National Library of Energy BETA

Sample records for organic carbon toc

  1. TOC Total organic carbon MBC Microbial biomass carbon

    E-Print Network [OSTI]

    Virginia Tech

    C Carbon TOC Total organic carbon MBC Microbial biomass carbon Active C Pool Indicated by Light, the relationship between carbon dynamics including total organic carbon (TOC) storage, microbial biomass carbon and microbial biomass carbon in subsoil 4 years after rehabilitation · Microbial biomass carbon had a positive

  2. Carbon Mineralization and Labile Organic Carbon Pools in the Sandy

    E-Print Network [OSTI]

    Grunwald, Sabine

    Carbon Mineralization and Labile Organic Carbon Pools in the Sandy Soils of a North Florida mineralization were best explained by TOC (62%) and hot-water- extractable C (59%), whereas acid-hydrolyzable C mineralization and clay content were directly linearly correlated, indicating a possible stimulatory effect

  3. Maximum total organic carbon limit for DWPF melter feed

    SciTech Connect (OSTI)

    Choi, A.S.

    1995-03-13

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T{ampersand}E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit.

  4. Rheology and TIC/TOC results of ORNL tank samples

    SciTech Connect (OSTI)

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.

  5. Organic carbon burial forcing of the carbon cycle from

    E-Print Network [OSTI]

    Derry, Louis A.

    Organic carbon burial forcing of the carbon cycle from Himalayan erosion Christian France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weathering and erosion can affect the long-term ocean­atmo- sphere budget of carbon dioxide both through of Neogene Himalayan erosion on the carbon cycle is an increase in the amount of organic carbon

  6. 5, 11391174, 2008 Organic carbon and

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

  7. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  8. Integration of the Uncertainties of Anion and TOC Measurements into the Flammability Control Strategy for Sludge Batch 8 at the DWPF

    SciTech Connect (OSTI)

    Edwards, T. B.

    2013-03-14

    The Savannah River National Laboratory (SRNL) has been working with the Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) in the development and implementation of a flammability control strategy for DWPF’s melter operation during the processing of Sludge Batch 8 (SB8). SRNL’s support has been in response to technical task requests that have been made by SRR’s Waste Solidification Engineering (WSE) organization. The flammability control strategy relies on measurements that are performed on Slurry Mix Evaporator (SME) samples by the DWPF Laboratory. Measurements of nitrate, oxalate, formate, and total organic carbon (TOC) standards generated by the DWPF Laboratory are presented in this report, and an evaluation of the uncertainties of these measurements is provided. The impact of the uncertainties of these measurements on DWPF’s strategy for controlling melter flammability also is evaluated. The strategy includes monitoring each SME batch for its nitrate content and its TOC content relative to the nitrate content and relative to the antifoam additions made during the preparation of the SME batch. A linearized approach for monitoring the relationship between TOC and nitrate is developed, equations are provided that integrate the measurement uncertainties into the flammability control strategy, and sample calculations for these equations are shown to illustrate the impact of the uncertainties on the flammability control strategy.

  9. Research Article Seasonal TOC export from seven boreal catchments

    E-Print Network [OSTI]

    Buffam, Ishi

    Research Article Seasonal TOC export from seven boreal catchments in northern Sweden Hjalmar Laudon and its relationship with catchment characteristics. The annual average export of TOC ranged between 36, the four week long spring pe- riod contributed between 50% and 68% of the annual TOC export from the seven

  10. Hidden cycle of dissolved organic carbon in the deep ocean

    E-Print Network [OSTI]

    Repeta, Daniel J.

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content ...

  11. Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

    2008-05-01

    This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

  12. Research Article Connecting Soil Organic Carbon and Root Biomass with

    E-Print Network [OSTI]

    Debinski, Diane M.

    of Earth's terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon. Introduction Soils constitute the greatest stock of terrestrial organic carbon [1] and soil properties can major pathways of organic matter input--root tissue and exudates--directly involve plants [22]. Roots

  13. Oxidation of atmospheric organic carbon : interconnecting volatile organic compounds, intermediate-volatility organic compounds, and organic aerosol

    E-Print Network [OSTI]

    Hunter, James Freeman

    2015-01-01

    .Organic molecules have many important roles in the atmosphere, acting as climate and biogeochemical forcers, and in some cases as toxic pollutants. The lifecycle of atmospheric organic carbon is extremely complex, with ...

  14. Organic carbon-14 in the Amazon River system

    SciTech Connect (OSTI)

    Hedges, J.I.; Ertel, J.R.; Quay, P.D.; Grootes, P.M.; Richey, J.E.; Devol, A.H.; Farwell, G.W.; Schmidt, F.W.; Salati, E.

    1986-03-07

    Coarse and fine suspended particulate organic materials and dissolved humic and fulvic acids transported by the Amazon River all contain bomb-produced carbon-14, indicating relatively rapid turnover of the parent carbon pools. However, the carbon-14 contents of these coexisting carbon forms are measurably different and may reflect varying degrees of retention by soils in the drainage basin. 20 references, 1 table.

  15. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and

    E-Print Network [OSTI]

    Cole, Jonathan J.

    The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540

  16. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    2015-03-30

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  17. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  18. Researchers question published no-till soil organic carbon sequestration rates | EurekAlert ...

    E-Print Network [OSTI]

    ... published no-till soil organic carbon sequestration rates ... researchers have published soil organic carbon sequestration rates. Many of the ... have suggested that soil organic carbon can be sequestered by simply ...

  19. Organic Light-Emitting Diodes Having Carbon Nanotube Anodes

    E-Print Network [OSTI]

    Gruner, George

    , flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure applications. Polymer and small molecule-based organic light-emitting diodes (OLEDs) are rapidly approachingOrganic Light-Emitting Diodes Having Carbon Nanotube Anodes Jianfeng Li, Liangbing Hu, Lian Wang

  20. Supercritical extraction of organic mixtures from soil-water slurries 

    E-Print Network [OSTI]

    Green, Lynda Ann

    1994-01-01

    to perform the extractions, and analyses were performed using either total organic carbon (TOC) analysis or BPLC analysis. The total extraction for the three phase system of soil-water-CO2 was predicted from two phase experimental data and theoretical...

  1. Carbon isotope ratios of organic compound fractions in oceanic suspended particles

    E-Print Network [OSTI]

    Hwang, Jeomshik; Druffel, Ellen R. M

    2006-01-01

    Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

  2. Challenges for improving estimates of soil organic carbon stored...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st...

  3. Carbon aging mechanisms and effects on retention of organic iodides

    SciTech Connect (OSTI)

    Hyder, M.L.

    1985-01-01

    The activated carbon used to treat the off-gas from the Savannah River Plant prodution reactor building was studied to determine the chemical changes occurring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The reacted iodine is unavailable for exchange with alkyl iodides. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be presnt. There is also evidence that some iodide is lost from the carbon altogether. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. The specific reactions by which the impregnant is lost have not been identified. However, mathematical analysis shows that the carbon performance data are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. 4 refs., 14 figs., 2 tabs.

  4. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export

    E-Print Network [OSTI]

    Guo, Laodong

    pyrolysis-GC/MS of the sedimentary organic carbon (SOC) indicated an increase in the freshness for carbon. As such, large quantities of soil organic carbon are stored in the region. It is estimated

  5. Management effects on labile organic carbon pools 

    E-Print Network [OSTI]

    Kolodziej, Scott Michael

    2005-08-29

    Experimental Farm near College Station, TX prompted us to examine the effects of tillage and rotation on soil organic C (SOC), soil microbial biomass C (SMBC), 38-day cumulative C mineralization (38-day CMIN), hot-water extractable organic C (hot...

  6. Stable carbon isotopic compositions of bacterial fatty acids in a seagrass dominated system 

    E-Print Network [OSTI]

    Jones, Walter Brian

    2001-01-01

    as a proxy of organic carbon sources to the sediment. T. testudinum above ground tissues averaged -11.8±0.3[0/00] and benthic microalgae, as represented by the fatty acid 20:5[]3, averaged -20.5±0.6[0/00]. The TO¹³C from all habitats and depths were...

  7. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  8. Determination of dissolved organic carbon in concentrated brine solutions

    SciTech Connect (OSTI)

    Hannaker, P.; Buchanan, A.S.

    1983-10-01

    An absolute method is reported for the determination of soluble organic carbon in concentrated brine solutions. Wet oxidation with K/sub 2/S/sub 2/O/sub 8/ is used in a sealed ampule at 130/sup 0/C, followed by hot CuO treatment of the gas stream, to fully oxidize organic species to CO/sub 2/. The CO/sub 2/ is measured gravimetrically after gas purification. Results are presented for a wide range of soluble organic species, both with and without NaCl present. This procedure now allows for the accurate determination of organic carbon in brines over a range from about 5 ppm to values in excess of 1000 ppm. The technique overcomes the difficulties of calibration curvature, catalytic clogging, and instrumental fogging, often encountered in modern instrumental methods, when applied to concentrated brine solutions. 1 figure, 3 tables.

  9. Glossary of Volatile Organic Compounds Ethylbenzene Carbon tetrachloride

    E-Print Network [OSTI]

    Glossary of Volatile Organic Compounds · Ethylbenzene · Carbon tetrachloride · Benzene · 1 and petroleum. It is also found in manufactured products such as inks, insecticides, and paints. Ethylbenzene, carpet glues, varnishes and paints, and use of tobacco. Some people are exposed to ethylbenzene at work

  10. Fates of Eroded Soil Organic Carbon: Mississippi Basin Case Study

    E-Print Network [OSTI]

    Smith, S. V.; Sleezer, R. O.; Renwick, W. H.; Buddemeier, Robert W.

    2005-01-01

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 3 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ;480 t·km22...

  11. Dissolved organic carbon export with North Pacific Intermediate Water formation

    E-Print Network [OSTI]

    Hansell, Dennis

    Dissolved organic carbon export with North Pacific Intermediate Water formation Dennis A. Hansell 2002. [1] An evaluation of DOC export with the formation of North Pacific Intermediate Water east of Japan. The new intermediate water, formed at a rate of 2­5 Sv, exports DOC at 13 ± 6 Tg DOC yr

  12. Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer. All rights reserved. 1. Introduction Organic photovoltaic (OPV) materials promise the production

  13. Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

  14. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect (OSTI)

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.] [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  15. Fractionation between inorganic and organic carbon during the Lomagundi (2.222.1 Ga) carbon isotope excursion

    E-Print Network [OSTI]

    Bekker, Andrey

    is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger deposition, a carbon isotope fractionation as large as ~37 appears to characterize the production of bulk was dominated by a large dissolved inorganic carbon reservoir during the Lomagundi excursion. Our study suggests

  16. Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector

    E-Print Network [OSTI]

    Zhou, Chongwu

    Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

  17. Master/Diploma project Degradation of carbon dioxide by micro organisms

    E-Print Network [OSTI]

    Wolkenhauer, Olaf

    Master/Diploma project Degradation of carbon dioxide by micro organisms The accumulation of carbon of the carbon dioxide release is an important objective in the near future. Various strategies are discussed or storage of produced carbon dioxide. Unfortunately, applications based on fossil fuels cannot be improved

  18. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration

    E-Print Network [OSTI]

    Grunwald, Sabine

    Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

  19. REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON

    SciTech Connect (OSTI)

    Steven B. Hawthorne; Arnaud J. Lagadec

    1999-08-01

    The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C). Surprisingly, the ability of activated carbon to remove organics from the water is better at a high temperature than at room temperature. These initial results are opposite to those expected from chromatographic theory, since the solubility of the organics is about 100,000-fold higher in the hot water than in ambient water. At present, the physicochemical mechanism accounting for these results is unknown; however, it is possible that the lower surface tension and lower viscosity of subcritical water (compared to water at ambient conditions) greatly increases the available area of the carbon by several orders of magnitude. Regardless of the mechanism involved, the optimal use of activated carbon to clean the wastewater generated from subcritical water remediation will depend on obtaining a better understanding of the controlling parameters. While these investigations focused on the cleanup of wastewater generated from subcritical water remediation, the results also apply to cleanup of any wastewater contaminated with nonpolar and moderately polar organics such as wastewaters from coal and petroleum processing.

  20. Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin

    E-Print Network [OSTI]

    2013-01-01

    an organic-rich coastal sediment. Geochim. Cosmochim. Actaorganic carbon in sediments from the North Carolinaexchange between deep ocean sediments and sea water. Nature

  1. Sorption of polycyclic aromatic hydrocarbons to minerals and low-organic-carbon aquifer sediments 

    E-Print Network [OSTI]

    Grimaldi, Gabriel Orlando

    1999-01-01

    The molecular mechanisms and major geochemical factors ics. controlling the sorption of nontoxic organic chemicals (NOC) to mineral surfaces in low-organic-carbon soils and sediments remain unclear. The objectives of this research were to study...

