Powered by Deep Web Technologies
Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

2

Historical emissions of black and organic carbon aerosol from energy-related combustion, 18502000  

E-Print Network (OSTI)

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We-related combustion, 1850­2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. 1. Importance

Wisconsin at Madison, University of

3

Contribution of organic carbon to wood smoke particulate matter absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

4

ARM - Measurement - Organic Carbon Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

5

O Oc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oc Oc ct to ob be er r 1 1, , 2 20 01 12 2 - - M Ma ar rc ch h 3 31 1, , 2 20 01 13 3 D DO OE E/ /I IG G- -0 00 06 64 4 U U . . S S . . D DE EP PA AR RT TM ME EN NT T O OF F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L S S S e e e m m m i i i a a a n n n n n n u u u a a a l l l R R R e e e p p p o o o r r r t t t t t t o o o C C C o o o n n n g g g r r r e e e s s s s s s Ta ble of Contents Inspector General's Message ............................................. 2 Impacts Key Accomplishments ................................................................................. 3 Positive Outcomes ....................................................................................... 3 Reports Investigative Outcomes ................................................................................ 7

6

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

7

Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia  

E-Print Network (OSTI)

The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant pigment, black carbon (BC) on ECS sediments sampled in winter 2009 and 2010 in order to study the OC cycling under the influence of natural and anthropogenic disturbance. Low-oxygen tolerant foraminiferal microfossils were analyzed in another two sediment cores to study the historical hypoxia events in the Changjiang LDE. Bulk carbon to nitrogen (C/N) ratio and stable isotope ?13C in the surface sediment samples indicated a mixture source of terrestrial, deltaic and marine derived OC. Refractory BC and reworked marine OC seemed to comprise most of the OC pool with older, less reactive signatures as deduced from ?14C, and BC analyses. Winter wind/wave energy and hydrodynamic sorting had a substantial winnowing effect on surface sediment OC redistribution. As a result, the highest lignin concentration shifted to the south during the 2010 cruise after the summer flood event. In addition, algal inputs from local deltaic lakes due to eutrophication and/or lateral transport likely caused the observed lack of benthic-pelagic coupling of pigment concentrations between the surface sediments and the water column after the summer flood in 2010. For the down-core sediment, the mass accumulation rate distribution followed the dispersal pathway of the ECS sediment. Terrestrial and marine derived OC showed significant spatial and temporal distribution. Lignin rich materials were better preserved in sediments closer to the coast while offshore sediments tended to be composed of lignin-poor, degraded OC, that were likely hydrodynamically sorted to a long distance during transport. Besides eutrophication, plant pigments indicated that marine-derived OC was mostly deposited in the sediment mixed layer with decay in the underlying sediment accumulation layer. The total OC standing stock since 1900 is approximately 1.62±1.15 kgC m^-2, about 1/10 of the total OC stock in all the middle and lower lakes in the Changjiang catchment. There has been an increase in the number of hypoxic bottom water events on the Changjiang LDE over the past 60 yrs indicated from the increases in low-oxygen tolerant foraminiferal microfossils due to excess deposition of OC and summer stratification.

Li, Xinxin

2013-05-01T23:59:59.000Z

8

Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment  

Science Conference Proceedings (OSTI)

Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

2008-05-15T23:59:59.000Z

9

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

10

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

11

Soil organic carbon – A Western Australian perspective Soil organic carbon A Western Australian perspective  

E-Print Network (OSTI)

Sequestering carbon in soils is being investigated worldwide as a way to remove carbon dioxide from the atmosphere and provide land managers with extra income from the sale of carbon offsets or credits. In theory, the opportunity exists for farmers and other land managers to be paid via voluntary trades or carbon trading schemes to implement land management changes that sequester soil carbon, with additional benefits gained in improving the biological, chemical and physical health of their soils. The concept of increasing soil organic carbon is very attractive because it seemingly provides a ‘win-win’ situation in which farmers earn extra income for removing greenhouse gas emissions from the atmosphere while simultaneously lifting the productivity of arable soils. But how realistic is this concept and what opportunities and risks does it present to farmers? Soil organic carbon is part of the global carbon cycle The soil can either represent an enormous ‘source’ or ‘sink ’ of carbon – with more carbon contained in the soil than in the world’s vegetation and atmosphere combined. Soil organic carbon represents a critical component

Janet Paterson; Dr. Fran Hoyle; Department Of Agriculture

2011-01-01T23:59:59.000Z

12

OCS National Compendium  

Science Conference Proceedings (OSTI)

The Minerals Management Service's (MMS) Outer Continental Shelf Information Program (OCSIP) is responsible for making available to affected coastal States, local governments, and other interested parties data and information related to the Outer Continental Shelf (OCS) Oil and Gas Program. Since its establishment through Section 26 of the OCS Lands Act (OCSLA) Amendments of 1978, OCSIP has prepared regional summary reports, updates, and indexes on leasing, exploration, development, and production activities to fulfill the mandates of the OCSLA Amendments. The OCSIP receives many requests for out-of-print summary reports, updates, and indexes. The purpose of the OCS National Compendium is to consolidate these historical data and to present the data on an OCS-wide and regional scale. The single-volume approach allows the reader access to historical information and facilitates regional comparisons. The fold-out chart in the front of this publication provides the reader with a timeline (January 1988--November 1990) of events since publication of the last Compendium. Some of the events are directly related to the 5-year Oil and Gas Program, whereas others may or may not have an effect on the program. A predominantly graphic format is used in the report so that the large accumulation of data can be more readily comprehended. In some cases, it is not possible to update information through October 21, 1990, because of the nature of the data. For example, production data normally lags 3 months. 58 figs., 37 tabs.

Gould, G.J.; Karpas, R.M.; Slitor, D.L.

1991-06-01T23:59:59.000Z

13

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network (OSTI)

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

14

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Descriptions Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (Site Descriptions) West, T.O., and W.M. Post. 2002. Soil Organic Carbon...

15

Comparison of sampling methods for semi-volatile organic carbonAssociated with PM2.5  

SciTech Connect

This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders and impregnated back-up filters in two different samplers, the VAPS and the PC-BOSS. The two organic diffusion denuders were XAD-coated glass annular denuders and charcoal-impregnated cellulose fiber filter(CIF) denuders. In addition, recently developed XAD-impregnated quartz filters were compared to CIF filters as back-up filter collection media. The two denuder types resulted in equivalent measurement of particulate organic carbon and particle mass. The major difference observed between the XAD and charcoal BOSS denuders is the higher efficiency of charcoal for collection of more volatile carbon. This more volatile carbon does not contribute substantially to the particle mass or SVOC measured as OC on quartz filters downstream of the denuders. This volatile carbon does result in high OC concentrations observed in charcoal filters placed behind quartz filters downstream of the XAD denuders and would result in overestimating the SVOC in that configuration.

Lewtas, Joellen; Booth, Derrick; Pang, Yanbo; Reimer, Steve; Eatough, Delbert J.; Gundel, Lara A.

2001-06-29T23:59:59.000Z

16

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

DOE Green Energy (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

17

The temporal dynamics of terrestrial organic matter transfer to the oceans : initial assessment and application  

E-Print Network (OSTI)

This thesis employs compound-specific stable carbon and radiocarbon isotopic analysis of organic biomarkers to (a) resolve petrogenic from pre-aged vascular plant organic carbon (OC) in continental margin sediments, (b) ...

Drenzek, Nicholas J

2007-01-01T23:59:59.000Z

18

Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater.  

E-Print Network (OSTI)

?? Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used… (more)

Hodzic, Elvisa

2011-01-01T23:59:59.000Z

19

Challenges for improving estimates of soil organic carbon stored in  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

20

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018  

SciTech Connect

We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M. [University of Illinois, Urbana, IL (USA). Dept. of Civil & Environmental Engineering

2007-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering  

E-Print Network (OSTI)

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical matter yield induced by chemical weathering of carbonates and shales, considering their global surface carbonate rocks and shales weathering in major world watersheds, published by numerous authors. The results

Paris-Sud XI, Université de

22

Soil Organic Carbon Sequestration in Reclaimed Minesoils  

NLE Websites -- All DOE Office Websites (Extended Search)

The SOC dynamics in soil macro and micro-aggregate fractions and its effect on long-term carbon (C) sequestration are discussed. Introduction Carbon (C) management in the next...

23

2OC | Open Energy Information  

Open Energy Info (EERE)

OC OC Jump to: navigation, search Name 2OC Place Bath, England, United Kingdom Zip BA1 7AB Product Bath-based, geo-pressure energy company. 2OC helps organisations in the UK and elsewhere harvest clean electricity from the waste energy produced from their gas pressure reduction stations. Coordinates 45.467055°, -98.329279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.467055,"lon":-98.329279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Building and testing organized architectures of carbon nanotubes  

Science Conference Proceedings (OSTI)

This paper will focus on the directed assembly of multiwalled carbon nanotubes on various substrates into highly organized structures that include vertically and horizontally oriented arrays, ordered fibers and porous membranes. The concept of growing ...

R. Vajtai; Bingqing Wei; Yung Joon Jung; Anyuan Cao; S. K. Biswas; G. Ramanath; P. M. Ajayan

2003-12-01T23:59:59.000Z

25

Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils  

Science Conference Proceedings (OSTI)

Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

2014-01-01T23:59:59.000Z

26

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

27

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

28

Black carbon in marine sediments : quantification and implications for the sorption of polycyclic aromatic hydrocarbons  

E-Print Network (OSTI)

Sorption is a key factor in determining the fate of polycyclic aromatic hydrocarbons (PAHs) in the environment. Here, PAH sorption is proposed as the sum of two mechanisms: absorption into a biogenic, organic carbon (OC) ...

Accardi-Dey, AmyMarie, 1976-

2003-01-01T23:59:59.000Z

29

Soil Organic Carbon Change Monitored Over Large Areas  

DOE Green Energy (OSTI)

Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

2010-11-23T23:59:59.000Z

30

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

Science Conference Proceedings (OSTI)

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-08-01T23:59:59.000Z

31

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles  

SciTech Connect

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-04-01T23:59:59.000Z

32

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

33

Unburned lubricant produces 60%90% of organic carbon emissions.  

E-Print Network (OSTI)

as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE vehicles without aftertreatment emission control systems exhibited OC emissions approxi- mately one order

34

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

35

Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition  

E-Print Network (OSTI)

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

Rhodobacter Capsulatus Sb; Nicky C. Caiazza; Douglas P. Lies; Dianne K. Newman

2006-01-01T23:59:59.000Z

36

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

37

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices  

E-Print Network (OSTI)

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer and by the fabrica- tion of an organic thin film transistor. An organic solar cell was fabricated from these com

Hong, Soon Hyung

38

Soil Organic Carbon Change Monitored Over Large Areas  

Science Conference Proceedings (OSTI)

Soils account for the largest fraction of terrestrial carbon (C); thus, they are critically important in determining global C cycle dynamics. In North America, conversion of native prairies to agricultural land use over 150 years ago released 30-50% of the soil organic carbon (SOC). Improved agricultural practices have the capacity to recover much of this SOC, storing it in biomass and soil and thereby removing billions of tons of atmospheric CO2. These practices involve increasing C inputs to soil (e.g., by crop rotations, increased use of higher biomass crops, perennial crops) and decreased losses (e.g., reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007]. Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with a technical potential to offset as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; West, Tristram O.; Schumaker, Bonny L.

2010-08-31T23:59:59.000Z

39

Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program Abstract We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors...

40

Atlantic NAD 83 OCS Planning Areas | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

OCS Planning Areas Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Atlantic NAD 83 OCS Planning...

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atlantic NAD 83 OCS Blocks | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

OCS Blocks Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Atlantic NAD 83 OCS Blocks Dataset...

42

Role of organic soils in the world carbon cycle: problem analysis and research needs  

SciTech Connect

In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

Armentano, T.V. (ed.)

1980-02-01T23:59:59.000Z

43

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

44

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

SciTech Connect

The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely moisture, and easy regenerability, were all addressed during this program. As predicted at the start of the program, MOFs have high potential for CO{sub 2} capture in the IGCC and flue gas applications.

Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

2008-02-04T23:59:59.000Z

45

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation with Separation with Novel Microporous Metal Organic Frameworks Background UOP LLC, the University of Michigan, and Northwestern University are collaborating on a three-year program to develop novel microporous metal organic frameworks (MOFs) suitable for CO 2 capture and separation. MOFs are hybrid organic/inorganic structures in which the organic moiety is readily derivatized. This innovative program is using sophisticated molecular modeling to evaluate the structurally

46

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network (OSTI)

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

47

Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage  

SciTech Connect

This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

Satcher, Jr., J H; Baumann, T F; Herberg, J L

2005-01-10T23:59:59.000Z

48

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized… (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

49

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

carbon particles in the Detroit urban area: Wintertimeparticulate concentrations in Detroit, Atmos. Environ. , 19,meteorological parameters in Detroit, Atmos. Environ. , 19,

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

50

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

Ryu (2004), Carbonaceous aerosol characteristics ofPM 2.5Allen (1990), Transported acid aerosols measured in southernconference international aerosol carbon round robin test

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

51

TethyanMediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels  

E-Print Network (OSTI)

Tethyan­Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels KAY@geowiss.uni-hamburg.de) Geological Institute, ETH Zurich, Zurich, Switzerland ABSTRACT The Jurassic to Holocene record of black shale sections or drill cores. The term `black shale' is used here broadly for sediments with elevated organic

Gilli, Adrian

52

Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations  

E-Print Network (OSTI)

: Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

Torres-Verdín, Carlos

53

GEOBULLETIN OcTOBEr 14Th  

E-Print Network (OSTI)

credit current topics in Earth Science. Additional course possibilities include and environmental geology that include geomagnetic field behaviour, geochronology, tectonics, environmental magnetism, and technique a Solar Radiation Management and/or Carbon Dioxide Reduction approach or a wide range of carbon capture

Sheridan, Jennifer

54

Digital Offshore Cadastre (DOC) ? Pacific83 ? OCS Blocks |...  

NLE Websites -- All DOE Office Websites (Extended Search)

OCS Blocks Ocean Data Tools Technical Guide Map Gallery Regional Planning Feedback Ocean You are here Data.gov Communities Ocean Data Digital Offshore Cadastre (DOC) ...

55

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network (OSTI)

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks projects aimed at using hydrogen as a clean fuel for automobiles and producing clean energy by designing achieve higher storage capacities for hydrogen, (1) (a) Leaf, D.; Verolmec, H. J. H.; Hunt, W. F., Jr. En

Yaghi, Omar M.

56

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Paulson, S E

2012-05-30T23:59:59.000Z

57

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

58

Analysis of organic carbon and moisture in Hanford single-shell tank waste  

SciTech Connect

This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

1995-05-01T23:59:59.000Z

59

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

NLE Websites -- All DOE Office Websites (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

60

Bioavailable organic carbon in wetland soils across a broad climogeographic area  

E-Print Network (OSTI)

Soils from a broad climogeographic region of the U.S., ranging from Alaska to Louisiana and Texas, were obtained from the NRCS National Soils Laboratory in Lincoln, Nebraska. Soils were also collected in the summer of 1996 from upland and poorly drained areas in northern Alaska for comparison of biological properties and to determine the effects of drying on estimation of microbial biomass and activity. Air-dried soils were moistened and incubated 48 h, during which time CO? evolution was measured. Following the preincubation, microbial biomass was determined using a modification of the chloroform-fumigation-incubation method to accommodate limited sample quantity. Carbohydrates were determined using bicinchoninic acid reagent and total extractable carbon was determined by analysis of 0.5-M K?SO? extracts with a total carbon analyzer. The objectives of this study were to elucidate geographical trends and meaningful relationships between the bioavailable C parameters. Soil microbial biomass, determined by chloroform fumigation incubation, correlated best with organic C and basal respiration with subtraction of unfumigated controls. Extraction of C with hot water was a rapid, simple procedure that provided the best predictor of soil respiration. Potassium sulfate-extractable carbon was consistently lower than hot water extractable C. Soils from northern states tended to contain more organic carbon than soils in southern states, however, not necessarily more bioavailable C. Detecting geographical trends for bioavailable C proved more difficult due to numerous factors such as topographic position, surface vegetation, climate, and land use.

