Powered by Deep Web Technologies
Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran  

Science Conference Proceedings (OSTI)

Total organic carbon (TOC) content present in reservoir rocks is one of the important parameters, which could be used for evaluation of residual production potential and geochemical characterization of hydrocarbon-bearing units. In general, organic-rich ... Keywords: Committee machine, Fuzzy logic, Genetic algorithm, Neural network, Neuro-fuzzy, Petrophysical data, South Pars Gas Field, Total organic carbon

Ali Kadkhodaie-Ilkhchi; Hossain Rahimpour-Bonab; Mohammadreza Rezaee

2009-03-01T23:59:59.000Z

2

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

3

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

4

ARM - Measurement - Organic Carbon Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

5

TABLE OF CONTENTS Carbon Dioxide Reduction Metallurgy  

Science Conference Proceedings (OSTI)

Chemical Utilization of Sequestered Carbon Dioxide as a. Booster of Hydrogen ... CO2 Capture and Sequestration – Implications for the Metals. Industry.

6

Evaluation of the carbon content of aerosols from the burning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the carbon content of aerosols from the burning of biomass in the Brazilian Amazon using thermal, optical and thermal-optical analysis methods Title Evaluation of the...

7

Effect of Graphitic Content on Carbon Supported Catalyst Performance  

DOE Green Energy (OSTI)

The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

2011-07-01T23:59:59.000Z

8

Soil organic carbon – A Western Australian perspective Soil organic carbon A Western Australian perspective  

E-Print Network (OSTI)

Sequestering carbon in soils is being investigated worldwide as a way to remove carbon dioxide from the atmosphere and provide land managers with extra income from the sale of carbon offsets or credits. In theory, the opportunity exists for farmers and other land managers to be paid via voluntary trades or carbon trading schemes to implement land management changes that sequester soil carbon, with additional benefits gained in improving the biological, chemical and physical health of their soils. The concept of increasing soil organic carbon is very attractive because it seemingly provides a ‘win-win’ situation in which farmers earn extra income for removing greenhouse gas emissions from the atmosphere while simultaneously lifting the productivity of arable soils. But how realistic is this concept and what opportunities and risks does it present to farmers? Soil organic carbon is part of the global carbon cycle The soil can either represent an enormous ‘source’ or ‘sink ’ of carbon – with more carbon contained in the soil than in the world’s vegetation and atmosphere combined. Soil organic carbon represents a critical component

Janet Paterson; Dr. Fran Hoyle; Department Of Agriculture

2011-01-01T23:59:59.000Z

9

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network (OSTI)

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

10

Method for creating high carbon content products from biomass oil  

DOE Patents (OSTI)

In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

Parker, Reginald; Seames, Wayne

2012-12-18T23:59:59.000Z

11

Soil Organic Carbon Sequestration by Tillage and Crop Rotation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Descriptions Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (Site Descriptions) West, T.O., and W.M. Post. 2002. Soil Organic Carbon...

12

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

DOE Green Energy (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

13

Role of organic soils in the world carbon cycle: problem analysis and research needs  

SciTech Connect

In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

Armentano, T.V. (ed.)

1980-02-01T23:59:59.000Z

14

Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater.  

E-Print Network (OSTI)

?? Total organic carbon (TOC) and chemical oxygen demand (COD) are two methods used for measuring organic pollutants in wastewater. Both methods are widely used… (more)

Hodzic, Elvisa

2011-01-01T23:59:59.000Z

15

Influence of carbon content on physicomechanical characteristics of boron carbide  

Science Conference Proceedings (OSTI)

Temperature and amplitude dependences of dynamic shear modulus (SM) and of internal friction (IF) have been measured on boron carbide samples with different carbon content. The samples were investigated at frequencies of torsion oscillations from 0.5 to 5 Hz and at amplitudes of oscillatory deformation from 5x10{sup -6} to 1x10{sup -2} at temperatures from 80 to 1000 K. It was shown that absolute values of SM, of critical amplitudes of oscillatory deformation and of shear elastic limit decreased with the decrease of carbon content in the samples. Simultaneously, activation energy of the intensive relaxation-type IF in the vicinity of 450-470 K was also decreased. Cyclic deformation at 1000 K provided additional decrease to physicomechanical characteristics while at annealing in vacuum at the temperatures of 1273 and 1773 K these structure-sensitive properties significantly increased. The observed changes of physicomechanical characteristics were attributed to possible changes of inter-atomic forces in the structure of boron carbide samples. - Graphical abstract: Amplitude dependence of the IF of the compacted samples of boron carbide: B{sub 4,3}C initial-(1) and after annealing at the 1773 K, 5 h-(2); B{sub 6,5}C initial-(3) and after annealing at the 1773 K, 5 h-(4)

Lezhava, D. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia)]. E-mail: t_otari@hotmail.com; Darsavelidze, G. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Gabunia, D. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Tsagareishvili, O. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Antadze, M. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia); Gabunia, V. [F. Tavadze Institute of Metallurgy and Materials Science, Georgian Academy of Sciences, 15, Alexander Kazbegi Avenue, Tbilisi 0160 (Georgia)

2006-09-15T23:59:59.000Z

16

Challenges for improving estimates of soil organic carbon stored in  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

17

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical weathering  

E-Print Network (OSTI)

Estimation of the annual yield of organic carbon released from carbonates and shales by chemical matter yield induced by chemical weathering of carbonates and shales, considering their global surface carbonate rocks and shales weathering in major world watersheds, published by numerous authors. The results

Paris-Sud XI, Université de

18

Soil Organic Carbon Sequestration in Reclaimed Minesoils  

NLE Websites -- All DOE Office Websites (Extended Search)

The SOC dynamics in soil macro and micro-aggregate fractions and its effect on long-term carbon (C) sequestration are discussed. Introduction Carbon (C) management in the next...

19

Contribution of organic carbon to wood smoke particulate matter absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

20

Building and testing organized architectures of carbon nanotubes  

Science Conference Proceedings (OSTI)

This paper will focus on the directed assembly of multiwalled carbon nanotubes on various substrates into highly organized structures that include vertically and horizontally oriented arrays, ordered fibers and porous membranes. The concept of growing ...

R. Vajtai; Bingqing Wei; Yung Joon Jung; Anyuan Cao; S. K. Biswas; G. Ramanath; P. M. Ajayan

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystem  

E-Print Network (OSTI)

Soil respiration rates have been used as an indicator of soil community activity around the world. An increasing number of studies have been performed using soil respiration rates as a measure of man's impacts on the environment, including forest land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non-harvested control. I hypothesized that respiration rates would vary directly with harvest intensity. The sodalime absorption technique was used for determining in situ respiration and the wet alkali method was used for measuring mineral soil respiration in the lab. Soil temperature and moisture content were also measured. Sampling occurred between 6 and 22 months after harvesting. Total soil and soluble organic carbon analyses were performed every three sampling periods beginning with period 6. Total soil organic carbon content was determined by the Walkley-Black method, an acid digest procedure. Soluble organic carbon content was determined from cold-water extracts analyzed with a total organic carbon analyzer. Results indicated that harvesting significantly (a=0.05) increased in situ respiration during most sampling periods. This effect was attributed to the revegetation of the site creating an increase in live root and associated microflora activity in the soil following harvesting. In situ respiration varied directly with soil temperature and inversely with soil moisture. Harvesting effects on mineral soil respiration were less clear and showed trends in only some months. Harvesting significantly (a=0.05) increased the amount of total organic carbon in the top 15 cm, whereas overall soluble organic carbon levels were not significantly affected. I feel that even though harvesting has significantly effected soil respiration rates, this increase will not adversely affect atmospheric C02 levels. Published data show that when temperate forests are allowed to regrow immediately after harvest, carbon assimilated in growing vegetation is greater than the C02 lost from the soil.

Londo, Andrew James

1995-01-01T23:59:59.000Z

22

Chemistry of organic carbon in soil with relationship to the global carbon cycle  

SciTech Connect

Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

Post, W.M. III

1988-01-01T23:59:59.000Z

23

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

24

CONTENTS  

E-Print Network (OSTI)

February 2010This document is in the public domain and may be freely copied or reprinted. Disclaimer Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites. Ordering Information To receive documents or other information about occupational safety and health topics, contact NIOSH at

A. Breslin, Ph.D.

2010-01-01T23:59:59.000Z

25

Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content  

Science Conference Proceedings (OSTI)

The objective of this study was to evaluate the effect of unburned carbon particles present in fly ashes produced by coal combustion on mercury retention. To achieve this objective, the work was divided into two parts. The aim of the first part of the study was to estimate the amount of mercury captured by the fly ashes during combustion in power stations and the relationship of this retention to the unburned carbon content. The second part was a laboratory-scale study aimed at evaluating the retention of mercury concentrations greater than those produced in power stations by fly ashes of different characteristics and by unburned carbon particles. From the results obtained it can be inferred that the unburned carbon content is not the only variable that controls mercury capture in fly ashes. The textural characteristics of these unburned particles and of other components of fly ashes also influence retention.

Lopez-Anton, M.A.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. [CSIC, Oviedo (Spain)

2007-01-31T23:59:59.000Z

26

Soil Organic Carbon Change Monitored Over Large Areas  

DOE Green Energy (OSTI)

Soils account for the largest fraction of terrestrial carbon (C) and thus are critically important in determining global cycle dynamics. In North America, conversion of native prairies to agriculture over the past 150 years released 30- 50% of soil organic carbon (SOC) stores [Mann, 1986]. Improved agricultural practices could recover much of this SOC, storing it in biomass and soil and thereby sequestering billions of tons of atmospheric carbon dioxide (CO2). These practices involve increasing C inputs to soil (e.g., through crop rotation, higher biomass crops, and perennial crops) and decreasing losses (e.g., through reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; Schumaker, Bonny L.; West, Tristram O.

2010-11-23T23:59:59.000Z

27

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

Science Conference Proceedings (OSTI)

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-08-01T23:59:59.000Z

28

Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment  

Science Conference Proceedings (OSTI)

Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L. [National Cheng Kung University, Tainan (Taiwan). Dept. of Environmental Engineering

2009-07-01T23:59:59.000Z

29

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

30

Questions and Answers - Is carbon found in all organic and inorganic  

NLE Websites -- All DOE Office Websites (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

31

Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition  

E-Print Network (OSTI)

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

Rhodobacter Capsulatus Sb; Nicky C. Caiazza; Douglas P. Lies; Dianne K. Newman

2006-01-01T23:59:59.000Z

32

Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils  

Science Conference Proceedings (OSTI)

Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

2014-01-01T23:59:59.000Z

33

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices  

E-Print Network (OSTI)

Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer and by the fabrica- tion of an organic thin film transistor. An organic solar cell was fabricated from these com

Hong, Soon Hyung

34

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 97, Number 5, September-October 1992 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-15T23:59:59.000Z

35

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 2, March-April 1991 Journal of Research of the National Institute of Standards and Technology Contents Articles ...

2003-10-06T23:59:59.000Z

36

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 6, November-December 1991 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-10T23:59:59.000Z

37

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 98, Number 6, November-December 1993 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-21T23:59:59.000Z

38

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 96, Number 4, July-August 1991 Journal of Research of the National Institute of Standards and Technology Contents Articles ...

2003-10-08T23:59:59.000Z

39

CONTENTS  

Science Conference Proceedings (OSTI)

Page 1. JOURNAL OF RESEARCH of the National Bureau of Standards Vol. 88, No. 6, November-December 1983 CONTENTS Page ...

2003-07-03T23:59:59.000Z

40

Contents  

Science Conference Proceedings (OSTI)

Page 1. Volume 97, Number 6, November-December 1992 Journal of Research of the National Institute of Standards and Technology Contents ...

2003-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

42

Soil Organic Carbon Change Monitored Over Large Areas  

Science Conference Proceedings (OSTI)

Soils account for the largest fraction of terrestrial carbon (C); thus, they are critically important in determining global C cycle dynamics. In North America, conversion of native prairies to agricultural land use over 150 years ago released 30-50% of the soil organic carbon (SOC). Improved agricultural practices have the capacity to recover much of this SOC, storing it in biomass and soil and thereby removing billions of tons of atmospheric CO2. These practices involve increasing C inputs to soil (e.g., by crop rotations, increased use of higher biomass crops, perennial crops) and decreased losses (e.g., reduced tillage intensity) [Janzen et al., 1998; Lal et al., 2003; Smith et al., 2007]. Managing agricultural soils to increase SOC storage is a significant, immediately available, low-cost option for mitigating CO2 emissions, with a technical potential to offset as much as 800 Tg CO2/yr in the US (~13% of US CO2 emissions) [Lal et al., 2003] and 5000 Tg CO2/yr globally (~17% of global CO2 emissions) [Smith et al., 2007].

Brown, David J.; Hunt, E. Raymond; Izaurralde, Roberto C.; Paustian, Keith H.; Rice, Charles W.; West, Tristram O.; Schumaker, Bonny L.

2010-08-31T23:59:59.000Z

43

Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program Abstract We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors...

44

MODELING OF WATER SOLUBLE ORGANIC CONTENT IN PRODUCED WATER J. McFarlane  

E-Print Network (OSTI)

MODELING OF WATER SOLUBLE ORGANIC CONTENT IN PRODUCED WATER J. McFarlane Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37830-6181 INTRODUCTION Off-shore discharge of produced water into the North Sea is limited to a monthly average of 40 mg·L-1 3 . Effective remediation of produced water off

45

Table of Contents: Chapter 3 1 Organization of the Inventory Chapter 3  

E-Print Network (OSTI)

issues such as protection of fish resources ("Quackenbush", which led to the flow management system Department, Permit Services Division, and Road Maintenance Program). The Surface Water Management ProgramTable of Contents: Chapter 3 1 Organization of the Inventory Chapter 3 2 Current Management

46

Historical emissions of black and organic carbon aerosol from energy-related combustion, 18502000  

E-Print Network (OSTI)

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We-related combustion, 1850­2000, Global Biogeochem. Cycles, 21, GB2018, doi:10.1029/2006GB002840. 1. Importance

Wisconsin at Madison, University of

47

Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.  

SciTech Connect

The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

Bradshaw, Robert W.; Clift, W. Miles

2010-11-01T23:59:59.000Z

48

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

49

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

SciTech Connect

The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely moisture, and easy regenerability, were all addressed during this program. As predicted at the start of the program, MOFs have high potential for CO{sub 2} capture in the IGCC and flue gas applications.

Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

2008-02-04T23:59:59.000Z

50

Contents  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. This paper discusses structure, impact, costs, and efficiency of renewable energy supply in the eight largest advanced economies (the G-7 plus Spain), with focus on Germany. Renewables production costs are compared to benefits, defined as reductions in net carbon emissions; technological innovation, and increased energy security. The latter part of the paper centers on Germany, the main European producer of non-traditional renewables. We question whether the level of subsidies can be justified, relative to other means to increase energy security and reduce carbon emissions. We also find an excessive emphasis on current productive activity, relative to development of new technologies.

unknown authors

2007-01-01T23:59:59.000Z

51

CONTENTS  

E-Print Network (OSTI)

This report was prepared by Sargent & Lundy, L.L.C., hereinafter referred to as S&L, expressly for Perrin Quarles Associates, Inc., hereinafter referred to as PQA, under EPA Contract No. EP-W-07-064. Neither S&L nor any person acting on its behalf (a) makes any warranty, express or implied, with respect to the use of any information or methods disclosed in this report or (b) assumes any liability with respect to the use of any information or methods disclosed in this report. Although prepared with EPA funding and reviewed by the EPA, this report has not been approved by the EPA for publication as an EPA report. The contents do not necessarily reflect the views or policies of the EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. COAL-FIRED POWER PLANT HEAT RATE REDUCTIONS i

unknown authors

2009-01-01T23:59:59.000Z

52

Trends Online - Area and Carbon Content of Sphagnum Since Last Glacial  

NLE Websites -- All DOE Office Websites (Extended Search)

Area and Carbon Content of Sphagnum Since Last Glacial Maximum DOI: 10.3334/CDIAC/vrc.001 image Data image Graphics Investigators K. Gajewski, A. Viau, M. Sawada, D. Atkinson and S. Wilson Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, 165 Waller Street, Ottawa, Ontario, K1N 6N5 Canada. Period of Record 21000-0 years BP Methods The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds

53

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation with Separation with Novel Microporous Metal Organic Frameworks Background UOP LLC, the University of Michigan, and Northwestern University are collaborating on a three-year program to develop novel microporous metal organic frameworks (MOFs) suitable for CO 2 capture and separation. MOFs are hybrid organic/inorganic structures in which the organic moiety is readily derivatized. This innovative program is using sophisticated molecular modeling to evaluate the structurally

54

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network (OSTI)

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

55

Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage  

SciTech Connect

This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

Satcher, Jr., J H; Baumann, T F; Herberg, J L

2005-01-10T23:59:59.000Z

56

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

57

The Impact of Marcellus Shale Total Organic Carbon on Productivity.  

E-Print Network (OSTI)

??In the Appalachian basin, the Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has been utilized… (more)

Fakhouri, Eyad

2013-01-01T23:59:59.000Z

58

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

carbon particles in the Detroit urban area: Wintertimeparticulate concentrations in Detroit, Atmos. Environ. , 19,meteorological parameters in Detroit, Atmos. Environ. , 19,

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

59

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

Ryu (2004), Carbonaceous aerosol characteristics ofPM 2.5Allen (1990), Transported acid aerosols measured in southernconference international aerosol carbon round robin test

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

60

TethyanMediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels  

E-Print Network (OSTI)

Tethyan­Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels KAY@geowiss.uni-hamburg.de) Geological Institute, ETH Zurich, Zurich, Switzerland ABSTRACT The Jurassic to Holocene record of black shale sections or drill cores. The term `black shale' is used here broadly for sediments with elevated organic

Gilli, Adrian

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations  

E-Print Network (OSTI)

: Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

Torres-VerdĂ­n, Carlos

62

Relative Content of Black Carbon in Submicron Aerosol as a Sign of the Effect of Forest Fire Smokes  

DOE Green Energy (OSTI)

Biomass burning occurs often in regions containing vast forest tracts and peat-bogs. These processes are accompanied by the emission of a large amount of aerosol particles and crystal carbon (black carbon [BC], soot). BC is the predominant source of solar absorption in atmospheric aerosol, which impacts climate. (Jacobson 2001; Rozenberg 1982). In this paper, we analyze the results of laboratory and field investigations that focused on the relative content of BC in aerosol particles. Main attention is given to the study of possibility using this parameter as an informative sign for estimating the effect of remote forest fire smokes on the near-ground aerosol composition.

Kozlov, V.S.; Panchenko, M.V.; Yauscheva, E.P.

2005-03-18T23:59:59.000Z

63

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network (OSTI)

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks projects aimed at using hydrogen as a clean fuel for automobiles and producing clean energy by designing achieve higher storage capacities for hydrogen, (1) (a) Leaf, D.; Verolmec, H. J. H.; Hunt, W. F., Jr. En

Yaghi, Omar M.

64

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Paulson, S E

2012-05-30T23:59:59.000Z

65

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

NLE Websites -- All DOE Office Websites (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

66

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

Science Conference Proceedings (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

67

An analysis of the dependence of thermal transport parameters on organic content for Green River oil shales  

Science Conference Proceedings (OSTI)

An analysis of the trends in the variation of the thermal transport parameters with organic content (taking thermal diffusivity as an example) is presented for oil shales of the Green River formation. The Cheng?Vachon model gives good agreement with experimental data

Y. Wang; K. Rajeshwar; J. DuBow

1979-01-01T23:59:59.000Z

68

Analysis of organic carbon and moisture in Hanford single-shell tank waste  

SciTech Connect

This report documents a revised analysis performed by Pacific Northwest Laboratory involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTs) obtained from a review of the laboratory analytical data. This activity has as its objective to provide a best-estimate, including confidence levels, of total organic carbon (TOC) and moisture in each of the 149 SSTs at Hanford. The TOC and moisture information presented in this report is useful as part of the criteria to identify SSTs for additional measurements, or monitoring for the Organic Safety Program. In April 1994, an initial study of the organic carbon in Hanford single-shell tanks was completed at PNL. That study reflected the estimates of TOC based on tank characterizations datasets that were available at the time. Also in that study, estimation of dry basis TOC was based on generalized assumptions pertaining to the moisture of the tank wastes. The new information pertaining to tank moisture and TOC data that has become available from the current study influences the best estimates of TOC in each of the SSTs. This investigation of tank TOC and moisture has resulted in improved estimates based on waste phase: saltcake, sludge, or liquid. This report details the assumptions and methodologies used to develop the estimates of TOC and moisture in each of the 149 SSTs at Hanford.

Toth, J.J.; Heasler, P.G.; Lerchen, M.E.; Hill, J.G.; Whitney, P.D.

1995-05-01T23:59:59.000Z

69

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

NLE Websites -- All DOE Office Websites (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

70

Bioavailable organic carbon in wetland soils across a broad climogeographic area  

E-Print Network (OSTI)

Soils from a broad climogeographic region of the U.S., ranging from Alaska to Louisiana and Texas, were obtained from the NRCS National Soils Laboratory in Lincoln, Nebraska. Soils were also collected in the summer of 1996 from upland and poorly drained areas in northern Alaska for comparison of biological properties and to determine the effects of drying on estimation of microbial biomass and activity. Air-dried soils were moistened and incubated 48 h, during which time CO? evolution was measured. Following the preincubation, microbial biomass was determined using a modification of the chloroform-fumigation-incubation method to accommodate limited sample quantity. Carbohydrates were determined using bicinchoninic acid reagent and total extractable carbon was determined by analysis of 0.5-M K?SO? extracts with a total carbon analyzer. The objectives of this study were to elucidate geographical trends and meaningful relationships between the bioavailable C parameters. Soil microbial biomass, determined by chloroform fumigation incubation, correlated best with organic C and basal respiration with subtraction of unfumigated controls. Extraction of C with hot water was a rapid, simple procedure that provided the best predictor of soil respiration. Potassium sulfate-extractable carbon was consistently lower than hot water extractable C. Soils from northern states tended to contain more organic carbon than soils in southern states, however, not necessarily more bioavailable C. Detecting geographical trends for bioavailable C proved more difficult due to numerous factors such as topographic position, surface vegetation, climate, and land use.

Baker, Andrew Dwight

2002-01-01T23:59:59.000Z

71

Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes  

SciTech Connect

The Li-O2 chemistry in nonaqueous carbonate electrolytes and the underneath reason of its limited reversibility was exhaustively investigated. The discharge products collected from the air cathode in a Li-O2 battery at different depth of discharge (DOD) were systematically analyzed with X-ray diffraction. It is revealed that, independent of the discharge depth, lithium alkylcarbonate (either lithium propylenedicarbonate - LPDC, or lithium ethylenedicarbonate - LEDC, with other related derivatives) and lithium carbonate (Li2CO3) are always the main products, obviously originated from the electrolyte solvents propylene carbonate (PC) and ethylene carbonate (EC). These lithium alkylcarbonates are obviously generated from the single-electron reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. On the other hand, neither lithium peroxide (Li2O2) nor lithium oxide (Li2O) is detected. More significantly, from in situ gas chromatography/mass spectroscopy it is found that Li2CO3 and Li2O cannot be oxidized even when charged up to 4.6 V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily able to, with CO2 and CO released with the re-oxidation of LPDC and LEDC. It is therefore concluded that the quasi-reversibility of Li-O2 chemistry observed hitherto in an organic carbonate-based electrolyte is actually reliant on the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharge process and the subsequent oxidation of these same alkylcarbonates during charge process. It is the poor oxidizability of these alkylcarbonate species that constitutes the obstruction to an ideal rechargeable Li-O2 battery.

Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Jiguang

2011-11-15T23:59:59.000Z

72

Paleoreconstruction of Particulate Organic Carbon Inputs to the High-Arctic Colville River Delta, Beaufort Sea, Alaska  

E-Print Network (OSTI)

High Arctic permafrosted soils represent a massive sink in the global carbon cycle, accounting for twice as much carbon as what is currently stored as carbon dioxide in the atmosphere. However, with current warming trends this sink is in danger of thawing and potentially releasing large amounts of carbon as both carbon dioxide and methane into the atmosphere. It is difficult to make predictions about the future of this sink without knowing how it has reacted to past temperature and climate changes. This dissertation summarizes the results of the first study to look at long term, fine scale organic carbon delivery by the high-Arctic Colville River into Simpson’s Lagoon in the near-shore Beaufort Sea. Modern delivery of organic carbon to the Lagoon was determined to come from a variety of sources through the use of a three end-member mixing model and sediment biomarker concentrations. These sources include the Colville River in the western area of the Lagoon near the river mouth, marine sources in areas of the Lagoon without protective barrier islands, and coastal erosional sources and the Mackenzie River in the eastern area of the Lagoon. Downcore organic carbon delivery was measured on two cores in the Lagoon, one taken near the mouth of the Colville River (spans about 1800 years of history) and one taken on the eastern end of the Lagoon (spans about 600 years of history). Bulk organic parameters and biomarkers were measured in both cores and analyzed with Principle Component Analysis to determine long-term trends in organic carbon delivery. It was shown that at various times in the past, highly degraded organic carbon inputs of what is likely soil and peat carbon were delivered to the Lagoon. At other times, inputs of fresher, non-degraded, terrestrially-derived organic carbon inputs of what are likely higher amounts of plant and vegetative material was delivered to the Lagoon. Inputs of degraded soil carbon were also shown to correspond to higher temperatures on the North Slope of Alaska, likely indicating that warmer temperatures lead to a thawing of permafrost and in turn organic carbon mobilization to the coastal Beaufort Sea.

Schreiner, Kathryn 1983-

2013-05-01T23:59:59.000Z

73

Seminars on Science: Correlation to the National Science Education Content Standards Systems, order, and organization.  

E-Print Network (OSTI)

Seminars on Science: Correlation to the National Science Education Content Standards Evolution Understanding about science and technology Personal and community health Population growth Natural resources Environmental quality Natural and human-induced hazards Science and technology in local, national, and global

74

Electrochemical degradation characteristics of refractory organic pollutants in coking wastewater on multiwall carbon nanotube-modified electrode  

Science Conference Proceedings (OSTI)

The multiwall carbon nanotube-mollified electrode (MWCNT-ME) was fabricated and its electrocatalytic activity of refractory organic pollutants of coking wastewater was investigated. The surface morphology, absorption properties, and the electrochemical ...

Yan Wang; Shujing Sun; Guifu Ding; Hong Wang

2012-01-01T23:59:59.000Z

75

EVOLUTIONARY AND GEOLOGIC CONSEQUENCES OF ORGANIC CARBON FIXING IN THE PRIMITIVE ANOXIC OCEAN  

E-Print Network (OSTI)

photosynthesis primary carbon dioxide-fixing mechanism.trophic bacteria to fix carbon dioxide. These bacteria toas the primary energy fix carbon dioxide. The free source to

Berry, W.B.N.

2013-01-01T23:59:59.000Z

76

OBSERVATION Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

E-Print Network (OSTI)

ABSTRACT The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85 % of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. IMPORTANCE Reducing carbon dioxide to multicarbon organic chemicals and fuels with electricity has been identified as an attractive strategy to convert solar energy that is harvested intermittently with photovoltaic technology and store it as covalent chemical bonds. The organic compounds produced can then be distributed via existing infrastructure. Nonbiological electrochemical reduction of carbon dioxide has proven problematic. The results presented here suggest that microbiological catalysts may be a robust alternative, and when coupled with photovoltaics, current-driven microbial carbon dioxide reduction represents a new form of photosynthesis that might convert solar energy to organic products more effectively than traditional biomass-based strategies.

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-01-01T23:59:59.000Z

77

Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment  

Science Conference Proceedings (OSTI)

Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

2008-05-15T23:59:59.000Z

78

Sources and Fates of Dissolved Organic Carbon in Rural and Urban Watersheds in Brazos County, Texas  

E-Print Network (OSTI)

The Bryan/College Station (B/CS) region has been reported to have elevated concentrations of dissolved organic carbon (DOC) in surface water. Increased DOC concentrations are worrisome as DOC has been shown to be an energy source for the recovery and regrowth of E. coli and many watersheds are impaired by high bacteria levels. To examine the sources and fates of DOC in rural and urban regions to better understand DOC movement though the environment, seven watersheds were studied. To investigate source, streams were analyzed using diffuse reflectance near infrared spectroscopy (DR-NIR) and carbon isotopes. Fate of DOC was determined through monthly streams samples, gathered between March 2011 and February 2012, which were incubated for biodegradable DOC (BDOC). Soil in the region was sampled based on land use categories. Soil was analyzed for DOC and BDOC as well as DOC adsorption, the other major fate of DOC. Above ground vegetation was sampled in conjunction with soil and analyzed for BDOC. Data indicated that fecal matter from cliff swallows provided considerable organic material to streams in the B/CS region as shown through DR-NIR. Carbon isotope values in streams ranged from -23.5 +/- 0.7% to -26.8 +/- 0.5%. Stream spectra may be able to predict carbon isotope values in streams (Adj. R2 = 0.88). Mean annual stream DOC concentrations ranged from 11 +/- 3 mg/L to 31 +/- 12 mg/L, which represents a significant decrease in DOC between 2007 and 2011. Concurrent increases in pH and conductivity were also recorded. The decrease in DOC and the increases in pH and conductivity may be due to impacts of high sodium irrigation tap water. Biodegradable DOC was low in streams, which is likely due to DOC being present in streams in refractory forms that are resistant to microbial breakdown. Soil chemistry, including soil adsorption, was greatly influenced by sodium. The elevated adsorption coefficients and release values seen in highly developed and urban open areas can be attributed to frequent exposure to high sodium irrigation water. The results indicate that sodium is a major driver of DOC in the system. Sound management decisions concerning irrigation water chemistry and urban development might eventually emerge to protect water quality as a result of this research.