  2. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

  3. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks efficient systems to capture carbon dioxide. Additionally, we have a long-standing collaboration with BASF, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms

  4. Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents Professor, Civil & Environmental Engineering The steady rising level of atmospheric carbon dioxide resulting to the economy that is heavily relied on fossil fuels. Although the transition of the existing carbon

  5. Relationship between Compost Stability and Extractable Organic Carbon L. Wu and L. Q. Ma*

    E-Print Network [OSTI]

    Ma, Lena

    Relationship between Compost Stability and Extractable Organic Carbon L. Wu and L. Q. Ma* ABSTRACT to the factEstablishing a simple yet reliable compost stability test is essential that NaOH-extractable organic carbon (OC) containsfor a better compost quality control and utilization efficiency. The objective

  6. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03

    .3 Results and discussion …………………………………………….27 vi Page 3.4 Conclusions………………………………………………………..34 CHAPTER IV HIGHLY DOPED CARBON NANOTUBES WITH GOLD NANOPARTICLES AND THEIR INFLUENCE ON ELECTRICAL CONDUCTIVITY AND THERMOPOWER ………..36 4... with carbon nanotubes ………...76 7.3 Highly doped carbon nanotubes with gold nanoparticles and their influence on electric conductivity and thermopower……………………………………………………...77 7.4 N-type thermoelectric performance of functionalized carbon nanotube...

  7. Carbon isotopes and lipid biomarkers from organic-rich facies of the Shuram Formation, Sultanate of Oman

    E-Print Network [OSTI]

    Fischer, Woodward

    carbon reservoir in seawater, release of methane from sediment-hosted clathrates, or water column of the observed time-series trends. We report carbon isotope data from bulk organic carbon, extracted bitumenCarbon isotopes and lipid biomarkers from organic-rich facies of the Shuram Formation, Sultanate

  8. Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

    2008-02-04

    The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely moisture, and easy regenerability, were all addressed during this program. As predicted at the start of the program, MOFs have high potential for CO{sub 2} capture in the IGCC and flue gas applications.

  9. Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico 

    E-Print Network [OSTI]

    Bernal, Christina Estefana

    2001-01-01

    The distribution of particulate matter (PM) and particulate organic carbon (POC) was determined during the Northeast Gulf of Mexico Chemical Oceanography and Hydro-graphy program (NEGOM). The hydrography and physical forcing ...

  10. Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia 

    E-Print Network [OSTI]

    Li, Xinxin

    2013-01-03

    The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant...

  11. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  12. Quantification of soil organic carbon using mid- and near- DRIFT spectroscopy 

    E-Print Network [OSTI]

    Kang, Misun

    2004-09-30

    ) and oxidizable organic carbon (OCWB) fraction were calibrated and predicted by mid- and near-DRIFT spectroscopy in combination with partial least squares (PLS) regression method. PLS regression is a multivariate calibration method that can decompose spectral data...

  13. Highly efficient separation of carbon dioxide by a metal-organic framework replete with

    E-Print Network [OSTI]

    Yaghi, Omar M.

    media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 fromHighly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported

  14. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    SciTech Connect (OSTI)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-04-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m/sup -3/, in agreement with previous literature data. The major mass of POC was found on the smallest particles (r<0.5 mm). The /sup 13/C//sup 12/C of the small particles is close to the one expected (d/sup 13/C = 26 +- 2/sup 0///sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols (<20% of the total concentration) is likely to have a direct marine origin since its carbon isotopic composition is close to the expected value (d/sup 13/C = -21 +- 2/sup 0///sub 00/) for POC associated with sea-salt droplets transported to the marine atmosphere.

  15. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  16. Organic solar cells with carbon nanotube network electrodes Michael W. Rowell,a

    E-Print Network [OSTI]

    McGehee, Michael

    Organic solar cells with carbon nanotube network electrodes Michael W. Rowell,a Mark A. Topinka for Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria, flexible polymer-fullerene bulk-heterojunction solar cells. The printing method produces relatively smooth

  17. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    with Organic Solvents David J. Bozym, Betul Uralcan, David T. Limmer, Michael A. Pope, Nicholas J. Szamreta liquid with miscible organic solvents on the differential capacitance of the glassy carbon,2-dichloroethane, a low- dielectric constant solvent, yield the largest gains in capacitance near the open circuit

  18. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents

    E-Print Network [OSTI]

    Lehmann, Johannes

    Stability and stabilisation of biochar and green manure in soil with different organic carbon-poor soil, whereas the difference was only 0.1 kg/m2 .year with Tithonia diversifolia green manure. Biochar of biochar exceeds that of a labile organic matter addition such as green manure. Additional keywords

  19. Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    : Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

  20. Transport of organic carbon from the California coast to the slope region: A study of Delta 14 C and delta 13 C signatures of organic compound classes

    E-Print Network [OSTI]

    Hwang, Jeomshik; Druffel, Ellen R. M; Komada, Tomoko

    2005-01-01

    Channel, California, in Shelf Sediment Transport: Processesthat lateral transport of OC on the California margin is an2005 Transport of organic carbon from the California coast

  1. 1 INTRODUCTION In many groundwater environments, organic carbon,

    E-Print Network [OSTI]

    Roberts, Jennifer A.

    - duced from metabolism of contaminating aromatic hydrocarbons corresponds to the increased dissolu- tion nutrients such as ni- trogen and phosphorus are scarce. When carbon in the form of a contaminant is added can alter silicate solubility directly when attached, by perturbing mineral-water equilibria

  2. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  3. Quantification of the Effects of Organic and Carbonate Buffers on

    E-Print Network [OSTI]

    Sverjensky, Dimitri A.

    on a Goethite-Based Granular Porous Adsorbent M A S A K A Z U K A N E M A T S U , * , T H O M A S M . Y O U N G well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained calibrated using independent published carbonate adsorption data for pure goethite taking into consideration

  4. Method and apparatus for regenerating activated carbon containing an adsorbed volatile organic absorbate

    SciTech Connect (OSTI)

    Tiggelbeck, D.D.; Goyak, G.M.

    1993-07-27

    A method is described for regenerating spent activated carbon containing adsorbed volatile organic adsorbate comprising: establishing a confined downwardly moving bed of activated carbon; adding spent carbon to the top of said bed; introducing superheated steam into the bottom of said bed in contact with said carbon; recovering exit gas including predominantly superheated steam and volatilized adsorbate from the top of said bed; circulating a portion of said exit gas through a superheater and compressor to the bottom of said bed; withdrawing a portion of said exit gas through a cooler to condense steam and volatile adsorbate; continuously circulating superheated steam in a closed loop through said downwardly moving bed, said compressor and said superheater; recovering partially regenerated activated carbon containing residual volatile adsorbate from the bottom of said bed.

  5. Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy

    E-Print Network [OSTI]

    Oceanography: General: Equatorial oceanography; 4805 Oceanography: Biological and Chemical: Biogeochemical cycles (1615); 4806 Oceanography: Biological and Chemical: Carbon cycling; 4842 Oceanography: Biological

  6. Sources and Fates of Dissolved Organic Carbon in Rural and Urban Watersheds in Brazos County, Texas 

    E-Print Network [OSTI]

    Cioce, Danielle

    2012-10-19

    The Bryan/College Station (B/CS) region has been reported to have elevated concentrations of dissolved organic carbon (DOC) in surface water. Increased DOC concentrations are worrisome as DOC has been shown to be an energy source for the recovery...

  7. The Effect of Metal Salts on Quantification of Elemental and Organic Carbon in Diesel Exhaust

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    The Effect of Metal Salts on Quantification of Elemental and Organic Carbon in Diesel Exhaust-loaded diesel samples. Estimated TC was calculated from the BC concentration measured by optical transmissometer and linear relationship between TC and BC, TC (µg)= 1.78 ×BC(µg) - 21.97, derived from diesel reference

  8. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams

    E-Print Network [OSTI]

    Neff, Jason

    > 100%) and pyrolysis-gas chromatography/mass spectroscopy techniques showed high concentration soils or other terrestrial sources of old, previously stabilized C. Citation: Neff, J. C., J. C. Finlay]. The resulting soil deposits contain organic carbon concentrations that average between 2­5% C with numerous

  9. Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores

    E-Print Network [OSTI]

    Stocker, Thomas

    Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores U R S F E D E R E R , * , , P, University of Bern, Bern, Switzerland, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, and British Antarctic Survey, Cambridge, United Kingdom Received May 6, 2008. Revised manuscript

  10. Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment

    E-Print Network [OSTI]

    Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment Upal Ghosh1 , Richard G. Luthy1 , J. Seb Gillette2 , and Richard N long-term issue confronting sediment bioremediation is the lack of understanding of contaminant-sediment

  11. Carbon allocation among tree organs: A review of basic processes and representation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    allocation coefficients; (ii) models based on growth rules, including functional balance or "goal allocation is a key component in function- al-structural tree models (FSTMs). In the short term, parReview Carbon allocation among tree organs: A review of basic processes and representation

  12. Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi Sea

    E-Print Network [OSTI]

    Hansell, Dennis

    Seasonal and interannual changes in particulate organic carbon export and deposition in the Chukchi) export fluxes were estimated in the shelf-slope region of the Chukchi Sea using measurements of 234 ThÀ238 U disequilibria and the POC/234 Th ratio in large (>53-mm) particles. These export fluxes were

  13. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  14. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate

    E-Print Network [OSTI]

    Guo, Laodong

    Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate rivers and Arctic coastal regions. To elucidate the transport pathways of SOC, radiocarbon composition is more readily influenced by modern terrestrial biomass, especially in large river basins which also

  15. Differential support of lake food webs by three types of terrestrial organic carbon

    E-Print Network [OSTI]

    Cole, Jonathan J.

    from the t-DOC to bacteria pathway. Terrestrial POC significantly subsidized the production of bothLETTER Differential support of lake food webs by three types of terrestrial organic carbon Jonathan whole-lake additions of dissolved inorganic 13 C were made to reveal the pathways of subsidies to lakes

  16. Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils

    E-Print Network [OSTI]

    Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils Stephanie A. Ewing,1 Jonathan Sanderman,1 W. Troy Baisden,2 Yang Wang,3 and Ronald Amundson1 characterized the effect of large-scale (>20 mm) soil physical structure on the age and recalcitrance of soil

  17. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage

    E-Print Network [OSTI]

    Florida, University of

    Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil The effects of tillage on soil organic carbon (SOC) and nutrient content of soil aggregates can vary spatially and temporally, and for different soil types and cropping systems. We assessed SOC and nutrient levels within

  18. Study on removal of organic sulfur compound by modified activated carbon

    SciTech Connect (OSTI)

    Fan Huiling; Li Chunhu; Guo Hanxian [Taiyuan Univ. of Technology (China). Research Inst. for Chemical Engineering of Coal

    1997-12-31

    With the price of coal increasing in China, more and more small and medium scale chemical plants are turning to high sulfur coal as the raw material in order to cut cost. However, the major drawback is that the lifetime of the ammonia synthesis catalyst is then reduced greatly because of the high concentration of the sulfur compounds in the synthesis gas, especially organic sulfur, usually CS{sub 2} and COS. The effects of water vapor and experimental temperature on removal of organic sulfur compounds by using a modified activated carbon were studied in this paper. It was found that water vapor had a negative effect on removal of carbon disulfide by activated carbon impregnated with organic amine. The use of activated carbon impregnated with K{sub 2}CO{sub 3} for removal of carbonyl sulfide was also investigated over the temperature range 30--60, the results show a favorable temperature (40) existing for carbonyl sulfide removal. Fixed-bed breakthrough curves for the adsorbent bed were also offered in this paper.

  19. Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene

    E-Print Network [OSTI]

    Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon for organic pseudo-bilayer solar cells J. Appl. Phys. 112, 084511 (2012) Addition of regiorandom poly(3 (2012) Tunable open-circuit voltage in ternary organic solar cells Appl. Phys. Lett. 101, 163302 (2012

  20. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms

    SciTech Connect (OSTI)

    Nevin, KP; Hensley, SA; Franks, AE; Summers, ZM; Ou, JH; Woodard, TL; Snoeyenbos-West, OL; Lovley, DR

    2011-04-20

    Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

  1. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    SciTech Connect (OSTI)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

    2014-05-14

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  2. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-13

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by cosolvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil–brine–sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and cosolvency, which will require more experimental data from key classes of organic compounds.

  3. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-01

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  4. Constraining the propagation of bomb-radiocarbon through the dissolved organic carbon (DOC) pool in the northeast Pacific Ocean

    E-Print Network [OSTI]

    Beaupré, Steven R; Druffel, Ellen R.M.

