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor ...

Swager, Timothy Manning

446

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network (OSTI)

of graphitized carbon fibers. Carbon, 1976. 14 (2): p. 133-chemical vapor deposited carbon fiber. Carbon, 2001. 39 : p.G.G. , Lengths of Carbon Fibers Grown from Iron Catalyst

Deck, Christian Peter

2009-01-01T23:59:59.000Z

447

Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration  

DOE Green Energy (OSTI)

Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

1999-08-29T23:59:59.000Z

448

Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide  

E-Print Network (OSTI)

The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon dioxide has recently been paid attention in the field of extraction, separation, and reaction medium, its aptitude for both a reaction solvent and a reactant was examined in zinc glutarate-catalyzed reactions. As a result, it was proved that supercritical carbon dioxide was a suitable substitute for organic solvents in the copolymerization reactions. Great diffusivity of supercritical carbon dioxide into polymer segments was thought to promote carbon dioxide supply to the active sites of the zinc species and to afford alternating polycarbonate production. Low reaction temperature appeared to be advantageous to polycarbonate and cyclic carbonate formation. Apart from zinc glutarate catalyst whose detailed mechanistic studies were hard to perform due to its insolubility, some other zinc compounds were studied. A homogeneous catalyst, bis(ethyl fumarato)zinc, showed similar polycarbonate yield to zinc glutarate, and the method of the catalyst preparation affected its catalytic activity. Only a small amount of the catalyst was considered to be active in the copolymerization process even in the homogeneous systems. In the zinc dicarboxylate complexes, the carbon number between two carboxyl groups and the steric nature in the vicinity of the zinc atom might be important factors for the copolymerization catalysis.

Katsurao, Takumi

1994-01-01T23:59:59.000Z

449

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

450

Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Carbon Sequestration Partnerships Review Meeting October 12-14, 2005 Table of Contents Agenda PDF-1438KB Phase I Program Review Meeting Phase II Kick-Off Meeting Phase...

451

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

452

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

453

Carbon Capture Pilots (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

454

Carbon nanotube zoom lenses  

Science Conference Proceedings (OSTI)

We show that convergent or divergent zoom lenses with focal length variations up to approximately 100% can be implemented by growing arrays of carbon nanotubes (CNTs) on curved templates. Unique lenses, which can change their character from divergent ...

D. Dragoman; M. Dragoman

2003-06-01T23:59:59.000Z

455

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

456

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

1993-01-01T23:59:59.000Z

457

Photoconversion of gasified organic materials into biologically-degradable plastics  

DOE Patents (OSTI)

A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

Weaver, P.F.; Pinching Maness.

1993-10-05T23:59:59.000Z

458

Organic analyses in water quality control programs - training manual  

Science Conference Proceedings (OSTI)

A lecture/laboratory manual dealing with the analysis of selected organic pollutants. Intended for use by those having little or no experience in the field, but having one year (or equivalent) of college organic chemistry, and having basic laboratory skills (volumetric glassware, titration assemblies, analytical and trip balances). Topics include dissolved oxygen, biochemical oxygen demand, ammonia, nitrates, nitrites, carbon analysis, chemical oxygen demand, surfactants, oil and grease phenolics, gas chromatography, and polychlorinated biphenyls.

Feldmann, C.

1980-11-01T23:59:59.000Z

459

Carbon Nanofibers for Intracellular Manipulation  

Carbon Nanofibers for Intracellular Manipulation Tim McKnight CM: Greg Flickinger. Presenter: John Morris

460

Research Report Forests and carbon  

E-Print Network (OSTI)

Research Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry, baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FC

Note: This page contains sample records for the topic "organic carbon toc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method for synthesizing carbon nanotubes  

Science Conference Proceedings (OSTI)

A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

Fan, Hongyou

2012-09-04T23:59:59.000Z

462

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents (OSTI)

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

Balazs, G. Bryan (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

1999-01-01T23:59:59.000Z

463

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOE Patents (OSTI)

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

Balazs, G.B.; Lewis, P.R.

1999-07-06T23:59:59.000Z

464

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News  

E-Print Network (OSTI)

Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

Lovley, Derek

465