Cioce, Danielle

2012-08-01T23:59:59.000Z

79

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

80

Comparison of sampling methods for semi-volatile organic carbonAssociated with PM2.5  

SciTech Connect

This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders and impregnated back-up filters in two different samplers, the VAPS and the PC-BOSS. The two organic diffusion denuders were XAD-coated glass annular denuders and charcoal-impregnated cellulose fiber filter(CIF) denuders. In addition, recently developed XAD-impregnated quartz filters were compared to CIF filters as back-up filter collection media. The two denuder types resulted in equivalent measurement of particulate organic carbon and particle mass. The major difference observed between the XAD and charcoal BOSS denuders is the higher efficiency of charcoal for collection of more volatile carbon. This more volatile carbon does not contribute substantially to the particle mass or SVOC measured as OC on quartz filters downstream of the denuders. This volatile carbon does result in high OC concentrations observed in charcoal filters placed behind quartz filters downstream of the XAD denuders and would result in overestimating the SVOC in that configuration.

Lewtas, Joellen; Booth, Derrick; Pang, Yanbo; Reimer, Steve; Eatough, Delbert J.; Gundel, Lara A.

2001-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

82

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network (OSTI)

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

83

Predicting Agricultural Management Influence on Long-Term Soil Organic Carbon Dynamics: Implications for Biofuel Production  

SciTech Connect

Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations, fertilizer or organic amendments, and crop residue managements using the CQESTR model and (ii) to predict the potential of no-tillage (NT) management to maintain SOC stocks while removing crop residue. Classical LTEs at Champaign, IL (1876), Columbia, MO (1888), Lethbridge, AB (1911), Breton, AB (1930), and Pendleton, OR (1931) were selected for their documented history of management practice and periodic soil organic matter (SOM) measurements. Management practices ranged from monoculture to 2- or 3-yr crop rotations, manure, no fertilizer or fertilizer additions, and crop residue returned, burned, or harvested. Measured and CQESTR predicted SOC stocks under diverse agronomic practices, mean annual temperature (2.1 19 C), precipitation (402 973 mm), and SOC (5.89 33.58 g SOC kg 1) at the LTE sites were significantly related (r 2 = 0.94, n = 186, P < 0.0001) with a slope not significantly different than 1. The simulation results indicated that the quantities of crop residue that can be sustainably harvested without jeopardizing SOC stocks were influenced by initial SOC stocks, crop rotation intensity, tillage practices, crop yield, and climate. Manure or a cover crop/intensified crop rotation under NT are options to mitigate loss of crop residue C, as using fertilizer alone is insufficient to overcome residue removal impact on SOC stocks

Gollany, H. T. [USDA ARS; Rickman, R. W. [USDA ARS; Albrecht, S. L. [USDA ARS; Liang, Y. [University of Arkansas; Kang, Shujiang [ORNL; Machado, S. [Oregon State University, Corvallis

2011-01-01T23:59:59.000Z

84

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape Topographic Positions at the Molecular Scale  

E-Print Network (OSTI)

Distribution, Speciation, and Elemental Associations of Soil Organic Carbon under Varying Landscape spectra and maps were collected. Results: C Distribution and Associations with the Major Elements in Soil Clay Particles Fig.1. Relative elemental distribution maps (9µm�6µm) of clay fractions from the A

Sparks, Donald L.

85

Article Geography doi: 10.1007/s11434-012-5529-9 Preliminary estimation of the organic carbon pool in China’s wetlands  

E-Print Network (OSTI)

Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans. The inventory approach is a realistic method for estimating the organic carbon pool in China’s wetlands at the national scale. An updated data and inventory approach were used to estimate the amount of organic carbon stored in China’s wetlands. Primary results are as follows: (1) the organic carbon pool of China’s wetlands is between 5.39 and 7.25 Pg, accounting for 1.3%–3.5 % of the global level; (2) the estimated values and percentages of the organic carbon contained in the soil, water and vegetation pools in China’s wetlands are 5.04–6.19 Pg and 85.4%–93.5%, 0.22–0.56 Pg and 4.1%–7.7%, 0.13–0.50 Pg and 2.4%–6.9%, respectively. The soil organic carbon pool of China’s wetlands is greater than our previous estimate of 3.67 Pg, but is lower than other previous estimates of 12.20 and 8–10 Pg. Based on the discussion and uncertainty analysis, some research areas worthy of future attention are presented. wetland carbon pool, inventory approach, remote sensing, soil carbon density, wetland vegetation Citation: Zheng Y M, Niu Z G, Gong P, et al. Preliminary estimation of the organic carbon pool in China’s wetlands. Chin Sci Bull,

Zheng Yaomin; Niu Zhenguo; Gong Peng; Dai Yongjiu; Shangguan Wei

2012-01-01T23:59:59.000Z

86

Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321  

DOE Green Energy (OSTI)

Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

Olson, D.

2012-04-01T23:59:59.000Z

87

Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia  

E-Print Network (OSTI)

The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant pigment, black carbon (BC) on ECS sediments sampled in winter 2009 and 2010 in order to study the OC cycling under the influence of natural and anthropogenic disturbance. Low-oxygen tolerant foraminiferal microfossils were analyzed in another two sediment cores to study the historical hypoxia events in the Changjiang LDE. Bulk carbon to nitrogen (C/N) ratio and stable isotope ?13C in the surface sediment samples indicated a mixture source of terrestrial, deltaic and marine derived OC. Refractory BC and reworked marine OC seemed to comprise most of the OC pool with older, less reactive signatures as deduced from ?14C, and BC analyses. Winter wind/wave energy and hydrodynamic sorting had a substantial winnowing effect on surface sediment OC redistribution. As a result, the highest lignin concentration shifted to the south during the 2010 cruise after the summer flood event. In addition, algal inputs from local deltaic lakes due to eutrophication and/or lateral transport likely caused the observed lack of benthic-pelagic coupling of pigment concentrations between the surface sediments and the water column after the summer flood in 2010. For the down-core sediment, the mass accumulation rate distribution followed the dispersal pathway of the ECS sediment. Terrestrial and marine derived OC showed significant spatial and temporal distribution. Lignin rich materials were better preserved in sediments closer to the coast while offshore sediments tended to be composed of lignin-poor, degraded OC, that were likely hydrodynamically sorted to a long distance during transport. Besides eutrophication, plant pigments indicated that marine-derived OC was mostly deposited in the sediment mixed layer with decay in the underlying sediment accumulation layer. The total OC standing stock since 1900 is approximately 1.62±1.15 kgC m^-2, about 1/10 of the total OC stock in all the middle and lower lakes in the Changjiang catchment. There has been an increase in the number of hypoxic bottom water events on the Changjiang LDE over the past 60 yrs indicated from the increases in low-oxygen tolerant foraminiferal microfossils due to excess deposition of OC and summer stratification.

Li, Xinxin

2013-05-01T23:59:59.000Z

88

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

89

Low dissolved organic carbon input from fresh litter to deep mineral soils  

SciTech Connect

Dissolved organic carbon (DOC) leached from recent litter in the forest floor has been suggested to be an important source of C to the mineral soil of forest ecosystems. In order to determine the rate at which this flux of C occurs we have taken advantage of a local release of 14C at Oak Ridge National Laboratory Reservation, USA (latitude N 35 58'; longitude W 84 16'). Eight replicate 7x7 m plots were estab lished at four field sites on the reservation in an upland oak forest setting. Half of the plots were provided with 14C-enriched litter (?14C ?1000 ), and the other half with near-background litter (?14C ?220 ) over multiple years. Differences in the labeled leaf litter were used to quantify the movement of litter derived DOC through the soil profile. Soil solutions were collected over several years with tension lysimeters at 15 and 70 cm depth and measured for DOC concentration and 14C abundance. The net amount of DOC retained between 15 and 70 cm was 1.5-6 g m-2 y-1. There were significant effects of the litter additions on the 14C abundance in the DOC, but the net transport of 14C from the added litter was small. The difference in ?14C between the treatments with enriched and near-background litter was only about 130 at both depths, which is small compared with the difference in ?14C in the added litter. The primary source of DOC within the mineral soil must therefore have been either the Oe/Oa horizon or the organic matter in the mineral soil. Over a 2-year time frame, leaching of DOC from recent litter did not have a major impact on the C stock in the mineral soil below 15 cm in this ecosystem.

Froeberg, Mats J [ORNL; Jardine, Philip M [ORNL; Hanson, Paul J [ORNL; Swanston, Christopher [ORNL; Todd Jr, Donald E [ORNL; Phillips, Jana Randolph [ORNL; Garten Jr, Charles T [ORNL

2007-01-01T23:59:59.000Z

90

Spatial and temporal distributions of particulate matter and particulate organic carbon, Northeast Gulf of Mexico  

E-Print Network (OSTI)

The distribution of particulate matter (PM) and particulate organic carbon (POC) was determined during the Northeast Gulf of Mexico Chemical Oceanography and Hydro-graphy program (NEGOM). The hydrography and physical forcing functions were examined to explain particulate matter distribution. PM and POC were determined for discrete samples, and PM was also compared with in situ beam attenuation measure-ments in order to make estimations of continuous particle concentration profiles. Measurements were made three times per year for three years, during 1997-1998, 1998-1999, and 1999-2000, but only the first two years' worth of results are reported here. PM distributions vary seasonally and interannually. General patterns tend to be fairly consistent spatially and temporally during fall and spring, but intensity changes accord-ing to season. Differences present at the surface appear to be due mainly to riverine input of nutrients and particles from the several major rivers that flow into the northeastern Gulf of Mexico. Wind-forced circulation appears to be a minor influence on surface particulate distribution. Secondary eddies can have an effect upon distribution, as seen with an anticyclonic feature over the upper slope during Summer 1998 which entrained less saline, high particulate river water offshore. A similar effect was noted during Summer 1999, but to a lesser degree. A shelf edge current associated with anticyclonic flow seems to be a mechanism responsible for the appearance of nepheloid layers on the outer shelf.

Bernal, Christina Estefana

2001-01-01T23:59:59.000Z

91

Evaluation of Concrete Containing Fly Ash With High Carbon Content and/or Small Amounts of Wood  

Science Conference Proceedings (OSTI)

This report provides a comprehensive database of information on the impacts of the use of high carbon coal ashes and concretes with small amounts of wood ash on the performance of concretes. It is expected these data will support easing the restrictions on the use of high carbon ashes and any wood ash products in concrete in the ASTM standards.

1998-06-25T23:59:59.000Z

92

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

93

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

94

Influence of Dissolved Organic Carbon and pH on Containment Sorption to Sediment  

DOE Green Energy (OSTI)

Low-Level Waste buried on the SRS contains cellulosic materials, Including wood, paper, and cardboard. Once buried, these materials are expected to degrade to form cellulose degradation products (CDP). Such materials are expected to influence radionuclide speciation in such a way that the radionuclides will sorb less to SRS Subsurface sediments and therefore would migrate more rapidly from the disposal site. The objective of this study was to quantify through laboratory work the influence of CDP and pH on radionuclide sorption to SRS subsurface sediments. The intent of this work was to create a Kd look-up table as a function of radionuclide, pH, and CDP concentration that could be used in future performance assessment calculations. Previous CDP-impacted Kd values were generated using two chemical analogues, UO2 2+ and Eu3+. This study collected data from a wider range of analogues to validate and/or refine this approach. An incomplete-randomized-block-statistical design was used in a laboratory sorption study involving 2 soil types (sandy and clay textured), 5 dissolved organic carbon concentrations (a measure of CDP), and 3 pH levels. Nonradioactive solutes were used as chemical analogues to the radionuclides of interest to the Low-Level Waste Performance Assessment: monovalent cations (K+ and Cs+), divalent cations (Ni2+ and Sr2+), trivalent cations (Ce3+ and Eu3+), tetravalent cations (Th4+ and Zr4+), and an anion (ReO4-). Analogues were matched to approximately 30 radionuclides based on similarities in periodicity and chemical properties. All CDP-impacted Kd values generated from this study were equal to or greater than those used in previous performance assessments. These larger Kd values may result in a greater Waste Acceptance Criteria (WAC), which in turn may permit greater amounts of Low-Level Waste to be safely disposed on site, saving the site the expense of shipping the waste off-site for disposal.

KAPLAN, DANIEL

2004-09-30T23:59:59.000Z

95

Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling).  

E-Print Network (OSTI)

??It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and… (more)

Sabouni, Rana

2013-01-01T23:59:59.000Z

96

Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018  

SciTech Connect

We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M. [University of Illinois, Urbana, IL (USA). Dept. of Civil & Environmental Engineering

2007-05-15T23:59:59.000Z

97

Evaluation of the Origin of Dissolved Organic Carbon and the Treatability of Mercury in Flue Gas Desulfurization Wastewater  

Science Conference Proceedings (OSTI)

Regulations for reducing the dissolved mercury (Hg) concentrations in wastewater discharged by electric generating power plants are becoming more stringent via federal regulatory limits proposed by the EPA and regulatory limits set by select states. Data obtained in a previous EPRI study conducted in 2009 suggested a potential negative impact of dissolved organic carbon (DOC) and iodide concentrations present in flue gas desulfurization (FGD) wastewater on mercury treatability (EPRI report 1019867). ...

2013-12-17T23:59:59.000Z

98

Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes  

Science Conference Proceedings (OSTI)

Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

Nam,K.W.; Yang,X.