    2009-01-01

    dissolved organic carbon (DOC) pool in the northeast Paci?c14 C has penetrated the DOC pool to depths of Z450 m, thoughDIC) suggest that the DOC pool in the CNP contains bomb- 14

  5. Determining Sources of Dissolved Organic Carbon and Nutrients in an Urban Basin Using Novel and Traditional Methods 

    E-Print Network [OSTI]

    Govil, Krittika

    2014-01-03

    Water quality in urban ecosystems is sensitive to localized disturbances potentially affecting those mechanisms which influence nutrient cycles. The Carters Creek Basin has been reported to have elevated concentrations of dissolved organic carbon...

  6. Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment

    E-Print Network [OSTI]

    Wan, J.

    2008-01-01

    and formation of stable uranyl carbonate complexes, therebyformation of very stable uranyl carbonate complexes, thereby

  7. Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin

    E-Print Network [OSTI]

    Khatiwala, Samar

    Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic December 2009 Available online 7 March 2010 Keywords: DOC CFC AOU Carbon export NADW a b s t r a c for the main thermocline and North Atlantic Deep Water (NADW) indicate a net DOC export rate of 0.081 Pg C yrÀ1

  8. Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils

    SciTech Connect (OSTI)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

    2014-01-01

    Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

  9. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  10. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  11. Steady state estimation of soil organic carbon using satellite-derived canopy leaf area index

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Yilin; Liu, Chongxuan; Huang, Maoyi; Li, Hongyi; Leung, Lai-Yung R.

    2014-12-02

    Soil organic carbon (SOC) plays a key role in the global carbon cycle that is important for decadal-to-century climate prediction. Estimation of soil organic carbon stock using model-based methods typically requires spin-up (time marching transient simulation) of the carbon-nitrogen (CN) models by performing hundreds to thousands years long simulations until the carbon-nitrogen pools reach dynamic steady-state. This has become a bottleneck for global modeling and analysis, especially when testing new physical and/or chemical mechanisms and evaluating parameter sensitivity. Here we report a new numerical approach to estimate global soil carbon stock that can avoid the long term spin-up of themore »CN model. The approach uses canopy leaf area index (LAI) from satellite data and takes advantage of a reaction-based biogeochemical module NGBGC (Next Generation BioGeoChemical Module) that was recently developed and incorporated in version 4 of the Community Land Model (CLM4). Although NGBGC uses the same CN mechanisms as used in CLM4CN, it can be easily configured to run prognostic or steady state simulations. In this approach, monthly LAI from the multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to calculate potential annual average gross primary production (GPP) and leaf carbon for the period of the atmospheric forcing. The calculated potential annual average GPP and leaf C are then used by NGBGC to calculate the steady-state distributions of carbon and nitrogen in different vegetation and soil pools by solving the steady-state reaction-network in NGBGC using the Newton-Raphson method. The new approach was applied at point and global scales and compared with SOC derived from long spin-up by running NGBGC in prognostic mode, and SOC from the empirical data of the Harmonized World Soil Database (HWSD). The steady-state solution is comparable to the spin-up value when the MODIS LAI is close to the LAI from the spin-up solution, and largely captured the variability of the HWSD SOC across the different dominant plant functional types (PFTs) at global scale. The numerical correlation between the calculated and HWSD SOC was, however, weak at both point and global scales, suggesting that the models used in describing biogeochemical processes in CLM needs improvements and/or HWSD needs updating as suggested by other studies. Besides SOC, the steady state solution also includes all other state variables simulated by a spin-up run, such as NPP, GPP, total vegetation C etc., which makes the developed approach a promising tool to efficiently estimate global SOC distribution and evaluate and compare different aspects simulated by different CN mechanisms in the model.« less

  12. Dialkylene carbonate-bridged polysilsesquioxanes. Hybrid organic-inorganic sol-gels with a thermally labile bridging group

    SciTech Connect (OSTI)

    Loy, D.A.; Beach, J.V.; Baugher, B.M.; Assink, R.A.; Shea, K.J.; Tran, J.; Small, J.H.

    1999-11-01

    In this paper, the authors introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using postprocessing modification of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or chemically after the gel has been processed to a xerogel. These modifications can produce changes in density, solubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylene carbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl) carbonate and bis(triethoxysilylisobutyl) carbonate. Thermal treatment of the resulting nonporous xerogels and aerogels at 300--350 C resulted in quantitative decarboxylation of the dialkylene carbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that cannot be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

  13. Effects of solar radiation on organic matter cycling: Formation of carbon monoxide and carbonyl sulfide (Chapter 11). Book chapter

    SciTech Connect (OSTI)

    Zepp, R.G.

    1994-01-01

    The effects of photoinduced processes on carbon cycling and the biospheric emission of two important trace carbon gases--carbon monoxide and carbonyl sulfide--are examined. Both of these gases are likely to play an important role in the biospheric feedbacks that may reinforce or attenuate future changes in climate. Evidence is presented to support the hypothesis that a significant fraction of the global sources of both of these gases derives from the photochemical fragmentation of decayed plant materials and other biogenic organic matter in terrestrial and marine environments.

  14. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  15. Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape Topographic Positions at the Molecular Scale

    E-Print Network [OSTI]

    Sparks, Donald L.

    Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape spectra and maps were collected. Results: C Distribution and Associations with the Major Elements in Soil Clay Particles Fig.1. Relative elemental distribution maps (9µm×6µm) of clay fractions from the A

  16. Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities

    E-Print Network [OSTI]

    Zheng, Mei

    2007; published 7 August 2007. [1] Fine particle organic carbon in Delhi, Mumbai, Kolkata­36% in Mumbai, 37­57% in Kolkata, and 28% in Chandigarh. These figures can be compared to the biomass combustion contributions to ambient PM2.5 of 7­20% for Delhi, 7­20% for Mumbai, 13­18% for Kolkata, and 8% for Chandigarh

  17. Differential Support of Lake Food Webs by Three Types of Terrestrial Organic Carbon ELE 00670-2005 Revision

    E-Print Network [OSTI]

    Notre Dame, University of

    of dissolved inorganic 13 C were made to reveal the pathways of subsidies to lakes from terrestrial dissolved pathway. Terrestrial POC significantly subsidized the production of both zooplankton and benthic1 Differential Support of Lake Food Webs by Three Types of Terrestrial Organic Carbon ELE 00670

  18. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Goldstein, Allen

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from-based, single vehicle dynamometer testing, and on-road measurements in roadway tunnels.3-12 Emission factors

  19. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321

    SciTech Connect (OSTI)

    Olson, D.

    2012-04-01

    Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

  20. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    SciTech Connect (OSTI)

    1981-04-01

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

  1. Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon

    E-Print Network [OSTI]

    Flores Cervantes, Déborah Xanat, 1978-

    2008-01-01

    Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

  2. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  3. Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. I

    E-Print Network [OSTI]

    2010-01-01

    TLD Thermoluminescent Dosimeter TOC Total Organic CarbonTechnical Terms (continued) dosimeter A portable detectionalso thermolumines- cent dosimeter. downgradient Commonly

  4. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide 

    E-Print Network [OSTI]

    Orejuela, Mauricio

    1994-01-01

    Carbon Dioxide. 5. Measured Diffusion Coefficients of Hexachlorobenzene in Supercritical Carbon Dioxide. 6. Measured Diffusion Coefficients of Pentachlorophenol in Supercritical Carbon Dioxide. 7. Carbon Dioxide Parameters as Determined by Empirical..., and for polyatomic solute and solvent molecules, A?was set to 0. 70. Erkey (1989) determined the translational-rotational coupling parameters for binary n-Alkane systems from measured diffusivity data at a wide range of densities. It was shown...

  5. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs 

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05

    Organic Content (TOC), fluid saturation, volumetric concentrations of mineral constituents, and elastic properties facilitated identification of different rock classes, using an unsupervised artificial neural network. A good rock classification technique...

  6. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  7. EVOLUTIONARY AND GEOLOGIC CONSEQUENCES OF ORGANIC CARBON FIXING IN THE PRIMITIVE ANOXIC OCEAN

    E-Print Network [OSTI]

    Berry, W.B.N.

    2013-01-01

    fix carbon dioxide. The free source to energy relationshipsfree energy derived from use of hydrogen chemosynthesis sulfide as an energy source

  8. Carbon and Nitrogen Isotopic Signatures and Nitrogen Profile To Identify Adulteration in Organic Fertilizers

    E-Print Network [OSTI]

    Mazumder, Asit

    growth regulators such as hormones, livestock antibiotics, food additives, genetically modified organisms

  9. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  10. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mishra, U.; Riley, W. J.

    2015-07-02

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore »with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ? 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  11. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mishra, U.; Riley, W. J.

    2015-01-27

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore »fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less

  12. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etDiscussion Paper CMIP5 Earth system models and comparison

  13. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

  14. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect (OSTI)

    Nam,K.W.; Yang,X.

    2009-03-01

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  15. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    SciTech Connect (OSTI)

    Gu, B.; Dowlen, K.E.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO{sub 4}) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO{sub 4}{sup {minus}} and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO{sub 4}{sup {minus}} from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study.

  16. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  17. Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento–San Joaquin Delta

    E-Print Network [OSTI]

    Deverel, Steven J.; Leighton, David A.; Finlay, Mark R.

    2007-01-01

    data collection and processing, Sacramento, California. Wu,of organic soils, Sacramento-San Joaquin Delta, California.CALFED Science Conference, Sacramento, California. Epstein,

  18. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Dai, Zhenxue [Los Alamos National Laboratory, Los Alamos, NM (United States); Zheng, Liange [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2 leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.

  19. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange

    2014-12-31

    An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a geochemical scaling function has been developed, based on a detailed reactive transport model of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of geochemical parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more »leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less

  20. Predicting pyrogenic organic matter mineralization from its initial properties and implications for carbon management

    E-Print Network [OSTI]

    Lehmann, Johannes

    for carbon management Thea Whitman, Kelly Hanley, Akio Enders, Johannes Lehmann Department of Crop and Soil to higher pyrolysis temperatures is more stable. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction combustion or pyrolysis (Bird and Ascough, 2012). While PyC can be degraded both chemically and biologically

  1. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    E-Print Network [OSTI]

    Kroll, Jesse

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

  2. The influence of organic carbon on oxygen dynamics and bacterial sulfate reduction in inland shrimp ponds 

    E-Print Network [OSTI]

    Suplee, Michael Wayne

    1995-01-01

    Experiments conducted in saline aquaculture ponds demonstrated that organic matter was the primary factor influencing sediment sulfate reduction rates. Changes in sediment oxygen demand (SOD), sulfate reduction rates, and ...

  3. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    SciTech Connect (OSTI)

    Pekala, Richard W. (Pleasant Hill, CA)

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  4. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    DOE Patents [OSTI]

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  5. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  6. Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

    SciTech Connect (OSTI)

    Bobrinetskiy, I. I.; Emelianov, A. V.; Nevolin, V. K. Romashkin, A. V.

    2014-12-15

    It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The I–V characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is.

  7. A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Al-Douri, Ahmad F

    2014-05-28

    was obtained using both a phosphorous-based and iron-based catalyst. The rate of reaction of a 10 wt% solution of the new organic acid was measured using the rotating disk apparatus at temperatures up to 250°F. Low-permeability Indiana limestone (1-5 md...

  8. Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska 

    E-Print Network [OSTI]

    Schreiner, Kathryn 1983-

    2013-01-09

    High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger...

  9. Contribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide levels in two areas of the United States

    E-Print Network [OSTI]

    Dabdub, Donald

    - house gas, but also the hydroperoxide radical (HO2). HO2 converts nitric oxide to nitrogen dioxideContribution of gas phase oxidation of volatile organic compounds to atmospheric carbon monoxide. Chen, K. Carmody, S. Vutukuru, and D. Dabdub (2007), Contribution of gas phase oxidation of volatile

  10. PII S0016-7037(99)00335-X Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean

    E-Print Network [OSTI]

    Guo, Laodong

    terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean compounds with varying sources (Meybeck, 1982; Thurman, 1985; Hedges et al., 1997), degradation pathways

  11. Adsorption and desorption of atrazine and deethylatrazine by low organic carbon geologic materials

    SciTech Connect (OSTI)

    Roy, W.R.; Krapac, I.G. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-05-01

    The adsorption and desorption of atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) and a primary metabolite, deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine; DEA), by low organic C ({le} 3.3 g kg{sup -1}) materials were measured by batch-equilibrium techniques. The adsorbents were samples of glacial outwash sand, till, and stream sediments. The adsorption of both atrazine and DEA conformed to linear isotherms. The adsorption of atrazine by most of the absorbents yielded apparent K, values that were in excess of those based on surface agricultural soils. Adsorption correlated with only the pH of the sand-water suspensions. The desorption of atrazine was hysteretic under the conditions of the measurement. DEA had a lower affinity for the same adsorbents; the mean ratio of Kd values of DEA to those of atrazine was 0.37 {+-} 0.20. DEA adsorption did not correlate with organic C, surface area, clay content of the adsorbents, or with the pH of the suspensions. DEA adsorption, unlike atrazine, tended to be reversible. There was a linear relationship between the adsorption constants of atrazine and those of DEA. 40 refs., 8 figs., 3 tabs.