Baker, Andrew Dwight

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes  

SciTech Connect

The Li-O2 chemistry in nonaqueous carbonate electrolytes and the underneath reason of its limited reversibility was exhaustively investigated. The discharge products collected from the air cathode in a Li-O2 battery at different depth of discharge (DOD) were systematically analyzed with X-ray diffraction. It is revealed that, independent of the discharge depth, lithium alkylcarbonate (either lithium propylenedicarbonate - LPDC, or lithium ethylenedicarbonate - LEDC, with other related derivatives) and lithium carbonate (Li2CO3) are always the main products, obviously originated from the electrolyte solvents propylene carbonate (PC) and ethylene carbonate (EC). These lithium alkylcarbonates are obviously generated from the single-electron reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. On the other hand, neither lithium peroxide (Li2O2) nor lithium oxide (Li2O) is detected. More significantly, from in situ gas chromatography/mass spectroscopy it is found that Li2CO3 and Li2O cannot be oxidized even when charged up to 4.6 V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily able to, with CO2 and CO released with the re-oxidation of LPDC and LEDC. It is therefore concluded that the quasi-reversibility of Li-O2 chemistry observed hitherto in an organic carbonate-based electrolyte is actually reliant on the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharge process and the subsequent oxidation of these same alkylcarbonates during charge process. It is the poor oxidizability of these alkylcarbonate species that constitutes the obstruction to an ideal rechargeable Li-O2 battery.

Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Jiguang

2011-11-15T23:59:59.000Z

62

3 , LNG (Liquefied Natural Gas) -165oC  

E-Print Network (OSTI)

C / . Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20o

Hong, Deog Ki

63

Offshore Code Comparison Collaboration Continuation (OC4), Phase...  

NLE Websites -- All DOE Office Websites (Extended Search)

compari- son; OC4 INTRODUCTION The analysis of offshore wind turbines relies on aero-hydro-servo-elastic simulation codes. These coupled time-domain-based tools take into ac-...

64

Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska  

E-Print Network (OSTI)

High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This dissertation summarizes the results of the first study to look at long term, fine scale organic carbon delivery by the high-Arctic Colville River into Simpson’s Lagoon in the near-shore Beaufort Sea. Modern delivery of organic carbon to the Lagoon was determined to come from a variety of sources through the use of a three end-member mixing model and sediment biomarker concentrations. These sources include the Colville River in the western area of the Lagoon near the river mouth, marine sources in areas of the Lagoon without protective barrier islands, and coastal erosional sources and the Mackenzie River in the eastern area of the Lagoon. Downcore organic carbon delivery was measured on two cores in the Lagoon, one taken near the mouth of the Colville River (spans about 1800 years of history) and one taken on the eastern end of the Lagoon (spans about 600 years of history). Bulk organic parameters and biomarkers were measured in both cores and analyzed with Principle Component Analysis to determine long-term trends in organic carbon delivery. It was shown that at various times in the past, highly degraded organic carbon inputs of what is likely soil and peat carbon were delivered to the Lagoon. At other times, inputs of fresher, non-degraded, terrestrially-derived organic carbon inputs of what are likely higher amounts of plant and vegetative material was delivered to the Lagoon. Inputs of degraded soil carbon were also shown to correspond to higher temperatures on the North Slope of Alaska, likely indicating that warmer temperatures lead to a thawing of permafrost and in turn organic carbon mobilization to the coastal Beaufort Sea.

Schreiner, Kathryn 1983-

2013-05-01T23:59:59.000Z

65

Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode  

Science Conference Proceedings (OSTI)

The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical ...

Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

2012-01-01T23:59:59.000Z

66

EVOLUTIONARY AND GEOLOGIC CONSEQUENCES OF ORGANIC CARBON FIXING IN THE PRIMITIVE ANOXIC OCEAN  

E-Print Network (OSTI)

photosynthesis primary carbon dioxide-fixing mechanism.trophic bacteria to fix carbon dioxide. These bacteria toas the primary energy fix carbon dioxide. The free source to

Berry, W.B.N.

2013-01-01T23:59:59.000Z

67

OBSERVATION Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

E-Print Network (OSTI)

ABSTRACT The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85 % of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. IMPORTANCE Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-01-01T23:59:59.000Z

68

Sources and Fates of Dissolved Organic Carbon in Rural and Urban Watersheds in Brazos County, Texas  

E-Print Network (OSTI)

The Bryan/College Station (B/CS) region has been reported to have elevated concentrations of dissolved organic carbon (DOC) in surface water. Increased DOC concentrations are worrisome as DOC has been shown to be an energy source for the recovery and regrowth of E. coli and many watersheds are impaired by high bacteria levels. To examine the sources and fates of DOC in rural and urban regions to better understand DOC movement though the environment, seven watersheds were studied. To investigate source, streams were analyzed using diffuse reflectance near infrared spectroscopy (DR-NIR) and carbon isotopes. Fate of DOC was determined through monthly streams samples, gathered between March 2011 and February 2012, which were incubated for biodegradable DOC (BDOC). Soil in the region was sampled based on land use categories. Soil was analyzed for DOC and BDOC as well as DOC adsorption, the other major fate of DOC. Above ground vegetation was sampled in conjunction with soil and analyzed for BDOC. Data indicated that fecal matter from cliff swallows provided considerable organic material to streams in the B/CS region as shown through DR-NIR. Carbon isotope values in streams ranged from -23.5 +/- 0.7% to -26.8 +/- 0.5%. Stream spectra may be able to predict carbon isotope values in streams (Adj. R2 = 0.88). Mean annual stream DOC concentrations ranged from 11 +/- 3 mg/L to 31 +/- 12 mg/L, which represents a significant decrease in DOC between 2007 and 2011. Concurrent increases in pH and conductivity were also recorded. The decrease in DOC and the increases in pH and conductivity may be due to impacts of high sodium irrigation tap water. Biodegradable DOC was low in streams, which is likely due to DOC being present in streams in refractory forms that are resistant to microbial breakdown. Soil chemistry, including soil adsorption, was greatly influenced by sodium. The elevated adsorption coefficients and release values seen in highly developed and urban open areas can be attributed to frequent exposure to high sodium irrigation water. The results indicate that sodium is a major driver of DOC in the system. Sound management decisions concerning irrigation water chemistry and urban development might eventually emerge to protect water quality as a result of this research.

Cioce, Danielle

2012-08-01T23:59:59.000Z

69

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

70

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network (OSTI)

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

71

Predicting Agricultural Management Influence on Long-Term Soil Organic Carbon Dynamics: Implications for Biofuel Production  

SciTech Connect

Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1 19 C), precipitation (402 973 mm), and SOC (5.89 33.58 g SOC kg 1) at the LTE sites were significantly related (r 2 = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks

Gollany, H. T. [USDA ARS; Rickman, R. W. [USDA ARS; Albrecht, S. L. [USDA ARS; Liang, Y. [University of Arkansas; Kang, Shujiang [ORNL; Machado, S. [Oregon State University, Corvallis

2011-01-01T23:59:59.000Z

72

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape Topographic Positions at the Molecular Scale  

E-Print Network (OSTI)

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape spectra and maps were collected. Results: C Distribution and Associations with the Major Elements in Soil Clay Particles Fig.1. Relative elemental distribution maps (9µm�6µm) of clay fractions from the A

Sparks, Donald L.

73

Article Geography doi: 10.1007/s11434-012-5529-9 Preliminary estimation of the organic carbon pool in China’s wetlands  

E-Print Network (OSTI)

Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans. The inventory approach is a realistic method for estimating the organic carbon pool in China’s wetlands at the national scale. An updated data and inventory approach were used to estimate the amount of organic carbon stored in China’s wetlands. Primary results are as follows: (1) the organic carbon pool of China’s wetlands is between 5.39 and 7.25 Pg, accounting for 1.3%–3.5 % of the global level; (2) the estimated values and percentages of the organic carbon contained in the soil, water and vegetation pools in China’s wetlands are 5.04–6.19 Pg and 85.4%–93.5%, 0.22–0.56 Pg and 4.1%–7.7%, 0.13–0.50 Pg and 2.4%–6.9%, respectively. The soil organic carbon pool of China’s wetlands is greater than our previous estimate of 3.67 Pg, but is lower than other previous estimates of 12.20 and 8–10 Pg. Based on the discussion and uncertainty analysis, some research areas worthy of future attention are presented. wetland carbon pool, inventory approach, remote sensing, soil carbon density, wetland vegetation Citation: Zheng Y M, Niu Z G, Gong P, et al. Preliminary estimation of the organic carbon pool in China’s wetlands. Chin Sci Bull,

Zheng Yaomin; Niu Zhenguo; Gong Peng; Dai Yongjiu; Shangguan Wei

2012-01-01T23:59:59.000Z

74

Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321  

DOE Green Energy (OSTI)

Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

Olson, D.

2012-04-01T23:59:59.000Z

75

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

76

Low dissolved organic carbon input from fresh litter to deep mineral soils  

SciTech Connect

Dissolved organic carbon (DOC) leached from recent litter in the forest floor has been suggested to be an important source of C to the mineral soil of forest ecosystems. In order to determine the rate at which this flux of C occurs we have taken advantage of a local release of 14C at Oak Ridge National Laboratory Reservation, USA (latitude N 35 58'; longitude W 84 16'). Eight replicate 7x7 m plots were estab lished at four field sites on the reservation in an upland oak forest setting. Half of the plots were provided with 14C-enriched litter (?14C ?1000 ), and the other half with near-background litter (?14C ?220 ) over multiple years. Differences in the labeled leaf litter were used to quantify the movement of litter derived DOC through the soil profile. Soil solutions were collected over several years with tension lysimeters at 15 and 70 cm depth and measured for DOC concentration and 14C abundance. The net amount of DOC retained between 15 and 70 cm was 1.5-6 g m-2 y-1. There were significant effects of the litter additions on the 14C abundance in the DOC, but the net transport of 14C from the added litter was small. The difference in ?14C between the treatments with enriched and near-background litter was only about 130 at both depths, which is small compared with the difference in ?14C in the added litter. The primary source of DOC within the mineral soil must therefore have been either the Oe/Oa horizon or the organic matter in the mineral soil. Over a 2-year time frame, leaching of DOC from recent litter did not have a major impact on the C stock in the mineral soil below 15 cm in this ecosystem.

Froeberg, Mats J [ORNL; Jardine, Philip M [ORNL; Hanson, Paul J [ORNL; Swanston, Christopher [ORNL; Todd Jr, Donald E [ORNL; Phillips, Jana Randolph [ORNL; Garten Jr, Charles T [ORNL

2007-01-01T23:59:59.000Z

77

Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico  

E-Print Network (OSTI)

The distribution of particulate matter (PM) and particulate organic carbon (POC) was determined during the Northeast Gulf of Mexico Chemical Oceanography and Hydro-graphy program (NEGOM). The hydrography and physical forcing functions were examined to explain particulate matter distribution. PM and POC were determined for discrete samples, and PM was also compared with in situ beam attenuation measure-ments in order to make estimations of continuous particle concentration profiles. Measurements were made three times per year for three years, during 1997-1998, 1998-1999, and 1999-2000, but only the first two years' worth of results are reported here. PM distributions vary seasonally and interannually. General patterns tend to be fairly consistent spatially and temporally during fall and spring, but intensity changes accord-ing to season. Differences present at the surface appear to be due mainly to riverine input of nutrients and particles from the several major rivers that flow into the northeastern Gulf of Mexico. Wind-forced circulation appears to be a minor influence on surface particulate distribution. Secondary eddies can have an effect upon distribution, as seen with an anticyclonic feature over the upper slope during Summer 1998 which entrained less saline, high particulate river water offshore. A similar effect was noted during Summer 1999, but to a lesser degree. A shelf edge current associated with anticyclonic flow seems to be a mechanism responsible for the appearance of nepheloid layers on the outer shelf.

Bernal, Christina Estefana

2001-01-01T23:59:59.000Z

78

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

79

Influence of Dissolved Organic Carbon and pH on Containment Sorption to Sediment  

DOE Green Energy (OSTI)

Low-Level Waste buried on the SRS contains cellulosic materials, Including wood, paper, and cardboard. Once buried, these materials are expected to degrade to form cellulose degradation products (CDP). Such materials are expected to influence radionuclide speciation in such a way that the radionuclides will sorb less to SRS Subsurface sediments and therefore would migrate more rapidly from the disposal site. The objective of this study was to quantify through laboratory work the influence of CDP and pH on radionuclide sorption to SRS subsurface sediments. The intent of this work was to create a Kd look-up table as a function of radionuclide, pH, and CDP concentration that could be used in future performance assessment calculations. Previous CDP-impacted Kd values were generated using two chemical analogues, UO2 2+ and Eu3+. This study collected data from a wider range of analogues to validate and/or refine this approach. An incomplete-randomized-block-statistical design was used in a laboratory sorption study involving 2 soil types (sandy and clay textured), 5 dissolved organic carbon concentrations (a measure of CDP), and 3 pH levels. Nonradioactive solutes were used as chemical analogues to the radionuclides of interest to the Low-Level Waste Performance Assessment: monovalent cations (K+ and Cs+), divalent cations (Ni2+ and Sr2+), trivalent cations (Ce3+ and Eu3+), tetravalent cations (Th4+ and Zr4+), and an anion (ReO4-). Analogues were matched to approximately 30 radionuclides based on similarities in periodicity and chemical properties. All CDP-impacted Kd values generated from this study were equal to or greater than those used in previous performance assessments. These larger Kd values may result in a greater Waste Acceptance Criteria (WAC), which in turn may permit greater amounts of Low-Level Waste to be safely disposed on site, saving the site the expense of shipping the waste off-site for disposal.

KAPLAN, DANIEL

2004-09-30T23:59:59.000Z

80

Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling).  

E-Print Network (OSTI)

??It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and… (more)

Sabouni, Rana

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

82

OC)elRM(o-T/^ DOE/PC/60810-TIO TITLE: Superacid Catalyzed Coal Conversion Chemistry DE86 015045  

NLE Websites -- All DOE Office Websites (Extended Search)

OC)elRM(o-T/^ OC)elRM(o-T/^ DOE/PC/60810-TIO TITLE: Superacid Catalyzed Coal Conversion Chemistry DE86 015045 PIs(Authors): George A. Olah INSTITUTION/ORGANIZATION UNIVERSITY OF SOUTHERN CALIFORNIA HYDROCARBON RESEARCH INSTITUTE CONTRACT NO.: FINAL TECHNICAL REPORT (213)743-5277 DE-FG22-83PC60810 September 1,1983-September 1,1986 The basis of our studies was a novel, low temperature, mild coal conversion process developed in our laboratory. It involves the use of a superacidic system consisting of HF and BF, in the presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of hydrodepolyme- rization of coal by HF:BF2:H2 system a systematic study of a number of coal model compounds was carried out under identical conditions. The model compounds studied

83

Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol  

DOE Green Energy (OSTI)

The competition between the addition of polar, oxygen-containing functional groups (functionalization) and the cleavage of C-C bonds (fragmentation) has a governing influence on the change in volatility of organic species upon atmospheric oxidation, and hence on the loading of tropospheric organic aerosol. However the branching between these two channels is generally poorly constrained for oxidized organics. Here we determine functionalization/fragmentation branching ratios for organics spanning a range of oxidation levels, using the heterogeneous oxidation of squalane (C30H62) as a model system. Squalane particles are exposed to high concentrations of OH in a flow reactor, and measurements of particle mass and elemental ratios enable the determination of absolute elemental composition (number of oxygen, carbon, and hydrogen atoms) of the oxidized particles. At low OH exposures, the oxygen content of the organics increases, indicating that functionalization dominates, whereas at higher exposures the amount of carbon in the particles decreases, indicating the increasing importance of fragmentation processes. Once the organics are moderately oxidized (O/C~;;0.4), fragmentation completely dominates, and the increase in O/C ratio upon further oxidation is due to the loss of carbon rather than the addition of oxygen. These results suggest that fragmentation reactions may be key steps in the atmospheric formation and evolution of oxygenated organic aerosol (OOA).

Kroll, Jesse H.; Smith, Jared D.; Che, Dung L.; Kessler, Sean H.; Worsnop, Douglas R.; Wilson, Kevin R.

2009-03-10T23:59:59.000Z

84

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

85

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

Science Conference Proceedings (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

86

Federal Offshore, Gulf of Mexico OCS - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Federal Offshore, Gulf of Mexico OCS. Due to this modification, the effective productive capacity is not parallel to the wellhead productive capacity curve for the ...