2009-03-01T23:59:59.000Z

99

Versatile and Biomass Synthesis of Iron-based Nanoparticles Supported on Carbon Matrix with High Iron Content and Tunable Reactivity  

SciTech Connect

Iron-based nanoparticles supported on carbon (FeNPs{at}C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP{at}C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe{sub 3}O{sub 4} nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP{at}C synthesized at a pyrolysis temperature of 500 C (FeNP{at}C-500) reacts violently (pyrophoric) when exposed to air, while FeNP{at}C prepared at 800 C (FeNP{at}C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP{at}C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5-15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs{at}C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

Zhang, Dongmao [ORNL; Shi, Sheldon Q [ORNL; Jiang, Dongping [Mississippi State University (MSU); Che, Wen [Mississippi State University (MSU); Gai, Zheng [ORNL; Howe, Jane Y [ORNL; More, Karren Leslie [ORNL; Arockiasamy, Antonyraj [Mississippi State University (MSU)

2012-01-01T23:59:59.000Z

100

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Influence of temperature, moisture, and organic carbon on the flux of H/sub 2/ and CO between soil and atmosphere: field studies in subtropical regions  

Science Conference Proceedings (OSTI)

Production and deposition rates of atmospheric hydrogen and carbon monoxide were studied during field measurements in subtropical regions, i.e., Transvaal (South Africa), Andalusia (Spain), and the Karoo (South Africa). Measurements were carried out by applying static and equilibrium box techniques. The equilibrium technique has been introduced as a novel method to measure production and destruction rates simultaneously even when soil conditions (e.g., temperature) change during the course of the measurements. Deposition velocities of H/sub 2/ and CO were virtually independent of the soil temperature measured in 3- to 10-mm depths and agreed with those measured in the temperate regions. The deposition velocities were inhibited or stimulated by irrigation water depending on the conditions of the individual field sites. H/sub 2/ production by soil was not observed. By contrast, CO was produced by soil in a dark chemical reaction. Production rates increased exponentially with soil temperatures, giving activation energies of 57-110 kJ mol/sup -1/ and increased linearly with soil organic carbon content. CO production rates followed a diel rhythm parallel to soil surface temperatures. Production generally exceeded CO deposition during the hot hours of the day, so that arid subtropical soils act as a net source of atmospheric CO during this time. On a global basis, CO production by soil may reach source strengths of 30 Tg yr/sup -1/, which is considerably less than the global deposition of CO estimated to be 190-580 Tg yr/sup -1/. Global H/sub 2/ deposition rates were estimated to 70-110 Tg yr/sup -1/.

Conrad, R.; Seiler, W.

1985-06-20T23:59:59.000Z

102

Processes Affecting Agricultural Drainwater Quality and Organic Carbon Loads in California's Sacramento-San Joaquin Delta  

E-Print Network (OSTI)

Wang, and S. Rojstaczer. 1998. Subsidence of organic soils,Prokopovich, N.P. 1985. Subsidence of peat in California andDeverel, S.J. 1998. Subsidence mitigation in the Sacramento-

Deverel, Steven J; Leighton, David A; Finlay, Mark R

2007-01-01T23:59:59.000Z

103

Impact of Post-Synthesis Modification of Nanoporous Organic Frameworks on Selective Carbon Dioxide Capture.  

E-Print Network (OSTI)

??Porous organic polymers containing nitrogen-rich building units are among the most promising materials for selective CO2 capture and separation applications that impact the environment and… (more)

?slamo?lu, Timur

2013-01-01T23:59:59.000Z

104

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

Sun, Y. et al. Size-resolved aerosol chemistry on Whistlerwith a high-resolution aerosol mass spectrometer duringBasis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos.

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

105

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

Kroll, Jesse

106

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Patents (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

Pekala, R.W.

1998-04-28T23:59:59.000Z

107

Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures  

DOE Green Energy (OSTI)

The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

Pekala, Richard W. (Pleasant Hill, CA)

1998-04-28T23:59:59.000Z

108

Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide  

SciTech Connect

Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

Schilling, J.B.

1997-09-01T23:59:59.000Z

109

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot; Ron Himes

2004-05-31T23:59:59.000Z

110

Organization  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

111

Nanostructured Electrodes For Organic Bulk Heterojunction Solar Cells: Model Study Using Carbon Nanotube Dispersed Polythiophene-fullerene Blend Devices  

Science Conference Proceedings (OSTI)

We test the feasibility of using nanostructured electrodes in organic bulk heterojunction solar cells to improve their photovoltaic performance by enhancing their charge collection efficiency and thereby increasing the optimal active blend layer thickness. As a model system, small concentrations of single wall carbon nanotubes are added to blends of poly(3-hexylthiophene): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester in order to create networks of efficient hole conduction pathways in the device active layer without affecting the light absorption. The nanotube addition leads to a 22% increase in the optimal blend layer thickness from 90 nm to 110 nm, enhancing the short circuit current density and photovoltaic device efficiency by as much as {approx}10%. The associated incident-photon-to-current conversion efficiency for the given thickness also increases by {approx}10% uniformly across the device optical absorption spectrum, corroborating the enhanced charge carrier collection by nanostructured electrodes.

Nam, C.Y.; Wu, Q.; Su, D.; Chiu, C.-y; Tremblay, N.J.; Nuckolls, C,; Black, C.T.

2011-09-19T23:59:59.000Z

112

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles  

SciTech Connect

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-04-01T23:59:59.000Z

113

Major role of marine vegetation on the oceanic carbon cycle  

E-Print Network (OSTI)

Abstract. The carbon burial in vegetated sediments, ignored in past assessments of carbon burial in the ocean, was evaluated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests) to the global level and a top-down approach derived from considerations of global sediment balance and a compilation of the organic carbon content of vegeatated sediments. Up-scaling of individual burial estimates values yielded a total carbon burial in vegetated habitats of 111 Tmol C y ?1. The total burial in unvegetated sediments was estimated to be 126 Tg C y ?1, resulting in a bottom-up estimate of total burial in the ocean of about 244 Tg C y ?1, two-fold higher than estimates of oceanic carbon burial that presently enter global carbon budgets. The organic carbon

C. M. Duarte; J. J. Middelburg; N. Caraco

2005-01-01T23:59:59.000Z

114

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

SciTech Connect

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

115

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents (OSTI)

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

116

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

Science Conference Proceedings (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

117

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

DOE Green Energy (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

118

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

Science Conference Proceedings (OSTI)

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

2011-06-03T23:59:59.000Z

119

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

120

TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS  

SciTech Connect

Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

Lawrence J. Pekot

2004-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TableofContents ORGANIZATION Pages  

E-Print Network (OSTI)

Simpsonville SC 29681 Boswell, Penny Marie Seguin TX 78155 Bouchard, Sarah Rose Petersham MA 01366 Bouchon

Chou, James

122

April 2012 Table of Contents  

Science Conference Proceedings (OSTI)

April 2012 Table of Contents Inform Magazine Inform Archives News April 2012 Letter from the president Outgoing AOCS President Erich Dumelin reviews progress in 2011 and looks forward to the organization’s inc

123

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

124

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

125

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

126

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

127

Content Developer | Open Energy Information  

Open Energy Info (EERE)

Content Developer Content Developer Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Scientist.jpg Content Developer Are you interested in adding, contributing, and editing content on OpenEI? Find out how to create and grow OpenEI's content. Frequently Added Information Some content can easily be added to OpenEI using forms, which means users can easily contribute information without necessarily learning to use the wiki markup format. Some of the most frequently added information is described below. Organizations Within OpenEI, there are numerous types of Organizations. Some are very broadly defined, such as Companies, and others are more specific, such as Utility Companies and Policy Organizations. The types of organizations are described below.

128

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network (OSTI)

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

129

Efficient Organic Excitonic Solar Cells with Carbon Nanotubes Replacing In2O3:Sn as the Transparent Electrode (Presentation)  

DOE Green Energy (OSTI)

The conclusions of this report are that: (1) organic solar cells with efficiencies of up to 1.43% conversion efficiency that use no ITO and no PEDOT:PSS, are demonstrated; (2) a cell without ITO, but with PEDOT:PSS gave 2.6% conversion efficiency; (3) due to porous nature of SWCNT substrates, optimization of the active layer is essential; and (4) SWCNT electrodes bring one step closer the goal of a fully printable, organic solar cell.

van de Lagemaat, J.; Barnes, T.; Rumbles, G.; Shaheen, S.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.

2006-05-01T23:59:59.000Z

130

Regional Workshop on Opportunities and Priorities for Low Carbon Green  

Open Energy Info (EERE)

Regional Workshop on Opportunities and Priorities for Low Carbon Green Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Jump to: navigation, search Tool Summary Name: Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Agency/Company /Organization: Asian Development Bank Institute Topics: Policies/deployment programs, Pathways analysis Resource Type: Workshop, Training materials Website: www.adbi.org/cd-roms/2010/08/27/4054.low.carbon.green.growth.asia/ UN Region: Central Asia, Eastern Asia, South-Eastern Asia References: ADB Regional Workshop[1] Contents "Concepts of Low Carbon Green Growth: Challenges and Current Status in the Asia Pacific Region Inside the Low Carbon Green Growth: Innovations in Green Energy Supply Demand Side Energy Efficiency Solutions: A Low Hanging

131

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"From PADD 1 to PADD 2 Movements by Tanker, Pipeline, and Barge" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

132

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Price for Natural Gas Pipeline and Distribution Use " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

133

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge between PAD Districts" ,"Click worksheet name or tab at bottom for data"...

134

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Imports by Point of Entry " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

135

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Pipeline Exports by Point of Exit " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

136

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Industrial Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

137

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Deliveries to Electric Power Consumers (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

138

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

139

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

140

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Average Commercial Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

142

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Nevada Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

143

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Citygate Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

144

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Total Exports " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

145

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Maryland Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

146

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Utah Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

147

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Tennessee Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

148

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Kentucky Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

149

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Industrial Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

150

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Alaska Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

151

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Utah Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

152

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Missouri Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

153

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Exports Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

154

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Oklahoma Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

155

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Montana Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

156

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Vehicle Fuel Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

157

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Exports (Summary) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

158

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Consumption " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

159

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Electric Power Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

160

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Arkansas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Imports (Summary) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

162

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Florida Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

163

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Average Residential Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

164

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Michigan Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

165

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Nebraska Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

166

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Wellhead Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

167

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Wyoming Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

168

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Imports Price " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

169

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Oregon Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

170

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Alabama Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

171

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Arizona Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

172

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Weekly Working Gas in Underground Storage" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

173

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Hawaii Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

174

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Kansas Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

175

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Maine Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

176

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Marketed Production " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

177

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Kansas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

178

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Delivered to Consumers " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

179

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Balancing Item (Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

180

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Colorado Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"California Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

182

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Nevada Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

183

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Oregon Natural Gas Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

184

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

185

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Contents" ,"Pennsylvania Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

186

Inactive Content  

Science Conference Proceedings (OSTI)

Inactive Content. This page is in the process of being created or has temporarily been inactivated. If you have any questions ...

187

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Repressuring (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","La...

188

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data"...

189

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel) (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

190

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Natural Gas Citygate Price in South Dakota (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

191

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Withdrawals from Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

192

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data"...

193

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Percent of Commercial Natural Gas Deliveries in South Dakota Represented by the Price (%)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

194

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Withdrawals from Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

195

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","...

196

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Percentage of Total Natural Gas Residential Deliveries included in Prices " ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

197

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium ...

198

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

Science Conference Proceedings (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

199

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

200

System to Continuously Produce Carbon Fiber via Microwave-Assisted ...  

Biomass and Biofuels; Building ... Carbon and graphite fibers are conventionally produced through the controlled pyrolysis of fibrous organic carbon precursors ...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

202

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

NLE Websites -- All DOE Office Websites (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

203

Tuning the Gate Opening Pressure of Metal Organic Frameworks (MOFs) for the Selective Separation of Hydro-carbons  

E-Print Network (OSTI)

Separation of hydrocarbons is one of the most energy demanding processes. The need to develop materials for the selective adsorption of hydrocarbons, under reasonable conditions, is therefore of paramount importance. This work unveils unexpected hydrocarbon selectivity in a flexible Metal Organic Framework (MOF), based on differences in their gate opening pressure. We show selectivity dependence on both chain length and specific framework-gas interaction. Combining Raman spectroscopy and theoretical van der Waals Density Functional (vdW-DF) calculations, the separation mechanisms governing this unexpected gate opening behavior are revealed.

Nijem, Nour; Canepa, Pieremanuele; Marti, Anne; Balkus,, Kenneth J; Thonhauser, T; Li, Jing; Chabal, Yves J; 10.1021/ja305754f

2012-01-01T23:59:59.000Z

204

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Price of Natural Gas Pipeline Exports by Point of Exit " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

205

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Price of Natural Gas Pipeline Imports by Point of Entry " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

206

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:14:27 AM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

207

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:13:24 AM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic...

208

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:40:28 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin...

209

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:43:56 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WI2" "Date","Wisconsin...

210

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:45:05 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045WI2"...

211

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 5:45:04 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045WI2"...

212

Spectral Content  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Content of the NLC Bunch Train due to Long Range Wakefields Peter Tenenbaum LCC-Note-0015 10-May-1999 Abstract The functional specifications of the sub-train position...

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:41:19 AM" "Back to Contents","Data 1: Natural...

214

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1092013 12:45:25 PM" "Back to Contents","Data 1: Natural...

215

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:47:49 AM" "Back to Contents","Data 1: Oklahoma...

216

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:47:48 AM" "Back to Contents","Data 1: Ohio...

217

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:40:49 AM" "Back to Contents","Data 1: Natural...

218

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:47:39 AM" "Back to Contents","Data 1: Indiana...

219

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:41:58 AM" "Back to Contents","Data 1: Natural...

220

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:44:37 AM" "Back to Contents","Data 1: Nebraska...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:50:33 AM" "Back to Contents","Data 1:...

222

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:06 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NBRDMCF"...

223

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:07 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NBRDMCF"...

224

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

132014 2:06:54 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to Brazil (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NBRMMCF" "Date","Liquefied U.S. Natural Gas...

225

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

312013 3:21:41 PM" "Back to Contents","Data 1: Natural Gas Gross Withdrawals from Shale Gas Wells (Summary) " "Sourcekey","NGMEPG0FGSNUSMMCF","NGMEPG0FGSR3FMMMCF","NG...

226

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

312013 3:21:40 PM" "Back to Contents","Data 1: Natural Gas Gross Withdrawals from Shale Gas Wells (Summary) " "Sourcekey","NGMEPG0FGSNUSMMCF","NGMEPG0FGSR3FMMMCF","NG...

227

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

4:58:30 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to South Korea (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NKSMMCF" "Date","Liquefied U.S. Natural Gas...

228

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:11 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports Price to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGSAK-NCHDMCF"...

229

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:07 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGNUS-NCHDMCF"...

230

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

132014 2:06:55 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports to China (MMcf)" "Sourcekey","NGMEPG0ENGNUS-NCHMMCF" "Date","Liquefied U.S. Natural Gas...