  12. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  13. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    David A Lesch

    2010-06-30

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

  14. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  15. TOC.indd

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm

  16. Redistribution ofmulti-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system

    E-Print Network [OSTI]

    Sparkes, Robert B.; Lin, In-Tian; Hovius, Niels; Galy, Albert; Liu, James T.; Xu, Xiaomei; Yang, Rick

    2015-02-25

    Volumetrically, turbidity currents are the prime suppliers of sediment to the deep sea, and conveyors of organic carbon from the terrestrial biosphere and submarine shelf into marine depositional basins. They result from complex processes of erosion...

  17. Low Temperature Deposition of Metal Oxide Thin Films in Supercritical Carbon Dioxide using Metal-organic Precursors

    E-Print Network [OSTI]

    Gougousi, Theodosia

    Semiconductor (CMOS) devices, [1,2] magnetic tunnel junctions, [3] and optical coatings.[4] Conventional such as electroplating, [6,7] electroless deposition, [8,9] and in supercritical carbon dioxide for the deposition

  18. PAHs and organic matter partitioning and mass transfer from coal tar particles to water

    SciTech Connect (OSTI)

    Karim Benhabib; Marie-Odile Simonnot; Michel Sardin [LSGC - Laboratory of Chemical Engineering Science, Nancy (France)

    2006-10-01

    The coal tar found in contaminated soils of former manufactured gas plants and coking plants acts as a long-term source of PAHs. Organic carbon and PAH transfer from coal tar particles to water was investigated with closed-looped laboratory column experiments run at various particle sizes and temperatures. Two models were derived. The first one represented the extraction process at equilibrium and was based on a linear partitioning of TOC and PAHs between coal tar and water. The partition coefficient was derived as well as the mass of extractable organic matter in the particles. The second model dealt with mass transfer. Particle diffusion was the limiting step; organic matter diffusivity in the coal tar was then computed in the different conditions. A good consistency was obtained between experimental and computed results. Hence, the modeling of PAH migration in contaminated soils at the field scale requires taking into account coal tar as the source-term for PAH release. 28 refs., 5 figs., 3 tabs.

  19. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  20. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  1. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  2. 1 Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits 2 and Its Application in Organic Light Emitting Diode Control

    E-Print Network [OSTI]

    Zhou, Chongwu

    attention. Recently, the 27 organic light emitting diode (OLED)3 has shed new light on this 28 realm in Organic Light Emitting Diode Control 3 Pochiang Chen,,|| Yue Fu,,|| Radnoosh Aminirad,,§ Chuan Wang, Jialu. Compared to LCD, OLED has lightweight, compatibility 29 with flexible plastic substrate, wide viewing

  3. Long-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon and Organic Aerosol

    E-Print Network [OSTI]

    Goldstein, Allen

    mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions haveLong-Term Trends in California Mobile Source Emissions and Ambient Concentrations of Black Carbon, Berkeley, Berkeley, California 94720-1710, United States *S Supporting Information ABSTRACT: A fuel

  4. Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy

    E-Print Network [OSTI]

    Kuo, Dave Ta Fu, 1978-

    2010-01-01

    The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

  5. The Relationships of Particulate Matter and Particulate Organic Carbon with Hypoxic Conditions Along the Texas-Louisiana Shelf 

    E-Print Network [OSTI]

    Zuck, Nicole A

    2014-08-06

    riverine influences along the Texas- Louisiana coast and determine the limits of coastal and marine water masses [Dorado, 2011]. Determination of the d13C and d15N values of POM can give us information about discrete carbon and nitrogen sources... to the northern Gulf of Mexico [Dorado, 2011]. As water flows through an estuary, the ?13C derived from PO13C generally increases from -30‰ to -20‰ as salinity increases, however the ?15N from PO15N tends 28 to stay stable between 4‰ and 6‰ nearest...

  6. DIVISION S-10--WETLAND SOILS Turnover of Detrital Organic Carbon in a Nutrient-Impacted Everglades Marsh

    E-Print Network [OSTI]

    Florida, University of

    of organic C in plant and soil detrital pools along a P enrichment gradient in an Everglades marsh-30 cmdepth)], potential C mineralization decreased down gradient from the source of nutrient loading to WCA-2 metabolism via denitrification, as well as through NH3 volatilization (Reddy and D'Angelo, 1994). In contrast

  7. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

  8. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report heremore »a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A?cm-3 at 0.9 V or 450 A?cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.« less

  9. Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network

    SciTech Connect (OSTI)

    Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren; Zhao, Dan; Liu, Di -Jia

    2015-08-25

    Fuel cell vehicles, the only all-electric technology with a demonstrated >300 miles per fill travel range, use Pt as the electrode catalyst. The high price of Pt creates a major cost barrier for large-scale implementation of polymer electrolyte membrane fuel cells. Nonprecious metal catalysts (NPMCs) represent attractive low-cost alternatives. However, a significantly lower turnover frequency at the individual catalytic site renders the traditional carbon-supported NPMCs inadequate in reaching the desired performance afforded by Pt. Unconventional catalyst design aiming at maximizing the active site density at much improved mass and charge transports is essential for the next-generation NPMC. We report here a method of preparing highly efficient, nanofibrous NPMC for cathodic oxygen reduction reaction by electrospinning a polymer solution containing ferrous organometallics and zeolitic imidazolate framework followed by thermal activation. The catalyst offers a carbon nanonetwork architecture made of microporous nanofibers decorated by uniformly distributed high-density active sites. In a single-cell test, the membrane electrode containing such a catalyst delivered unprecedented volumetric activities of 3.3 A?cm-3 at 0.9 V or 450 A?cm-3 extrapolated at 0.8 V, representing the highest reported value in the literature. Improved fuel cell durability was also observed.

  10. Tuning the Gate Opening Pressure of Metal Organic Frameworks (MOFs) for the Selective Separation of Hydro-carbons

    E-Print Network [OSTI]

    Nijem, Nour; Canepa, Pieremanuele; Marti, Anne; Balkus,, Kenneth J; Thonhauser, T; Li, Jing; Chabal, Yves J; 10.1021/ja305754f

    2012-01-01

    Separation of hydrocarbons is one of the most energy demanding processes. The need to develop materials for the selective adsorption of hydrocarbons, under reasonable conditions, is therefore of paramount importance. This work unveils unexpected hydrocarbon selectivity in a flexible Metal Organic Framework (MOF), based on differences in their gate opening pressure. We show selectivity dependence on both chain length and specific framework-gas interaction. Combining Raman spectroscopy and theoretical van der Waals Density Functional (vdW-DF) calculations, the separation mechanisms governing this unexpected gate opening behavior are revealed.

  11. Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N -T E I X E I R A *, S A R A H C . D AV I S w , M I C H A E L D . M A S T E R S * and

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N - T E I X E of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality

  12. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; et al

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO?) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore »(1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹? g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr?¹ with a median value of 51 Pg C yr?¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO? and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.« less

  13. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  14. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  15. 4, 719745, 2007 Fluvial organic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    changes and targets for carbon sequestration set by the Kyoto Protocol. In the UK the largest componentHESSD 4, 719­745, 2007 Fluvial organic carbon flux from an eroding peatland R. R. Pawson et al System Sciences Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK R

  16. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring, Missouri,MSEReporty Long-Term

  17. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,Appendix A

  18. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,Appendix AB

  19. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,Appendix

  20. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,AppendixD

  1. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,AppendixD

  2. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,AppendixDF

  3. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,AppendixDFG

  4. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix D,AppendixDFG

  5. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG Appendix

  6. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG AppendixJ Ground Water

  7. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG AppendixJ Ground

  8. Microsoft Word - toc.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O M1 the RFSOG AppendixJ Ground

  9. spread_comp_02 TOC

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherizeeEnergyMonumentWest From:FORM9,Introduction .

  10. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore rad

  11. Australian climatecarbon cycle feedback reduced by soil black carbon

    E-Print Network [OSTI]

    Lehmann, Johannes

    Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together1 . Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils2­5 , creating a positive

  12. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARMgovMeasurementsNitrogen ARM

  13. Carbon Dioxide & Global Warming

    E-Print Network [OSTI]

    Miami, University of

    Carbon Dioxide & Global Warming University of MiaMi rosenstiel sChool of Marine anD atMospheriC s , organic carbon, and other chemicals that contribute to global warming in a variety of studies. DownCienCe 4600 rickenbacker Causeway Miami, florida 33149 http://www.rsmas.miami.edu the Chemistry of Global

  14. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  15. An Organic Carbon Budget for the Mississippi River Turbidity Plume and Plume Contributions to Air-sea CO2 Fluxes and

    E-Print Network [OSTI]

    Breed, Greg A.

    are the primary interface between terrestrial and oceanic environments and play a central role in linking terrestrial and marine carbon cycles. Annually, rivers transport 1 Gt total carbon to the world's oceans (e.g., Cai et al. 2003). Despite the known importance of RiOMar, the export pathways of OC

  16. ORNL researchers improve soil carbon cycling models | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and releases carbon into the soil. Enzymes released by microbes in the soil degrade the organic matter, releasing carbon molecules, which the microbes absorb as food. Eventually,...

  17. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  18. Role of added carbon in the transformation of surplus soil nitrate-nitrogen to organic forms in an intensively managed calcareous soil

    E-Print Network [OSTI]

    2009-01-01

    effect of carbon substrates. Soil Biol. Biochem. 36: Myroldof bacteria and fungi in nitrate assimilation in soil.Soil Biol. Biochem. 39: 1737-1743. Stange CF, Spott O, Apelt

  19. The Importance of Carbon Footprint Estimation Boundaries

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Importance of Carbon Footprint Estimation Boundaries H . S C O T T M A T T H E W S , C H R I and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints

  20. SAMPLE HIGH SCHOOL INTERSHIP RESEARCH LABS (Please note that the below list of labs are sample labs &

    E-Print Network [OSTI]

    Reed, Nancy E.

    organic carbon/total nitrogen analyzer (TOC/TN), a gas chromatograph/mass spectrometer (GC/MS), a purge. The nature of our data in certain applications has also become much more complex, and increasingly higher

  1. Carbon sequestration

    E-Print Network [OSTI]

    Carbon sequestration is the process of capture and long-term storage of atmospheric carbon dioxide (CO 2).[1] Carbon sequestration describes long-term storage of carbon dioxide or other forms of carbon to either mitigate or defer global warming and avoid ...

  2. Controls on black carbon storage in soils

    E-Print Network [OSTI]

    Czimczik, Claudia I; Masiello, Caroline A

    2007-01-01

    Physical and chemical protection of soil organic carbonin three agricultural soils with different contents ofcalcium carbonate, Aust. J. Soil Res. , 38, 1005 – 1016.

  3. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  4. Methods and systems for chemoautotrophic production of organic compounds

    DOE Patents [OSTI]

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2013-01-08

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  5. Carbon dynamics in arctic vegetation 

    E-Print Network [OSTI]

    Street, Lorna Elizabeth

    2011-11-24

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  6. The effect of organic carbon on fixed nitrogen loss in the eastern tropical South Pacific and Arabian Sea oxygen deficient zones

    E-Print Network [OSTI]

    Ward, Bess

    Oceanography Division, National Institute of Oceanography, Dona Paula, Goa, India Abstract The three major investigated the response of N loss in the ETSP and AS ODZs to additions of organic matter in the form). In the ETSP ODZ, the addition of glucose stimulated denitrification (1.6-fold increase after 5 d

  7. www.postersession.com The goal of this study is to investigate the pretreatment of

    E-Print Network [OSTI]

    Hutcheon, James M.

    . This work is also supported by the Graduate Student Organization of the GSU College of Grad Students through for THMFP reduction. The charts above provide details for each fraction removal percentage. Through of organics in the water, total organic carbon (TOC) & dissolved organic carbon (DOC) was tested. The Pre

  8. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  9. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  10. Carbon-Based Materials, High-Surface-Area Sorbents, and New Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies includes a range of carbon-based materials such as carbon nanotubes, aerogels, nanofibers (including metal-doped hybrids), as well as metal-organic frameworks,...