87

Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento-San Joaquin Delta  

E-Print Network (OSTI)

Wang, and S. Rojstaczer. 1998. Subsidence of organic soils,Prokopovich, N.P. 1985. Subsidence of peat in California andDeverel, S.J. 1998. Subsidence mitigation in the Sacramento-

Deverel, Steven J; Leighton, David A; Finlay, Mark R

2007-01-01T23:59:59.000Z

88

Impact of Post-Synthesis Modification of Nanoporous Organic Frameworks on Selective Carbon Dioxide Capture.  

E-Print Network (OSTI)

??Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation applications that impact the environment and… (more)

?slamo?lu, Timur

2013-01-01T23:59:59.000Z

89

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

Sun, Y. et al. Size-resolved aerosol chemistry on Whistlerwith a high-resolution aerosol mass spectrometer duringBasis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos.

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

90

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

Kroll, Jesse

91

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Patents (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

Pekala, R.W.

1998-04-28T23:59:59.000Z

92

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Green Energy (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

Pekala, Richard W. (Pleasant Hill, CA)

1998-04-28T23:59:59.000Z

93

Definition of the Floating System for Phase IV of OC3  

DOE Green Energy (OSTI)

Phase IV of the IEA Annex XXIII Offshore Code Comparison Collaboration (OC3) involves the modeling of an offshore floating wind turbine. This report documents the specifications of the floating system, which are needed by the OC3 participants for building aero-hydro-servo-elastic models.

Jonkman, J.

2010-05-01T23:59:59.000Z

94

File:BOEMRE OCS.oil.gas.2007-12.map.pdf | Open Energy Information  

Open Energy Info (EERE)

OCS.oil.gas.2007-12.map.pdf OCS.oil.gas.2007-12.map.pdf Jump to: navigation, search File File history File usage Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Size of this preview: 700 × 600 pixels. Full resolution ‎(5,250 × 4,500 pixels, file size: 1.39 MB, MIME type: application/pdf) Description Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2008-09-12 Extent Continental US plus Alaska Countries United States UN Region Northern America US Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012. Includes Atlantic, Gulf of Mexico, Pacific and Alaska Regions.Shows existing leases, areas available for leasing, areas withdrawn from leasing,

95

A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran  

Science Conference Proceedings (OSTI)

Total organic carbon (TOC) content present in reservoir rocks is one of the important parameters, which could be used for evaluation of residual production potential and geochemical characterization of hydrocarbon-bearing units. In general, organic-rich ... Keywords: Committee machine, Fuzzy logic, Genetic algorithm, Neural network, Neuro-fuzzy, Petrophysical data, South Pars Gas Field, Total organic carbon

Ali Kadkhodaie-Ilkhchi; Hossain Rahimpour-Bonab; Mohammadreza Rezaee

2009-03-01T23:59:59.000Z

96

Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide  

SciTech Connect

Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

Schilling, J.B.

1997-09-01T23:59:59.000Z

97

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

98

Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

99

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

100

H7: Synthesis and Electrochemical Performance of SiOC-Carbon ...  

Science Conference Proceedings (OSTI)

B7: Synthesis and Electrical Properties of K2NiF4-Type (Ca2-xLnx)MnO4 (Ln=Nd and Sm) · B8: Monitoring Oxygen Diffusion in Gd-Doped Ceria by Null ...

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

SciTech Connect

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

102

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents (OSTI)

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

103

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

Science Conference Proceedings (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

104

AERONET-OC: A Network for the Validation of Ocean Color Primary Products  

Science Conference Proceedings (OSTI)

The ocean color component of the Aerosol Robotic Network (AERONET-OC) has been implemented to support long-term satellite ocean color investigations through cross-site consistent and accurate measurements collected by autonomous radiometer ...

Giuseppe Zibordi; Frédéric Mélin; Jean-François Berthon; Brent Holben; Ilya Slutsker; David Giles; Davide D’Alimonte; Doug Vandemark; Hui Feng; Gregory Schuster; Bryan E. Fabbri; Seppo Kaitala; Jukka Seppälä

2009-08-01T23:59:59.000Z

105

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

106

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot

2004-06-30T23:59:59.000Z

107

OC3 -- Benchmark Exercise of Aero-Elastic Offshore Wind Turbine Codes: Preprint  

DOE Green Energy (OSTI)

This paper introduces the work content and status of the first international investigation and verification of aero-elastic codes for offshore wind turbines as performed by the "Offshore Code Comparison Collaboration" (OC3) within the "IEA Wind Annex XXIII -- Subtask 2".

Passon, P.; Kuhn, M.; Butterfield, S.; Jonkman, J.; Camp, T.; Larsen, T. J.

2007-08-01T23:59:59.000Z

108

Assessing Fossil and New Carbon in Reclaimed Mined Soils  

SciTech Connect

Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P < 0.01). Therefore, both radiocarbon activity and chemi-thermal method were effective in estimating coal carbon concentration in reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting that approaches used to obtain representative samples in undisturbed soils may not be effective in RMS sites. Analysis of coal-C fraction in RMS indicated that the contribution of coal C to SOC increased with increase in soil depth, accounting for up to 92% of SOC in the sub-soil. Our data indicated that land use and land management practices plays significant role in enhancing SOC sequestration in reclaimed mined lands.

Rattan Lal; David Ussiri

2008-09-30T23:59:59.000Z

109

File:BOEMRE atlantic.OCS.multiple.use.map.2003.pdf | Open Energy  

Open Energy Info (EERE)

atlantic.OCS.multiple.use.map.2003.pdf atlantic.OCS.multiple.use.map.2003.pdf Jump to: navigation, search File File history File usage Multiple Uses of the Atlantic Outer Continental Shelf Size of this preview: 550 × 600 pixels. Full resolution ‎(4,958 × 5,408 pixels, file size: 3.06 MB, MIME type: application/pdf) Description Multiple Uses of the Atlantic Outer Continental Shelf Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Offshore wind Creation Date 2003-10 Extent Northeast coast of US Countries United States UN Region Northern America States Maryland, Delaware, New Jersey, New York, Connecticut, Rhode Island, Massachusetts Map published in October 2003 by the BOEMRE illustrating multiple uses of the outer continental shelf of the Atlantic Ocean, in the region between

110

Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink  

SciTech Connect

An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.; Wang, Chong M.; Exarhos, Gregory J.; Choi, Wonyong; Liu, Jun

2012-10-01T23:59:59.000Z

111

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

112

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

113

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

114

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network (OSTI)

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

115

Efficient Organic Excitonic Solar Cells with Carbon Nanotubes Replacing In2O3:Sn as the Transparent Electrode (Presentation)  

DOE Green Energy (OSTI)

The conclusions of this report are that: (1) organic solar cells with efficiencies of up to 1.43% conversion efficiency that use no ITO and no PEDOT:PSS, are demonstrated; (2) a cell without ITO, but with PEDOT:PSS gave 2.6% conversion efficiency; (3) due to porous nature of SWCNT substrates, optimization of the active layer is essential; and (4) SWCNT electrodes bring one step closer the goal of a fully printable, organic solar cell.

van de Lagemaat, J.; Barnes, T.; Rumbles, G.; Shaheen, S.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.

2006-05-01T23:59:59.000Z

116

Atmospheric Plasma Deposition of Diamond-like Carbon Coatings  

DOE Green Energy (OSTI)

DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

Ladwig, Angela

2008-01-23T23:59:59.000Z

117

Assessing Fossil and New Carbon in Reclaimed Mined Soils  

Science Conference Proceedings (OSTI)

Soil organic carbon (SOC) pool in the reclaimed minesoils (RMS) is the mixture of coal C originating from mining and reclamation activities and recent plant-derived organic carbon (OC). Accurate estimates of OC pools and sequestration rates in the RMS are limited by lack of standard and cost-effective method for determination of coal-C concentration. The main objective of this project was to develop and test analytical procedures for quantifying pool sizes of coal-derived C in RMS and to partition organic C in RMS into coal-derived and newly deposited SOC fractions. Analysis of soil and coal artificial mixtures indicated that the {Delta}{sup 13}C method developed was very effective in estimating coal C added in the mixtures, especially soils under C4 plants. However, most of the reclaimed sites in Ohio are under C3 plants with range of {Delta}{sup 13}C signal falling within ranges of coal. The wide range of {Delta}{sup 13}C signal observed in minesoils, (i.e. -26 to -30 for plants and -23 to -26 for coal) limits the ability of this approach to be used for southeast Ohio minesoils. This method is applicable for reclaimed prime farm land under long term corn or corn soybean rotation. Chemi-thermal method was very effective in quantifying coal-C fraction in both soil-coal artificial mixtures and minesoils. The recovery of coal-C from the mixture ranged from 93 to 100% of coal. Cross-validation of chemi-thermal method with radiocarbon analysis revealed that chemi-thermal method was as effective as radiocarbon analysis in quantifying coal-C in RMS. Coal C determined after chemi-thermal treatment of samples was highly correlated with coal C concentration calculated by radiocarbon activity (r{sup 2} = 0.95, P reclaimed minesoils of southeast Ohio. Overall, both coal-C and recent OC fraction exhibited high spatial and depth variation, suggesting that approaches used to obtain representative samples in undisturbed soils may not be effective in RMS sites. Analysis of coal-C fraction in RMS indicated that the contribution of coal C to SOC increased with increase in soil depth, accounting for up to 92% of SOC in the sub-soil. Our data indicated that land use and land management practices plays significant role in enhancing SOC sequestration in reclaimed mined lands.

Rattan Lal; David Ussiri

2008-09-30T23:59:59.000Z

118

Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment  

DOE Green Energy (OSTI)

This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

Jonkman, J.; Musial, W.

2010-12-01T23:59:59.000Z

119

Tank vessels transferring Outer Continental Shelf (OCS) oil proposed design and equipment standards  

SciTech Connect

The US Coast Guard proposes to require US and foreign flag tank vessels engaged in the transfer of OCS oil in bulk as cargo from an offshore oil exploitation or production facility to shore to have segregated ballast tanks, dedicated clean ballast tanks, or special ballast arrangements by 6/1/80. This proposal would implement the Port and Tanker Safety Act of 1978 and would eliminate the mixing of ballast water and oil, thus reducing operational pollution that could occur if there was a substantial increase in vessel traffic. Comments must be received by 6/16/80.

1980-05-01T23:59:59.000Z

120

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium ...

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Analysis of the permitting processes associated with exploration of Federal OCS leases. Final report. Volume II. Appendices  

Science Conference Proceedings (OSTI)

Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) thelack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

Not Available

1980-11-01T23:59:59.000Z

122

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

123

System to Continuously Produce Carbon Fiber via Microwave-Assisted ...  

Biomass and Biofuels; Building ... Carbon and graphite fibers are conventionally produced through the controlled pyrolysis of fibrous organic carbon precursors ...

124

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

125

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

NLE Websites -- All DOE Office Websites (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

126

Direct radiative forcing of anthropogenic organic aerosol  

E-Print Network (OSTI)

[1] This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity–dependent hygroscopic growth by employing a functional group– based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as 0.34 and 0.71 W m 2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are 0.63 and 0.98 W m 2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clearsky TOA forcing estimates by 18 % and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18 % and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47 % and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Yi Ming; V. Ramaswamy; Paul A. Ginoux; Larry H. Horowitz

2005-01-01T23:59:59.000Z

127

Tuning the Gate Opening Pressure of Metal Organic Frameworks (MOFs) for the Selective Separation of Hydro-carbons  

E-Print Network (OSTI)

Separation of hydrocarbons is one of the most energy demanding processes. The need to develop materials for the selective adsorption of hydrocarbons, under reasonable conditions, is therefore of paramount importance. This work unveils unexpected hydrocarbon selectivity in a flexible Metal Organic Framework (MOF), based on differences in their gate opening pressure. We show selectivity dependence on both chain length and specific framework-gas interaction. Combining Raman spectroscopy and theoretical van der Waals Density Functional (vdW-DF) calculations, the separation mechanisms governing this unexpected gate opening behavior are revealed.

Nijem, Nour; Canepa, Pieremanuele; Marti, Anne; Balkus,, Kenneth J; Thonhauser, T; Li, Jing; Chabal, Yves J; 10.1021/ja305754f

2012-01-01T23:59:59.000Z

128

Building Technologies Program: Tax Deduction Qualified Software - Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 On this page you'll find information about the Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 qualified computer software (www.buildings.energy.gov/qualified_software.html), which calculates energy and power cost savings that meet federal tax incentive requirements for commercial buildings (www.buildings.energy.gov/commercial/). Date Documentation Received by DOE: 14 August 2007 Statements in quotes are from the software developer. Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements (1) The name, address, and (if applicable) web site of the software developer; Green Building Studio, Inc. 444 Tenth Street, Suite 300 Santa Rosa, California 95401

129

Influence of temperature, moisture, and organic carbon on the flux of H/sub 2/ and CO between soil and atmosphere: field studies in subtropical regions  

Science Conference Proceedings (OSTI)

Production and deposition rates of atmospheric hydrogen and carbon monoxide were studied during field measurements in subtropical regions, i.e., Transvaal (South Africa), Andalusia (Spain), and the Karoo (South Africa). Measurements were carried out by applying static and equilibrium box techniques. The equilibrium technique has been introduced as a novel method to measure production and destruction rates simultaneously even when soil conditions (e.g., temperature) change during the course of the measurements. Deposition velocities of H/sub 2/ and CO were virtually independent of the soil temperature measured in 3- to 10-mm depths and agreed with those measured in the temperate regions. The deposition velocities were inhibited or stimulated by irrigation water depending on the conditions of the individual field sites. H/sub 2/ production by soil was not observed. By contrast, CO was produced by soil in a dark chemical reaction. Production rates increased exponentially with soil temperatures, giving activation energies of 57-110 kJ mol/sup -1/ and increased linearly with soil organic carbon content. CO production rates followed a diel rhythm parallel to soil surface temperatures. Production generally exceeded CO deposition during the hot hours of the day, so that arid subtropical soils act as a net source of atmospheric CO during this time. On a global basis, CO production by soil may reach source strengths of 30 Tg yr/sup -1/, which is considerably less than the global deposition of CO estimated to be 190-580 Tg yr/sup -1/. Global H/sub 2/ deposition rates were estimated to 70-110 Tg yr/sup -1/.

Conrad, R.; Seiler, W.

1985-06-20T23:59:59.000Z

130

Carbon Accounting in Forest Ecosystems  

E-Print Network (OSTI)

. Carbon Pools: Above ground biomass Belowground BiomassBelowground Biomass Soil Organic Carbon Dead: · Aboveground biomassAboveground biomass · Belowground biomass · Soil Organic Carbon · Litter · Dead Wood· Dead Wood · (Wood Products) T�V S�D Industrie Service GmbH #12;Principles · Biomass is usually measured

Pettenella, Davide

131

Hierarchical Template of Porous Carbon for Multifunctional ...  

Science Conference Proceedings (OSTI)

Hierarchical Template of Porous Carbon for Multifunctional Applications · Interstitial Hydride ... Structurally Dynamic Metal Organic Frameworks for CO2 Capture.

132

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

133

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

134

STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES  

Science Conference Proceedings (OSTI)

Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

2005-04-01T23:59:59.000Z

135

Philippines-Low Carbon Plan (LCP) | Open Energy Information  

Open Energy Info (EERE)

Philippines-Low Carbon Plan (LCP) Jump to: navigation, search Name Philippines-Low Carbon Plan (LCP) AgencyCompany Organization World Wildlife Fund Sector Energy Topics...

136

The effect of elevated atmospheric carbon dioxide mixing ratios on the emission of Volatile organic compounds from Corymbia citriodora and Tristaniopsis laurina.  

E-Print Network (OSTI)

??Bibliography: p. 120-124. Introduction  – Environmental factors affecting the emission of biogenic Volatile organic compounds  – Materials and experimental procedures  – Quantification using sold-phase microextraction… (more)

Camenzuli, Michelle

2008-01-01T23:59:59.000Z

137

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

138

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

DOE Green Energy (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

139

Nano Structured Activated Carbon for Hydrogen Storge  

Science Conference Proceedings (OSTI)

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

140

CarbonSolve | Open Energy Information  

Open Energy Info (EERE)

CarbonSolve CarbonSolve Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarbonSolve Agency/Company /Organization: CarbonSolve Sector: Climate Focus Area: Greenhouse Gas Resource Type: Software/modeling tools User Interface: Website Website: www.carbonsolve.com Web Application Link: www.carbonsolve.com Cost: Paid CarbonSolve Screenshot References: CarbonSolve[1] Logo: CarbonSolve The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability objectives - including carbon, water, waste, employee engagement, or supply chain related initiatives into measureable metrics and trackable processes. Overview The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry  

E-Print Network (OSTI)

, the inventories use year-2000 energy forecasts (off a 1995 base) from the RAINS-Asia (regional air pollution running under optimal conditions; in- use engines operating in developing countries may eject more OC; published 4 September 2002. [1] Air from South Asia carries heavy loadings of organic and light

Dickerson, Russell R.

142

Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes  

DOE Green Energy (OSTI)

The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

2011-04-15T23:59:59.000Z

143

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

DOE Green Energy (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

144

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

Science Conference Proceedings (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

145

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

146

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

147

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

148

Energy-efficient indoor volatile organic compound air cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-efficient indoor volatile organic compound air cleaning using activated carbon fiber media with nightly regeneration Title Energy-efficient indoor volatile organic compound...

149

Global climate change and pedogenic carbonates  

SciTech Connect

Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H. [eds.

1999-11-01T23:59:59.000Z

150

NETL: News Release - Carbon Sequestration Regional Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

June 10, 2004 Carbon Sequestration Regional Partnership Program Adds Partners Seven States, Thirteen Organizations Added; Will Help Develop Sequestration Options WASHINGTON, DC -...

151

Methods and systems for chemoautotrophic production of organic compounds  

SciTech Connect

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

152

Secondary Organic Aerosol Formation From Radical-Initiated Reactions of Alkenes: Development of Mechanisms  

E-Print Network (OSTI)

and Secondary Organic Aerosols in Southern California duringSources of Organic Carbon Aerosols in the Free Troposphere21 co-authors), 2005. Organic Aerosol and Global Climate

Matsunaga, Aiko

2009-01-01T23:59:59.000Z

153

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

154

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

155

Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China  

Science Conference Proceedings (OSTI)

Two field microcosm experiments and 15N labeling techniques were used to investigate the first-year effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by 15N-enriched wheat biochar (7.8803 atom% 15N) and fertilizer urea (5 atom% 15N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg ha-1 to study their effects on GHG emissions (Experiment II). Biochar had no significant impact on rice production and less than 2% of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE.. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. Soil emissions of N2O with biochar amendment were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C. Low bio-availability of biochar N did not make a significant impact on rice production or N nutrition during the first year.. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.

Xie, Zubin; Xu, Yanping; Liu, Gang; Liu, Qi; Zhu, Jianguo; Tu, Cong; Amonette, James E.; Cadisch, Georg; Yong, Jean W.; Hu, Shuijin

2013-09-01T23:59:59.000Z

156

arXiv:1103.2923v1[math.OC]15Mar2011 Estimation of Saturation of Permanent-Magnet  

E-Print Network (OSTI)

arXiv:1103.2923v1[math.OC]15Mar2011 Estimation of Saturation of Permanent-Magnet Synchronous Motors a parametric model of the saturated Permanent-Magnet Synchronous Motor (PMSM) together with an estimation: Permanent magnet synchronous motor, mag- netic circuit modeling, magnetic saturation, energy-based mod

Paris-Sud XI, Université de

157

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

158

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

159

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

160

High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler  

DOE Green Energy (OSTI)

This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Forest Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Portal Forest Carbon Portal Jump to: navigation, search Tool Summary Name: Forest Carbon Portal Agency/Company /Organization: United Nations Development Programme, United States Agency for International Development, United Kingdom Department for International Development, Forest Trends Sector: Land Focus Area: Forestry Topics: GHG inventory Resource Type: Lessons learned/best practices Website: www.forestcarbonportal.com/ Forest Carbon Portal Screenshot References: FCP[1] "Ecosystem Marketplace's Forest Carbon Portal is a clearinghouse of information, feature stories, event listings, project details, 'how-to' guides, news, and market analysis on forest-based carbon sequestration projects. Deforestation and land-use change are responsible for 17% of the

162

Common Carbon Metric | Open Energy Information  

Open Energy Info (EERE)

Common Carbon Metric Common Carbon Metric Jump to: navigation, search Tool Summary Name: Common Carbon Metric Agency/Company /Organization: United Nations Environment Programme, World Resources Institute Sector: Energy Focus Area: Buildings, Energy Efficiency, Industry Topics: GHG inventory, Implementation Resource Type: Guide/manual, Publications Website: www.unep.org/sbci/pdfs/Common-Carbon-Metric-for_Pilot_Testing_220410.p Common Carbon Metric Screenshot References: Common Carbon Metrics [1] "This paper is offered by the United Nations Environment Programme's Sustainable Buildings & Climate Initiative (UNEP-SBCI), a partnership between the UN and public and private stakeholders in the building sector, promoting sustainable building practices globally. The purpose of this

163

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

164

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

165

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

166

Palladium-doped Nanoporous Carbon Fibers for Hydrogen Storage  

DOE Green Energy (OSTI)

Pd-free and Pd-containing activated carbon fibers (Pd-ACF) were synthesized from isotropic pitch as a carbon precursor. The source of Pd was a palladium salt that was premixed with pitch before carbonization. Hydrogen adsorption was measured at near-ambient temperatures (5 to 80 oC) and moderate pressures (up to 20 bar). It was found that adsorption on Pd-ACF is always higher than that on corresponding ACF, and in excess of what it would be expected based solely on formation of Pd hydride. This fact can be explained based on the mechanism of hydrogen spillover. It was also found that temperature and pressure have opposite effects on physisorption and spillover. It was hypothesized that a narrow temperature range exists, where the kinetic advantage of H2 spillover in Pd-ACF overlaps synergistically with the thermodynamic advantage of physisorption, thus contributing to enhanced uptakes compared with the Pd-free carbons.

Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL; Bhat, Vinay V [ORNL; van Benthem, Klaus [ORNL; Tekinalp, Halil [Clemson University; Edie, Dan [Clemson University

2008-01-01T23:59:59.000Z

167

Treatment of organic waste  

DOE Patents (OSTI)

An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

Grantham, LeRoy F. (Calabasas, CA)

1979-01-01T23:59:59.000Z

168

Late Pleistocene to Recent sediment transport pathways of the Green Canyon OCS area, northern Gulf of Mexico  

E-Print Network (OSTI)

This study addresses some of the complexities of sediment transport systems on the continental slope of the Green Canyon OCS area south of the Louisiana coast. Five Late Pleistocene to Recent sedimentary sequences are identified using a combination of seismic and well data. Sediments are transported through pathways characterized by erosional surfaces and numerous channels which form as sediments remobilize and become transported downslope. Pathway margins are constricted by physiographic highs. Several processes are identified as means of carrying fine-grained sediments to and across the continental slope. The most important of these are mass movements (slumps and slides), debris flows, and turbidity currents. Faulting and/or slumping at the shelf edge remobilizes sediments which are then carried further downslope. These remobilized sediments may be transported as debris flows or other undifferentiated high-density flows, or may develop into turbidity currents which deposit graded sediments in response to decreases in slope gradient. Slumps and slides off salt uplifts also deposit large volumes of sediments into adjacent intraslope basins and sediment transport pathways, where they may contribute significant amounts of material to the downslope transport of sediments. Discrete channels are not often observed in the pathways due to multiple episodes of channel formation and erosion which occurred during a single sea level lowstand. These multiple episodes tend to remove or obscure prominent channel features. Sedimentation is cyclic. During one sea level lowstand a sequence is deposited in and along narrow pathways which successively fill intraslope basins from the shelf edge downslope. As each basin is filled, sediments spill over and continue downslope to a lower basin. Sedimentation during the next sea level lowstand occurs in broader pathways. Less sediments are deposited in the intraslope basin areas because they remain filled from the previous sequence. By the time of deposition of the next sequence, movement of underlying salt sheets has changed the shape of the pathway. The sedimentation pattern repeats as lower depressions fill and sediments spill over. Pathways transport slope sediments in the Green canyon area. Discrete channels are not often observed in the pathways. This is a result of two mechanisms: 1) multiple episodes of erosion during a sea level lowstand tend to remove or obscure prominent channel features, and 2) most sediments deposited within the pathways are mass transport deposits which do not often become channelized. The pathways are characterized by erosional surfaces and numerous conduits which form as sediments remobilize and become transported downslope. They are laterally relatively persistent, being constricted by structural highs,

Swanson, John Patrick

1994-01-01T23:59:59.000Z

169

3D seismic interpretation, reservoir characteristics and petroleum prospects for South Marsh Island OCS Blocks, Gulf of Mexico  

E-Print Network (OSTI)

The South Marsh OCS Blocks, located approximately 150 miles southwest of New Orleans, Louisiana, contain a 100-million-barrel oil field. In recent years, exploration in this area has focused on plays in Pleistocene salt-related rollover structures with reservoirs of fluvial-deltaic sandstones and proven high oil-producing potential. After more than twenty years of exploration, exploitation and producing, this area remains an attractive target for exploration with its potentially high-quality reservoirs that have not been drilled. The I, K and L reservoirs of the Pleistocene have contributed to the majority of the production of over 100 million barrels of oil and near 200 billion cubic feet of natural gas. More than 90 well penetrations in these sands show great stratigraphic diversity within short distances, making the ability to accurately determine whether sand lenses have been adequately produced or bypassed essential for production opportunities for operators. New 3D seismic processing and interpretation techniques have been applied to interpret 3D seismic data with significantly improved accuracy. This has led to a renewed interest in the South Marsh area in an attempt to identify new plays and prospects. An interactive 3D-seismic interpretation has been carried out for the entire area. The objectives of this study are to conduct 3D seismic interpretation, to build a depositional environment model that encompasses the different sedimentary facies and sequence stratigraphic framework by using the prestack time migrated 3D volume and existing well control, to study rock properties using seismic modeling and well data to explain seismic attribute response, and to study the hydrocarbon potential of the area. Three horizons were mapped from well, seismic, and petrophysical data for the I, K and L formation tops respectively. Structure styles were well-defined by the 3D seismic interpretation. Well correlation has been completed for I, K and L formations throughout the study area. Reservoirs were studied vertically and horizontally. Reservoir types and properties were identified. One prospect related to the proven play of fault-bounded anticline structures was identified within the area. The plays involve the stratigraphic pinch out of basal transgressive sands deposited in the flank of the structure.

Duan, Ling

2003-01-01T23:59:59.000Z

170

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

171

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET ...

172

ENERGY STAR Update: ENERGY STAR Low Carbon IT Campaign Kicks...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon IT Campaign Kicks Off 2013 with Organizations Pledging to Power Manage 360,000 Computers The ENERGY STAR Low Carbon IT (LCIT) Campaign, a nationwide effort to assist and...

173

Metal Organic Clathrates for Carbon Dioxide Removal  

removal from coal-fired power plant flue gas streams.  Modified variations of the materials can be used in a variety of other fields as well, ...

174

Worldwide Organic Soil Carbon and Nitrogen Data  

NLE Websites -- All DOE Office Websites (Extended Search)

of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from...

175

Total Organic Carbon Rejection in Osmotic Distillation.  

E-Print Network (OSTI)

?? The osmotic distillation (OD) system is a spacecraft wastewater recycling system designed to produce potable water from human urine and humidity condensate. The OD… (more)

Shaw, Hali Laraelizabeth

2012-01-01T23:59:59.000Z

176

Soil Organic Carbon in Canadian Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

A. J. VandenBygaart, E. G. Gregorich, and D. A. Angers Agriculture and Agri-Food Canada 960 Carling Avenue Ottawa, Ontario K1A 0C5 Abstract To fulfill commitments under the...

177

Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report  

SciTech Connect

The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

Lara-Curzio, Edgar [ORNL

2007-06-01T23:59:59.000Z

178

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

179

Characteristics of carbonized sludge for co-combustion in pulverized coal power plants  

Science Conference Proceedings (OSTI)

Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

Park, Sang-Woo [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

2011-03-15T23:59:59.000Z

180

Dissolved organic matter and lake metabolism. Technical progress report, 1 April 1973--31 March 1974  

SciTech Connect

A detailed temporal and spatial carbon budget, essentially a functional detrital carbon budget, was evaluated for an oligotrophic lake system. Emphasis was placed on the fate and mechanisms regulating the qualitative and quantitative utilization and losses of organic carbon. (CH)

Wetzel, G.H.

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES  

Science Conference Proceedings (OSTI)

The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

2013-08-20T23:59:59.000Z

182

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

and Mission Organization Staff - Organization Chart About Us Bob Cottingham, 865-241-0554 Computational Biology and Bioinformatics Meghan Drake 865-241-8288 Michael...

183

Science Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations Science Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place...

184

Low Carbon World | Open Energy Information  

Open Energy Info (EERE)

Low Carbon World Low Carbon World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: LowCarbonWorld Agency/Company /Organization: LowCarbonEconomy Partner: United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset, Maps Website: www.lowcarboneconomy.com/Low_Carbon_World/Data/Home LowCarbonWorld Screenshot References: LowCarbonWorld[1] Background The idea behind this project was conceived at the 2008 United Nations Conference of Parties (COP14) event in Poznan (Poland). By listening to many speeches by energy ministers from numerous countries in the high level segment of the event, Toddington Harper Managing Director of The Low Carbon Economy Ltd (TLCE) became aware of the depth of valuable information being

185

Sandbag Carbon Offset Map | Open Energy Information  

Open Energy Info (EERE)

Sandbag Carbon Offset Map Sandbag Carbon Offset Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sandbag Carbon Offset Map Agency/Company /Organization: Sandbag Sector: Energy, Land Focus Area: Renewable Energy, Biomass, Energy Efficiency, Forestry, Geothermal, Hydrogen, Industry, Solar, Wind Topics: Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: sandbag.org.uk/carbondata/cers Sandbag Carbon Offset Map Screenshot References: Sandbag Carbon Offset Map[1] Thinking about climate change can be a depressing occupation. It's a massive issue and personal actions like switching off lights and unplugging televisions can feel like small contributions. Background "Thinking about climate change can be a depressing occupation. It's a

186

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Southeast Regional Carbon Sequestration Partnership The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board, represents a 13-state region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, eastern Texas, and Virginia and portions of Kentucky and West Virginia. SECARB comprises more than 100 participants representing Federal and state governments, industry, academia, and nonprofit organizations. The primary goal of SECARB is to develop the necessary framework and infrastructure to conduct field tests of carbon storage technologies and to

187

Nano Structured Activated Carbon for Hydrogen Storge  

SciTech Connect

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

188

NETL Publications: Carbon Storage Program Infrastructure Annual Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage Program Infrastructure Annual Review Meeting Carbon Storage Program Infrastructure Annual Review Meeting November 15-17, 2011 Table of Contents Disclaimer Presentations PRESENTATIONS Tuesday, November 15, 2011 Welcoming Remarks [PDF-2.18MB] Sean Plasynski, DOE/NETL Keynote Session 1 - Regulatory Issues Moderator: Traci Rodosta, DOE/NETL EPA's Greenhouse Gas Reporting Program: Geological Sequestration and Injection of Carbon Dioxide [PDF-604KB] Mark Defigueiredo, U.S. Environmental Protection Agency Update on Implementation of EPA's Class VI GS Program [PDF-420KB] Bruce Kobelski, U.S. Environmental Protection Agency CCS on the OCS: Sub-Seabed Geologic CO2 Sequestration Authorities and Ongoing Actions Covering the Outer Continental Shelf [PDF-MB] Melissa Batum, , U. S. Bureau of Ocean Energy Management, Regulation, and Enforcement

189

Numerical Simulation of Carbon and Nitrogen Profiles Produced by ...  

Science Conference Proceedings (OSTI)

In advance of the nitrogen diffusion zone the carbon concentration is as high as 10 at. pct. ... Discovery of Efficient Metal-Organic Frameworks for CO2 Capture.

190

Enhancing Low-carbon Development by Greening the Economy: Policy...  

Open Energy Info (EERE)

to: navigation, search Name Enhancing Low-carbon Development by Greening the Economy: Policy Dialogue, Advisory Services, Benchmarking AgencyCompany Organization Deutsche...

191

Enhancing low-carbon development by greening the economy: policy...  

Open Energy Info (EERE)

to: navigation, search Name Enhancing low-carbon development by greening the economy: policy dialogue, advisory services, benchmarking AgencyCompany Organization Deutsche...

192

Investigation of the stress induced properties of coke during carbonization.  

E-Print Network (OSTI)

??The large polycyclic aromatic plates within coal tar pitches do not flow freely enough to organize into large anisotropic domains during pyrolytic carbonization. It was… (more)

Maybury, James Joshua.

2007-01-01T23:59:59.000Z

193

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in  

Open Energy Info (EERE)

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Agency/Company /Organization: Asian Development Bank Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Low emission development planning, Policies/deployment programs, Background analysis Resource Type: Publications, Case studies/examples Website: www.adb.org/documents/studies/carbon-efficiency-prc/carbon-efficiency- Country: China UN Region: Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

195

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

196

Carbon stored in human settlements: the conterminous  

E-Print Network (OSTI)

Urban areas are home to more than half of the world’s people, responsible for 470 % of anthropogenic release of carbon dioxide and 76 % of wood used for industrial purposes. By 2050 the proportion of the urban population is expected to increase to 70 % worldwide. Despite fast rates of change and potential value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has not been well quantified. Here, we show that human settlements can store as much carbon per unit area (23–42 kg C m 2 urban areas and 7–16 kg C m 2 exurban areas) as tropical forests, which have the highest carbon density of natural ecosystems (4–25 kg C m 2). By the year 2000 carbon storage attributed to human settlements of the conterminous United States was 18 Pg of carbon or 10 % of its total land carbon storage. Sixty-four percent of this carbon was attributed to soil, 20 % to vegetation, 11 % to landfills, and 5 % to buildings. To offset rising urban emissions of carbon, regional and national governments should consider how to protect or even to increase carbon storage of human-dominated landscapes. Rigorous studies addressing carbon budgets of human settlements and vulnerability of their carbon storage are needed.

unknown authors

2009-01-01T23:59:59.000Z

197

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

198

Organization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us Organization Organization Leadership Organization History Careers Contact Us Organization...

199

Allied Carbon Credit GmbH | Open Energy Information  

Open Energy Info (EERE)

Carbon Credit GmbH Carbon Credit GmbH Jump to: navigation, search Name Allied Carbon Credit GmbH Place Hessen, Germany Sector Carbon Product Frankfurt-based carbon advisory and consultancy firm. References Allied Carbon Credit GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Allied Carbon Credit GmbH is a company located in Hessen, Germany . References ↑ "Allied Carbon Credit GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Allied_Carbon_Credit_GmbH&oldid=342020" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

200

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Carbon Storage - Southwest Regional Partnership on Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwest Regional Partnership on Carbon Sequestration Southwest Regional Partnership on Carbon Sequestration MORE INFO Additional information related to ongoing SWP efforts can be found on their website. The Southwest Regional Partnership on Carbon Sequestration (SWP) is led by the New Mexico Institute of Mining and Technology and represents a coalition composed of a diverse group of experts in geology, engineering, economics, public policy, and outreach. The 50 SWP partners represent state and federal agencies, universities, electric utilities, non-governmental organizations, coal, oil and gas companies, and the Navajo Nation. The partners are engaged in several aspects of SWP projects and contribute to the efforts to deploy carbon capture and storage (CCS) projects in the southwestern region of the United States. SWP encompasses Arizona,

202

Organic aerogel microspheres  

Science Conference Proceedings (OSTI)

Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

1999-06-01T23:59:59.000Z

203

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

204

Gas adsorption on metal-organic frameworks  

SciTech Connect

The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

2012-07-24T23:59:59.000Z

205

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

206

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

207

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

208

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

Tan, M.X.

1999-07-29T23:59:59.000Z

209

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

210

NIST Organization  

Science Conference Proceedings (OSTI)

... What We Do; Organization Chart; Budget Information; Office of the Director; Laboratories & Major Programs; Locations; Staff Directory; Working With ...

2013-02-19T23:59:59.000Z

211

Symposium Organizer  

Science Conference Proceedings (OSTI)

Volunteer Training Module. March 2013. 1. Your Professional Partner for Career Advancement. Symposium Organizer. Online Training Module. March 2013 ...

212

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

213

Method of stripping metals from organic solvents  

DOE Patents (OSTI)

A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

2009-02-24T23:59:59.000Z

214

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

215

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

216

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

217

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

218

Accelerated life test of the USDOE OC-OTEC experimental system refurbished with magnetic bearings for the 3rd stage vacuum compressor. Final report  

DOE Green Energy (OSTI)

This report documents the accelerated life test (time-to-failure) performed, at the request of DOE, to evaluate the viability of the magnetic bearing system installed in the stage 3 vacuum pump. To this effect the plant was successfully operated for over 500 hours during the period September-November 1996. The first part of this report discusses system performance by deriving subsystem and system performance parameters from a typical record. This is followed by the discussion of the life tests. The instrumentation used to estimate the performance parameters given here is depicted. The third stage pump was operated for 535 hours without incident. It is concluded that magnetic bearings are the preferable choice for the OC-OTEC centrifugal vacuum pumps.

Vega, L.A.

1997-04-01T23:59:59.000Z

219

Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes  

SciTech Connect

Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt [Eberhard-Karls-University of Tuebingen, Tuebingen (Germany). Center for Applied Geoscience (ZAG)

2009-01-15T23:59:59.000Z

220

Low Carbon Economy Index 2010 | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Economy Index 2010 Low Carbon Economy Index 2010 Jump to: navigation, search Tool Summary Name: Low Carbon Economy Index 2010 Agency/Company /Organization: PricewaterhouseCoopers Sector: Energy, Land Topics: Co-benefits assessment, Low emission development planning Resource Type: Publications Website: www.pwc.co.uk/ Low Carbon Economy Index 2010 Screenshot References: Low Carbon Economy Index 2010[1] "PwC re-examines the progress of the G20 economies against the Low Carbon Achievement and Low Carbon Challenge Index. This post- Copenhagen report provides an update on the progress over 2009." Low Carbon Economy Index 2010 References ↑ "Low Carbon Economy Index 2010" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Economy_Index_2010&oldid=3841

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Forest Carbon Partnership Facility | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Partnership Facility Forest Carbon Partnership Facility Jump to: navigation, search Logo: Forest Carbon Partnership Facility Name Forest Carbon Partnership Facility Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Co-benefits assessment, Finance Resource Type Lessons learned/best practices, Training materials Website http://www.forestcarbonpartner Country Argentina, Bolivia, Cambodia, Cameroon, Central African Republic, Chile, Colombia, Costa Rica, Democratic Republic of Congo, El Salvador, Equatorial Guinea, Ethiopia, Gabon, Ghana, Guatemala, Guyana, Honduras, Indonesia, Kenya, Laos, Laos, Liberia, Madagascar, Mexico, Moldova, Mozambique, Nepal, Nicaragua, Panama, Papua New Guinea, Paraguay, Peru, Republic of the Congo, Suriname, Tanzania, Thailand, Uganda, Vanuatu, Vietnam

222

Major role of marine vegetation on the oceanic carbon cycle  

E-Print Network (OSTI)

Abstract. The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests) to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y ?1. The total burial in unvegetated sediments was estimated to be 126 Tg C y ?1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y ?1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon

C. M. Duarte; J. J. Middelburg; N. Caraco

2005-01-01T23:59:59.000Z

223

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

224

Landscape level differences in soil carbon and nitrogen: implications for soil carbon sequestration  

SciTech Connect

The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate ({ge}53 {micro}m) and mineral-associated organic matter (<53 {micro}m). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

Garten Jr, Charles T [ORNL; Ashwood, Tom L [ORNL

2002-12-01T23:59:59.000Z

225

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

226

Organization Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

spacer spacer spacer About DOE Organization News Contact Us Search Search Go spacer U.S. Department of Energy header image Science & Technology Energy Sources Energy Efficiency...

227

Low Carbon Development: Planning & Modelling Course | Open Energy  

Open Energy Info (EERE)

Low Carbon Development: Planning & Modelling Course Low Carbon Development: Planning & Modelling Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Development: Planning & Modelling Course Agency/Company /Organization: World Bank Sector: Climate Focus Area: Renewable Energy, Economic Development, People and Policy Topics: Low emission development planning, Pathways analysis, Resource assessment Resource Type: Training materials, Workshop Website: einstitute.worldbank.org/ei/course/low-carbon-development Cost: Paid References: Low Carbon Development: Planning & Modelling[1] Program Overview This course has the following modules - (i) Introduction to Low Carbon Development Planning; (ii) Overview for Policymakers; (iii) Power; (iv) Household; (v) Transport - which introduce you to climate change

228

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

229

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

230

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

231

Forest Carbon Index | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Index Forest Carbon Index Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Forest Carbon Index Agency/Company /Organization: Resources for the Future Partner: United Nations Foundation Sector: Land Focus Area: Forestry Topics: Finance, GHG inventory, Market analysis Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.forestcarbonindex.org/ Web Application Link: www.forestcarbonindex.org/maps.html Cost: Free References: Forest Carbon Index [1] The Forest Carbon Index (FCI) compiles and displays global data relating to biological, economic, governance, investment, and market readiness conditions for every forest and country in the world, revealing the best places and countries for forest carbon investments. Please use this site to

232

Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods  

Science Conference Proceedings (OSTI)

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

Not Available

1993-08-01T23:59:59.000Z

233

Black carbon in Arctic snow and its effect on surface albedo  

E-Print Network (OSTI)

1 Black carbon in Arctic snow and its effect on surface albedo Stephen Warren, University wavelengths: ice is nearly transparent. Absorptive impurities: Black carbon (soot) Brown carbon (organics broadband albedo: 83% 71% (2) by addition of black carbon (BC) (20 ppb): 0.5% for r = 100 µm 1.6% for r

234

Carbon Value Analysis Tool (CVAT) | Open Energy Information  

Open Energy Info (EERE)

Carbon Value Analysis Tool (CVAT) Carbon Value Analysis Tool (CVAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Value Analysis Tool (CVAT) Agency/Company /Organization: World Resources Institute Sector: Energy, Land Topics: Co-benefits assessment, Finance, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.wri.org/publication/carbon-value-analysis-tool Cost: Free Carbon Value Analysis Tool (CVAT) Screenshot References: CVAT[1] he Carbon Value Analysis Tool (CVAT) is a screening tool to help companies integrate the value of carbon dioxide emissions reductions into energy-related investment decisions. The tool has two main purposes: To test the sensitivity of a project's internal rate of return (IRR) to "carbon value" (the value of GHG emissions reductions). CVAT integrates this value into traditional financial analysis by ascribing a market price, either actual or projected, to carbon emissions reductions.

235

Tools for Forest Carbon Inventory, Management, and Reporting | Open Energy  

Open Energy Info (EERE)

Tools for Forest Carbon Inventory, Management, and Reporting Tools for Forest Carbon Inventory, Management, and Reporting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tools for Carbon Inventory, Management, and Reporting Agency/Company /Organization: United States Forest Service, United States Department of Agriculture Sector: Land Focus Area: Forestry Topics: GHG inventory, Resource assessment Resource Type: Guide/manual, Lessons learned/best practices, Publications, Training materials, Software/modeling tools User Interface: Desktop Application, Website Website: nrs.fs.fed.us/carbon/tools/ Cost: Free Tools for Carbon Inventory, Management, and Reporting Screenshot References: Carbon Tools[1] Logo: Tools for Carbon Inventory, Management, and Reporting "Accurate estimates of carbon in forests are crucial for forest carbon

236

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

237

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

238

STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS  

DOE Patents (OSTI)

A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

Crouse, D.J. Jr.

1962-09-01T23:59:59.000Z

239

AirShares EU Carbon Allowances Fund | Open Energy Information  

Open Energy Info (EERE)

AirShares EU Carbon Allowances Fund AirShares EU Carbon Allowances Fund Jump to: navigation, search Name AirShares EU Carbon Allowances Fund Place New York, New York Zip 10170 Product AirShares is a commodity pool for exchange-traded futures contracts for EUAs. References AirShares EU Carbon Allowances Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AirShares EU Carbon Allowances Fund is a company located in New York, New York . References ↑ "AirShares EU Carbon Allowances Fund" Retrieved from "http://en.openei.org/w/index.php?title=AirShares_EU_Carbon_Allowances_Fund&oldid=341942" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

240

On carbon footprints and growing energy use  

SciTech Connect

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

China-NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

China-NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name China-NIES Low-Carbon Society Scenarios 2050 AgencyCompany Organization National Institute for...

242

Understanding and engineering interfacial charge transfer of carbon nanotubes and graphene for energy and sensing applications  

E-Print Network (OSTI)

Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless ...

Paulus, Geraldine L. C. (Geraldine Laura Caroline)

2013-01-01T23:59:59.000Z

243

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

244

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

Greinke, Ronald Alfred (Medina, OH); Lewis, Irwin Charles (Strongsville, OH)

1997-01-01T23:59:59.000Z

245

Compacted carbon for electrochemical cells  

DOE Patents (OSTI)

This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

Greinke, R.A.; Lewis, I.C.

1997-10-14T23:59:59.000Z

246

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

247

Photophysics of carbon nanotubes  

E-Print Network (OSTI)

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

248

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

249

Autonomous observations of the ocean biological carbon pump  

Science Conference Proceedings (OSTI)

Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

Bishop, James K.B.

2009-03-01T23:59:59.000Z

250

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

251

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

252

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

253

Carbon Nanotube Nanocomposites, Methods of Making Carbon ...  

This technology describes methods to fabricate supercapacitors using aligned carbon nanotubes that are decorated with metal oxide or nitride ...

254

DOE Carbon Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Program Charles E. Schmidt Carbon Sequestration Product Manager National Energy Technology Laboratory David J. Beecy Director, Office of Environmental Systems...

255

Carbon Initiative for Development (Ci-Dev) | Open Energy Information  

Open Energy Info (EERE)

Ci-Dev) Ci-Dev) Jump to: navigation, search Name Carbon Initiative for Development (Ci-Dev) Agency/Company /Organization World Bank Sector Climate Topics Finance, GHG inventory, Low emission development planning Website http://wbcarbonfinance.org/Rou References Carbon Initiative for Development (Ci-Dev)[1] "The World Bank is proposing a new initiative, the Carbon Initiative for Development (Ci-Dev), which aims at helping low-income countries create sustainable access to financing for low-carbon investments through carbon markets. This initiative has three components: A Readiness Fund will support carbon capacity building, knowledge development and advocacy work for improving carbon market mechanisms, asset creation, and developing innovative approaches to leveraging carbon

256

Catalyzing Low Carbon Growth in Developing Countries | Open Energy  

Open Energy Info (EERE)

Catalyzing Low Carbon Growth in Developing Countries Catalyzing Low Carbon Growth in Developing Countries Jump to: navigation, search Tool Summary Name: Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Renewable Energy, Energy Efficiency Topics: Finance, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Website: sefi.unep.org/fileadmin/media/sefi/docs/publications/PublicPrivateWeb. Catalyzing Low Carbon Growth in Developing Countries: Public Finance Mechanisms to scale up private sector investment in climate solutions Screenshot References: Catalyzing Low Carbon Growth in Developing Countries[1]

257

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

258

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon

259

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.1 July.6 Monitoring 8 2.7 Carbon statements and reporting 8 2.8 Woodland Carbon Code trademark 9 3. Carbon sequestration 10 3.1 Units of carbon calculation 10 3.2 Carbon baseline 10 3.3 Carbon leakage 11 3.4 Project

260

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

262

Brazil-Pathways to a Low Carbon Economy | Open Energy Information  

Open Energy Info (EERE)

search Name Pathways to a Low Carbon Economy for Brazil AgencyCompany Organization McKinsey and Company Topics Implementation, Low emission development planning, Policies...

263

EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES  

Science Conference Proceedings (OSTI)

Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

Iqbal, Sardar S. [Southern Illinois University; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL; Fillip, Peter [Southern Illinois University

2011-01-01T23:59:59.000Z

264

Overview of Carbon Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

265

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

266

Mechanomutable Carbon Nanotube Arrays  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Polymer Nanocomposites. Presentation Title, Mechanomutable Carbon ...

267

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Organizations and Networks Organizations and Networks (Redirected from Gateway:International/Networks) Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and

268

Method for catalytic destruction of organic materials  

DOE Patents (OSTI)

A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

Sealock, Jr., L. John (Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

1997-01-01T23:59:59.000Z

269

Method for catalytic destruction of organic materials  

DOE Patents (OSTI)

A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

1997-05-20T23:59:59.000Z

270

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2003-10-30T23:59:59.000Z

271

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

DOE Green Energy (OSTI)

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds or bioreactors to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2004-10-30T23:59:59.000Z

272

CALCIUM CARBONATE PRODUCTION BY COCCOLITHAPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J.Fabry

2004-01-30T23:59:59.000Z

273

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-12-15T23:59:59.000Z

274

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-07-15T23:59:59.000Z

275

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-09-10T23:59:59.000Z

276

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2003-04-15T23:59:59.000Z

277

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2005-04-29T23:59:59.000Z

278

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-12-15T23:59:59.000Z

279

Calcium Carbonate Production by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2006-06-30T23:59:59.000Z

280

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2005-01-24T23:59:59.000Z

282

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2001-07-01T23:59:59.000Z

283

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-04-05T23:59:59.000Z

284

Synthesis of Amides and Lactams in Supercritical Carbon Dioxide  

E-Print Network (OSTI)

Supercritical carbon dioxide can be employed as an environmentally friendly alternative to conventional organic solvents for the synthesis of a variety of carboxylic amides. The addition of amines to ketenes generated in ...

Mak, Xiao Yin

285

Diverse Chemiresistors Based upon Covalently Modified Multiwalled Carbon Nanotubes  

E-Print Network (OSTI)

A diverse array of multiwalled carbon nanotube (MWCNT) sensory materials have been synthesized and used to create sensors capable of identifying volatile organic compounds (VOCs) on the basis of their functional groups. ...

Swager, Timothy Manning

286

Property:Event/Organizer | Open Energy Information  

Open Energy Info (EERE)

Organizer Organizer Jump to: navigation, search Property Name Event/Organizer Property Type String Description The entity or entities responsible for organizing the event. This is typically a person or organization. More than one organizer can be attributed to each event. Pages using the property "Event/Organizer" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + International Energy Agency (IEA) + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + International Energy Agency (IEA) + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + German Agency for International Cooperation (GIZ) + 18th Africa Partnership Forum + African Partnership Forum +

287

Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage  

Science Conference Proceedings (OSTI)

On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

2010-01-07T23:59:59.000Z

288

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

289

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Carbon Capture and Storage Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration...

290

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

291

Applicant Organization: | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicant Organization: Applicant Organization: Applicant Organization: More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: Applicant Organization:...

292

Acid sorption regeneration process using carbon dioxide  

DOE Patents (OSTI)

Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

2001-01-01T23:59:59.000Z

293

Event:IETA Carbon Forum North America | Open Energy Information  

Open Energy Info (EERE)

IETA Carbon Forum North America IETA Carbon Forum North America Jump to: navigation, search Calendar.png IETA Carbon Forum North America: on 2012/10/01 "Carbon Forum North America -IETA's flagship North American event-will be one of the best opportunities of the year to network with the North American and global carbon markets, browse exhibits showcasing the work of leading companies, and learn what you need to know about this rapidly evolving space." Event Details Name IETA Carbon Forum North America Date 2012/10/01 Location District of Columbia Organizer International Emissions Trading Association Tags LEDS, training, CLEAN Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Event:IETA_Carbon_Forum_North_America&oldid=472

294

Nepal-Climate and Carbon Unit | Open Energy Information  

Open Energy Info (EERE)

Nepal-Climate and Carbon Unit Nepal-Climate and Carbon Unit (Redirected from SNV-Climate and Carbon Unit) Jump to: navigation, search Name SNV-Climate and Carbon Unit Agency/Company /Organization Netherlands Development Organisation, United Kingdom Department for International Development Sector Energy, Climate Topics Finance, Low emission development planning Website http://www.aepc.gov.np/index.p Country Nepal UN Region Eastern Asia References CCU[1] SNV-Climate and Carbon Unit Screenshot "In order to connect to this potential, SNV (Netherlands Development Organisation), the UK's Department for International Development (DFID/UKAID) and Government of Nepal have launched a Climate and Carbon Unit (CCU) within the Nepal Ministry of Environment's Alternative Energy Promotion Centre (AEPC). The CCU establishes climate change and carbon

295

A Low Carbon Economic Strategy for Scotland | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Economic Strategy for Scotland Low Carbon Economic Strategy for Scotland Jump to: navigation, search Name A Low Carbon Economic Strategy for Scotland Agency/Company /Organization Government of Scotland Sector Energy, Land Topics Market analysis, Background analysis Website http://www.scotland.gov.uk/Res Country United Kingdom UN Region Western Europe References A Low Carbon Economic Strategy for Scotland[1] Abstract The Low Carbon Economic Strategy is an integral part of the Government's Economic Strategy (GES) to secure sustainable economic growth, and is a key component of our broader approach to meeting Scotland's climate change targets and securing the transition to a low carbon economy in Scotland "The Low Carbon Economic Strategy is an integral part of the Government's

296

Mexico-Low-Carbon Development | Open Energy Information  

Open Energy Info (EERE)

Mexico-Low-Carbon Development Mexico-Low-Carbon Development Jump to: navigation, search Logo: Mexico-ESMAP Low Carbon Growth Studies Program Name Mexico-ESMAP Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Biomass, Industry, Forestry Topics GHG inventory, Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country Mexico Central America References Low Carbon Development for Mexico[1] Abstract The Mexico study involves the preparation of a comprehensive package comprising: a low carbon strategy; the identification of priority sectors for carbon abatement; pre-feasibility level analysis of specific investment options; a country specific Marginal Abatement Cost (MAC) curve; identification of implementation barriers and necessary policy responses; and a prioritized list of potent...

297

International Carbon Storage Body Praises Department of Energy Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Carbon Storage Body Praises Department of Energy International Carbon Storage Body Praises Department of Energy Projects International Carbon Storage Body Praises Department of Energy Projects November 8, 2012 - 12:00pm Addthis Washington, DC - Three U.S. Department of Energy (DOE) projects have been identified by an international carbon storage organization as an important advancement toward commercialization and large-scale deployment of carbon capture, utilization, and storage (CCUS) technologies. The projects were officially recognized by the Carbon Sequestration Leadership Forum (CSLF) at its recent meeting in Perth, Australia for making significant contributions to the development of global carbon dioxide (CO2) mitigation technologies. All three projects will appear in a yearly project portfolio on the CSLF website to keep the global community

298

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

299

Carbon Efficiency, Carbon Reduction Potential, and Economic Developmen...  

Open Energy Info (EERE)

Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary Name: Carbon Efficiency, Carbon Reduction...

300

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

302

Carbon Management and Carbon Dioxide Reduction  

Science Conference Proceedings (OSTI)

Cost-Effective Gas Stream Component Analysis Techniques and Strategies for Carbon Capture Systems from Oxy-Fuel Combustion (An Overview).

303

Carbon Film Electrodes For Super Capacitor Applications  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-07-20T23:59:59.000Z

304

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

305

NETL: Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Carbon Storage Regional Carbon Sequestration Partnerships In 2003, the U.S. Department of Energy (DOE) awarded cooperative agreements to seven Regional Carbon Sequestration...

306

Carbon Nanostructure-Based Sensors  

E-Print Network (OSTI)

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

307

Conductive Carbon Coatings for Electrode Materials  

SciTech Connect

A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO{sub 4} and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO{sub 4} suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10{sup -9} S cm{sup -1}). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures (<800 C) required to make LiFePO{sub 4}, however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density.

Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

2007-07-13T23:59:59.000Z

308

Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes  

DOE Patents (OSTI)

Methods for modifying carbon nanotubes with organic compounds are disclosed. The modified carbon nanotubes have enhanced compatibility with polyolefins. Nanocomposites of the organo-modified carbon nanotubes and polyolefins can be used to produce both fibers and films having enhanced mechanical and electrical properties, especially the elongation-to-break ratio and the toughness of the fibers and/or films.

Chu,Benjamin (Setauket, NY); Hsiao, Benjamin S. (Setauket, NY)

2010-01-26T23:59:59.000Z

309

Measurement of carbon for carbon sequestration and site monitoring  

Science Conference Proceedings (OSTI)

A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized by a high content of fulvic acids while the humus of peat and grassland soils is high in humic acids. Similarly it is well known that the amount of carbon present in forest soils is lower than the amount present in grassland soils.

Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Garten Jr, Charles T [ORNL; Palumbo, Anthony Vito [ORNL

2007-01-01T23:59:59.000Z

310

Doping of carbon foams for use in energy storage devices  

DOE Patents (OSTI)

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

1994-10-25T23:59:59.000Z

311

Doping of carbon foams for use in energy storage devices  

SciTech Connect

A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

312

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

313

Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea  

E-Print Network (OSTI)

Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with ...

McCarren, Jay

314

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-01-01T23:59:59.000Z

315

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-12-31T23:59:59.000Z

316

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

317

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

318

Carbon nanotube nanoelectrode arrays  

DOE Patents (OSTI)

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

319

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

320

ESMAP-Indonesia-Low Carbon Development Options Study | Open Energy  

Open Energy Info (EERE)

Low Carbon Development Options Study Low Carbon Development Options Study Jump to: navigation, search Name Indonesia-ESMAP Low Carbon Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Partner United Kingdom Department for International Development Sector Energy, Land Focus Area Energy Efficiency, Forestry Topics Background analysis, GHG inventory, Low emission development planning, Market analysis, Policies/deployment programs Website http://www-wds.worldbank.org/e Country Indonesia South-Eastern Asia References World Bank, ESMAP - Low Carbon Growth Country Studies - Getting Started[1] Overview "The Indonesia's study aimed to evaluate and develop strategic options to mitigate climate change without compromising the country's development

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland, Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth_Country_Studies_Program&oldid=576259"

322

Carbon Footprint and Carbon Deficit Analysis of Iron and Steel ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title ... Study on Capture, Recovery and Utilization of Carbon Dioxide.

323

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program ...

324

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

325

Carbon Mitigation Measurements  

Science Conference Proceedings (OSTI)

... sustainable technologies such as CO 2 capture and sequestration (CCS ... property diagnostic tools (under realistic conditions for carbon capture from ...

2012-10-04T23:59:59.000Z

326

Big Sky Carbon Atlas  

DOE Data Explorer (OSTI)

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

Carbon Sequestration Partnership, Big Sky [BSCSP; ,

327

Electrocatalysts on Carbon Nanoparticles  

Carbon nanostructures offer extremely high surface areas and so are attractive candidates to support dispersed catalysts. These nanostructures, ...

328

Low Carbon Fuel Standards  

E-Print Network (OSTI)

land-use changes. When biofuel production increases, land ison carbon releases. If biofuel production does not result in

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

329

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

330

Reading Comprehension - Organs and Organ Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

together in a group make up an organ system. Examples of organ systems are cats and dogs the circulatory system and the respiratory system the stomacular system and...

331

Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.  

SciTech Connect

The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

Bradshaw, Robert W.; Clift, W. Miles

2010-11-01T23:59:59.000Z

332

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

333

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

334

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

1990-01-01T23:59:59.000Z

335

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

Chum, H.L.; Filardo, G.

1990-10-23T23:59:59.000Z

336

The Path of Carbon in Photosynthesis. XIV.  

DOE Green Energy (OSTI)

It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W.; Tolbert, N.E.

1951-06-30T23:59:59.000Z

337

The Path of Carbon in Photosynthesis XIV.  

DOE R&D Accomplishments (OSTI)

It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

Calvin, Melvin; Bassham, J. A.; Benson, A. A.; Kawaguchi, S.; Lynch, V. H.; Stepka, W.; Tolbert, N. E.

1951-06-30T23:59:59.000Z

338

UNDP-Low Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

UNDP-Low Carbon Portal UNDP-Low Carbon Portal Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNDP Low Carbon Portal Agency/Company /Organization: United Nations Development Programme Sector: Energy, Land Topics: Low emission development planning Resource Type: Guide/manual, Lessons learned/best practices Website: europeandcis.undp.org/lowcarbon/?event=advancedSearch UNDP Low Carbon Portal Screenshot References: UNDP Low Carbon Portal[1] Logo: UNDP Low Carbon Portal Tool Overview "The primary purpose of this website is to disseminate knowledge and expertise in developing the capacity of national and sub-national governments to formulate, finance, and implement low-emission, climate-resilient development strategies (LECRDS). UNDP's technical and finance services strengthen the capacity of developing countries to

339

Development of the Electricity Carbon Emission Factors for Russia | Open  

Open Energy Info (EERE)

the Electricity Carbon Emission Factors for Russia the Electricity Carbon Emission Factors for Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia Agency/Company /Organization European Bank for Reconstruction and Development Sector Energy Focus Area Renewable Energy Topics GHG inventory Resource Type Publications Website http://www.lahmeyer.de/fileadm Country Russia Eastern Europe References Development of the Electricity Carbon Emission Factors for Russia[1] References ↑ "Development of the Electricity Carbon Emission Factors for Russia" Retrieved from "http://en.openei.org/w/index.php?title=Development_of_the_Electricity_Carbon_Emission_Factors_for_Russia&oldid=383164" Category: Programs What links here Related changes Special pages

340

EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

336: Ocean Sequestration of Carbon Dioxide Field Experiment, 336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania EA-1336: Ocean Sequestration of Carbon Dioxide Field Experiment, Pittsburgh, Pennsylvania SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy National Energy Technology Laboratory's proposal to participate with a group of international organizations in an experiment to evaluate the dispersion and diffusion of liquid carbon dioxide droplets in ocean waters. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 4, 2001 EA-1336: Finding of No Significant Impact Ocean Sequestration of Carbon Dioxide Field Experiment May 4, 2001 EA-1336: Final Environmental Assessment Ocean Sequestration of Carbon Dioxide Field Experiment

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nepal-Climate and Carbon Unit | Open Energy Information  

Open Energy Info (EERE)

Nepal-Climate and Carbon Unit Nepal-Climate and Carbon Unit Jump to: navigation, search Name SNV-Climate and Carbon Unit Agency/Company /Organization Netherlands Development Organisation, United Kingdom Department for International Development Sector Energy, Climate Topics Finance, Low emission development planning Website http://www.aepc.gov.np/index.p Country Nepal UN Region Eastern Asia References CCU[1] SNV-Climate and Carbon Unit Screenshot "In order to connect to this potential, SNV (Netherlands Development Organisation), the UK's Department for International Development (DFID/UKAID) and Government of Nepal have launched a Climate and Carbon Unit (CCU) within the Nepal Ministry of Environment's Alternative Energy Promotion Centre (AEPC). The CCU establishes climate change and carbon

342

State of the Forest Carbon Markets 2009 | Open Energy Information  

Open Energy Info (EERE)

State of the Forest Carbon Markets 2009 State of the Forest Carbon Markets 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State of the Forest Carbon Markets 2009 Agency/Company /Organization: Forest Trends Sector: Land Focus Area: Forestry Topics: Market analysis Resource Type: Publications Website: moderncms.ecosystemmarketplace.com/repository/moderncms_documents/SFCM State of the Forest Carbon Markets 2009 Screenshot References: State of the Forest Carbon Markets 2009[1] Overview "This report was created to increase transparency and answer fundamental questions about the supply of forestry-based carbon credits, such as transaction volumes, credit prices, hectares influenced and tenure rights. It outlines the aggregate numbers from our survey of 61 project developers1

343

Regional Workshop on Opportunities and Priorities for Low Carbon Green  

Open Energy Info (EERE)

Regional Workshop on Opportunities and Priorities for Low Carbon Green Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Jump to: navigation, search Tool Summary Name: Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Agency/Company /Organization: Asian Development Bank Institute Topics: Policies/deployment programs, Pathways analysis Resource Type: Workshop, Training materials Website: www.adbi.org/cd-roms/2010/08/27/4054.low.carbon.green.growth.asia/ UN Region: Central Asia, Eastern Asia, South-Eastern Asia References: ADB Regional Workshop[1] Contents "Concepts of Low Carbon Green Growth: Challenges and Current Status in the Asia Pacific Region Inside the Low Carbon Green Growth: Innovations in Green Energy Supply Demand Side Energy Efficiency Solutions: A Low Hanging

344

Indonesia-Low Carbon Growth Project | Open Energy Information  

Open Energy Info (EERE)

Indonesia-Low Carbon Growth Project Indonesia-Low Carbon Growth Project Jump to: navigation, search Name Indonesia Low Carbon Growth Project Agency/Company /Organization United Kingdom Department for International Development Partner Ministry of Finance Sector Climate Focus Area Greenhouse Gas, People and Policy Topics Co-benefits assessment, Finance, Implementation, Low emission development planning Website http://projects.dfid.gov.uk/pr Program Start 2010 Program End 2012 Country Indonesia South-Eastern Asia References Indonesia Low Carbon Growth Project[1] Programme of support to the Ministry of Finance to support it to develop policies, structures and financing mechanisms integral to Indonesia's low-carbon growth strategy. References ↑ "Indonesia Low Carbon Growth Project"

345

NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

NIES Low-Carbon Society Scenarios 2050 NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name NIES Low-Carbon Society Scenarios 2050 Agency/Company /Organization National Institute for Environmental Studies Topics Background analysis, Low emission development planning Website http://2050.nies.go.jp/LCS/ind Program Start 2009 Country Bangladesh, China, India, Indonesia, Japan, Malaysia, Thailand, Vietnam UN Region Eastern Asia References 2050 Low-Carbon Society Scenarios (LCSs)[1] National and Local Scenarios National and local scenarios available from the activity webpage: http://2050.nies.go.jp/LCS/index.html References ↑ "2050 Low-Carbon Society Scenarios (LCSs)" Retrieved from "http://en.openei.org/w/index.php?title=NIES_Low-Carbon_Society_Scenarios_2050&oldid=553682"

346

Paving the Way for Low Carbon Development Strategies | Open Energy  

Open Energy Info (EERE)

Paving the Way for Low Carbon Development Strategies Paving the Way for Low Carbon Development Strategies Jump to: navigation, search Name Paving the Way for Low Carbon Development Strategies Agency/Company /Organization Energy Research Centre of the Netherlands Sector Energy Topics Background analysis, Low emission development planning Website http://www.ecn.nl/en/ Program Start 2009 Program End 2010 Country Indonesia, Ghana South-Eastern Asia, Western Africa References ECN Policy Studies[1] Paving the Way for Low Carbon Development Strategies[2] Overview The projects has three main goals: to provide input for a general methodology for developing Low Carbon Development Strategies to contribute to knowledge, mutual understanding and experience on the concept of Low Carbon Development Strategies with the aim to inform the

347

Low-Carbon Energy: A Roadmap | Open Energy Information  

Open Energy Info (EERE)

Low-Carbon Energy: A Roadmap Low-Carbon Energy: A Roadmap Jump to: navigation, search Tool Summary Name: Low-Carbon Energy: A Roadmap Agency/Company /Organization: World Watch Institute Sector: Energy Topics: Implementation, Low emission development planning, Pathways analysis Resource Type: Publications Website: www.worldwatch.org/node/7069#summary Cost: Free, Paid Low-Carbon Energy: A Roadmap Screenshot References: Low-Carbon Energy: A Roadmap[1] Logo: Low-Carbon Energy: A Roadmap Summary "Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be

348

International Low-Carbon Energy Technology Platform | Open Energy  

Open Energy Info (EERE)

International Low-Carbon Energy Technology Platform International Low-Carbon Energy Technology Platform Jump to: navigation, search Tool Summary LAUNCH TOOL Name: International Low-Carbon Energy Technology Platform Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iea.org/platform.asp International Low-Carbon Energy Technology Platform Screenshot References: International Low-Carbon Energy Technology Platform[1] Logo: International Low-Carbon Energy Technology Platform "The Technology Platform's central aim is to accelerate and scale-up action for the development and deployment of clean energy technologies. It will do this by creating a forum that:

349

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network (OSTI)

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

Das, Suman

350

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria New Species of Cyanobacteria Forms Intracellular Carbonates New Species of Cyanobacteria Forms Intracellular Carbonates Print Wednesday, 30 January 2013 00:00 A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

351

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

352

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

353

New Species of Cyanobacteria Forms Intracellular Carbonates  

NLE Websites -- All DOE Office Websites (Extended Search)

New Species of Cyanobacteria Forms Intracellular Carbonates Print New Species of Cyanobacteria Forms Intracellular Carbonates Print A new species of cyanobacteria-photosynthetic bacteria that occupy a wide array of habitats-was discovered in the Mexican Lake of Alchichica where massive carbonate rocks form. Cyanobacteria have been impacting the global carbon cycle of the Earth for more than 2.3 billion years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3 biomineralization, the mechanistic details of this process are still poorly understood. Scientists agree that calcification in cyanobacteria is an extracellular process: Photosynthesizing cells commonly export the photosynthesis byproduct CO32- outside their cells where it bonds with an alkaline earth metal like Ca2+. The cyanobacteria recently found in Lake Alchichica, however, forms amorphous Ca-, Mg-, Sr- and Ba-rich carbonates intracellularly. This discovery significantly modifies the traditional view of how bacteria induce CaCO3 precipitation and may improve understanding of the fossil record by hinting at ancient traces of life in rocks, or designing new routes for sequestering CO2 or 90Sr in minerals.

354

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

355

Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico  

E-Print Network (OSTI)

In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl?, NO[subscript 3]?, and 20 metals from 10 ...

Christian, T. J.

356

Atmos. Chem. Phys., 10, 50475064, 2010 www.atmos-chem-phys.net/10/5047/2010/  

E-Print Network (OSTI)

fraction of the aerosol. The hygroscopi- city of the oxygenated fraction of the organic component that the unoxygenated component of the aerosol, with a mole ratio of atomic oxygen to atomic carbon (O/C) 0

Meskhidze, Nicholas

357

A comparison study of carbon dioxide adsorption on polydimethylsiloxane, silica gel, and Illinois No. 6 coal using in situ infrared spectroscopy  

Science Conference Proceedings (OSTI)

Adsorption of supercritical carbon dioxide (CO{sub 2}) on polydimethylsiloxane (PDMS), silica gel (SiO{sub 2}), and Illinois No. 6 coal was compared using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at pressures up to 14 MPa and temperatures at 40{sup o}C and 50{sup o}C. Only physical adsorption of CO{sub 2} was recorded for PDMS, SiO{sub 2}, and Illinois no. 6. There was no evidence of the formation of carbonic acid, bicarbonates, carbonates, or any other reaction product between CO{sub 2} and PDMS, SiO{sub 2}, and Illinois No. 6 coal. Carbon dioxide adsorption on PDMS and SiO{sub 2} produced a linear isotherm while a typical Langmuir-like isotherm was observed for Illinois No. 6 coal. Attempts to measure CO{sub 2} induced swelling of the three materials was unsuccessful due to the design of the ATR-FTIR cell. 51 refs., 7 figs., 1 tab.

A.L. Goodman [U.S. Department of Energy, Pittsburgh, PA (USA). National Energy Technology Laboratory

2009-01-15T23:59:59.000Z

358

Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter  

DOE Green Energy (OSTI)

Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

Arndt Schimmelmann; Maria Mastalerz

2010-03-30T23:59:59.000Z

359

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

360

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

362

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

363

Mesoporous carbon materials  

SciTech Connect

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

364

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

365

Warming mineralises young and old soil carbon equally  

E-Print Network (OSTI)

Abstract. The temperature sensitivity of soil organic carbon decomposition is critical for predicting future climate change because soils store 2-3 times the amount of atmospheric carbon. Of particular controversy is the question, whether temperature sensitivity differs between young or labile and old or more stable carbon pools. Ambiguities in experimental methodology have so far limited corroboration of any particular hypothesis. Here, we show in a clear-cut approach that differences in temperature sensitivity between young and old carbon are negligible. Using the change in stable isotope composition in transitional systems from C3 to C4 vegetation, we were able to directly distinguish the temperature sensitivity of carbon differing several decades in age. This method had several advantages over previously followed approaches. It allowed to identify release of much older carbon, avoided un-natural conditions of long-term incubations and did not require arguable curve-fitting. Our results demonstrate that feedbacks of the carbon cycle on climate change are driven equally by young and old soil organic carbon. 1

F. Conen; J. Leifeld; B. Seth; C. Alewell

2006-01-01T23:59:59.000Z

366

Would Border Carbon Adjustments prevent carbon leakage and heavy industry  

E-Print Network (OSTI)

No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

Recanati, Catherine

367

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION  

Science Conference Proceedings (OSTI)

The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

2004-11-01T23:59:59.000Z

368

Organic fuel cells and fuel cell conducting sheets  

DOE Patents (OSTI)

A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

2007-10-16T23:59:59.000Z

369

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

370

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

371

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon ï‚· Renewables ï‚· Nuclear ï‚· Fuel Switching ï‚· Demand Side ï‚· Supply Side ï‚· Capture & Store ï‚· Enhance Natural Sinks Reduce Carbon Intensity All options needed to: ï‚· Affordably meet energy demand ï‚· Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

372

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

373

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Production Refineries Etc.... C Capture & Storage, Austin, TX Nov. 13-15, 2007 Carbon Sequestration Program Goals * Deliver technologies & best practices that validate:...

374

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and… (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

375

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

376

Reinforced Carbon Nanotubes.  

DOE Patents (OSTI)

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

377

Carbon Nanomaterials and Heterostructures  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... This presentation aims to capture those recent research efforts in synthesis and applications of carbon nanotubes in Li-ion battery, bioelectronic ...

378

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

379

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

380

Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores  

E-Print Network (OSTI)

Previous coreflood experiments show that CO2 sequestration in carbonate rocks is a win-win technology. Injecting CO2 into a depleted gas reservoir for storage also produces hitherto unrecoverable gas. This in turn helps to defray the cost of CO2 sequestration. This thesis reports the results from experiments conducted on a Berea sandstone core. The experiments include displacement experiments and unconfined compressive strength tests. The displacement experiments were conducted at cell pressures of 1500 psig and temperature of 60oC using a 1 foot long and 1 inch diameter Berea sandstone core. Pure CO2 and treated flue gas (99.433 % mole CO2) were injected into the Berea sandstone core initially saturated with methane at a pressure of 1500 psig and 800 psig respectively. Results from these experiments show that the dispersion coefficient for both pure CO2 and treated flue gas are relatively small ranging from 0.18-0.225 cm2/min and 0.28-0.30 cm2/min respectively. The recovery factor of methane at break-through is relatively high ranging from 71%-80% of original gas in place for pure CO2 and 90% to 92% OGIP for treated flue gas, the difference resulting from different cell pressures used. Therefore it would appear that, in practice injection of treated flue gas is a cheaper option compared to pure CO2 injection. For the unconfined compressive strength tests, corefloods were first conducted at high flowrates ranging from 5 ml/min to 20 ml/ min, pressures of 1700-1900 Psig and a temperature of 65oC. These conditions simulate injecting CO2 originating from an electric power generation plant into a depleted gas reservoir and model the near well bore situation. Results from these experiments show a 1% increase in porosity and changes in injectivity due to permeability impairment. The cores are then subjected to an unconfined compressive strength test. Results from these tests do not show any form of weakening of the rock due to CO2 injection.

Maduakor, Ekene Obioma

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Using Renewable Energy Purchases to Achieve Institutional Carbon Goals: A Review of Current Practices and Considerations  

SciTech Connect

With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

Bird, L.; Sumner, J.

2011-01-01T23:59:59.000Z

382

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

383

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network (OSTI)

way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

384

Quantification of the Effects of Organic and Carbonate Buffers on  

E-Print Network (OSTI)

) (>SO)2POOH + 2H2O 1.6 log K>SOPO4 3- >SOH + H3PO4 0 ) >SOPO3 2- + 2H+ + H2O -0.1 log K>SOCOO- >SOH + H

Sverjensky, Dimitri A.

385

Soil Organic Carbon Change Monitored Over Large Areas  

Science Conference Proceedings (OSTI)

Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with the technical potential to sequester as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

Brown, David J.; Hunt, Earle R.; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; schumaker, Bonny L.; West, Tristram O.

2010-11-23T23:59:59.000Z

386

Organic light-emitting diodes with carbon nanotube cathode ...  

parent indium-tin-oxide !IT O " anode in combination with ... OfÞce of Ener gy EfÞciency and Renewable Ener gy , under Contract No. DE-AC02-05CH1 1231. 1C. W .

387

Soil Organic Carbon Dynamics for Different Land Uses and Soil...  

NLE Websites -- All DOE Office Websites (Extended Search)

by two or three mechanical cultivation before 1960 and by using herbicides since 1960. Corn was harvested in early October with a mechanical picker, and the stover was chopped...

388

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

NT soybean na 1986 7.5-15 7.5 1.10 KA01 NT soybean na 1986 15-30 15 1.00 KA01 CT sorghum-soybean na 1986 0-2.5 2.5 1.25 KA01 CT sorghum-soybean na 1986 2.5-7.5 5 1.23 KA01...

389

Event:Latin American Carbon Forum 2013 | Open Energy Information  

Open Energy Info (EERE)

3 3 Jump to: navigation, search Calendar.png Latin American Carbon Forum 2013: on 2013/03/25 The Seventh Latin American and Caribbean Carbon Forum (LACF) will discuss prospects for carbon projects in Latin America. The Forum is co-organized by the Inter-American Development Bank (IDB), the Latin American Development Bank (CAF), the World Bank, the International Emissions Trading Association (IETA), the Latin American Energy Organization (OLADE), the UN Environment Programme (UNEP) Risø Centre and the UN Framework Convention on Climate Change (UNFCCC). Event Details Name Latin American Carbon Forum 2013 Date 2013/03/25 Location Rio de Janeiro, Brazil Tags LEDS, Training, CLEAN Website Event Website Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

390

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network (OSTI)

Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

391

Big Sky Carbon Sequestration Partnership  

Science Conference Proceedings (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

Susan M. Capalbo

2005-11-01T23:59:59.000Z

392

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

393

Hydrogen storage on activated carbon. Final report  

DOE Green Energy (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

394

Fiber Bridging Model for Reinforced-Carbon-Carbon  

Science Conference Proceedings (OSTI)

Symposium, Professor K. K. Chawla Honorary Symposium on Fibers, Foams and ... fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (

395

Stabilization and carbonization studies of polyacrylonitrile /carbon nanotube composite fibers .  

E-Print Network (OSTI)

??Carbon fibers contain more than 90 wt. % carbon. They have low density, high specific strength and modulus, and good temperature and chemical resistance. Therefore,… (more)

Liu, Yaodong

2010-01-01T23:59:59.000Z

396

Novel method for carbon nanofilament growth on carbon fibers.  

E-Print Network (OSTI)

??Carbon nanofilaments were grown on the surface of microscale carbon-fibers at relatively low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures… (more)

Garcia, Daniel

2009-01-01T23:59:59.000Z

397

Carbon Films Produced from Ionic Liquid Carbon Precursors ...  

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ...

398

Synthesis of Carbon-Carbon Composite via Infiltration Process of ...  

Science Conference Proceedings (OSTI)

The carbon frame was first pyrolyzed from the wood template. The final composites were then obtained by infiltrating molten coal tar pitch into the carbon frame ...

399

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

400

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-04-08T23:59:59.000Z

402

Carbon-free generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

403

carbon | OpenEI Community  

Open Energy Info (EERE)

carbon Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

404

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

405

Organization | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Leadership Organization Contact Us The Office of Economic Impact and Diversity is comprised of six offices: The Office of the Director- contact us Office of...

406

SSRL Users' Organization Ballot  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 SSRL Users' Organization Executive Committee (SSRLUO-EC) Ballot The SSRL Users' Organization Executive Committee represents the scientific user community to the SSRL...

407

Toward Low Carbon and Climate Change Resilient Territories | Open Energy  

Open Energy Info (EERE)

Toward Low Carbon and Climate Change Resilient Territories Toward Low Carbon and Climate Change Resilient Territories Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Toward Low Carbon and Climate Change Resilient Territories Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme Topics: Low emission development planning, Pathways analysis Resource Type: Publications, Guide/manual, Training materials Website: www.undp.org/eu/documents/UNDP_low_carbon_regions_paper.pdf References: Toward Low Carbon and Climate Change Resilient Territories [1] Introduction "Climate change is today an undeniable reality, and the developing countries which have contributed the least to green house gas emissions will be the most vulnerable to its impacts. The 2007/2008 UNDP Human

408

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for  

Open Energy Info (EERE)

Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Jump to: navigation, search Name Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities Agency/Company /Organization Overseas Development Institute Sector Energy, Land Focus Area Renewable Energy, Biomass, Forestry Topics Policies/deployment programs, Background analysis Resource Type Publications Website http://www.odi.org.uk/resource Country Uganda, India Eastern Africa, Southern Asia References Carbon Offsets for Forestry and Bioenergy: Researching Opportunities for Poor Rural Communities[1] Summary "This report presents findings from a research study in Uganda and India looking at the opportunities that carbon offset projects offer for poor

409

China-Low Carbon Development Zones | Open Energy Information  

Open Energy Info (EERE)

China-Low Carbon Development Zones China-Low Carbon Development Zones Jump to: navigation, search Name China-Low Carbon Development Zones Agency/Company /Organization Third Generation Environmentalism (E3G) Sector Energy, Land Focus Area Energy Efficiency Topics Finance, Low emission development planning, Market analysis, Policies/deployment programs Resource Type Lessons learned/best practices Website http://www.chathamhouse.org.uk Country China UN Region Eastern Asia References Low Carbon Development Zones in China[1] Overview "Building on the successful work of the Interdependencies on Energy and Climate Security for China and Europe project, this 18 month project with E3G, the Chinese Academy of Social Sciences (CASS) and the Chinese Energy Research Institute (ERI), will focus on four key areas - low carbon zones;

410

Indonesia Low Carbon Growth Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Indonesia Low Carbon Growth Project Agency/Company /Organization United Kingdom Department for International Development Partner Ministry of Finance Sector Climate Focus Area Greenhouse Gas, People and Policy Topics Co-benefits assessment, Finance, Implementation, Low emission development planning Website http://projects.dfid.gov.uk/pr Program Start 2010 Program End 2012 Country Indonesia South-Eastern Asia References Indonesia Low Carbon Growth Project[1] Programme of support to the Ministry of Finance to support it to develop policies, structures and financing mechanisms integral to Indonesia's low-carbon growth strategy. References ↑ "Indonesia Low Carbon Growth Project" Retrieved from "http://en.openei.org/w/index.php?title=Indonesia_Low_Carbon_Growth_Project&oldid=407118"

411

Brazil-Low Carbon Growth Studies Program | Open Energy Information  

Open Energy Info (EERE)

Brazil-Low Carbon Growth Studies Program Brazil-Low Carbon Growth Studies Program Jump to: navigation, search Name Brazil-Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Partner United Kingdom Department for International Development Sector Energy, Land Focus Area Renewable Energy, Agriculture, Biomass, Energy Efficiency, Forestry Topics Background analysis, GHG inventory, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/filez/pub Country Brazil South America References World Bank, ESMAP - Low Carbon Growth Country Studies - Getting Started[1] Overview "Benefiting from a cooperative process with Brazilian authorities, the study covers four key areas with large potential for low-carbon options in

412

Electrochemical behavior of carbon aerogels derived from different precursors  

DOE Green Energy (OSTI)

The ability to tailor the structure and properties of porous carbons has led to their increased use as electrodes in energy storage devices. Our research focuses on the synthesis and characterization of carbon aerogels for use in electrochemical double layer capacitors. Carbon aerogels are formed from the sol-gel polymerization of (1) resorcinol-formaldehyde or (2) phenolic-furfural, followed by supercritical drying from carbon dioxide, and subsequent pyrolysis in an inert atmosphere. These materials can be produced as monoliths, composites, thin films, powders, or microspheres. In all cases, the areogels have an open-cell structure with an ultrafine pore size (<100 nm), high surface area (400-1 100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10 nm. This paper examines the effects of the carbon precursor and processing conditions on electrochemical performance in aqueous and organic electrolytes.

Pekala, R.W.; Alviso, C.T.; Nielson, J.K.; Tran, T.D. [Lawrence Livermore National Lab., CA (United States); Reynolds, G.M.; Dresshaus, M.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-04-01T23:59:59.000Z

413

ESMAP-Low-Carbon Development for Mexico | Open Energy Information  

Open Energy Info (EERE)

Development for Mexico Development for Mexico Jump to: navigation, search Logo: Mexico-ESMAP Low Carbon Growth Studies Program Name Mexico-ESMAP Low Carbon Growth Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Energy, Land Focus Area Energy Efficiency, Biomass, Industry, Forestry Topics GHG inventory, Low emission development planning, Policies/deployment programs, Background analysis Website http://www.esmap.org/filez/pub Country Mexico Central America References Low Carbon Development for Mexico[1] Abstract The Mexico study involves the preparation of a comprehensive package comprising: a low carbon strategy; the identification of priority sectors for carbon abatement; pre-feasibility level analysis of specific investment options; a country specific Marginal Abatement Cost (MAC) curve; identification of implementation barriers and necessary policy responses; and a prioritized list of potent...

414

Storing Carbon in Agricultural Soils to Help Head-Off Global Warming and to Combat Desertification  

Science Conference Proceedings (OSTI)

We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% carbon. Using agricultural management practices to increase the amount of organic matter and carbon in soils can be an effective strategy to offset carbon dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.

Rosenberg, Norman J.; Izaurralde, Roberto C.

2001-12-31T23:59:59.000Z

415

Organizations and Networks | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Registered Technical and Research Organizations Networks Climate Eval "The website promotes active debate on areas relevant to evaluation of climate change and development evaluation by bringing relevant topics to a peer to peer discussion forum." Coordinated Low Emissions Assistance Network (CLEAN) CLEAN aims to improve communication and coordination by bringing together national and international organizations that are assisting developing countries with preparation and implementation of low greenhouse gas emission plans and strategies. This includes support for technology needs assessments, for low carbon and clean energy development plans, and for technology roadmaps and deployment programs. Renewable Energy Policy Network for the 21st Century (REN21)

416

FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS  

DOE Patents (OSTI)

The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

Moore, R.H.

1960-05-10T23:59:59.000Z

417

BioCarbon Fund Project Portfolio | Open Energy Information  

Open Energy Info (EERE)

Portfolio Portfolio Jump to: navigation, search Name BioCarbon Fund Project Portfolio Agency/Company /Organization World Bank Sector Land Focus Area Forestry Topics Market analysis, Policies/deployment programs, Background analysis Website http://wbcarbonfinance.org/Rou Country Albania, China, Colombia, Costa Rica, Ethiopia, Honduras, India, Kenya, Madagascar, Mali, Moldova, Nicaragua, Niger, Uganda Southern Europe, Eastern Asia, South America, Central America, Eastern Africa, Central America, Southern Asia, Eastern Africa, Eastern Africa, Western Africa, Eastern Europe, Central America, Western Africa, Eastern Africa References BioFund Projects[1] Background "The BioCarbon Fund provides carbon finance for projects that sequester or conserve greenhouse gases in forests, agro- and other ecosystems. Through

418

Strengthening Planning Capacity for Low Carbon Growth in Developing Asia |  

Open Energy Info (EERE)

for Low Carbon Growth in Developing Asia for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Agency/Company /Organization Asian Development Bank Partner Japan, United Kingdom Sector Climate, Energy Focus Area Non-renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Transportation Topics Baseline projection, GHG inventory, Low emission development planning, Market analysis, Pathways analysis, Policies/deployment programs Program Start 2011 Program End 2013 Country Indonesia, Malaysia, Philippines, Thailand, Vietnam South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia, South-Eastern Asia

419

Colombian Low Carbon Development Strategy (CLCDS) | Open Energy Information  

Open Energy Info (EERE)

Colombian Low Carbon Development Strategy (CLCDS) Colombian Low Carbon Development Strategy (CLCDS) Jump to: navigation, search Name Colombian Low Carbon Development Strategy (CLCDS) Agency/Company /Organization The Children's Investment Fund Foundation (CIFF), SouthSouthNorth, the European Union Partner Ministry of Energy, Ministry of Finance, Ministry of Agriculture, Ministry of Environment, Ministry of Industry, Ministry of Transport, Ministry of Housing, National Planning Department Sector Climate, Energy Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, Buildings, Economic Development, Energy Efficiency, Geothermal, Goods and Materials, Greenhouse Gas, Ground Source Heat Pumps, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind

420

Low Carbon Society Scenarios Towards 2050 | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Society Scenarios Towards 2050 Low Carbon Society Scenarios Towards 2050 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society Scenarios Towards 2050 Agency/Company /Organization: National Institute for Environmental Studies (NIES) Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, People and Policy, Solar Phase: Create a Vision, Determine Baseline, Evaluate Options, Develop Goals Topics: Adaptation, Baseline projection, GHG inventory, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Guide/manual, Lessons learned/best practices, Publications, Training materials Website: 2050.nies.go.jp/report.html Cost: Free

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low Carbon Society Vision 2050: India | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Society Vision 2050: India Low Carbon Society Vision 2050: India Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Society Vision 2050: India Agency/Company /Organization: National Institute for Environmental Studies, Indian Institute of Management Ahmedabad, Kyoto University, Mizuho Information & Research Institute Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Economic Development, Energy Efficiency, Offsets and Certificates, People and Policy, Solar Phase: Determine Baseline, Evaluate Options, Develop Goals Topics: Background analysis, Baseline projection, GHG inventory, Implementation, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Case studies/examples, Guide/manual, Lessons learned/best practices, Publications

422

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010...

423

Carbon International | Open Energy Information  

Open Energy Info (EERE)

International Place London, United Kingdom Zip NW1 8LH Sector Carbon Product London-based energy and communications agency specialising in low carbon energy and climate change....

424

Nanostructured Carbide Derived Carbon (CDC)  

... can be grown at rates up to 100 micrometers per hour and is composed of graphite, diamond, amorphous carbon and carbon "nano-onions" ...

425

Microfluidic Analysis for Carbon Management.  

E-Print Network (OSTI)

??This thesis focuses on applying microfluidic techniques to analyze two carbon management methods; underground carbon sequestration and enhanced oil recovery. The small scale nature of… (more)

Sell, Andrew

2012-01-01T23:59:59.000Z

426

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

427

Carbon Trust | Open Energy Information  

Open Energy Info (EERE)

company funded by the UK government to help business and the public sector cut carbon emissions and capture the commercial potential of low carbon technologies....

428

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

429

Electrochemical oxidation of organic materials  

DOE Patents (OSTI)

This invention is a method and apparatus for the direct oxidation of organic materials, especially organic wastes, in an electrochemical cell. It fulfills the need for a simple, cost-effective way for generators of small quantities of waste to deal with that waste. It does not use an electron transfer agent, which may be a source of additional hazardous waste. The anode is made of carbon felt; the cathode is platinum; and the electrolyte is a strong oxidizer, preferably nitric acid. The potential difference is 2 to 3 volts; the current density is 0.15 to 0.25 A/cm{sup 2}. The porous barrier is a medium grade alumina frit or an ion exchange membrane. The organic materials are fed to the anode compartment; the resulting oxygen bubbling circumvents the need for stirring or circulating the waste. Many different types of waste (e.g. rubber gloves, TBP, process solutions, etc.) can be fed to the anode compartment without the need to process or store it. 3 figs. (DLC)

Almon, A.C.

1991-01-01T23:59:59.000Z

430

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0--40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trails in the southeastern US. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75--90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C{sub 4}-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon (=12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil types and site management.

Garten, C.T. Jr.; Wullschleger, S.D.

2000-04-01T23:59:59.000Z

431

Soil carbon dynamics beneath switchgrass as indicated by stable isotope analysis  

Science Conference Proceedings (OSTI)

Surface (0-40 cm) soil organic carbon (SOC) dynamics were studied beneath four switchgrass (Panicum virgatum L.) field trials in the southeastern United States. Soil organic carbon was partitioned into particulate organic matter (POM) and mineral-associated organic matter (MOM). Most (75-90%) of the SOC at each study site was affiliated with MOM (<0.053 mm). Changes in stable carbon isotope ratios were used to derive carbon inputs to and losses from POM and MOM at each site. Inventories of existing SOC and new C4-derived SOC beneath switchgrass decreased with increasing soil depth. Approximately 5 yr after establishment, 19 to 31% of the existing SOC inventories beneath switchgrass had been derived from new C{sub 4}-carbon inputs. Calculated turnover times of POM and MOM ranged from 2.4 to 4.3 yr and 26 to 40 yr, respectively. The turnover time of SOC in the POM fraction increased with decreasing mean annual temperature. A simple, two-compartment model was parameterized to predict the potential for soil carbon sequestration under switchgrass. An example calculation with the model indicated a measurable and verifiable recovery of soil carbon ({approx}12% increase) on degraded lands through one decade of switchgrass production. The potential to sequester carbon through switchgrass cultivation will depend on initial soil carbon inventories, prevailing climate, soil type, and site management.

Garten Jr, Charles T [ORNL; Wullschleger, Stan D [ORNL

2000-04-01T23:59:59.000Z

432

Experimental study of the reforming of methane with carbon dioxide over coal char - article no. A16  

Science Conference Proceedings (OSTI)

As one of the fundamental issues of the new poly-generation system on the basis of gasification gas and coke oven gas, carbon dioxide reforming of methane experiments have been performed over coal chars derived from different parent coals in a lab-scale fixed-bed reactor (internal diameter 12 mm, length 700 mm). The char derived from TongChuan coal exhibited higher activity than other samples employed under the same conditions. After the reforming reaction, the char samples were covered with different amounts of carbon deposition which resulted in the surface areas decrease. As the flow rate of feed gas increased from 200 ml/min to 600 ml/min over the Xuzhou char sample at 1050{sup o}C, the conversion of methane decreased from 52.7% to 17.5% and the H{sub 2}/CO dropped from 0.75 to 0.55. While maintaining the flow rate of CO{sub 2} at 20ml/min at 1050{sup o}C, the mole ratio of reactants CH{sub 4}/CO{sub 2} was varied from 1 to 1.75 which led to the H{sub 2}/CO ratio increase from 0.75 to 1.2.

Li, Y.B.; Xiao, R.; Jin, B.S.; Zhang, H.Y.

2008-07-01T23:59:59.000Z

433

Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants  

SciTech Connect

The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance.

Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

2008-04-01T23:59:59.000Z

434

Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage  

SciTech Connect

On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

2010-01-07T23:59:59.000Z

435

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

Susan M. Capalbo

2004-01-04T23:59:59.000Z

436

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

Susan M. Capalbo

2004-06-01T23:59:59.000Z

437

Big Sky Carbon Sequestration Partnership  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

438

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

439

Organic Electronics: Organic thin-film magnetometers  

SciTech Connect

Magnetometry usually requires large probes and bulky instrumentation. Organic diodes have now been used in small probes that can measure moderate magnetic fields with 10 ppm precision.

Shinar, Joseph

2012-07-24T23:59:59.000Z

440

Long-term Black Carbon Dynamics in Cultivated Soil  

Science Conference Proceedings (OSTI)

Black carbon (BC) is a quantitatively important C pool in the global carbon cycle due to its relative recalcitrance against decay compared with other C pools. However, how rapidly BC is oxidized and in what way the molecular structure changes during decomposition over decadal time scales, is largely unknown. In the present study, the long-term dynamics in quality and quantity of BC were investigated in cultivated soil using X-ray Photoelectron Spectroscopy (XPS), Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) techniques. BC particles, obtained from soil samples at 8 conversion ages stretching over 100 years and from a forest soil sample from Kenya, were manually picked under a light microscope for characterization and quantification. BC contents rapidly decreased from 12.7 to 3.8 mg C g?¹ soil during the first 30 years since conversion, after which they slowly decreased to a steady state at 3.51 mg C g ?¹soil. BC-derived C losses over 100 years were estimated at 6000 kg C ha?¹ to a depth of 0.1 m. The initial rapid changes in BC stocks resulted in a mean residence time of only around 8.3 years, which was likely a function of both decomposition as well as transport processes. The molecular properties of BC changed more rapidly on surfaces than in the interior of BC particles and more rapidly during the first 30 years than during the following 70 years. The Oc/C ratios (Oc is O bound to C) and carbonyl groups (C=O) increased over time by 133 and 192 %, respectively, indicating oxidation was an important degradation process controlling BC quality. Al, Si, polysaccharides, and to a lesser extent Fe were rapidly adsorbed on BC particle surfaces within the first few years after BC deposition to soil. The protection by physical and chemical stabilization was apparently sufficient to not only minimize decomposition below detection between 30 and 100 years after deposition, but also physical export by erosion and vertical transport below 0.1 m.

Nguyen, Binh T.; Lehmann, Johannes C.; Kinyangi, James; Smernik, Ron; Riha, Susan J.; Engelhard, Mark H.

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon oc" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transportation Organization and Functions  

Energy.gov (U.S. Department of Energy (DOE))

Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

442

TREC Organization User Agreement  

Science Conference Proceedings (OSTI)

Organization Application to use the TREC Information- Retrieval Text Research Collections. The _____ ...

443

Standards Development Organization Overview  

Science Conference Proceedings (OSTI)

... Standards Organizations NFPA (National Fire Protection Association) ... Fire News – Annual directory – NFPA Buyer's Guide ... Headquarters ...

2010-04-28T23:59:59.000Z

444

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

445

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network (OSTI)

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

446

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas  

E-Print Network (OSTI)

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas Fluxes in Terrestrial Ecosystems, and Benjamin M. Sleeter Chapter 5 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes, carbon sequestration, and greenhouse-gas fluxes in terrestrial ecosystems of the Western United States

Fleskes, Joe

447

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

448

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include th