231

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:08:12 PM" "Back to Contents","Data 1: Alaska Liquefied Natural Gas Exports Price to China (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0PNGSAK-NCHDMCF"...

232

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"11252013 9:01:19 AM" "Back to Contents","Data 1: Total Crude Oil and Products Imports from All Countries" "Sourcekey","MTTIPP11","MTTIPP21","MTTIPP31",...

233

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 5:41:31 AM" "Back to Contents","Data 1:...

234

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"9302013 6:13:51 AM" "Back to Contents","Data 1:...

235

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:58:22 PM" "Back to Contents","Data 1: Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010FX2"...

236

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

AM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in Pennsylvania Represented by the Price (%)" "Sourcekey","N3020PA4" "Date","Percent of Commercial...

237

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:13:15 AM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"...

238

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:14:13 AM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

239

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:16:27 AM" "Back to Contents","Data 1: Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050PA3"...

240

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:16:28 AM" "Back to Contents","Data 1: Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050PA3"...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:49:36 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"...

242

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:48:16 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho...

243

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:14 PM" "Back to Contents","Data 1: Natural Gas Citygate Price in Idaho (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050ID3" "Date","Natural Gas Citygate...

244

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:52 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel) (MMcf)" "Sourcekey","N3060ID2" "Date","Natural Gas Delivered...

245

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:53:12 PM" "Back to Contents","Data 1: Idaho Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045ID2"...

246

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:13 PM" "Back to Contents","Data 1: Natural Gas Citygate Price in Idaho (Dollars per Thousand Cubic Feet)" "Sourcekey","N3050ID3" "Date","Natural Gas Citygate...

247

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2:49:37 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in Idaho Represented by the Price (%)" "Sourcekey","N3020ID4" "Date","Percent of Commercial...

248

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:51:34 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ID2" "Date","Idaho...

249

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

72014 2:54:53 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel) (MMcf)" "Sourcekey","N3060ID2" "Date","Natural Gas Delivered...

250

Extra Low Carbon Alloy 718  

Science Conference Proceedings (OSTI)

of carbon content, magnesium add itions, thermomechan processing, and heat treatment on the mechanical properties of Allvac ical. 718 have been investigated

251

April 2011 Table of Contents  

Science Conference Proceedings (OSTI)

April 2011 Table of Contents Inform Magazine Inform Archives News 186   Letter from the president Outgoing AOCS President J. Keith Grime reviews progress made in 2010 and looks forward to the organization's incre

252

Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China  

Science Conference Proceedings (OSTI)

Two field microcosm experiments and 15N labeling techniques were used to investigate the first-year effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol. Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by 15N-enriched wheat biochar (7.8803 atom% 15N) and fertilizer urea (5 atom% 15N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg ha-1 to study their effects on GHG emissions (Experiment II). Biochar had no significant impact on rice production and less than 2% of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE.. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. Soil emissions of N2O with biochar amendment were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C. Low bio-availability of biochar N did not make a significant impact on rice production or N nutrition during the first year.. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.

Xie, Zubin; Xu, Yanping; Liu, Gang; Liu, Qi; Zhu, Jianguo; Tu, Cong; Amonette, James E.; Cadisch, Georg; Yong, Jean W.; Hu, Shuijin

2013-09-01T23:59:59.000Z

253

CEDR Content  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEDR Content" CEDR Content" "The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The CEDR is due to the SPO no later than December 9th." "Worksheet",,"Overview","Action" 1.1,"Content","Stand-alone overview of the CEDR tabs.","None" 2.1,"Funds, Meters, Training","Collects information on energy and water spending, and metering status.","If applicable, complete cells highlighted in orange. Edited and new data cells should be highlighted in light blue." 3.1,"BTU & Gal Key","Reference tab containing all factors and dropdown menu information for all tabs starting with ""3"". If you need to divide up the CEDR, please keep all tabs starting with ""3"" together to ensure calculation links are not broken. ","None"

254

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Workbook Contents" Workbook Contents" ,"U.S. State-to-State capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units of Measurement","Frequency","Updated Date" ,"Pipeline State-to-State Capacity","State-to-State capacity","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Inflow Capacity","Inflow capacity from other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Outflow Capacity","Outflow capacity to other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel"

255

Conductive Carbon Coatings for Electrode Materials  

SciTech Connect

A simple method for optimizing the carbon coatings on non-conductive battery cathode material powders has been developed at Lawrence Berkeley National Laboratory. The enhancement of the electronic conductivity of carbon coating enables minimization of the amount of carbon in the composites, allowing improvements in battery rate capability without compromising energy density. The invention is applicable to LiFePO{sub 4} and other cathode materials used in lithium ion or lithium metal batteries for high power applications such as power tools and hybrid or plug-in hybrid electric vehicles. The market for lithium ion batteries in consumer applications is currently $5 billion/year. Additionally, lithium ion battery sales for vehicular applications are projected to capture 5% of the hybrid and electric vehicle market by 2010, and 36% by 2015 (http://www.greencarcongress.com). LiFePO{sub 4} suffers from low intrinsic rate capability, which has been ascribed to the low electronic conductivity (10{sup -9} S cm{sup -1}). One of the most promising approaches to overcome this problem is the addition of conductive carbon. Co-synthesis methods are generally the most practical route for carbon coating particles. At the relatively low temperatures (<800 C) required to make LiFePO{sub 4}, however, only poorly conductive disordered carbons are produced from organic precursors. Thus, the carbon content has to be high to produce the desired enhancement in rate capability, which decreases the cathode energy density.

Doeff, Marca M.; Kostecki, Robert; Wilcox, James; Lau, Grace

2007-07-13T23:59:59.000Z

256

POLICY CONTENT  

E-Print Network (OSTI)

March 31, 1999. It lists in alphabetical order the National Customs Rulings (NCR) that were made since the Memorandum was published. 2. Appendix B – Supplement 1 is a supplement to Appendix B of Memorandum D11-11-2. It presents the policy content of the more recent NCRs, which are listed by numerical order of tariff items for greater ease of reference.

Um D; National Customs Rulings (ncrs

1999-01-01T23:59:59.000Z

257

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"12122013 6:56:58 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports by Point of Entry " "Sourcekey","N9103US2","NGAEPG0IMLYCAM-Z00MMCF","NAEP...

258

Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Carbon Sequestration Partnerships Review Meeting October 12-14, 2005 Table of Contents Agenda PDF-1438KB Phase I Program Review Meeting Phase II Kick-Off Meeting Phase...

259

Carbon Accounting in Forest Ecosystems  

E-Print Network (OSTI)

. Carbon Pools: Above ground biomass Belowground BiomassBelowground Biomass Soil Organic Carbon Dead: · Aboveground biomassAboveground biomass · Belowground biomass · Soil Organic Carbon · Litter · Dead Wood· Dead Wood · (Wood Products) T�V S�D Industrie Service GmbH #12;Principles · Biomass is usually measured

Pettenella, Davide

260

2013 Application Content and Format PDF  

Science Conference Proceedings (OSTI)

... table of contents Eligibility Certification Form organization chart(s) page A-1 of the Application Form Glossary of Terms and Abbreviations ...

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

262

Influence of Petroleum Coke Sulphur Content on the Sodium ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 1993 ... Influence of Petroleum Coke Sulphur Content on the Sodium Sensitivity of Carbon Anodes by S.M. Hume ... TMS Student Member price: 0.00.

263

ii CONTENTS  

E-Print Network (OSTI)

Wind Turbine Control Toolbox v2.0This software described in this document is furnished under a license agreement. The software may be used, copied or translated into other languages only under the terms of the license agreement. Wind Turbine Control Toolbox Copyright c 2009-2010 by Princeton Satellite Systems, Inc. All rights reserved. MATLAB is a trademark of the MathWorks. All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

unknown authors

2009-01-01T23:59:59.000Z

264

content | OpenEI Community  

Open Energy Info (EERE)

419 419 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234419 Varnish cache server content Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 25 June, 2013 - 07:39 How to create formatted blocks to hold OpenEI wiki content content formatting user interface wiki The OpenEI wiki frontpage uses "boxes" that help organize content. These boxes are frequently re-used across the site. Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load)

265

Emergency Operations Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

unknown authors

2012-01-01T23:59:59.000Z

266

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

267

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

268

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

269

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

270

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

271

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

272

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

273

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

274

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

275

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

276

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

277

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

278

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

279

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

280

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

282

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

283

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

284

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

285

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

286

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

287

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

288

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

289

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

290

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

291

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

292

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

293

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

294

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

295

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

296

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

297

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

298

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

302

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

303

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

304

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_a.xls" mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:23 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","MCRFPWV1","MCRFPP21","MCRFPIL1","MCRFPIN1","MCRFPKS1","MCRFPKY1","MCRFP_SMI_1","MCRFPMO1","MCRFPNE1","MCRFPND1","MCRFPOH1","MCRFPOK1","MCRFPSD1","MCRFPTN1","MCRFPP31","MCRFPAL1","MCRFPAR1","MCRFPLA1","MCRFPMS1","MCRFPNM1","MCRFPTX1","MCRFP3FM1","MCRFPP41","MCRFPCO1","MCRFPMT1","MCRFPUT1","MCRFPWY1","MCRFPP51","MCRFPAK1","MCRFPAKS1","MANFPAK1","MCRFPAZ1","MCRFPCA1","MCRFPNV1","MCRFP5F1"

305

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

306

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

311

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

312

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

313

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

316

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

317

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

318

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

319

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_a.xls" mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:25 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","MCRFPWV2","MCRFPP22","MCRFPIL2","MCRFPIN2","MCRFPKS2","MCRFPKY2","MCRFP_SMI_2","MCRFPMO2","MCRFPNE2","MCRFPND2","MCRFPOH2","MCRFPOK2","MCRFPSD2","MCRFPTN2","MCRFPP32","MCRFPAL2","MCRFPAR2","MCRFPLA2","MCRFPMS2","MCRFPNM2","MCRFPTX2","MCRFP3FM2","MCRFPP42","MCRFPCO2","MCRFPMT2","MCRFPUT2","MCRFPWY2","MCRFPP52","MCRFPAK2","MCRFPAKS2","MANFPAK2","MCRFPAZ2","MCRFPCA2","MCRFPNV2","MCRFP5F2"

320

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

322

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010PA3" "Date","Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

323

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ut3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ut3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010UT3" "Date","Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

324

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: District of Columbia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DC2" "Date","District of Columbia Natural Gas Residential Consumption (MMcf)" 29402,13730 29767,13686 30132,13041 30497,13007

325

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TX3" "Date","Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

326

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skn_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skn_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:29 AM" "Back to Contents","Data 1: U.S. Natural Gas Processing Plant " "Sourcekey","MAOSNUS1","MPPSNUS1","MLPSNUS1","METSNUS1","MPRSNUS1","MBNSNUS1","MBISNUS1"

327

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arizona Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AZ2" "Date","Arizona Natural Gas Vented and Flared (MMcf)" 26114,347 26480,367 26845,277 27210,26 27575,47 27941,32 29036,101 29402,143 29767,106 30132,162

328

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:20 PM" "Back to Contents","Data 1: California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CA3" "Date","California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

329

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:49 PM" "Back to Contents","Data 1: Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OH3" "Date","Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

330

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:30 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020FL3" "Date","Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

331

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 35079,63 35110,63 35139,63 35170,61 35200,62 35231,57 35261,57 35292,55 35323,56

332

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: Nevada Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NV2" "Date","Nevada Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0 33526,0

333

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 35079,217 35110,199 35139,223 35170,219 35200,237 35231,234 35261,239

334

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 31228,4.6 31593,4.62 32324,2.71

335

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 32523,2.69 32554,2.4

336

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 24653,129403 25019,124584 25384,111499 25749,100305 26114,70222 26480,59821 26845,36133 27210,34431

337

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AL2" "Date","Alabama Natural Gas Residential Consumption (MMcf)" 24653,45543 25019,51708 25384,54804 25749,55779 26114,54867 26480,53397 26845,55685

338

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MI2" "Date","Michigan Natural Gas Residential Consumption (MMcf)" 24653,302472 25019,315694 25384,333264 25749,340033 26114,343773 26480,355266

339

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CO3" "Date","Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

340

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WA3" "Date","Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:05 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 24653,1958 25019,2293 25384,4573 25749,6211 26114,6893 26480,8394 26845,5024

342

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 24653,52777 25019,56346 25384,58322 25749,59792 26114,48737 26480,47387

343

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 24653,126629 25019,129408 25384,130766 25749,129629 26114,39799 26480,38797 26845,36411

344

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

345

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

346

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CA3" "Date","California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

347

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 33253,1788 33284,1684 33312,1571 33343,1593 33373,1807 33404,1690 33434,2042

348

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Tennessee Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TN2" "Date","Tennessee Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

349

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin Natural Gas Residential Consumption (MMcf)" 24653,90994 25019,93425 25384,101124 25749,105208 26114,109758 26480,104648

350

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

351

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

352

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:24 PM" "Back to Contents","Data 1: Indiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010IN2" "Date","Indiana Natural Gas Residential Consumption (MMcf)" 24653,139519 25019,145955 25384,156699 25749,158699 26114,162747 26480,169267

353

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CT3" "Date","Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

354

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mo3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mo3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:36 PM" "Back to Contents","Data 1: Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MO3" "Date","Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

355

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 24653,161849 25019,166439 25384,158852 25749,154089 26114,103564 26480,63667 26845,102091

356

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 34592,646 34834,696 34865,4590 34895,4767 34926,4382 34957,4389 34987,4603 35018,4932

357

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AZ2" "Date","Arizona Natural Gas Residential Consumption (MMcf)" 24653,25376 25019,26681 25384,28426 25749,29679 26114,32619 26480,34259 26845,36280

358

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

359

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 31228,3.92 31593,2.35

360

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:23 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ID3" "Date","Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ME2" "Date","Maine Natural Gas Residential Consumption (MMcf)" 24653,3967 25019,3571 25384,4910 25749,5247 26114,5591 26480,6036 26845,6027 27210,6174

362

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ne3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ne3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:42 PM" "Back to Contents","Data 1: Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NE3" "Date","Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

363

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:47 AM" "Back to Contents","Data 1: Wyoming Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WY2" "Date","Wyoming Natural Gas Vented and Flared (MMcf)" 24653,1498 25019,13038 25384,17632 25749,18419 26114,3860 26480,8376 26845,6618 27210,6102

364

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:34 PM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MN3" "Date","Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:10 PM" "Back to Contents","Data 1: California Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CA2" "Date","California Natural Gas Residential Consumption (MMcf)" 24653,522122 25019,517636 25384,562127 25749,552544 26114,630998 26480,637289