  11. Carbon stored in human settlements: the conterminous United States

    E-Print Network [OSTI]

    Brown, Daniel G.

    value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion, and 5% to buildings. To offset rising urban emissions of carbon, regional and national governments

  12. Carbon K-edge Spectra of Carbonate Minerals

    SciTech Connect (OSTI)

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  13. Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics

    E-Print Network [OSTI]

    Wang, Feihu

    2012-01-01

    Ultrasmooth Graphene Nanoribbon Semiconductors. Sciencepristine graphene is not a semiconductor with a finite bandgraphene, carbon nanotubes, and organic semiconductors. The

  14. The temporal dynamics of terrestrial organic matter transfer to the oceans : initial assessment and application

    E-Print Network [OSTI]

    Drenzek, Nicholas J

    2007-01-01

    This thesis employs compound-specific stable carbon and radiocarbon isotopic analysis of organic biomarkers to (a) resolve petrogenic from pre-aged vascular plant organic carbon (OC) in continental margin sediments, (b) ...

  15. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar [ORNL

    2007-06-01

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  16. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  17. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  18. Storage and turnover of organic matter in soil

    E-Print Network [OSTI]

    Torn, M.S.

    2009-01-01

    of organic carbon from peat soils. Nature 412 , 785. Fried,Plant Litter. Standard Soil Methods for Long-Term Ecological2007). Role of proteins in soil carbon and nitrogen storage:

  19. Source(s) and cycling of the nonhydrolyzable organic fraction of oceanic particles

    E-Print Network [OSTI]

    Hwang, J; Druffel, ERM; Eglinton, TI; Repeta, DJ

    2006-01-01

    J.A. , Hedges, J.I. , 2001a. Demineralization of marine andthan these values. By demineralization, the organic carbon

  20. Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  1. Philippines-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    in Developing Asia Jump to: navigation, search Name Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  2. Vietnam-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    Growth in Developing Asia Jump to: navigation, search Name Vietnam-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  3. Strengthening Planning Capacity for Low Carbon Growth in Developing...

    Open Energy Info (EERE)

    Asia - Thailand Jump to: navigation, search Name Thailand-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  4. Preliminary Study on Sustainable Low-Carbon Development Towards...

    Open Energy Info (EERE)

    Vietnam Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Preliminary Study on Sustainable Low-Carbon Development Towards 2030 in Vietnam AgencyCompany Organization:...

  5. Sorbents and Carbon-Based Materials for Hydrogen Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  6. Microsoft Word - tb47_TOC.html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrangements were used. In the first, carried out at the APS 1-BM beamline, the injection apparatus was scanned through a small, focused x-ray beam. The transmitted beam was...

  7. Microsoft Word - TOC&Units.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbinsMonumentThird6010OfficeColorado,Shiprock,

  8. Microsoft Word - TOC - ALL.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure614583 GENII5, 2007The C C CO O

  9. Microsoft Word - TOC - ALL.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOX Adventure614583 GENII5, 2007The C C CO O E

  10. corp-toc | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulation Initiative7 Boundarycontainersconvert

  11. Volume 1 Front Matter and TOC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran LeadershipVision for09VOLTTRON: U.S.

  12. Aged black carbon identified in marine dissolved organic carbon

    E-Print Network [OSTI]

    Ziolkowski, Lori A; Druffel, Ellen R.M.

    2010-01-01

    pool in the northeast Pacific Ocean, Deep Sea Res. , Part I,?445‰ in the deep NE Pacific Ocean (Table S1). The Suwanneein the northeast Pacific Ocean. If the BC in the Amazon

  13. Plant diversity increases soil microbial activity and soil carbon storage.

    E-Print Network [OSTI]

    2015-01-01

    B. The vertical distribution of soil organic carbon and itsA. S. & Whitmore, A. P. Soil organic matter turnover isorganic matter in a cultivated soil. Org. Geochem. 33, 357–

  14. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    , oil, Solanum tuberosum, Beta vulgaris, Cyperus esculentus, Pastinaca sativa, GMO, transcription factor

  15. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

  16. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect (OSTI)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  17. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  18. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  19. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  20. Global assessment of ocean carbon export by combining satellite observations

    E-Print Network [OSTI]

    Siegel, David A.

    Global assessment of ocean carbon export by combining satellite observations and food-web models D Studies, University of Tasmania, Hobart, Tasmania, Australia Abstract The export of organic carbon from cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite

  1. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau

    E-Print Network [OSTI]

    Xiao, Jingfeng

    RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

  2. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  3. Method for making carbon films

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  4. Method for making carbon films

    DOE Patents [OSTI]

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  5. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    SciTech Connect (OSTI)

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China) [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China) [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ? To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ? ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ? PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ? The findings suggest that ELF has a protective role against PM. ? The synthetic ELF system could reduce the use of animals in PM-driven ROS testing.

  6. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  7. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  8. Organic aerogel microspheres

    SciTech Connect (OSTI)

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  9. Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of carbon sequestration. The quality and quantity of soil organic carbon is probably influenced. It is suggested that, in conservation projects based on higher carbon sequestration, the plant species with more sequestration, Plant species, Soil organic carbon, Vegetation type, Prangus uloptera stands. hal-00875310

  10. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  11. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  12. Soil carbon sequestration and land-use change: processes and potential

    E-Print Network [OSTI]

    Soil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects respon- sible for soil organic carbon losses from when the land was converted from

  13. PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration

    E-Print Network [OSTI]

    Halgamuge, Malka N.

    PIERS ONLINE, VOL. 5, NO. 7, 2009 637 Ventilation Efficiency and Carbon Dioxide (CO2) Concentration complex organic molecules being broken down to simpler molecules, such as carbon dioxide and water. Carbon dioxide waste is removed from the body through respiration. Carbon dioxide content in fresh air

  14. Black carbon in Arctic snow and its effect on surface albedo

    E-Print Network [OSTI]

    1 Black carbon in Arctic snow and its effect on surface albedo Stephen Warren, University wavelengths: ice is nearly transparent. Absorptive impurities: Black carbon (soot) Brown carbon (organics broadband albedo: 83% 71% (2) by addition of black carbon (BC) (20 ppb): 0.5% for r = 100 µm 1.6% for r

  15. "The disintegration of organic compounds by microorganisms is accompanied by the liberation of

    E-Print Network [OSTI]

    Lovley, Derek

    comple- ment of enzymes necessary to completely oxidize organic fuels to carbon dioxide is not yet they are `carbon-neutral'; the oxidation of the organic matter only releases recently fixed carbon back and sediments. The ubiquitous and innocuous properties of fuels for microbial fuel cells alleviates the need

  16. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect (OSTI)

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

    2007-10-15

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  17. Carbon export and transfer to depth across the Southern Ocean Great Calcite Belt

    E-Print Network [OSTI]

    Lam, P. J.

    Sequestration of carbon by the marine biological pump depends on the processes that alter, remineralize, and preserve particulate organic carbon (POC) during transit to the deep ocean. Here, we present data collected from ...

  18. Understanding and engineering interfacial charge transfer of carbon nanotubes and graphene for energy and sensing applications

    E-Print Network [OSTI]

    Paulus, Geraldine L. C. (Geraldine Laura Caroline)

    2013-01-01

    Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless ...

  19. GEOC: Division of Geochemistry 208 -Copper sequestration by black carbon in

    E-Print Network [OSTI]

    Sparks, Donald L.

    GEOC: Division of Geochemistry 208 - Copper sequestration by black carbon in contaminated soil the quality of agricultural products and underground water and impacts the stability of soil organic carbon

  20. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  1. Fermilab | About | Organization | Fermilab Organization | Explanation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Symbols Line Organization: sectors, divisions, sections Line Organization Matrix Organization: centers, projects and programs utilizing resources spanning the entire...

  2. Quantity and Spatial Variability of Soil Carbon in the Conterminous United States Yinyan Guo, Ronald Amundson,* Peng Gong, and Qian Yu

    E-Print Network [OSTI]

    Yu, Qian

    , Ronald Amundson,* Peng Gong, and Qian Yu ABSTRACT We estimated the soil organic carbon (SOC) and soil

  3. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

  4. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  5. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  6. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments

    E-Print Network [OSTI]

    Weston, Nathaniel B.

    Temperature-driven decoupling of key phases of organic matter degradation in marine sediments for review August 29, 2005) The long-term burial of organic carbon in sediments results in the net and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon

  7. Autonomous observations of the ocean biological carbon pump

    SciTech Connect (OSTI)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  8. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

  9. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  10. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  11. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizingOrganizing

  12. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  13. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  14. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  15. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  16. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  17. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  18. PUBLISHED ONLINE: 21 NOVEMBER 2010 | DOI: 10.1038/NGEO1014 Rapid carbon sequestration at the termination of

    E-Print Network [OSTI]

    LETTERS PUBLISHED ONLINE: 21 NOVEMBER 2010 | DOI: 10.1038/NGEO1014 Rapid carbon sequestration sequestration of organic carbon could reflect the regrowth of carbon stocks in the biosphere or shallow ago, has been attributed to the release of thousands of petagrams of reduced carbon into the ocean

  19. Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Complexity of Carbon Capture in Alkylamine-Functionalized Metal-Organic Frameworks Previous Next List D. Wu, T. M. McDonald, Z. Quan, S. V. Ushakov, P. Zhang, J. R....

  20. Synthesis of Amides and Lactams in Supercritical Carbon Dioxide

    E-Print Network [OSTI]

    Mak, Xiao Yin

    Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

  1. Dynamics of decadally cycling carbon in subsurface soils

    E-Print Network [OSTI]

    Koarashi, Jun; Hockaday, William C; Masiello, Caroline A; Trumbore, Susan E

    2012-01-01

    of organic carbon in deep soil layers controlled by freshcarbon input G03033 from fresh liter to deep mineral soils,Soil Sci. Soc. Am. J. , 71, 347–354, doi:

  2. Energy Use and Carbon Emissions: Non-OECD Countries

    Reports and Publications (EIA)

    1994-01-01

    Presents world energy use and carbon emissions patterns, with particular emphasis on the non-OECD (Organization for Economic Cooperation and Development) countries (including the current and former centrally planned economies).

  3. Energy Carrier Transport In Surface-Modified Carbon Nanotubes 

    E-Print Network [OSTI]

    Ryu, Yeontack

    2012-11-30

    of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties...

  4. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  6. Method of making molten carbonate fuel cell ceramic matrix tape

    DOE Patents [OSTI]

    Maricle, Donald L. (226 Forest La., Glastonbury, CT 06033); Putnam, Gary C. (47 Walker St., Manchester, CT 06040); Stewart, Jr., Robert C. (1230 Copper Hill Rd., West Suffield, CT 06093)

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  7. Research Article Airborne carbon deposition on a remote forested lake

    E-Print Network [OSTI]

    Pace, Michael L.

    allochthonous carbon sources and food webs (Cole et al., 2006). There are numerous pathways for terrestrial inputs of terrestrial particulate organic carbon (TPOC) were measured during summ- er stratification of TPOC were between 6:1 and 22:1 (molar), much lower than the values for terrestrial leaves which were

  8. Carbon aerogels: An update on structure, properties, and applications

    SciTech Connect (OSTI)

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Kong, F.M.

    1993-07-01

    Aerogels are unique porous materials whose composition, structure, and properties can be controlled at the nanometer scale. This paper examines the synthesis of organic aerogels and their carbonized derivatives. Carbon aerogels have low electrical resistivity, high surface area, and a tunable pore size. These materials are finding applications as electrodes in double layer capacitors.

  9. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic

  10. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, Jr., L. John (Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  11. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  12. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  13. Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganization Chart Organization Charts

  14. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout EventsOrganizing

  15. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizing Committee

  16. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizing

  17. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  18. Carbon Monoxide Environmental Public

    E-Print Network [OSTI]

    The National Workgroup on Carbon Monoxide Surveillance Formed in April 2005 Membership: EPHT grantees Academic

  19. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  20. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  1. Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes

    DOE Patents [OSTI]

    Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

    2010-01-26

    Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

  2. 19.1 Introduction Carbon sequestration programs on land and in the

    E-Print Network [OSTI]

    Jackson, Robert B.

    Chapter 19 19.1 Introduction Carbon sequestration programs on land and in the oceans are gaining sequestration programs emphasize storing carbon in soil organic matter in agri- cultural fields,in woody sequestration and management include the feasibil- ity and permanence of the carbon sequestered, the scale

  3. Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and

    E-Print Network [OSTI]

    2000-01-01

    Global Change Biology (2000) 6, 317­328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration

  4. Oxygen production and carbon sequestration in an upwelling coastal Burke Hales,1

    E-Print Network [OSTI]

    Oxygen production and carbon sequestration in an upwelling coastal margin Burke Hales,1 Lee Karp), Oxygen production and carbon sequestration in an upwelling coastal margin, Global Biogeochem. Cycles, 20 of particulate organic carbon (POC) and dissolved O2 during the upwelling season off the Oregon coast. Oxygen

  5. Recent Leaf-Litter-Derived Carbon Is Not a Major Source for Mineral Soil Microbial Communities

    E-Print Network [OSTI]

    Post, Wilfred M.

    Recent Leaf-Litter-Derived Carbon Is Not a Major Source for Mineral Soil Microbial Communities mineral soil microbes. ·The results provided quantitative evidence that root-derived C is the major (>60: Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon

  6. Carbon Film Electrodes For Super Capacitor Applications

    DOE Patents [OSTI]

    Tan, Ming X. (Livermore, CA)

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  7. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea

    E-Print Network [OSTI]

    McCarren, Jay

    Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with ...

  8. Soil Biology & Biochemistry 39 (2007) 27012711 Carbon structure and enzyme activities in alpine and forest ecosystems

    E-Print Network [OSTI]

    Neff, Jason

    2007-01-01

    : Pyrolysis-gas chromatography/mass spectrometry; Py-GC/MS; Enzymes; Microbe; Carbon; Chemistry; Soil organicSoil Biology & Biochemistry 39 (2007) 2701­2711 Carbon structure and enzyme activities in alpine of soil organic matter fractions and its relationship to biological processes remains uncertain. We used

  9. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  10. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  11. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  12. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect (OSTI)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer coefficients for the CO{sub 2}-water-organic layer system. For the CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system, the enhanced factor is not only dependent on the liquid mass transfer coefficients, but also the chemical reaction rates.

  13. Carbon Nanostructure-Based Sensors

    E-Print Network [OSTI]

    Sarkar, Tapan

    2012-01-01

    Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

  14. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  15. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  16. FTIR spectroscopy can predict organic matter quality in2 regenerating cutover peatlands3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    emissions51 Soil Biology and Biochemistry #12;3 show a return to net carbon sequestration (Tuittila et al sequestration potential. Increased losses of dissolved organic carbon (DOC)55 have been observed from many area. Peat46 extraction for fuel and horticultural use has steadily diminished this carbon stock,47

  17. Using Sediment Records to Determine Sources, Distribution, Bioavailability, and Potential Toxicity of Dioxins in the Houston Ship Channel: A Multi-proxy Approach 

    E-Print Network [OSTI]

    Seward, Shaya M.

    2012-07-16

    contaminants (HOC). Analytical data on total organic carbon (TOC), BC, PAHs, dioxins and lignin (likely discarded from a pulp and paper mill along the Channel) were determined. This multi-proxy approach revealed that over the last several decades, HOC inputs...

  18. Terrestrial Analysis of the Organic Component

    E-Print Network [OSTI]

    they formed, these large bodies cannot provide many insights into the nature of the raw starting materials organics is of great interest, both because these materials are thought to represent a reservoir of the original carbon-containing materials from which everything else in our solar system was made and because

  19. Tailoring the properties of organic aerogels

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    We have recently succeeded in producing a new class of organic (or carbon) aerogels whose electrical, mechanical, and other properties are superior to those of the metal alkoxides. By tailoring properties to specific applications, we hope to achieve aerogels with even better performance. We have already tested carbon aerogels for use in inertial-confinement fusion targets and are currently studying applications to other technologies, such as battery electrodes, catalyst supports, and gas filters. In several of these applications, the permeability of the carbon aerogels-that is, their resistance to fluid flow-is crucial to their performance. Here, we describe briefly the synthesis of organic aerogels and present the results of our permeability studies.

  20. SYNTHESIS AND EMERGING IDEAS Decomposition of soil organic matter from boreal black

    E-Print Network [OSTI]

    Neff, Jason

    using pyrolysis gas chromatography- mass spectrometry prior to incubation, and after incubation on soils Pyrolysis GC/MS Á Soil organic carbon Introduction Boreal soils have been accumulating carbon (C) sinceSYNTHESIS AND EMERGING IDEAS Decomposition of soil organic matter from boreal black spruce forest

  1. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout Events

  2. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout

  3. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  4. ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh Bren hall 3422, suh Week 1: Introduction to carbon footprint and carbon account - Background: carbon awareness, major out a report or a web site about carbon footprint results of a product or of a company. Write a two

  5. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  6. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F. (Los Angeles, CA); Vajo, John J. (West Hills, CA); Cumberland, Robert W. (Malibu, CA); Liu, Ping (Irvine, CA); Salguero, Tina T. (Encino, CA)

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  7. Investigation of vertical distribution and morphology of indigenous organic matter Sleeping Bear site, Michigan

    SciTech Connect (OSTI)

    West, C.C. [Environmental Protection Agency, Ada, OK (United States); Lyon, W.G.; Ross, D.L. [Robert S. Kerr Environmental Research Lab., Ada, OK (United States)] [and others

    1994-11-01

    This study evaluates the nature and origin of particulate organic carbon and organic coatings on aquifer sands upgradient from a fuel spill site near the Sleeping Bear Dunes National Lakeshore in Michigan. The distribution of carbon was found to be highly complex due to the occurrence of high organic carbon horizons, bounded above and below by high carbonate sediments. The organic coatings on the sands were examined using white light and fluorescence microscopy and by scanning electron microscopy. Core samples were analyzed for organic and inorganic carbon, solution pH, humic/fulvic acid ratios, and insoluable organic matter content (that is, humin) as function of depth from the ground surface. The organic geochemistry of the soil profile at this site was found to be significantly influenced by the carbonates producing a sharp boundary of precipitated organic matter. This boundary was followed by coatings of predominantly fulvic acid salts on mineral grains deeper in the soil column. The coatings extended into the aquifer. The existence of native organic films on sand grains is well documented in the soils literature. The study reported here was greatly aided by this information and provides the framework for future studies concerning the influence of carbon distribution, chemical identity, and morphology on contaminant fate and transport processes. 56 refs., 9 figs., 2 tabs.

  8. Carbon Footprint Towson University

    E-Print Network [OSTI]

    Fath, Brian D.

    Carbon Footprint Towson University GHG Inventory for Educational Institutes Getting Starting.TM The Carbon Footprint 8 The Constellation Experience A Broad Inventory 1. Scope I-Direct Emissions works.TM The Carbon Footprint 10 The Constellation Experience A Broad Inventory 3. Scope III

  9. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  10. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  11. Supercritical separation process for complex organic mixtures

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  12. Supercritical separation process for complex organic mixtures

    DOE Patents [OSTI]

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  13. Mineral mesopore effects on nitrogenous organic matter Andrew R. Zimmermana,

    E-Print Network [OSTI]

    Chorover, Jon

    as sequestration of pollutants in soils and sediments (Luthy et al., 1997), turnover of natural soil organic carbon that organic matter (OM) may be protected from enzymatic degradation by sequestration within mineral mesopores observations. These results provide a potential mechanism for the selective sequestration and preservation

  14. Melody Meyer: Organic Foods Distributor

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    are into green building, reducing carbon footprint, trackingour carbon footprint. There aren’t many companies that areuse, offsetting our carbon footprint. The Rockland facility

  15. GEOC R Lee Penn Sunday, March 25, 2012 12 -Biogeochemical transformation of Fe-and Mn-along a redox gradient: Implications for carbon sequestration

    E-Print Network [OSTI]

    Sparks, Donald L.

    a redox gradient: Implications for carbon sequestration within the Christina River Basin Critical Zone States Organic carbon (C)-mineral complexation mechanism is crucial in C sequestration. It is a function

  16. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals: A Review of Current Practices and Considerations

    SciTech Connect (OSTI)

    Bird, L.; Sumner, J.

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  17. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  18. Wet oxidation of high-concentration reactive dyes

    SciTech Connect (OSTI)

    Chen, G.; Lei, L.; Yue, P.L.

    1999-05-01

    Advanced oxidation methods were used to degrade reactive dyes at high concentrations in aqueous solutions. Wet peroxide oxidation (WPO) was found to be the best method in terms of the removal of color and total organic carbon (TOC). Reactive blue (Basilen Brilliant Blue P-3R) was chosen as a model dye for determining the suitable reaction conditions. The variables studied include reaction temperature, H{sub 2}O{sub 2} dosage, solution pH, dye concentration, and catalyst usage. The removal of TOC and color by wet oxidation is very sensitive to the reaction temperature. At 150 C, the removal of 77% TOC and 90% color was obtained in less than 30 min. The initial TOC removal rate is proportional to the H{sub 2}O{sub 2} dosage. The TOC removal is insignificant even when 50% of the stoichiometric amount of H{sub 2}O{sub 2} is used. No color change is observed until the dosage of H{sub 2}O{sub 2} is 100% of the stoichiometric amount. The color removal is closely related to TOC removal. When the pH of the solution is adjusted to 3.5, the dye degradation rate increases significantly. The rates of TOC and color removal are enhanced by using a Cu{sup 2+} catalyst. Another four reactive dyes, Procion Red PX-4B, Cibacron Yellow P-6GS, Cibacron Brown P-6R, and Procion Black PX-2R, were treated at 150 C using WPO. More than 80% TOC was removed from the solution in less than 15 min. The process can remove the colors of al these dyes except Procion Black PX-2R.

  19. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  20. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  1. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  2. CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE

    E-Print Network [OSTI]

    Bateman, Ian J.

    constraint to these relationships, with the carbon dioxide emissions from fossil fuel consumption pressingCARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson CSERGE GEC Working Paper 92-28 #12;CARBON EMISSIONS AND CARBON FIXING FROM AN ECONOMIC PERSPECTIVE by Dennis Anderson

  3. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    and individuals wishing to reduce their carbon footprint while also delivering a range of other environmentalWoodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code

  4. Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions

    E-Print Network [OSTI]

    Balser, Dana S.

    Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

  5. Carbon Sequestration via Mineral Carbonation: Overview and Assessment

    E-Print Network [OSTI]

    1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

  6. Evaluation of control strategies for volatile organic compounds in indoor air (journal article)

    SciTech Connect (OSTI)

    Ramanathan, K.; Debler, V.L.

    1988-01-01

    The paper discusses research which evaluates the application of adsorption techniques to the control of indoor organic vapors. The adsorption on activated carbon of three compounds representing three classes of organic species was studied at 30 C in the concentration range zero to 200 ppb using a microbalance. The three were benzene (aromatic), acetaldehyde (oxygenated aliphatic), and 1,1,1-trichloroethane (halogenated aliphatic). Three sorbents (a wood base carbon, a coal base carbon, and a coconut shell base carbon) were examined. Uptakes for all the compounds on all the carbons were low (on the order of 10 to the minus 7th power gmol/g carbon). Simulation of a packed bed of carbon indicated that carbon adsorption may not be practical for continuous removal, but may be applicable to sudden releases (e.g., spills). Potential alternatives to activated carbon adsorption are discussed. Potentially toxic organic vapors are emitted from a wide variety of building materials, consumer products, and human activities. Control of indoor organic vapors generally involves removing the source and/or increasing the ventilation rate. The ubiquitous nature of sources of organic vapors generally makes source removal impractical. Increased ventilation causes increased energy usage with its resultant economic penalties. Therefore, practical removal methods are needed.

  7. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium...

  8. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  9. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  10. Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification

    SciTech Connect (OSTI)

    Rosenberg, Norman J.; Izaurralde, Roberto C.

    2001-12-31

    We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

  11. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  12. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  15. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  16. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01

    Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

  17. Electrochemical behavior of carbon aerogels derived from different precursors

    SciTech Connect (OSTI)

    Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    1995-04-01

    The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

  18. Permafrost carbon—climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-09

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon–nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost regionmore »is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. The future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.« less

  19. Total Ownership Cost (TOC) Cost as an Independent Variable

    E-Print Network [OSTI]

    $ + procurement $ + operation $ + logistical support $ + disposal $ Linked - Indirect Direct Direct Cost Life with the research, development, procurement, operation, logistical support and disposal of an individual weapon, operation, logistical support and disposal of an individual weapon system including the total supporting

  20. Microsoft Word - TOC Section I Conformed thru Mod 274.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicaragua, or Singapore); (3) A least developed country (Afghanistan, Angola, Bangladesh, Benin, Bhutan, Burkina Faso, Burundi, Cambodia, Cape Verde, Central African...