366

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 33253,384 33284,350 33312,382 33343,380 33373,382 33404,376 33434,405

367

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 35079,236 35110,220 35139,240 35170,230 35200,241 35231,229 35261,217

368

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: Colorado Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CO2" "Date","Colorado Natural Gas Residential Consumption (MMcf)" 24653,75351 25019,78371 25384,81068 25749,82595 26114,84864 26480,89187

369

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc2d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc2d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:40 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34346,2.13 34347,2.072 34348,2.139 34351,2.196 34352,2.131

370

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

371

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mo2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Missouri Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MO2" "Date","Missouri Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

372

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc4d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc4d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:29 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34323,1.894 34324,1.83 34325,1.859 34326,1.895 34330,1.965

373

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:17 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010US2" "Date","U.S. Natural Gas Gross Withdrawals (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

374

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 24653,3000 25019,2906 25384,2802 25749,2852 26114,2926 26480,5506 26845,7664 27210,5259 27575,1806

375

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 32523,1793 32554,2148 32582,1566 32613,1223 32643,858 32674,638

376

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 24653,25795 25019,22050 25384,22955 25749,19862 26114,2686 26480,20786 26845,22533

377

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

378

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

379

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VA2" "Date","Virginia Natural Gas Residential Consumption (MMcf)" 24653,41495 25019,43582 25384,46663 25749,49554 26114,49488 26480,55427

380

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 35079,112 35110,77 35139,78 35170,91 35200,100 35231,89 35261,100 35292,106

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:17 PM" "Back to Contents","Data 1: Georgia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010GA2" "Date","Georgia Natural Gas Residential Consumption (MMcf)" 24653,80322 25019,84072 25384,87878 25749,87359 26114,88319 26480,85256 26845,86191

382

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:33 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)" "Sourcekey","N3020HI2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)"

383

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:31 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)" "Sourcekey","N3020GA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)"

384

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:14 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)" "Sourcekey","N3020AR2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)"

385

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Connecticut Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CT2" "Date","Connecticut Natural Gas Residential Consumption (MMcf)" 24653,26177 25019,26437 25384,29048 25749,31187 26114,31878 26480,32879

386

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:14 PM" "Back to Contents","Data 1: District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DC3" "Date","District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

387

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ri3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ri3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:54 PM" "Back to Contents","Data 1: Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010RI3" "Date","Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

388

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SD3" "Date","South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

389

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:26 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)" "Sourcekey","N3020DE2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)"

390

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:58 PM" "Back to Contents","Data 1: Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TN3" "Date","Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

391

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ny3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ny3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NY3" "Date","New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

392

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:51 PM" "Back to Contents","Data 1: Oregon Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OR2" "Date","Oregon Natural Gas Residential Consumption (MMcf)" 24653,13427 25019,15126 25384,20507 25749,19742 26114,21217 26480,23331 26845,22271

393

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9140us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9140us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Total Consumption (MMcf)" "Sourcekey","N9140US2" "Date","U.S. Natural Gas Total Consumption (MMcf)" 36906,2676998 36937,2309464 36965,2246633 36996,1807170 37026,1522382 37057,1444378

394

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:45 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34347,2.194 34348,2.268 34351,2.36 34352,2.318 34353,2.252

395

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:16 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010FL3" "Date","Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

396

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:08 PM" "Back to Contents","Data 1: U.S. Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035US2" "Date","U.S. Natural Gas Industrial Consumption (MMcf)" 36906,686540 36937,640026 36965,664918 36996,622054 37026,576532 37057,536820

397

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 26114,355 26480,284 27941,837 28306,607 29402,677 29767,428 30132,435 30497,198 30863,34

398

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OK2" "Date","Oklahoma Natural Gas Residential Consumption (MMcf)" 24653,67395 25019,74782 25384,75310 25749,77460 26114,75238 26480,77608

399

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 24653,997 25019,895 25384,1326 25749,226 26114,1734 26480,2649 26845,1947 27210,1716 27575,1318

400

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ME3" "Date","Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3060us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:27:25 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in the U.S. (MMcf)" "Sourcekey","N3060US2" "Date","Natural Gas Delivered to Consumers in the U.S. (MMcf)" 36906,2505011 36937,2156873 36965,2086568 36996,1663832

402

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 11139,295700 11504,294406 11870,298520 12235,283197 12600,288236 12965,313498 13331,343346

403

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:25 PM" "Back to Contents","Data 1: Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010IN3" "Date","Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

404

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9011us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:36 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011US2" "Date","U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" 33253,1482053 33526,1363737 33984,1452098 34015,1305490

405

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:37 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020US3" "Date","U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

406

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:46 PM" "Back to Contents","Data 1: Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NV3" "Date","Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

407

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9133US3" "Date","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

408

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:55 PM" "Back to Contents","Data 1: South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SC3" "Date","South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

409

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010vt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010vt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:03 PM" "Back to Contents","Data 1: Vermont Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VT2" "Date","Vermont Natural Gas Residential Consumption (MMcf)" 29402,1301 29767,1290 30132,1278 30497,1252 30863,1352 31228,1456 31593,1595

410

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly","12/13/2013","1/10/1997" Weekly","12/13/2013","1/10/1997" ,"Data 2","Futures Prices",4,"Weekly","12/13/2013","12/24/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:18 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD" "Date","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

411

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Indiana Natural Gas Vented and Flared (Million Cubic Feet)" "Sourcekey","N9040IN2" "Date","Indiana Natural Gas Vented and Flared (Million Cubic Feet)" 33253,0 33284,0 33312,0 33343,0 33373,0

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

413

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 24653,7098 25019,5910 25384,8097 25749,7233 26114,5090 26480,3672 26845,10767 27210,10787

414

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OK3" "Date","Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

415

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:40 PM" "Back to Contents","Data 1: North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ND3" "Date","North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

416

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35246 35611,0 35976,0 36341,0 36707,0 37072,0 37437,0 37802,0 38168,0 38533,0 38898,0 39263,0

417

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:27 PM" "Back to Contents","Data 1: Kentucky Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KY2" "Date","Kentucky Natural Gas Residential Consumption (MMcf)" 24653,69542 25019,75824 25384,83815 25749,86473 26114,84197 26480,85881

418

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9160us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9160us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" "Sourcekey","N9160US2" "Date","U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" 29235,93000 29266,87000 29295,93000 29326,85000

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:28 AM" "Back to Contents","Data 1: U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" "Sourcekey","N9030US2" "Date","U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891

420

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MI3" "Date","Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (MMcf)" "Sourcekey","N9070US2" "Date","U.S. Dry Natural Gas Production (MMcf)" 35445,1617923 35476,1465907 35504,1627602 35535,1551268 35565,1610527 35596,1525325

422

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:55 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports (MMcf)" "Sourcekey","N9102US2" "Date","U.S. Natural Gas Pipeline Imports (MMcf)" 35445,268310 35476,232878 35504,254455 35535,235621 35565,236725 35596,227059 35626,230567

423

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:08 PM" "Back to Contents","Data 1: Wyoming Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WY2" "Date","Wyoming Natural Gas Residential Consumption (MMcf)" 24653,11939 25019,12592 25384,16592 25749,17984 26114,19463 26480,22242 26845,13868

424

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:09 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)" "Sourcekey","N3020AK2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)"

425

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 26679,843900 26710,747331 26738,648504 26769,465867 26799,326313

426

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:38 PM" "Back to Contents","Data 1: Montana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MT2" "Date","Montana Natural Gas Residential Consumption (MMcf)" 24653,19756 25019,19711 25384,21463 25749,24794 26114,25379 26480,23787 26845,24923

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 35445,3 35476,3

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports (MMcf)" "Sourcekey","N9132US2" "Date","U.S. Natural Gas Pipeline Exports (MMcf)" 35445,6424 35476,6846 35504,10601 35535,8211 35565,6284 35596,5741 35626,6380 35657,10101

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:10 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WI3" "Date","Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Alabama Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AL2" "Date","Alabama Natural Gas Vented and Flared (MMcf)" 35079,194 35110,200 35139,140 35170,132 35200,106 35231,82 35261,205 35292,152

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: West Virginia Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WV2" "Date","West Virginia Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_pct_dc_nus_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:23:48 AM" "Back to Contents","Data 1: U.S. Refinery Yield" "Sourcekey","MLRRYUS3","MGFRYUS3","MGARYUS3","MKJRYUS3","MKERYUS3","MDIRYUS3","MRERYUS3","MNFRYUS3","MOTRYUS3","MNSRYUS3","MLURYUS3","MWXRYUS3","MCKRYUS3","MAPRYUS3","MSGRYUS3","MMSRYUS3","MPGRYUS3"

434

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:36 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)" "Sourcekey","N3020US2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)"

435

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013","1/15/1997" Monthly","11/2013","1/15/1997" ,"Data 2","Futures Prices",4,"Monthly","11/2013","12/15/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:17 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU"

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:32 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020GA3" "Date","Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:20 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010HI3" "Date","Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KS2" "Date","Kansas Natural Gas Residential Consumption (MMcf)" 24653,84912 25019,89372 25384,94320 25749,97317 26114,98644 26480,100720 26845,96468

440

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Imports (MMcf)" "Sourcekey","N9100US2" "Date","U.S. Natural Gas Imports (MMcf)" 26679,92694 26710,83870 26738,91581 26769,88407 26799,85844 26830,79121 26860,79428 26891,84400 26922,81157

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:18 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010GA3" "Date","Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9133US2" "Date","Liquefied U.S. Natural Gas Exports (MMcf)" 35445,5604 35476,5596 35504,5675 35535,5660 35565,3812 35596,3786 35626,3756 35657,7532

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9170us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9170us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline & Distribution Use (MMcf)" "Sourcekey","N9170US2" "Date","U.S. Natural Gas Pipeline & Distribution Use (MMcf)" 36906,76386 36937,65770 36965,63626 36996,50736

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:13 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 32689,99.9 33054,99.2 33419,99.2 33785,99.1 34150,99.1 34515,99.1

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CT3" "Date","Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 24653,1861 25019,1120 25384,808 25749,809 26480,1032 26845,1117 27210,1268 27575,1612

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 32523,6774 32554,7118 32582,6736 32613,3835 32643,1927 32674,1402

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010LA3" "Date","Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 32523,1.72 32554,1.88

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,1558 26480,1263 26845,834 27210,2137 27575,1398 27941,797

453

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:13 AM" "Back to Contents","Data 1: U.S. Natural Gas Repressuring (MMcf)" "Sourcekey","N9020US2" "Date","U.S. Natural Gas Repressuring (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103 27134 27164

454

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,98 27575,96 27941,99

455

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: Ohio Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OH2" "Date","Ohio Natural Gas Residential Consumption (MMcf)" 24653,442360 25019,444964 25384,456414 25749,459972 26114,460820 26480,478331 26845,439212

456

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 24653,3565 25019,2780 25384,3074 25749,2499 26114,575 26845,1999 27210,1560 27575,1537

457

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

458

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013" Monthly","11/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34349,2.347 34380,2.355 34408,2.109 34439,2.111 34469,1.941

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AZ3" "Date","Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

460

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:13 PM" "Back to Contents","Data 1: U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045US2" "Date","U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" 36906,340292 36937,312843 36965,362843

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hierarchical Template of Porous Carbon for Multifunctional ...  

Science Conference Proceedings (OSTI)

Hierarchical Template of Porous Carbon for Multifunctional Applications · Interstitial Hydride ... Structurally Dynamic Metal Organic Frameworks for CO2 Capture.

462

Charting a New Carbon Route to Development | Open Energy Information  

Open Energy Info (EERE)

Charting a New Carbon Route to Development Charting a New Carbon Route to Development Jump to: navigation, search Tool Summary Name: Charting a New Carbon Route to Development Agency/Company /Organization: United Nations Development Programme (UNDP) Topics: Low emission development planning Resource Type: Guide/manual Website: www.beta.undp.org/content/undp/en/home/ourwork/environmentandenergy/fo Cost: Free Language: English Charting a New Carbon Route to Development Screenshot "UNDP recognizes the critical need to support developing country governments to build on their existing development strategies and coordination experiences (e.g., National Communications, National Adaptation Plan of Action, National Biodiversity Strategy and Action Plan, UN Development Assistance Framework, Country Assistance Strategy,

463

Carbon-based Supercapacitors Produced by Activation of Graphene  

Science Conference Proceedings (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

2011-12-31T23:59:59.000Z

464

Carbon-Based Supercapacitors Produced by Activation of Graphene  

DOE Green Energy (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

2011-06-24T23:59:59.000Z

465

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

466

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1997" Monthly","9/2013","1/15/1997" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_lsum_a_epg0_fpd_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_lsum_a_epg0_fpd_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:41:46 AM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_R3FM_2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1930" Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_a_epg0_fpd_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_a_epg0_fpd_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:08:03 PM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_R3FM_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

468

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:48 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS2","MCREXUS2","MNGEXUS2","MPPEXUS2","MLPEXUS2","METEXUS2","MPREXUS2","MBNEXUS2","MBIEXUS2","MOLEXUS2","MOHEXUS2","M_EPOOXXFE_EEX_NUS-Z00_MBBLD","MMTEX_NUS-Z00_2","MOOEX_NUS-Z00_2","M_EPOOR_EEX_NUS-Z00_MBBLD","M_EPOOXE_EEX_NUS-Z00_MBBLD","M_EPOORDB_EEX_NUS-Z00_MBBLD","MBCEXUS2","MO1EX_NUS-Z00_2","MO5EX_NUS-Z00_2","MBAEXUS2","MTPEXUS2","MGFEXUS2","MGREXUS2","MG4EX_NUS-Z00_2","MGAEXUS2","MKJEXUS2","MKEEXUS2","MDIEXUS2","M_EPDXL0_EEX_NUS-Z00_MBBLD","MD1EX_NUS-Z00_2","MDGEXUS2","MREEXUS2","MNFEXUS2","MOTEXUS2","MNSEXUS2","MLUEXUS2","MWXEXUS2","MCKEXUS2","MAPEXUS2","MMSEXUS2"

469

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capwork_a_(na)_8sw0_mbbl_a.xls" capwork_a_(na)_8sw0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_a_(na)_8sw0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:20:16 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SW0_NUS_MBBL","8_NA_8SW0_R10_MBBL","8_NA_8SW0_R20_MBBL","8_NA_8SW0_R30_MBBL","8_NA_8SW0_R40_MBBL","8_NA_8SW0_R50_MBBL" "Date","U.S. Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)"

470

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:11 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS2","MCRUPUS2","MNGUPUS2","MPPUPUS2","MLPUPUS2","METUPUS2","MPRUPUS2","MBNUPUS2","MBIUPUS2","MOLUPUS2","MOHUPUS2","MUOUPUS2","MBCUPUS2","MO1UP_NUS_2","MO5UP_NUS_2","MBAUPUS2","MTPUPUS2","MGFUPUS2","MGRUPUS2","MG4UP_NUS_2","MGAUPUS2","MKJUPUS2","MKEUPUS2","MDIUPUS2","MD0UP_NUS_2","MD1UP_NUS_2","MDGUPUS2","MREUPUS2","MPCUP_NUS_2","MNFUPUS2","MOTUPUS2","MNSUPUS2","MLUUPUS2","MWXUPUS2","MCKUPUS2","MCMUP_NUS_2","MCOUP_NUS_2","MAPUPUS2","MSGUPUS2","MMSUPUS2"

471

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capshell_a_(na)_8ss0_mbbl_a.xls" capshell_a_(na)_8ss0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_a_(na)_8ss0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:17:24 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SS0_NUS_MBBL","8_NA_8SS0_R10_MBBL","8_NA_8SS0_R20_MBBL","8_NA_8SS0_R30_MBBL","8_NA_8SS0_R40_MBBL","8_NA_8SS0_R50_MBBL" "Date","U.S. Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)"

472

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1936" Annual",2012,"6/30/1936" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:40 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

473

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:19:29 AM" "Back to Contents","Data 1: U.S. Refinery & Blender Net Input" "Sourcekey","MTTRIUS1","MCRRIUS1","MNGRIUS1","MPPRIUS1","MLPRIUS1","METRIUS1","MBNRIUS1","MBIRIUS1","MOLRIUS1","MOHRIUS1","M_EPOOOH_YIR_NUS_MBBL","M_EPOOXXFE_YIR_NUS_MBBL","MMTRIUS1","MOORIUS1","M_EPOOR_YIR_NUS_MBBL","MFERIUS1","M_EPOORD_YIR_NUS_MBBL","M_EPOORO_YIR_NUS_MBBL","M_EPOOOXH_YIR_NUS_MBBL","MUORIUS1","MNLRI_NUS_1","MKORI_NUS_1","MH1RI_NUS_1","MRURI_NUS_1","MBCRIUS1","MO1RI_NUS_1","M_EPOBGRR_YIR_NUS_MBBL","MO3RI_NUS_1","MO4RI_NUS_1","MO2RI_NUS_1","MO5RI_NUS_1","MO6RI_NUS_1","MO7RI_NUS_1","MO9RI_NUS_1","MBARIUS1"

474

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:09 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS1","MCRUPUS1","MNGUPUS1","MPPUPUS1","MLPUPUS1","METUPUS1","MPRUPUS1","MBNUPUS1","MBIUPUS1","MOLUPUS1","MOHUPUS1","MUOUPUS1","MBCUPUS1","MO1UP_NUS_1","MO5UP_NUS_1","MBAUPUS1","MTPUPUS1","MGFUPUS1","MGRUPUS1","MG4UP_NUS_1","MGAUPUS1","MKJUPUS1","MKEUPUS1","MDIUPUS1","MD0UP_NUS_1","MD1UP_NUS_1","MDGUPUS1","MREUPUS1","MPCUP_NUS_1","MNFUPUS1","MOTUPUS1","MNSUPUS1","MLUUPUS1","MWXUPUS1","MCKUPUS1","MCMUP_NUS_1","MCOUP_NUS_1","MAPUPUS1","MSGUPUS1","MMSUPUS1"

475

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1985" Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_unc_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_unc_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:30:03 AM" "Back to Contents","Data 1: U.S. Refinery Utilization and Capacity" "Sourcekey","MGIRIUS2","MOCLEUS2","MOCGGUS2","MOCIDUS2","MOPUEUS2" "Date","U.S. Gross Inputs to Refineries (Thousand Barrels Per Day)","U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)","U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day)","U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day)","U.S. Percent Utilization of Refinery Operable Capacity"

476

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1936" Monthly","9/2013","1/15/1936" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:41 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

477

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:47 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

478

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

479

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

480

Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment  

SciTech Connect

Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

482

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_prod_whv_a_epg0_vgm_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_whv_a_epg0_vgm_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:54:27 AM" "Back to Contents","Data 1: Natural Gas Marketed Production " "Sourcekey","N9050US2","N9050FX2","N9050AL2","N9050AK2","N9050AZ2","N9050AR2","N9050CA2","N9050CO2","N9050FL2","N9050IL2","N9050IN2","N9050KS2","N9050KY2","N9050LA2","N9050MD2","N9050MI2","N9050MS2","N9050MO2","N9050MT2","N9050NE2","N9050NV2","N9050NM2","N9050NY2","N9050ND2","N9050OH2","N9050OK2","N9050OR2","N9050PA2","N9050SD2","N9050TN2","N9050TX2","N9050UT2","N9050VA2","N9050WV2","N9050WY2"

483

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1870" Annual",2012,"6/30/1870" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_exp_dc_nus-z00_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:46 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

484

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2002" Monthly","9/2013","1/15/2002" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_pri_sum_a_epg0_vrx_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_vrx_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:00:27 PM" "Back to Contents","Data 1: Percentage of Total Natural Gas Residential Deliveries included in Prices " "Sourcekey","NA1504_NUS_4","NA1504_SAL_4","NA1504_SAK_4","NA1504_SAZ_4","NA1504_SAR_4","NA1504_SCA_4","NA1504_SCO_4","NA1504_SCT_4","NA1504_SDE_4","NA1504_SDC_4","NA1504_SFL_4","NA1504_SGA_4","NA1504_SHI_4","NA1504_SID_4","NA1504_SIL_4","NA1504_SIN_4","NA1504_SIA_4","NA1504_SKS_4","NA1504_SKY_4","NA1504_SLA_4","NA1504_SME_4","NA1504_SMD_4","NA1504_SMA_4","NA1504_SMI_4","NA1504_SMN_4","NA1504_SMS_4","NA1504_SMO_4","NA1504_SMT_4","NA1504_SNE_4","NA1504_SNV_4","NA1504_SNH_4","NA1504_SNJ_4","NA1504_SNM_4","NA1504_SNY_4","NA1504_SNC_4","NA1504_SND_4","NA1504_SOH_4","NA1504_SOK_4","NA1504_SOR_4","NA1504_SPA_4","NA1504_SRI_4","NA1504_SSC_4","NA1504_SSD_4","NA1504_STN_4","NA1504_STX_4","NA1504_SUT_4","NA1504_SVT_4","NA1504_SVA_4","NA1504_SWA_4","NA1504_SWV_4","NA1504_SWI_4","NA1504_SWY_4"

485

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

60,"Monthly","9/2013","1/15/1981" 60,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_d_nus_skr_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skr_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:32 AM" "Back to Contents","Data 1: U.S. Refinery " "Sourcekey","MTTRSUS1","MCRRSUS1","MPERSUS1","MPPRSUS1","MLPRSUS1","METRSUS1","MPRRSUS1","MBNRSUS1","MBIRSUS1","M_EPOOOXH_SKR_NUS_MBBL","M_EPOOXXFE_SKR_NUS_MBBL","MMTRSUS1","MOORSUS1","M_EPOOR_SKR_NUS_MBBL","MFERSUS1","M_EPOORD_SKR_NUS_MBBL","M_EPOORO_SKR_NUS_MBBL","MUORSUS1","MNLRSUS1","MKORSUS1","MH1RSUS1","MRURSUS1","MBCRSUS1","MO1RS_NUS_1","M_EPOBGRR_SKR_NUS_MBBL","MO3RS_NUS_1","MO4RS_NUS_1","MO5RS_NUS_1","MO6RS_NUS_1","MO7RS_NUS_1","MO9RS_NUS_1","MBARSUS1","MGFRSUS1","MGRRSUS1","MG1RS_NUS_1","M_EPM0RO_SKR_NUS_MBBL","MG4RS_NUS_1","MG5RS_NUS_1","M_EPM0CAL55_SKR_NUS_MBBL","MG6RS_NUS_1","MGARSUS1","MKJRSUS1","MKERSUS1","MDIRSUS1","MD0RS_NUS_1","MD1RS_NUS_1","MDGRSUS1","MRERSUS1","MRLRSUS1","MRMRSUS1","MRGRSUS1","MPCRS_NUS_1","MNFRSUS1","MOTRSUS1","MNSRSUS1","MLURSUS1","MWXRSUS1","MCKRSUS1","MAPRSUS1","MMSRSUS1"

486

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Monthly","9/2013","1/15/1973" 2,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_enp_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_enp_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US2","N9132CN2","NA1287_YEPRT-NCA_2","NGA_EPG0_ENP_YCAL-NCA_MMCF","NA1287_YDTW-NCA_2","NA1287_YMARY-NCA_2","NA1287_YSSM-NCA_2","NA1287_YCHRE-NCA_2","NA1287_YNOYS-NCA_2","NA1287_YBAB-NCA_2","NA1287_YHVR-NCA_2","NGA_EPG0_ENP_YPITT-NCA_MMCF","NGM_EPG0_ENP_YGRIS-NCA_MMCF","NGM_EPG0_ENP_YMSS-NCA_MMCF","NA1287_YUSNI-NCA_2","NGM_EPG0_ENP_YWADD-NCA_MMCF","NA1287_YSUMS-NCA_2","N9132MX2","NA1287_YDUG-NMX_2","NA_EPG0_ENP_YNOGS-NMX_MMCF","NA1287_YCAX-NMX_2","NA1287_YOESA-NMX_2","NA1287_YALA-NMX_2","NA1287_YCLI-NMX_2","NA_EPG0_ENP_YDRT-NMX_MMCF","NA1287_YEGP-NMX_2","NA1287_YELP-NMX_2","NA1287_YHDGO-NMX_2","NA1287_YMFE-NMX_2","NA1287_YPENI-NMX_2","NA1287_Y44RB-NMX_2","NA1287_Y44RM-NMX_2"

487

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

65,"Monthly","9/2013","1/15/1956" 65,"Monthly","9/2013","1/15/1956" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_sum_snd_a_ep00_mbbl_m_cur.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_sum_snd_a_ep00_mbbl_m_cur.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 6:57:53 AM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Supply and Disposition" "Sourcekey","MTTFPUS1","M_EP00_YNP_NUS_MBBL","MTTRPUS1","MTTIMUS1","MTTUA_NUS_1","MTTSCUS1","MTTRIUS1","MTTEXUS1","MTTUPUS1","MTTSTUS1","MTTFPP11","M_EP00_YNP_R10_MBBL","MTTRPP11","MTTIMP11","MTTNRP11","MTTUA_R10_1","MTTSCP11","MTTRIP11","MTTEXP11","MTTUPP11","MTTSTP11","MTTFPP21","M_EP00_YNP_R20_MBBL","MTTRPP21","MTTIMP21","MTTNRP21","MTTUA_R20_1","MTTSCP21","MTTRIP21","MTTEXP21","MTTUPP21","MTTSTP21","MTTFPP31","M_EP00_YNP_R30_MBBL","MTTRPP31","MTTIMP31","MTTNRP31","MTTUA_R30_1","MTTSCP31","MTTRIP31","MTTEXP31","MTTUPP31","MTTSTP31","MTTFPP41","M_EP00_YNP_R40_MBBL","MTTRPP41","MTTIMP41","MTTNRP41","MTTUA_R40_1","MTTSCP41","MTTRIP41","MTTEXP41","MTTUPP41","MTTSTP41","MTTFPP51","M_EP00_YNP_R50_MBBL","MTTRPP51","MTTIMP51","MTTNRP51","MTTUA_R50_1","MTTSCP51","MTTRIP51","MTTEXP51","MTTUPP51","MTTSTP51"

488

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

59,"Monthly","9/2013","1/15/1963" 59,"Monthly","9/2013","1/15/1963" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_sum_snd_a_ep00_mbblpd_m_cur.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_sum_snd_a_ep00_mbblpd_m_cur.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 6:57:55 AM" "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Supply and Disposition" "Sourcekey","MTTFPUS2","M_EP00_YNP_NUS_MBBLD","MTTRPUS2","MTTIMUS2","MTTUA_NUS_2","MTTSCUS2","MTTRIUS2","MTTEXUS2","MTTUPUS2","MTTFPP12","M_EP00_YNP_R10_MBBLD","MTTRPP12","MTTIMP12","MTTNRP12","MTTUA_R10_2","MTTSCP12","MTTRIP12","MTTEXP12","MTTUPP12","MTTFPP22","M_EP00_YNP_R20_MBBLD","MTTRPP22","MTTIMP22","MTTNRP22","MTTUA_R20_2","MTTSCP22","MTTRIP22","MTTEXP22","MTTUPP22","MTTFPP32","M_EP00_YNP_R30_MBBLD","MTTRPP32","MTTIMP32","MTTNRP32","MTTUA_R30_2","MTTSCP32","MTTRIP32","MTTEXP32","MTTUPP32","MTTFPP42","M_EP00_YNP_R40_MBBLD","MTTRPP42","MTTIMP42","MTTNRP42","MTTUA_R40_2","MTTSCP42","MTTRIP42","MTTEXP42","MTTUPP42","MTTFPP52","M_EP00_YNP_R50_MBBLD","MTTRPP52","MTTIMP52","MTTNRP52","MTTUA_R50_2","MTTSCP52","MTTRIP52","MTTEXP52","MTTUPP52"

489

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

2,"Monthly","9/2013","1/15/1989" 2,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_pnp_dpmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_pnp_dpmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:32 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US3","N9132CN3","NA1287_YEPRT-NCA_3","NGA_EPG0_PNP_YCAL-NCA_DMCF","NA1287_YDTW-NCA_3","NA1287_YMARY-NCA_3","NA1287_YSSM-NCA_3","NA1287_YCHRE-NCA_3","NA1287_YNOYS-NCA_3","NA1287_YBAB-NCA_3","NA1287_YHVR-NCA_3","NGA_EPG0_PNP_YPITT-NCA_DMCF","NGM_EPG0_PNP_YGRIS-NCA_DMCF","NGM_EPG0_PNP_YMSS-NCA_DMCF","NA1287_YUSNI-NCA_3","NGM_EPG0_PNP_YWADD-NCA_DMCF","NA1287_YSUMS-NCA_3","N9132MX3","NA1287_YDUG-NMX_3","NA_EPG0_PNP_YNOGS-NMX_DMCF","NA1287_YCAX-NMX_3","NA1287_YOESA-NMX_3","NA1287_YALA-NMX_3","NA1287_YCLI-NMX_3","NA_EPG0_PNP_YDRT-NMX_DMCF","NA1287_YEGP-NMX_3","NA1287_YELP-NMX_3","NA1287_YHDGO-NMX_3","NA1287_YMFE-NMX_3","NA1287_YPENI-NMX_3","NA1287_Y44RB-NMX_3","NA1287_Y44RM-NMX_3"

490

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1989" Annual",2012,"6/30/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_pri_sum_a_epg0_vrx_pct_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_vrx_pct_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:00:26 PM" "Back to Contents","Data 1: Percentage of Total Natural Gas Residential Deliveries included in Prices " "Sourcekey","NA1504_NUS_4","NA1504_SAL_4","NA1504_SAK_4","NA1504_SAZ_4","NA1504_SAR_4","NA1504_SCA_4","NA1504_SCO_4","NA1504_SCT_4","NA1504_SDE_4","NA1504_SDC_4","NA1504_SFL_4","NA1504_SGA_4","NA1504_SHI_4","NA1504_SID_4","NA1504_SIL_4","NA1504_SIN_4","NA1504_SIA_4","NA1504_SKS_4","NA1504_SKY_4","NA1504_SLA_4","NA1504_SME_4","NA1504_SMD_4","NA1504_SMA_4","NA1504_SMI_4","NA1504_SMN_4","NA1504_SMS_4","NA1504_SMO_4","NA1504_SMT_4","NA1504_SNE_4","NA1504_SNV_4","NA1504_SNH_4","NA1504_SNJ_4","NA1504_SNM_4","NA1504_SNY_4","NA1504_SNC_4","NA1504_SND_4","NA1504_SOH_4","NA1504_SOK_4","NA1504_SOR_4","NA1504_SPA_4","NA1504_SRI_4","NA1504_SSC_4","NA1504_SSD_4","NA1504_STN_4","NA1504_STX_4","NA1504_SUT_4","NA1504_SVT_4","NA1504_SVA_4","NA1504_SWA_4","NA1504_SWV_4","NA1504_SWI_4","NA1504_SWY_4"

491

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_pipe_dc_r20-r10_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_pipe_dc_r20-r10_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:11:26 AM" "Back to Contents","Data 1: From PADD 1 to PADD 2 Movements by Pipeline" "Sourcekey","MTTMPP2P11","MCRMPP2P11","MPEMPP2P11","MPPMP_R20-R10_1","MLPMPP2P11","MBCMPP2P11","MO5MP_R20-R10_1","MO6MP_R20-R10_1","MO7MP_R20-R10_1","MO9MP_R20-R10_1","M_EPOOR_LMV_R20-R10_MBBL","M_EPOORD_LMV_R20-R10_MBBL","MGFMPP2P11","MGRMPP2P11","MG4MP_R20-R10_1","MG6MP_R20-R10_1","MKJMPP2P11","MKEMPP2P11","MDIMPP2P11","MD0MP_R20-R10_1","MD1MP_R20-R10_1","MDGMPP2P11"

492

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1913" Annual",2012,"6/30/1913" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_sae_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_sae_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:10 AM" "Back to Contents","Data 1: U.S. Total Stocks " "Sourcekey","MTTSTUS1","MCRSTUS1","MAOSTUS1","MPPSTUS1","MLPSTUS1","METSTUS1","MPRSTUS1","MBNSTUS1","MBISTUS1","M_EPOOOXH_SAE_NUS_MBBL","M_EPOOXXFE_SAE_NUS_MBBL","MMTSTUS1","MOOSTUS1","M_EPOOR_SAE_NUS_MBBL","MFESTUS1","M_EPOORD_SAE_NUS_MBBL","M_EPOORO_SAE_NUS_MBBL","MUOSTUS1","MNLST_NUS_1","MKOST_NUS_1","MH1ST_NUS_1","MRUST_NUS_1","MBCSTUS1","MO1ST_NUS_1","M_EPOBGRR_SAE_NUS_MBBL","MO3ST_NUS_1","MO4ST_NUS_1","MO2ST_NUS_1","MO5ST_NUS_1","MO6ST_NUS_1","MO7ST_NUS_1","MO9ST_NUS_1","MBASTUS1","MGFSTUS1","MGRSTUS1","MG1ST_NUS_1","M_EPM0RO_SAE_NUS_MBBL","MG4ST_NUS_1","MG5ST_NUS_1","M_EPM0CAL55_SAE_NUS_MBBL","MG6ST_NUS_1","MGASTUS1","MKJSTUS1","MKESTUS1","MDISTUS1","MD0ST_NUS_1","MD1ST_NUS_1","MDGSTUS1","MRESTUS1","MRLSTUS1","MRMSTUS1","MRGSTUS1","MPCST_NUS_1","MNFSTUS1","MOTSTUS1","MNSSTUS1","MLUSTUS1","MWXSTUS1","MCKSTUS1","MAPSTUS1","MMSSTUS1"

493

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

56,"Annual",2012,"6/30/1981" 56,"Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skr_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skr_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:31 AM" "Back to Contents","Data 1: U.S. Refinery " "Sourcekey","MTTRSUS1","MCRRSUS1","MPERSUS1","MPPRSUS1","MLPRSUS1","METRSUS1","MPRRSUS1","MBNRSUS1","MBIRSUS1","M_EPOOOXH_SKR_NUS_MBBL","M_EPOOXXFE_SKR_NUS_MBBL","MMTRSUS1","MOORSUS1","M_EPOOR_SKR_NUS_MBBL","MFERSUS1","M_EPOORD_SKR_NUS_MBBL","MUORSUS1","MNLRSUS1","MKORSUS1","MH1RSUS1","MRURSUS1","MBCRSUS1","MO1RS_NUS_1","M_EPOBGRR_SKR_NUS_MBBL","MO3RS_NUS_1","MO5RS_NUS_1","MO6RS_NUS_1","MO9RS_NUS_1","MBARSUS1","MGFRSUS1","MGRRSUS1","MG1RS_NUS_1","MG4RS_NUS_1","MG5RS_NUS_1","M_EPM0CAL55_SKR_NUS_MBBL","MG6RS_NUS_1","MGARSUS1","MKJRSUS1","MKERSUS1","MDIRSUS1","MD0RS_NUS_1","MD1RS_NUS_1","MDGRSUS1","MRERSUS1","MRLRSUS1","MRMRSUS1","MRGRSUS1","MPCRS_NUS_1","MNFRSUS1","MOTRSUS1","MNSRSUS1","MLURSUS1","MWXRSUS1","MCKRSUS1","MAPRSUS1","MMSRSUS1"

494

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1986" Monthly","9/2013","1/15/1986" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_pipe_dc_r20-r10_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_pipe_dc_r20-r10_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:11:27 AM" "Back to Contents","Data 1: From PADD 1 to PADD 2 Movements by Pipeline" "Sourcekey","MTTMPP2P11","MCRMPP2P11","MPEMPP2P11","MPPMP_R20-R10_1","MLPMPP2P11","MBCMPP2P11","MO5MP_R20-R10_1","MO6MP_R20-R10_1","MO7MP_R20-R10_1","MO9MP_R20-R10_1","M_EPOOR_LMV_R20-R10_MBBL","M_EPOORD_LMV_R20-R10_MBBL","MGFMPP2P11","MGRMPP2P11","MG4MP_R20-R10_1","MG6MP_R20-R10_1","MKJMPP2P11","MKEMPP2P11","MDIMPP2P11","MD0MP_R20-R10_1","MD1MP_R20-R10_1","MDGMPP2P11"

495

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

53,"Annual",2012,"6/30/1949" 53,"Annual",2012,"6/30/1949" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_cons_sum_a_epg0_vc0_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_cons_sum_a_epg0_vc0_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:50:03 PM" "Back to Contents","Data 1: Natural Gas Consumption " "Sourcekey","N9140US2","NA1490_SAL_2","NA1490_SAK_2","NA1490_SAZ_2","NA1490_SAR_2","NA1490_SCA_2","NA1490_SCO_2","NA1490_SCT_2","NA1490_SDE_2","NA1490_SDC_2","NA1490_SFL_2","NA1490_SGA_2","NA1490_R3FM_2","NA1490_SHI_2","NA1490_SID_2","NA1490_SIL_2","NA1490_SIN_2","NA1490_SIA_2","NA1490_SKS_2","NA1490_SKY_2","NA1490_SLA_2","NA1490_SME_2","NA1490_SMD_2","NA1490_SMA_2","NA1490_SMI_2","NA1490_SMN_2","NA1490_SMS_2","NA1490_SMO_2","NA1490_SMT_2","NA1490_SNE_2","NA1490_SNV_2","NA1490_SNH_2","NA1490_SNJ_2","NA1490_SNM_2","NA1490_SNY_2","NA1490_SNC_2","NA1490_SND_2","NA1490_SOH_2","NA1490_SOK_2","NA1490_SOR_2","NA1490_SPA_2","NA1490_SRI_2","NA1490_SSC_2","NA1490_SSD_2","NA1490_STN_2","NA1490_STX_2","NA1490_SUT_2","NA1490_SVT_2","NA1490_SVA_2","NA1490_SWA_2","NA1490_SWV_2","NA1490_SWI_2","NA1490_SWY_2"

496

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

497

STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES  

Science Conference Proceedings (OSTI)

Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

2005-04-01T23:59:59.000Z

498

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

6,"Annual",2012,"6/30/1985" 6,"Annual",2012,"6/30/1985" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_pnp_dpmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_pnp_dpmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:31 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Pipeline Exports by Point of Exit " "Sourcekey","N9132US3","N9132CN3","NA1287_YEPRT-NCA_3","NGA_EPG0_PNP_YCAL-NCA_DMCF","NA1287_YDTW-NCA_3","NA1287_YMARY-NCA_3","NA1287_YSSM-NCA_3","NA1287_YCHRE-NCA_3","NA1287_YNOYS-NCA_3","NA1287_YWARR-NCA_3","NA1287_YBAB-NCA_3","NA1287_YHVR-NCA_3","NA1287_YPMOR-NCA_3","NA1287_YSHER-NCA_3","NGA_EPG0_PNP_YPITT-NCA_DMCF","NGM_EPG0_PNP_YGRIS-NCA_DMCF","NGM_EPG0_PNP_YMSS-NCA_DMCF","NA1287_YUSNI-NCA_3","NGM_EPG0_PNP_YWADD-NCA_DMCF","NA1287_YSUMS-NCA_3","N9132MX3","NA1287_YDUG-NMX_3","NA_EPG0_PNP_YNOGS-NMX_DMCF","NA1287_YCAX-NMX_3","NA1287_YOESA-NMX_3","NA1287_YOTAY-NMX_3","NA1287_YALA-NMX_3","NA1287_YCLI-NMX_3","NA_EPG0_PNP_YDRT-NMX_DMCF","NA1287_YEGP-NMX_3","NA1287_YELP-NMX_3","NA1287_YHDGO-NMX_3","NA1287_YMFE-NMX_3","NA1287_YPENI-NMX_3","NA1287_Y44RB-NMX_3","NA1287_Y44RM-NMX_3"

499

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

32,"Monthly","9/2013","1/15/1992" 32,"Monthly","9/2013","1/15/1992" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_move_poe2_a_epg0_png_dpmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_a_epg0_png_dpmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:30 PM" "Back to Contents","Data 1: U.S. Price of Liquefied Natural Gas Exports by Point of Exit " "Sourcekey","N9133US3","NGM_EPG0_PNG_NUS-NBR_DMCF","NGM_EPG0_PNG_YFPT-NBR_DMCF","NGA_EPG0_PNG_YSPL-NBR_DMCF","NGM_EPG0_PNG_NUS-NCA_DMCF","NGM_EPG0_PNG_YSWGR-NCA_DMCF","NGM_EPG0_PNG_NUS-NCI_DMCF","NGM_EPG0_PNG_YSPL-NCI_DMCF","NGM_EPG0_PNG_NUS-NCH_DMCF","NGM_EPG0_PNG_YENA-NCH_DMCF","NGM_EPG0_PNG_YSPL-NCH_DMCF","NGM_EPG0_PNG_NUS-NIN_DMCF","NGA_EPG0_PNG_YFPT-NIN_DMCF","NGM_EPG0_PNG_YSPL-NIN_DMCF","N9133JA3","NGM_EPG0_PNG_YCAM-NJA_DMCF","NA1288_YENA-NJA_3","NGA_EPG0_PNG_YSPL-NJA_DMCF","N9133MX3","NA1288_YNOGS-NMX_3","NA1288_YOTAY-NMX_3","NGM_EPG0_PNG_NUS-NPO_DMCF","NGA_EPG0_PNG_YSPL-NPO_DMCF","N9133RU3","NGM_EPG0_PNG_NUS-NKS_DMCF","NGA_EPG0_PNG_YFPT-NKS_DMCF","NGA_EPG0_PNG_YSPL-NKS_DMCF","NGM_EPG0_PNG_NUS-NSP_DMCF","NGM_EPG0_PNG_YCAM-NSP_DMCF","NGA_EPG0_PNG_YSPL-NSP_DMCF","NGM_EPG0_PNG_NUS-NUK_DMCF","NGA_EPG0_PNG_YSPL-NUK_DMCF"

500

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_move_netr_d_r10-z0p_vnr_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_netr_d_r10-z0p_vnr_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:09:56 AM" "Back to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11","MPPNRP11","MLPNRP11","METNRP11","MPRNRP11","MBNNRP11","MBINRP11","MUONRP11","MBCNRP11","MO1NR_R10-Z0P_1","M_EPOBGRR_VNR_R10-Z0P_MBBL","MO3NR_R10-Z0P_1","MO4NR_R10-Z0P_1","MO2NR_R10-Z0P_1","MO5NR_R10-Z0P_1","MO6NR_R10-Z0P_1","MO7NR_R10-Z0P_1","MO9NR_R10-Z0P_1","M_EPOOR_VNR_R10-Z0P_MBBL","M_EPOOXE_VNR_R10-Z0P_MBBL","M_EPOORD_VNR_R10-Z0P_MBBL","M_EPOORO_VNR_R10-Z0P_MBBL","MGFNRP11","MGRNRP11","MG1NR_R10-Z0P_1","M_EPM0RO_VNR_R10-Z0P_MBBL","MG4NR_R10-Z0P_1","MG5NR_R10-Z0P_1","M_EPM0CAL55_VNR_R10-Z0P_MBBL","MG6NR_R10-Z0P_1","MGANRP11","MKJNRP11","MKENRP11","MDINRP11","MD0NR_R10-Z0P_1","MD1NR_R10-Z0P_1","MDGNRP11","MRENRP11","MPFNRP11","MPNNR_R10-Z0P_1","MPONR_R10-Z0P_1","MNSNRP11","MLUNRP11","MWXNRP11","MAPNRP11","MMSNRP11"