  1. Microsoft Word - TOC_Section_J-15_Mod 113.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract No.198 J.3-1J

  2. Microsoft Word - TOC_Section_J.11_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract No.19811-1

  3. Microsoft Word - TOC_Section_J.12_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract No.19811-1

  4. Microsoft Word - TOC_Section_J.5_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract No.19811-15-1

  5. Microsoft Word - TOC_Section_J.6_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract

  6. Microsoft Word - TOC_Section_J.7_Model.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetection of Hydrates7In 1 STEOB Contract7-1 ATTACHMENT

  7. TOC_Section J.14_Conformed thru Mod 274.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OF ENERGYFAQS

  8. Microsoft Word - Vol 1 Chapters TOC.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance for High TemperatureO, v iii

  9. Microsoft Word - Vol 1 Chapters TOC.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance for High TemperatureO, v iii1 -

  10. Microsoft Word - Vol 2 Appendices TOC.doc

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance for High TemperatureO, v iii1 -2

  11. ORGANIC CONTENT OF LAKE WATER By EDWARD A. BIRGE and CHANCEY JUDAY

    E-Print Network [OSTI]

    ORGANIC CONTENT OF LAKE WATER .:I- By EDWARD A. BIRGE and CHANCEY JUDAY Wisconsin Geological and Natural HistolY Sun'ey .:I- CONTENTS Page Introductlon; ~ - - _________ 185 I.-Data__u u n _ 186 Dissolved carbon; 194 n.-Discussion o(the data-Contd. Total organic content u _ Total organic matter, including

  12. Bioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal resources

    E-Print Network [OSTI]

    organic carbon derived primarily from internal phytoplankton production is the dominant food supply of detrital and algal organic matter to the metazoan food web in this large estuarine ecosystem. BackgroundBioavailability of organic matter in a highly disturbed estuary: The role of detrital and algal

  13. Wiseman et al.: Organic Amendment Effects in the Root Zone 2012 International Society of Arboriculture

    E-Print Network [OSTI]

    Virginia Tech

    microor- ganisms are integral to the soil food web because of their role in the decomposition of organicWiseman et al.: Organic Amendment Effects in the Root Zone ©2012 International Society of Arboriculture 262 P. Eric Wiseman, Susan D. Day, and J. Roger Harris Organic Amendment Effects on Soil Carbon

  14. Project title: Sources, supply and bioavailability of soluble organic matter in relation to mineralization.

    E-Print Network [OSTI]

    Anderson, Charles W.

    and Food Research). Topic: Soluble organic matter is of interest due to its role in carbon and nitrogenProject title: Sources, supply and bioavailability of soluble organic matter in relation examined. The study will seek to understand the role that soluble organic matter plays in regulating

  15. Metabolic evolution of Escherichia coli strains that produce organic acids

    SciTech Connect (OSTI)

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  16. Carbon Park Environmental Impact Assessment

    E-Print Network [OSTI]

    of offsetting the University's carbon footprint, promoting biodiversity and establishing easily maintained Carbon Park Environmental Impact Assessment A B.E.S.T. Project By, Adam Bond 2011 #12; Bishop's University Carbon Park

  17. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  18. Ordered organic-organic multilayer growth

    DOE Patents [OSTI]

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  19. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  20. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  1. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  2. Recent carbonate sedimentation on Balearic platform: model for temperate-climate carbonate shelves

    SciTech Connect (OSTI)

    Fornos, J.; Rodriguez-Perea, A.; Massuti, C.; Pomar, L.; Acosta, J.; Herranz, P.; Sanz, J.L.

    1989-03-01

    Existing models for carbonate sedimentation on continental platforms are derived from the study of modern carbonate platforms in tropical climates. The Balearic platform in the western Mediterranean provides a new model for carbonate sedimentation in a temperature, semiarid climate. On most of the continental shelf around the Balearic Islands, modern sediments are exclusively bioclastic carbonates. Shoreline carbonate sediments are bioclastic sands and muds accumulating in beach-dune systems without significant tidal influence (there are no astronomical tides in the western Mediterranean ). From the upper shoreface to 35 m deep, the sandy bottom is extensively colonized by sea grass (Posidonia oceanica), the rhizomes and roots of which form a rigid entrapment that retains the sediment derived from calcareous organisms living within the sea grass and from calcareous epiphytes living on the stems and leaves. Archeological dating establishes a rate of vertical accretion in this zone of 10/sup 3/ Bubnoff units (1 Bubnoff unit = 1 mm/1000 years). Between depths of 40 and 60 m, carbonate sands are composed predominantly or red-algal fragments. Intensely bioturbated wave ripples occur in environments dominated by laminar red algae (Lithothamnium and Phymatolithon). Below depths of 60 m, coarse sediment produced by rhodolitic and ramose red algae is deposited in areas of tens to hundreds of meters in size. Biogenic buildups up to 2 m high occur in sandy areas as well as in deeper muddy areas. At the same depth in open-platform zones, the bottom topography is characterized by large hummocks several hundred meters across. From the horizontal distribution of facies, it is possible to construct the probable vertical sequence of lithofacies which would characterize carbonates accumulating on a temperate-climate carbonate shelf. Many of these lithofacies are recognized in upper Miocene limestones on the Balearic Islands.

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  5. Terrestrial Subsidies of Organic Carbon Support Net Ecosystem

    E-Print Network [OSTI]

    filled, we monitored net ecosystem production (NEP) on a biweekly basis from 9 April to 27 May 2002. All ponds were consistently net heterotrophic; how- ever, NEP was significantly less negative in re- moval that the difference in NEP between treatments was driven by the change in R. Therefore, it appears that terrestrial

  6. Dissolved Organic Carbon Concentrations and Compositions, and Trihalomethane Formation

    E-Print Network [OSTI]

    in Waters from Agricultural Peat Soils, Sacramento-San Joaquin Delta, California: Implications for Drinking SURVEY Water-Resources Investigations Report 98­4147 Prepared in cooperation with the California Department of Water Resources 6217-37 Sacramento, California 1998 #12;U.S. DEPARTMENT OF THE INTERIOR BRUCE

  7. Radiocarbon in dissolved organic carbon of the South Pacific Ocean

    E-Print Network [OSTI]

    Druffel, ERM; Griffin, S

    2015-01-01

    G. Ostlund (1983), Abyssal water C distribution and the agenorthward transport of deep waters, indicating that the deepof Lower Circumpolar Deep Water. This presents a conundrum

  8. Influences of Organic Carbon Supply Rate on Uranium Bioreduction...

    Office of Scientific and Technical Information (OSTI)

    provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to...

  9. Unburned lubricant produces 60%90% of organic carbon emissions.

    E-Print Network [OSTI]

    , diesel, and compressed natural gas (CNG)-powered vehicles · New and aged lubricants representative fuel, biodiesel, and CNG The study confirmed that normally functioning emission control systems

  10. Worldwide organic soil carbon and nitrogen data (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from...

  11. Challenges for improving estimates of soil organic carbon stored in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene Network Shaping ofStaff60053760Chain Tsuanfor

  12. Metal-Organic Frameworks with Precisely Designed Interior for Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture | Center forDioxide Capture in the

  13. Metal-Organic Frameworks with Precisely Designed Interior for Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture | Center forDioxide Capture in

  14. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:Compression (JournalPublisher'sLeakage into an

  15. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and Organic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:Compression (JournalPublisher'sLeakage into

  16. Metal Organic Clathrates for Carbon Dioxide Removal - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFrom the Director

  17. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  18. Carbon flow and ecosystem dynamics in the Mississippi River plume described by inverse analysis 

    E-Print Network [OSTI]

    Breed, Greg Allen

    2002-01-01

    excess organic carbon from autotrophic regions to heterotrophic regions. In contrast, the winter result indicated a plume that was net-heterotrophic in all 4 subregions with high aerobic bacterial respiration and relatively low primary production...

  19. Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor ...

  20. Black carbon in marine sediments : quantification and implications for the sorption of polycyclic aromatic hydrocarbons

    E-Print Network [OSTI]

    Accardi-Dey, AmyMarie, 1976-

    2003-01-01

    Sorption is a key factor in determining the fate of polycyclic aromatic hydrocarbons (PAHs) in the environment. Here, PAH sorption is proposed as the sum of two mechanisms: absorption into a biogenic, organic carbon (OC) ...

  1. Separation of Carbon Dioxide from Nitrogen and Water in Flue Gas Streams 

    E-Print Network [OSTI]

    Mera, Hilda 1989-

    2012-04-12

    coefficients of carbon dioxide, nitrogen, and water in MOFs. The metal-organic frameworks studied are copper trimesate (Cu-BTC), zinc terephthalate (IRMOF1), and MIL-47, which belongs to the Materials of the Institute Lavoisier series. Diffusion coefficients...

  2. Molten carbonate fuel cell cathode with mixed oxide coating

    SciTech Connect (OSTI)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  3. Trading Water for Carbon with Biological Carbon Sequestration

    E-Print Network [OSTI]

    Jackson, Robert B.

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  4. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids

    E-Print Network [OSTI]

    Mazzini, Adriano

    Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation of carbon derived from the anaerobic oxidation of methane (AOM), the oxidation of organic matter and from sea water. Methane is the dominant component among other hydrocarbon gases in these sediments. Its

  5. Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

  6. ORIGINAL PAPER Long-term black carbon dynamics in cultivated soil

    E-Print Network [OSTI]

    Lehmann, Johannes

    the term BC is used to describe the residual product from incomplete combustion of biomass either by land XPS Introduction Black carbon (BC) is a C-rich organic material derived from incomplete combustion climate change largely through anthropogenic emissions of carbon dioxide originat- ing from fossil fuel

  7. GEO 5680/6680 MWF 12:55 1:45 FASB 330 The Carbon Cycle

    E-Print Network [OSTI]

    Tipple, Brett

    and oxygen ·Snowball Earth ·CO2 and climate ·Organic C and energy ·Geologic C release ·Ice age CO2 of life on Earth, the backbone of a major family of crustal minerals, and the root of the dominant source ·Anthropogenic emissions ·The land sink ·Ocean acidification ·Carbon policy and the future of the carbon cycle

  8. Electric Field-Modulated Non-Ohmic Behavior of Carbon Nanotube Fibers in Polar Liquids

    E-Print Network [OSTI]

    Terrones, Jeronimo; Elliott, James A.; Vilatela, Juan J.; Windle, Alan H.

    2014-07-15

    -Ppm NO2 Gas Detection Based on Carbon Nanotube Thin Films. Appl. Phys. Lett. 2003, 82, 961. (13) Slobodian, P.; Riha, P.; Lengalova, A.; Svoboda, P.; Saha, P. Multi-Wall Carbon Nanotube Networks as Potential Resistive Gas Sensors for Organic Vapor...

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  10. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  11. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more »we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  12. Research Report Forests and carbon

    E-Print Network [OSTI]

    , baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FCResearch Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry

  13. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  14. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  15. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  16. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  17. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  18. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  19. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  20. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  1. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  2. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  3. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  4. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review

    E-Print Network [OSTI]

    Shrestha, Gyami

    2010-01-01

    black carbon and carbon dioxide emissions. Energ. Policyreduces predicted carbon dioxide emissions estimation by upincrease rates of carbon dioxide emissions [135,136]. Due to

  5. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review

    E-Print Network [OSTI]

    Shrestha, Gyami

    2010-01-01

    Keywords: soil carbon sequestration; carbon budget;of an energy efficient carbon sequestration mechanism, asin the later section on carbon sequestration. In atmospheric

  6. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  7. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  8. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    by plants a) From water and air Carbon (C), Hydrogen (H),b) Soil organic matter c) Water and air i. 1/2 soil volume =A soil through which water, air, or roots penetrate slowly

  9. Lesson Summary Students will learn about the carbon cycle and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Processes that Shape the Earth The Living Environment The Flow of Matter and Energy Human Society Global solid minerals (such as limestone), 'squishy' organisms (such as plants and animals), and can be dissolved in water or carried around the world through the atmosphere as carbon dioxide gas. The attributes

  10. PERMAFROST CARBON NETWORK: 4th Annual Meeting 2014

    E-Print Network [OSTI]

    Olefeldt · Vonk: Circum-arctic lability of dissolved organic carbon · Wik: Methane emission potential/Overview: Ted Schuur (30 min): Introduction to the network for newcomers, update on finished products and CO2 production from anoxic soil incubations · Jastrow: Utility of fractionation approaches

  11. Carbon K-Edge XANES Spectromicroscopy of Natural Graphite

    SciTech Connect (OSTI)

    Brandes,J.; Cody, G.; Rumble, D.; Haberstroh, P.; Wirick, S.; Gelinas, Y.; Morais-Cabral, J.

    2008-01-01

    The black carbon continuum is composed of a series of carbon-rich components derived from combustion or metamorphism and characterized by contrasting environmental behavior and susceptibility to oxidation. In this work, we present a micro-scale density fractionation method that allows isolating the small quantities of soot-like and graphitic material usually found in natural samples. Organic carbon and {delta}{sup 13}C mass balance calculations were used to quantify the relative contributions of the two fractions to thermally-stable organic matter from a series of aquatic sediments. Varying proportions of soot-like and graphitic material were found in these samples, with large variations in {delta}{sup 13}C signatures suggesting important differences in their origin and/or dynamics in the environment.

  12. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOE Patents [OSTI]

    Balazs, G.B.; Lewis, P.R.

    1999-07-06

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

  13. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3)

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2 monoxide (CO), carbon dioxide (CO2), and molecular oxygen (O2) with varying carbon-to-oxygen ratios from 1 and destruction pathways of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3

  14. Water Research 37 (2003) 10151022 Heterogeneity of natural organic matter from the Chena River,

    E-Print Network [OSTI]

    Guo, Laodong

    2003-01-01

    continuous flow isotope ratio mass spectrometry and pyrolysis-gas chromatography/mass spectrometry (Py rights reserved. Keywords: Natural organic matter; Colloid; Stable isotope; Size fractionation; Pyrolysis that northern ecosystems have accumulated 25­33% of the world's soil carbon [8]. Carbon currently sequestered

  15. NONLINEAR-OPTICAL STUDIES OF ORGANIC LIQUIDS AND POLYMER OPTICAL FIBERS

    E-Print Network [OSTI]

    Collins, Gary S.

    NONLINEAR-OPTICAL STUDIES OF ORGANIC LIQUIDS AND POLYMER OPTICAL FIBERS By STEVEN RICHARD VIGIL AND POLYMER OPTICAL FIBERS Abstract by Steven Richard Vigil, Ph.D. Washington State University May 2000 Chair- ganic liquids nitrobenzene, carbon disulfide, carbon tetrachloride, and methyl-methacrylate. We also

  16. Supplementary information for: Insights into the secondary fraction of the organic aerosol in

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    Contemporary Carbon PCF : Primary Fossil Carbon PM : Particulate Matter POA : Primary Organic Aerosol POC 293 306 163 147 129 73 relativeintensity[%] 219 277 321 117 147129 73 0 100 200 300 400 m/z relativeintensity[%] 219 277 321 117 147 129 73 m/z 0 100 200 300 400 relativeintensity[%] selected fragment: m

  17. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  18. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  19. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  20. Measurement of carbon capture efficiency and stored carbon leakage

    SciTech Connect (OSTI)

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  1. Organic aerogel microspheres and fabrication method therefor

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  2. Organic aerogel microspheres and fabrication method therefor

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  3. Photoenhanced anaerobic digestion of organic acids

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO)

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  4. Aerogels derived from multifunctional organic monomers

    SciTech Connect (OSTI)

    Pekala, R.W.; Alviso, C.T.; Kong, F.M.; Hulsey, S.S.

    1991-09-01

    Traditional inorganic aerogels are mad via the hydrolysis and condensation of metal alkoxides. Recently, we reported the synthesis of organic aerogels based upon the aqueous polycondensation of (1) resorcinol with formaldehyde and (2) melamine with formaldehyde. The former materials can also be pyrolyzed in an inert atmosphere to form vitreous carbon aerogels. In both the inorganic and organic systems, the structure and properties of the dried aerogel are dictated by polymerization conditions. Factors such as pH, reactant ratio, and temperature influence the crosslinking chemistry and growth processes taking place prior to gelation. The ability to tailor the structure and properties of aerogels at the nanometer scale opens up exciting possibilities for these novel materials. This paper addresses the chemistry-structure-property relationships of organic aerogels. 22 refs., 7 figs.

  5. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  6. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  7. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  8. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  9. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  10. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  11. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  12. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  13. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  14. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  15. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOE Patents [OSTI]

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  16. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    SciTech Connect (OSTI)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

  17. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  18. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    E-Print Network [OSTI]

    Masanet, Eric

    2010-01-01

    of  American household carbon footprint. ” Ecological and  limitations) of carbon footprint estimates toward of the art in carbon footprint analyses for California, 

  19. Carbon contamination topography analysis of EUV masks

    E-Print Network [OSTI]

    Fan, Y.-J.

    2010-01-01

    induced carbon contamination of extreme ultraviolet optics,"and A. Izumi. "Carbon contamination of EL'V mask: filmEffect of Carbon Contamination on the Printing Performance

  20. Conductive Carbon Coatings for Electrode Materials

    E-Print Network [OSTI]

    Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

    2007-01-01

    Raman spectrum of the carbon coating. Deconvoluted peaksConductive Carbon Coatings for Electrode Materials Marca M.for optimizing the carbon coatings on non-conductive battery

  1. Participatory Carbon Monitoring: Operational Guidance for National...

    Open Energy Info (EERE)

    Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

  2. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01

    around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

  3. Carbon-particle generator

    DOE Patents [OSTI]

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  4. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  5. Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    with carbon monoxide (CO) and fragments of aliphatic and oxygenated organic compounds in the AMS mass spectra. Combustion-related organic aerosol (combustion OA) is defined as the primary organic aerosol (POA) fraction the combustion OA and the background OA from the total OA. The combustion OA and excess OA show good correlation

  6. 47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes

    E-Print Network [OSTI]

    been obtained. 1. Introduction Organic light-emitting diode (OLED) is challenging liquid- crystal (LC47.2 / C. F. Qiu 47.2: Hole Injection and Power Efficiency of Organic Light Emitting Diodes- metal layer such as, carbon, gallium, silicon, has been used as hole-injecting anode in organic light

  7. What is carbon monoxide? Carbon monoxide (CO) is a poisonous,

    E-Print Network [OSTI]

    Johnson, Eric E.

    other material containing carbon such as gasoline, kerosene, oil, propane, coal, or wood. Forges, blast is the internal combustion engine. How does CO harm you? Carbon monoxide is harmful when breathed because

  8. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

  9. Carbon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation, search Name: Carbon Trade LtdCarbon Jump

  10. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  11. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect (OSTI)

    Sumpter, Bobby G; Huang, Jingsong; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the properties of carbon supercapacitors via experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

  12. ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

  13. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    goal for a theory of justice: first to reduce the growth rate of global carbon dioxide emissions such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions nations could continue emissions for much longer before exhausting theirfair share of the Carbon Commons

  14. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  15. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, Terrence L. (Lenior City, TN); Wilson, James H. (Oak Ridge, TN)

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  16. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  17. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  18. Carbon nanotubes: synthesis and functionalization 

    E-Print Network [OSTI]

    Andrews, Robert

    2007-01-01

    conditions were then used as the basis of several comparative CVD experiments showing that the quality of nanotubes and the yield of carbon depended on the availability of carbon to react. The availability could be controlled by the varying concentration...

  19. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01

    the Australian National Green- house Gas Inventory (DCCEE,fuel emissions Carbon and green house gas (GHG) accounts are

  20. Carbon cloth supported electrode

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  1. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  2. CARBON -14 PHYSICAL DATA

    E-Print Network [OSTI]

    Vallino, Joseph J.

    CARBON - 14 [14C] PHYSICAL DATA · Beta Energy: 156 keV (maximum) 49 keV (average) (100% abundance on wipes. #12;RADIATION MONITORING DOSIMETERS · Not needed (beta energy too low). · 14C Beta Dose Rate: 6) · Effective Half-Life: 40 days (unbound) · Specific Activity: 4460 mCi/gram · Maximum Beta Range in Air: 24

  3. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  4. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. The effect of mean cell residence time on the adsorbability of dissolved organic compounds found in petrochemical wastewaters 

    E-Print Network [OSTI]

    Johnson, Timothy Loring

    1979-01-01

    , each with a different mean cell residence time, biologically treated the waste- water. Follow1ng biolog1cal treatment, the wastewater was subjected to activated carbon adsorption treatment. The Freundlich isotherm, non-adsorbable organic compound... concen- trations and carbon dosage requ1rements were used to evaluate the re- sults of the carbon adsorpt1on treatments. The type and particle size of the carbon used rema1ned constant throughout the study. Any changes 1n the act1vated carbons adsorpt...

  6. OF CARBON FIBERS TURBINE BLADE

    E-Print Network [OSTI]

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng represent different volumes of carbon fibers in the blade, were also studied for two design options

  7. 4, 21112145, 2007 Enhanced carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are generally low in productivity and carbon (C) storage. We report, however, large increases in C sequestration . Carbon sequestration following afforestation was associated with increased N use efficiency as reflected of terrestrial ecosystems that leads to increased carbon (C) sequestration. One of those means is afforestation

  8. 4, 99123, 2007 Amazon carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    , suggested much larger estimates for tropical forest carbon sequestration in the Ama- zon BasinBGD 4, 99­123, 2007 Amazon carbon balanc J. Lloyd et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences An airborne regional carbon balance

  9. 3, 409447, 2006 Modeling carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    not only impaired the soil fertility but also increased the amount of carbon dioxide (CO2) emitted fromBGD 3, 409­447, 2006 Modeling carbon dynamics in farmland of China F. Zhang et al. Title Page impacts of management alternatives on soil carbon storage of farmland in Northwest China F. Zhang1,3 , C

  10. Carbon Nanomaterials: The Ideal Interconnect

    E-Print Network [OSTI]

    Carbon Nanomaterials: The Ideal Interconnect Technology for Next- Generation ICs Hong Li, Chuan Xu-generation ICs. In this research, carbon nanomaterials, with their many attractive properties, are emerging-a`-vis optical and RF interconnects, and we illustrate why carbon nanomaterials constitute the ideal intercon

  11. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  12. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  13. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01

    Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions

  14. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  15. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  16. Development and Commercialization of Alternative Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Carbon Fiber Precursors and Conversion Technologies - Advanced Conversion Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion...

  17. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  18. Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the

    E-Print Network [OSTI]

    Gilli, Adrian

    Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences laminated, Cenoma- nian­Santonian black shale sequences contain between 2% and 15% organic carbon about the depositional conditions leading to the black shale accumulations. The low d13 Corg values

  19. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic

    E-Print Network [OSTI]

    Neff, Jason

    Decomposition Carbon Pyrolysis-GC/MS Disturbance 1. Introduction Soil organic matter (SOM) is an importantMolecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter

  20. The effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystem 

    E-Print Network [OSTI]

    Londo, Andrew James

    1995-01-01

    land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non...

  1. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect (OSTI)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  2. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions,more »relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  3. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single

  4. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Hongsuk Kang; Young-Gui Yoon; D. Thirumalai; Changbong Hyeon

    2015-06-03

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yeast ($N\\approx 1.2\\times 10^7$, $\\phi<\\phi_c^{\\infty}$) are equilibrated with no clear signature of such organization.

  5. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    SciTech Connect (OSTI)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  6. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  7. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  8. 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b,

    E-Print Network [OSTI]

    1 2 Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b, , Lilin inorganic and organic solutes (including 56 hydrocarbons) and gaseous species (e.g. carbon dioxide, CO2, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid 35molecules

  9. Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling

    E-Print Network [OSTI]

    Sparks, Donald L.

    42 Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling Sparks, D.L. & C. Chen Department of Plant and Soil Sciences and Delaware@udel.edu) Abstract Organic matter (OM)-mineral complexation plays a critical role in soil carbon (C) stabilization

  10. Organic photosensitive devices

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  11. Nonlinear organic plasmonics

    E-Print Network [OSTI]

    Fainberg, B D

    2015-01-01

    Purely organic materials with negative and near-zero dielectric permittivity can be easily fabricated. Here we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser pulses. The bistability response of the electron-vibrational model of organic materials in the condensed phase has been demonstrated. Non-steady-state organic plasmonics enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium.

  12. Organization and Functions

    Office of Environmental Management (EM)

    Organization and Functions Mission Unit EM-30 Deputy Assistant SecretaryADAS Waste Management Director Office of Packaging and Transportation EM-33 Regulations & Standards...

  13. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  14. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  15. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  16. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof Energy CaliforniaContentsForumCarbon Fiber

  17. Spatial and temporal dynamics of biogeochemical processes in the Fraser River, Canada : a coupled organic-inorganic perspective

    E-Print Network [OSTI]

    Voss, Britta Marie

    2014-01-01

    The great geologic and climatic diversity of the Fraser River basin in southwestern Canada render it an excellent location for understanding biogeochemical cycling of sediments and terrigenous organic carbon in a relatively ...

  18. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; Reynolds, J. R. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  19. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 ºC, 27 ºC, and 32 ºC there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  20. Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico

    E-Print Network [OSTI]

    Osborne, Tracey Muttoo

    2010-01-01

    B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural