Sample records for organic carbon content

  1. Hidden cycle of dissolved organic carbon in the deep ocean

    E-Print Network [OSTI]

    Repeta, Daniel J.

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content ...

  2. Worldwide organic soil carbon and nitrogen data

    SciTech Connect (OSTI)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01T23:59:59.000Z

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  3. 5, 11391174, 2008 Organic carbon and

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

  4. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling irradiance ARMgovMeasurementsOrganic Carbon

  5. The distribution of organic carbon in the Brazos River basin

    E-Print Network [OSTI]

    Brooks, James Mark

    1970-01-01T23:59:59.000Z

    THE DISTRIBUTION OF ORGANIC CARBON IN THE BRAZOS RIVER BASIN A Thesis by James Nark Brooks Submitted to the Graduate College of. Texas ASYi Hniversity in partial fulfillment. of the requirement for the degree of MASTER OF SCIENCE August..., 1970 Najor Subject: Oceanography THE DISTRIBUTION OF ORGANIC CARBON IN THE BRAZOS RIVER BASIN A Thesis by James Mark Brooks Approved as to style and content by: Chairman of Commrttee) (Head o Depa tme ) (Member) kJ. ( &. ) i & (Member...

  6. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  7. Protein carbon content evolves in response to carbon availability and may influence

    E-Print Network [OSTI]

    Wagner, Andreas

    Protein carbon content evolves in response to carbon availability and may influence the fate that ancestral yeast strains preferentially express proteins with low carbon content during carbon limitation, relative to strains selected in the laboratory under carbon limitation. The likely reason

  8. Total organic carbon as an indicator of wood delignification

    SciTech Connect (OSTI)

    Genco, J.M.; Hassler, J.C.; Busayasakul, N.

    1984-07-01T23:59:59.000Z

    Kraft pulping experiments were performed in a 12-liter electrically heated laboratory digester to determine pulp yields and residual lignin content (kappa number) as a function of time. Samples of the pulp and the black liquor were analyzed for total organic carbon (TOC) content by oxidizing the samples in a combustion furnace and measuring the released CO/sub 2/ gravimetrically. The experimental data on TOC were correlated with kappa number and yield. Results can be explained satisfactorily using a mathematical model based upon the principle of conservation of mass. The TOC content of black liquor appears to be a useful parameter for batch digester control. 17 references.

  9. Quantification of soil organic carbon using mid- and near- DRIFT spectroscopy

    E-Print Network [OSTI]

    Kang, Misun

    2004-09-30T23:59:59.000Z

    (X) and soil property data (Y) into a new smaller set of latent variables and their scores that best describe all the variance in the data. Oxidizable organic carbon content was measured by a modified Walkley-Black method, and total organic carbon...

  10. A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes

    E-Print Network [OSTI]

    McNichol, Ann P., 1956-

    1986-01-01T23:59:59.000Z

    A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

  11. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    SciTech Connect (OSTI)

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01T23:59:59.000Z

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  12. The Stability of Organic Solvents and Carbon Electrode in Nonaqueous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries. The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries....

  13. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18T23:59:59.000Z

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  14. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and

    E-Print Network [OSTI]

    Pace, Michael L.

    The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate investigated the effect of dissolved organic carbon (DOC) on hypolimnetic metabolism (accumulation of dissolved inorganic carbon (DIC) and methane (CH4)) in 21 lakes across a gradient of DOC concentrations (308 to 1540

  15. Soil Organic Carbon Degradation, Barrow, 2013-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gu, Baohua; Yang, Ziming

    This dataset provides information about soil organic carbon decomposition in Barrow soil incubation studies. The soil cores were collected from low-center polygon (Area A) and were incubated in the laboratory at different temperatures for up to 60 days. Transformations of soil organic carbon were characterized by UV and FT-IR, and small organic acids in water-soluble carbons were quantified by ion chromatography during the incubation

  16. Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic October 2008. [1] Correlations of particulate organic carbon (POC) and mineral fluxes into sediment traps in the deep sea have previously suggested that interactions between organic matter and minerals play a key

  17. Maximum total organic carbon limit for DWPF melter feed

    SciTech Connect (OSTI)

    Choi, A.S.

    1995-03-13T23:59:59.000Z

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T{ampersand}E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit.

  18. Carbon isotope ratios of organic compound fractions in oceanic suspended particles

    E-Print Network [OSTI]

    Hwang, Jeomshik; Druffel, Ellen R. M

    2006-01-01T23:59:59.000Z

    Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

  19. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect (OSTI)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31T23:59:59.000Z

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  20. Spot weldability of TRIP assisted steels with high carbon and aluminium contents

    E-Print Network [OSTI]

    Cambridge, University of

    Spot weldability of TRIP assisted steels with high carbon and aluminium contents G. S. Jung1 , K. Y of their aluminium concentrations of 3?5 or 5?6 wt-% and which also have high carbon contents of 0?3 or 0?4 wt-% when-ferrite, Ductility ratio, Weldability Introduction One variant of low alloy steel that benefits from transformation

  1. Management effects on labile organic carbon pools 

    E-Print Network [OSTI]

    Kolodziej, Scott Michael

    2005-08-29T23:59:59.000Z

    It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following ...

  2. Management effects on labile organic carbon pools

    E-Print Network [OSTI]

    Kolodziej, Scott Michael

    2005-08-29T23:59:59.000Z

    It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal...

  3. Predicting the oceanic input of organic carbon by continental erosion

    SciTech Connect (OSTI)

    Ludwig, W.; Probst, J.C. [Centre National de la Recherche Scientifique, Strasbourg (France)] [Centre National de la Recherche Scientifique, Strasbourg (France); Kempe, S. [Technische Hochschule Darmstadt (Germany)] [Technische Hochschule Darmstadt (Germany)

    1996-03-01T23:59:59.000Z

    Empirical models were developed to describe relationships between the climatic, biologic, and geomorphologic characteristics of major world rivers and the observed dissolved and particulate carbon fluxes. The main purpose of the study was to determine the best regression models to describe river carbon flux at a global scale. Model parameters were grouped in all possible combinations and in a way to minimize the effects of multicollinearity. All parameter combinations were then tested individually. A model was developed with parameters which corresponded well to field results and global carbon fluxes which were close to previous estimates. The model was also used to relate the variability of annual carbon fluxes to the environmental variability of river basins. The statistical approach allows only a general view, but is capable of identifying the principal factors controlling global organic carbon flux. 111 refs., 5 figs., 4 tabs.

  4. Fates of Eroded Soil Organic Carbon: Mississippi Basin Case Study

    E-Print Network [OSTI]

    Smith, S. V.; Sleezer, R. O.; Renwick, W. H.; Buddemeier, Robert W.

    2005-01-01T23:59:59.000Z

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 3 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ;480 t·km22...

  5. Organic carbon flux at the mangrove soil-water column interface in the Florida Coastal Everglades 

    E-Print Network [OSTI]

    Romigh, Melissa Marie

    2006-08-16T23:59:59.000Z

    Coastal outwelling of organic carbon from mangrove wetlands contributes to near-shore productivity and influences biogeochemical cycling of elements. I used a flume to measure fluxes of dissolved organic carbon (DOC) between ...

  6. Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices

    E-Print Network [OSTI]

    Hong, Soon Hyung

    Highly dispersed carbon nanotubes in organic media for polymer:fullerene photovoltaic devices Gwang photovoltaic device are fabricated using homogeneously dispersed carbon nanotubes (CNTs) in a polymer. All rights reserved. 1. Introduction Organic photovoltaic (OPV) materials promise the production

  7. Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

  8. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

  9. SciTech Connect: Worldwide organic soil carbon and nitrogen data

    Office of Scientific and Technical Information (OSTI)

    and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation....

  10. Fractionation between inorganic and organic carbon during the Lomagundi (2.222.1 Ga) carbon isotope excursion

    E-Print Network [OSTI]

    Bekker, Andrey

    is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger deposition, a carbon isotope fractionation as large as ~37 appears to characterize the production of bulk was dominated by a large dissolved inorganic carbon reservoir during the Lomagundi excursion. Our study suggests

  11. Slow bainite: an opportunity to determine the carbon content of the bainitic ferrite during growth

    SciTech Connect (OSTI)

    Caballero, Francesca G. [CENIM-CSIC, Madrid, Spain; Miller, Michael K [ORNL; Garcia-Mateo, C. [CENIM-CSIC, Madrid, Spain

    2011-01-01T23:59:59.000Z

    The amount of carbon in solid solution in bainitic ferrite at the early stage of transformation has been directly determined by atom probe tomography at 200 C, taking advantage of the extremely slow transformation kinetics of a novel nanocrystalline steel. Results demonstrated that the original bainitic ferrite retains much of the carbon content of the parent austenite providing strong evidence that bainite transformation is essentially displacive in nature. In this work, the carbon content of the bainitic ferrite away from any carbon-enriched regions has been determined by atom probe tomography as the bainite transformation progresses at 200 C in this nanocrystalline steel. Results provide experimental evidence for the mechanism controlling bainitic ferrite growth in steels.

  12. Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector

    E-Print Network [OSTI]

    Zhou, Chongwu

    Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

  13. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration

    E-Print Network [OSTI]

    Grunwald, Sabine

    Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

  14. Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment

    E-Print Network [OSTI]

    Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic is known about the mechanisms of PAH and other hydrophobic organic compound sequestration and aging microspectroscopy at the NSLS beamline U10B and ALS beamline 1.4 were used to identify organic carbon location

  15. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06T23:59:59.000Z

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  16. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with

    E-Print Network [OSTI]

    Paik Suh, Myunghyun

    Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

  17. Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents requires drastic modifications to the current energy infrastructure. Thus, carbon capture and sequestration for use as carbon capture adsorbents. Ideal adsorbed solution theory (IAST) estimates of CO2 selectivity

  18. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms for COF-5, 65 mg g-1 for COF-6, 87 mg g-1 for COF-8, and 80 mg g-1 for COF-10; carbon dioxide at 298 K

  19. Are environmental conditions recorded by the organic matrices associated with precipitated calcium carbonate in cyanobacterial microbialites?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    calcium carbonate in cyanobacterial microbialites? P. GAUTRET 1 , R. DE WIT 2 , G. CAMOIN 3 AND S. GOLUBIC acid composition of organic matrices associated with calcium carbonate precipitates in microbialites Caledonia (Nouméa lagoon) and French Polynesia (Tikehau atoll). Calcium carbonate precipitation

  20. Relationship between Compost Stability and Extractable Organic Carbon L. Wu and L. Q. Ma*

    E-Print Network [OSTI]

    Ma, Lena

    Relationship between Compost Stability and Extractable Organic Carbon L. Wu and L. Q. Ma* ABSTRACT to the factEstablishing a simple yet reliable compost stability test is essential that NaOH-extractable organic carbon (OC) containsfor a better compost quality control and utilization efficiency. The objective

  1. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect (OSTI)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05T23:59:59.000Z

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  2. acyclic organic carbonate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Springer-Verlag, France 2012 Abstract Soil is a major carbon pool ruling the global C cycle and in climate change because soil carbon is a source and a sink of atmospheric CO2....

  3. Table of Contents: Chapter 3 1 Organization of the Inventory Chapter 3

    E-Print Network [OSTI]

    Table of Contents: Chapter 3 1 Organization of the Inventory Chapter 3 2 Current Management.1 Methodology 30 3.2 Inventory Results 32 3.2.1 Wildlife Projects 32 3.2.2 Fish habitat projects 38 3.2.3 Fish-2. Inventoried interior riparian wetland projects/programs 34 Figure 3-3. Inventoried shrub steppe

  4. Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia

    E-Print Network [OSTI]

    Li, Xinxin

    2013-01-03T23:59:59.000Z

    The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant...

  5. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  6. Effects of Data Uncertainties on Estimated Soil Organic Carbon in the Sudan

    E-Print Network [OSTI]

    Ardö, Jonas

    Effects of Data Uncertainties on Estimated Soil Organic Carbon in the Sudan JEAN-NICOLAS POUSSART was situated in central Sudan and dominated by subsistence agroecosystems. Uncertainties in the modeling

  7. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

  8. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01T23:59:59.000Z

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  9. Metal-Containing Organic and Carbon Aerogels for Hydrogen Storage

    SciTech Connect (OSTI)

    Satcher, Jr., J H; Baumann, T F; Herberg, J L

    2005-01-10T23:59:59.000Z

    This document and the accompanying manuscript summarize the technical accomplishments of our one-year LDRD-ER effort. Hydrogen storage and hydrogen fuel cells are important components of the 2003 Hydrogen Fuel Initiative focused on the reduction of America's dependence on oil. To compete with oil as an energy source, however, one must be able to transport and utilize hydrogen at or above the target set by DOE (6 wt.% H{sub 2}) for the transportation sector. Other than liquid hydrogen, current technology falls well short of this DOE target. As a result, a variety of materials have recently been investigated to address this issue. Carbon nanostructures have received significant attention as hydrogen storage materials due to their low molecular weight, tunable microporosity and high specific surface areas. For example, the National Renewable Energy Laboratory (NREL) achieved 5 to 10 wt.% H{sub 2} storage using metal-doped carbon nanotubes. That study showed that the intimate mix of metal nanoparticles with graphitic carbon resulted in the unanticipated hydrogen adsorption at near ambient conditions. The focus of our LDRD effort was the investigation of metal-doped carbon aerogels (MDCAs) as hydrogen storage materials. In addition to their low mass densities, continuous porosities and high surface areas, these materials are promising candidates for hydrogen storage because MDCAs contain a nanometric mix of metal nanoparticles and graphitic nanostructures. For FY04, our goals were to: (1) prepare a variety of metal-doped CAs (where the metal is cobalt, nickel or iron) at different densities and carbonization temperatures, (2) characterize the microstructure of these materials and (3) initiate hydrogen adsorption/desorption studies to determine H2 storage properties of these materials. Since the start of this effort, we have successfully prepared and characterized Ni- and Co-doped carbon aerogels at different densities and carbonization temperatures. The bulk of this work is described in the attached manuscript entitled 'Formation of Carbon Nanostructures in Cobalt- and Nickel- Doped Carbon Aerogels'. This one-year effort has lead to our incorporation into the DOE Carbon-based Hydrogen Storage Center of Excellence at NREL, with funding from DOE's Energy Efficiency and Renewable Energy (EERE) Program starting in FY05.

  10. Mineralization pathways in lake sediments with different oxygen and organic carbon supply

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Mineralization pathways in lake sediments with different oxygen and organic carbon supply Martin Abstract The intensity and pathways of mineralization of sedimentary organic matter were investigated equipped with both oxygen and ion-selective electrodes. Anaerobic sedimentary mineralization ranged from 13

  11. Differential Supply of Autochthonous Organic Carbon and Nitrogen to the Microbial Loop in the Delaware Estuary

    E-Print Network [OSTI]

    such as terrestrial organic C supply, inorganic N speciation and concentrations, and extracellular release% of organic carbon (C) produced through primary production is used to fuel bacterial production (Ducklow 2000 is fueled by a combination of autochthonous and allochthonous DOM. Differen- tiating between the two sources

  12. Size fractionation of black and organic particulate carbon from fires. Final report

    SciTech Connect (OSTI)

    Dod, R.L.; Mowrer, F.; Gundel, L.A.; Williamson, R.B.; Novakov, T.

    1985-11-01T23:59:59.000Z

    Emission factors to total smoke particulates as well as organic and black carbon have been measured as a function of size for a set of building materials typical of those used in urban construction. Black carbon emissions (mass per fuel mass) were similar among the wood fuels studied, although the dominant form of combustion varied from flaming to smoldering. Black carbon was found predominantly in the finest size ranges (less than or equal to 0.20 ..mu..m). Polyurethane foam produced a greater emission of black carbon, and the particle size distribution of that carbon extended to much larger aerodynamic diameters than did those of the wood samples. For the fuels tested, total smoke particle emissions ranged from 0.3 to 2.3 percent of fuel mass; black carbon emissions were 0.03 to 0.3 percent of fuel mass.

  13. Environmental effects of dredging. Interim results: The relationship between sediment organic carbon and biological uptake of contaminants. Technical note

    SciTech Connect (OSTI)

    Brannon, J.M.; Price, C.B.; Reilly, F.J.

    1991-11-01T23:59:59.000Z

    This technical note describes testing conducted to determine the partitioning of contaminants between sediment organic carbon and sediment interstitial water, assess the effects of sediment organic carbon upon bioaccumulation of a selected polychlorinated biphenyl (PCB) and polycyclic aromatic hydrocarbon (PAH) by two organisms, and investigate the accuracy of the apparent preference factor as a predictive tool by comparing predicted uptake with actual uptake.

  14. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng [ORNL] [ORNL; Schimel, Joshua [University of California, Santa Barbara] [University of California, Santa Barbara; Thornton, Peter E [ORNL] [ORNL; Song, Xia [ORNL] [ORNL; Yuan, Fengming [ORNL] [ORNL; Goswami, Santonu [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  15. Survey of organic content in bottom sediments of the Houston Ship Channel

    E-Print Network [OSTI]

    Smith, Richard Hugh

    1968-01-01T23:59:59.000Z

    dge Depths . . . . . . . . ~ Average Organic Con ent Per Sample V DISCUSSION 33 37 Volume of Sludge Evaluat-'on of ' abcratory Data Application of Results VI SUNJiARY AND CONCLiJSIONS 37 50 REFERENCES LIS'T OF TABLES Table OBSERVATIONS... Page 15 2 TEST 1: BOD AT VARIOUS SLUDGE DEPTHS 3 TEST 2: COD AT VARIOUS SLUDC DEPTHS 29 30 TEST 3: SOLIDS CONTENT AT VARIOUS SLUDGE DEPTHS . . . . . . . . . . . . . . . . 31 5 TEST 4: AVERAGE BOD PER SAYiPLE ~ . . ~ ~ 34 6 TEST 5: AVERAGE COD...

  16. 1 Protection of Organic Carbon in Soil Microaggregates Occurs via Restructuring of Aggregate Porosity and Filling of Pores with Accumulating Organic Matter

    E-Print Network [OSTI]

    McCarthy, John F.

    , and insights relevant to strategies for enhancing 44 carbon-sequestration in soil through changes 53 sequestration as a strategy to help mitigate anthropogenic carbon emissions (Post et al., 20041 Protection of Organic Carbon in Soil Microaggregates Occurs via Restructuring of Aggregate

  17. Hydrogenolysis of 6-carbon sugars and other organic compounds

    DOE Patents [OSTI]

    Werpy, Todd A.; Frye, Jr., John G.; Zacher, Alan H.; Miller, Dennis J.

    2005-01-11T23:59:59.000Z

    Methods for hydrogenolysis are described which use a Re-containing multimetallic catalyst for hydrogenolysis of both C--O and C--C bonds. Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 6-carbon sugar, sugar alcohol, or glycerol are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol.

  18. Quantification of the Effects of Organic and Carbonate Buffers on

    E-Print Network [OSTI]

    Sverjensky, Dimitri A.

    on a Goethite-Based Granular Porous Adsorbent M A S A K A Z U K A N E M A T S U , * , T H O M A S M . Y O U N G well characterized goethite-based adsorbent (Bayoxide E33 (E33)). All adsorption isotherms obtained calibrated using independent published carbonate adsorption data for pure goethite taking into consideration

  19. A method for the determination of dissolved organic carbon in sea water by gas chromatography

    E-Print Network [OSTI]

    Fredericks, Alan D

    1965-01-01T23:59:59.000Z

    OF PLATES Plate Page I Front Oblique View of Ampoule Flushing and Sealing Apparatus . 15 2 Side View of Ampoule Flushing and Sealing Apparatus . 17 3 Ampoule Crushing Apparatus 4 Two Position Gas Valve 5 Carbon Dioxide Analysis Apparatus 29 37 45... is passed through an infrared analyzer using nitrogen as a carrier gas. The purpose of this investigation was to develop a shipboard method for determining the concentration of dissolved organic carbon in sea water samples. Sea water was sealed in glass...

  20. The distribution of dissolved and particulate organic carbon in the southeastern Indian Ocean

    E-Print Network [OSTI]

    Abd El-Reheim, Hussein Anwar

    1976-01-01T23:59:59.000Z

    . rbe rloSxee of NASTI. R OP SCIENCE Decerabex 1976 Na)or Subject: OueanoStaPby THE DISTRIBUTION OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN THE SOUTHEASTERN INDIAN OCEAN A Thesis by HUSSEIN ANWAR ABD EL-REHEIM (Co-Chairman of ommittee) (Co...-C irman of Commit e) (Head of Department) (Member) r (Member) December 1976 ABSTtlACT The Distribution of Dissolved and Particulate Organic Carbon In the Southeastern Indian Ocean. (December 1976) Hussein Anwan Abd El-Reheim B. Sc. , Alexandria...

  1. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    with ~100 S/m of electrical conductivity, resulting ~10,000 µW/m-K2 of power factor. The result of this study shows that organic thermoelectric materials would be a promising approach for thermoelectric applications with light-weight and non-toxic nature....

  2. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide

    E-Print Network [OSTI]

    Orejuela, Mauricio

    1994-01-01T23:59:59.000Z

    for removing organic contaminants from soil and from water. Most studies on SCF's concentrated on phase behavior in supercritical mixtures. Investigations of the adsorption phenomena and studies on hydrodynamics and transport rate parameters are relatively...LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  3. Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

  4. Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S. Walker, and Geraldine L. Richmond*

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S remediation. The carbon tetrachloride-water interface in particular has been the subject of numerous the density profile across the interface. No detailed studies of the carbon tetrachloride structure

  5. Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores

    E-Print Network [OSTI]

    Stocker, Thomas

    Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores U R S F E D E R E R , * , , P, University of Bern, Bern, Switzerland, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, and British Antarctic Survey, Cambridge, United Kingdom Received May 6, 2008. Revised manuscript

  6. Quick transport of primary produced organic carbon to the ocean M. C. Honda,1

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    Quick transport of primary produced organic carbon to the ocean interior M. C. Honda,1 H. Kawakami±10%,whichissignificantly higher than that in other oceans. Citation: Honda, M. C., H. Kawakami, K. Sasaoka, S. Watanabe at 150 m that is ca. 50 m below the late winter mixed layer at station K2 (M. C. Honda, unpublished data

  7. The Effect of Metal Salts on Quantification of Elemental and Organic Carbon in Diesel Exhaust

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    The Effect of Metal Salts on Quantification of Elemental and Organic Carbon in Diesel Exhaust-loaded diesel samples. Estimated TC was calculated from the BC concentration measured by optical transmissometer and linear relationship between TC and BC, TC (µg)= 1.78 ×BC(µg) - 21.97, derived from diesel reference

  8. Organic carbon sources and transformations in mangrove sediments: A Rock-Eval pyrolysis approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Organic carbon sources and transformations in mangrove sediments: A Rock-Eval pyrolysis approach C'Orléans, CNRS/INSU, Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans, France Abstract A Rock cycling in this specific environment using a method that allows monitoring the depth evolution of sources

  9. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Paulson, S E

    2012-05-30T23:59:59.000Z

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  10. Li+ solvation in pure, binary and ternary mixtures of organic carbonate electrolytes

    E-Print Network [OSTI]

    Skarmoutsos, Ioannis; Vetere, Valentina; Mossa, Stefano

    2014-01-01T23:59:59.000Z

    Classical molecular dynamics (MD) simulations and quantum chemical density functional theory (DFT) calculations have been employed in the present study to investigate the solvation of lithium cations in pure organic carbonate solvents (ethylene carbonate (EC), propylene carbonate (PC) and dimethyl carbonate (DMC)) and their binary (EC-DMC, 1:1 molar composition) and ternary (EC-DMC-PC, 1:1:3 molar composition) mixtures. The results obtained by both methods indicate that the formation of complexes with four solvent molecules around Li+, exhibiting a strong local tetrahedral order, is the most favorable. However, the molecular dynamics simulations have revealed the existence of significant structural heterogeneities, extending up to a length scale which is more than five times the size of the first coordination shell radius. Due to these significant structural fluctuations in the bulk liquid phases, the use of larger size clusters in DFT calculations has been suggested. Contrary to the findings of the DFT calcu...

  11. Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1

    SciTech Connect (OSTI)

    Fowler, K.D.

    1993-07-01T23:59:59.000Z

    This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

  12. The effects of water on the passive behavior of 1018 carbon steel in organic solutions

    SciTech Connect (OSTI)

    Shifler, D.A.; Kruger, J. (John Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering); Moran, P.J. (Naval Academy, Annapolis, MD (United States). Dept. of Mechanical Engineering)

    1994-04-01T23:59:59.000Z

    The passivation and breakdown behavior of 1018 carbon steel in propylene carbonate (PC) or dimethoxyethane (DME) mixtures with water and containing 0.5M LiAsF[sub 6] were studied. The behavior of the steel in the organic solvent/water mixtures was highly dependent on the organic solvent. The anodic polarization of carbon steel displayed active-passive behavior in 10--90 mole percent (m/o) PC/H[sub 2]O mixtures and a tenuous degree of stability within the passive range. The anodic polarization of carbon steel displayed no active-passive behavior in 50--90 m/o DME/H[sub 2]O mixtures and displayed active-passive behavior in 10--30 m/o DME/H[sub 2]O mixtures. The steel was stable within the passive range of these DME/H[sub 2]O solutions. The breakdown potential of the steel in DME/H[sub 2]O mixtures is more electropositive than the oxidation potential of the DME solvent at all molar ratios.

  13. Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites

    SciTech Connect (OSTI)

    Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

    2014-05-14T23:59:59.000Z

    By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

  14. Partitioning Behavior of Organic Contaminants in Carbon Storage Environments: A Critical Review

    SciTech Connect (OSTI)

    Burant, Aniela; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2013-01-01T23:59:59.000Z

    Carbon capture and storage is a promising strategy for mitigating the CO{sub 2} contribution to global climate change. The large scale implementation of the technology mandates better understanding of the risks associated with CO{sub 2} injection into geologic formations and the subsequent interactions with groundwater resources. The injected supercritical CO{sub 2} (sc-CO{sub 2}) is a nonpolar solvent that can potentially mobilize organic compounds that exist at residual saturation in the formation. Here, we review the partitioning behavior of selected organic compounds typically found in depleted oil reservoirs in the residual oil–brine–sc-CO{sub 2} system under carbon storage conditions. The solubility of pure phase organic compounds in sc-CO{sub 2} and partitioning of organic compounds between water and sc-CO{sub 2} follow trends predicted based on thermodynamics. Compounds with high volatility and low aqueous solubility have the highest potential to partition to sc-CO{sub 2}. The partitioning of low volatility compounds to sc-CO{sub 2} can be enhanced by co-solvency due to the presence of higher volatility compounds in the sc-CO{sub 2}. The effect of temperature, pressure, salinity, pH, and dissolution of water molecules into sc-CO{sub 2} on the partitioning behavior of organic compounds in the residual oil-brine-sc-CO{sub 2} system is discussed. Data gaps and research needs for models to predict the partitioning of organic compounds in brines and from complex mixtures of oils are presented. Models need to be able to better incorporate the effect of salinity and co-solvency, which will require more experimental data from key classes of organic compounds.

  15. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic t aerosols change color from white to brown in pres- ence of ammonia. occurs for a wide range of biogenic and anthropogenic aerosols.

  16. An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application

    E-Print Network [OSTI]

    Coppola, Laurent

    An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact February 2006 Abstract Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily

  17. Determining Sources of Dissolved Organic Carbon and Nutrients in an Urban Basin Using Novel and Traditional Methods

    E-Print Network [OSTI]

    Govil, Krittika

    2014-01-03T23:59:59.000Z

    Water quality in urban ecosystems is sensitive to localized disturbances potentially affecting those mechanisms which influence nutrient cycles. The Carters Creek Basin has been reported to have elevated concentrations of dissolved organic carbon...

  18. Organic carbon and non-refractory aerosol over the remote1 Southeast Pacific: oceanic and combustion sources2

    E-Print Network [OSTI]

    Wood, Robert

    1 Organic carbon and non-refractory aerosol over the remote1 Southeast Pacific: oceanic ratios between 0.25 and 0.40, and in some cases as high as 3.5. CO and12 black carbon (BC) measurements-salt particles30 from wave breaking and bubble bursting, as well as gas to particle conversion of vapors31

  19. Physiological changes in cultured Sorghum bicolor (L.) Moench cells in response to induced water stress: osmotic potential, relative water content, carbohydrates, organic acids, potassium, and amino acids

    E-Print Network [OSTI]

    Diquez, Ricardo

    1987-01-01T23:59:59.000Z

    UUZEZCLUUZCRL CIIEUEE IE CULTURED ~8OR ICE RICCICR IL ) MOBMCH CELLS IE RESPONSE TO INDUCED WATER STRESS OSMOTIC POTEMTZAL E RELATIVE WATER CONTENT E CARBOHYDRATES U ORGANIC ACIDS@ POTASSIUM E AED AMINO ACIDS A Thesis by RICARDO DIQUEZ... ZN RESPONSB TO IHDUCBD WATBR STRESS'- OSMOTIC POTENTIAL~ RELATIVE WATER CONTENT~ CARBOHYDRATES, ORGANIC ACIDS, POTASSIUM, AND AMINO ACIDS A Thesis by RICARDO DIQUEZ Approved as to style and content by: Roberta H. Smith (Chair of Committee...

  20. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of gas-phase organic the two methods except for products of incomplete combustion, which are not present in uncombusted fuels

  1. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-OrganicCarbon

  2. Sequestration of terrigenous organic carbon on the northern California shelf : role of hyperpycnal flows

    E-Print Network [OSTI]

    Moeremans, Raphaële E.

    2011-01-01T23:59:59.000Z

    analyzed for total mass, calcium carbonate, biogenic silica,matter and fluxes of calcium carbonate varied similarly toand biological production. Calcium carbonate and combustible

  3. Effects of organic carbon supply rates on mobility of previously bioreduced uranium in a contaminated sediment

    SciTech Connect (OSTI)

    Wan, J.; Tokunaga, T.K.; Kim, Y.; Brodie, E.; Daly, R.; Hazen, T.C.; Firestone, M.K.

    2008-05-15T23:59:59.000Z

    Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O{sub 2}, NO{sub 3}{sup -}), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our earlier hypothesis on the mechanism responsible for re-oxidation of microbial reduced U(IV) under reducing conditions; that microbial respiration caused increased (bi)carbonate concentrations and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time.

  4. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast

    SciTech Connect (OSTI)

    Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

    2007-08-08T23:59:59.000Z

    The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

  5. Study of dissolved organic matter in peatlands: molecular characterisation of a dynamic carbon reservoir 

    E-Print Network [OSTI]

    Ridley, Luke McDonald

    2014-06-30T23:59:59.000Z

    Northern peatlands represent a significant carbon reservoir, containing approximately a third of the terrestrial carbon pool. The stability of these carbon stores is poorly understood, and processes of accumulation and ...

  6. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30T23:59:59.000Z

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

  7. Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame

    SciTech Connect (OSTI)

    Cain, Jeremy P.; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray; Wang, Hai

    2014-10-29T23:59:59.000Z

    High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (n= 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can both exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initially, mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen-abstraction-carbon addition mechanism currently considered in fundamental models of soot formation.

  8. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect (OSTI)

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16T23:59:59.000Z

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  9. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321

    SciTech Connect (OSTI)

    Olson, D.

    2012-04-01T23:59:59.000Z

    Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

  10. Quantifying the flux of CaCO3 and organic carbon from the surface ocean using in situ measurements

    E-Print Network [OSTI]

    Quantifying the flux of CaCO3 and organic carbon from the surface ocean using in situ measurements attention on the importance of understanding the rates and mechanisms of CaCO3 formation so that changes can be monitored and feedbacks predicted. We present a method for determining the rate of CaCO3 production using

  11. The Relationships of Particulate Matter and Particulate Organic Carbon with Hypoxic Conditions Along the Texas-Louisiana Shelf

    E-Print Network [OSTI]

    Zuck, Nicole A

    2014-08-06T23:59:59.000Z

    an onboard surface-water flow-through system, CTD casts, and by an undulating towed vehicle. Total particulate matter and particulate organic carbon samples were obtained from Niskin bottles on CTD casts. Samples were also taken to measure dissolved oxygen...

  12. Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities

    E-Print Network [OSTI]

    Zheng, Mei

    Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian, and Chandigarh is speciated to quantify sources contributing to fine particle pollution. Gas chromatography patterns of the impact of these five sources are observed. On average, primary emissions from fossil fuel

  13. A new estimate of the CaCO3 to organic carbon export ratio J. L. Sarmiento, J. Dunne, A. Gnanadesikan,1

    E-Print Network [OSTI]

    Matsumoto, Katsumi

    A new estimate of the CaCO3 to organic carbon export ratio J. L. Sarmiento, J. Dunne, A of the water column to estimate the CaCO3 to organic carbon export ratio from observations of the vertical based their parameterization of CaCO3 production. Contrary to the pattern of coccolithophore blooms

  14. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01T23:59:59.000Z

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  15. Adsorption and desorption of atrazine and deethylatrazine by low organic carbon geologic materials

    SciTech Connect (OSTI)

    Roy, W.R.; Krapac, I.G. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-05-01T23:59:59.000Z

    The adsorption and desorption of atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) and a primary metabolite, deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine; DEA), by low organic C ({le} 3.3 g kg{sup -1}) materials were measured by batch-equilibrium techniques. The adsorbents were samples of glacial outwash sand, till, and stream sediments. The adsorption of both atrazine and DEA conformed to linear isotherms. The adsorption of atrazine by most of the absorbents yielded apparent K, values that were in excess of those based on surface agricultural soils. Adsorption correlated with only the pH of the sand-water suspensions. The desorption of atrazine was hysteretic under the conditions of the measurement. DEA had a lower affinity for the same adsorbents; the mean ratio of Kd values of DEA to those of atrazine was 0.37 {+-} 0.20. DEA adsorption did not correlate with organic C, surface area, clay content of the adsorbents, or with the pH of the suspensions. DEA adsorption, unlike atrazine, tended to be reversible. There was a linear relationship between the adsorption constants of atrazine and those of DEA. 40 refs., 8 figs., 3 tabs.

  16. Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon

    E-Print Network [OSTI]

    Flores Cervantes, Déborah Xanat, 1978-

    2008-01-01T23:59:59.000Z

    Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

  17. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    SciTech Connect (OSTI)

    None

    1981-04-01T23:59:59.000Z

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

  18. Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide 

    E-Print Network [OSTI]

    Orejuela, Mauricio

    1994-01-01T23:59:59.000Z

    Carbon Dioxide. 5. Measured Diffusion Coefficients of Hexachlorobenzene in Supercritical Carbon Dioxide. 6. Measured Diffusion Coefficients of Pentachlorophenol in Supercritical Carbon Dioxide. 7. Carbon Dioxide Parameters as Determined by Empirical..., and for polyatomic solute and solvent molecules, A?was set to 0. 70. Erkey (1989) determined the translational-rotational coupling parameters for binary n-Alkane systems from measured diffusivity data at a wide range of densities. It was shown...

  19. Size-resolved parameterization of primary organic carbon in fresh marine aerosols

    SciTech Connect (OSTI)

    Long, Michael S [ORNL; Keene, William C [ORNL; Erickson III, David J [ORNL

    2009-12-01T23:59:59.000Z

    Marine aerosols produced by the bursting of artificially generated bubbles in natural seawater are highly enriched (2 to 3 orders of magnitude based on bulk composition) in marine-derived organic carbon (OC). Production of size-resolved particulate OC was parameterized based on a Langmuir kinetics-type association of OC to bubble plumes in seawater and resulting aerosol as constrained by measurements of aerosol produced from highly productive and oligotrophic seawater. This novel approach is the first to account for the influence of adsorption on the size-resolved association between marine aerosols and OC. Production fluxes were simulated globally with an eight aerosol-size-bin version of the NCAR Community Atmosphere Model (CAM v3.5.07). Simulated number and inorganic sea-salt mass production fell within the range of published estimates based on observationally constrained parameterizations. Because the parameterization does not consider contributions from spume drops, the simulated global mass flux (1.5 x 10{sup 3} Tg y{sup -1}) is near the lower limit of published estimates. The simulated production of aerosol number (2.1 x 10{sup 6} cm{sup -2} s{sup -1}) and OC (49 Tg C y{sup -1}) fall near the upper limits of published estimates and suggest that primary marine aerosols may have greater influences on the physiochemical evolution of the troposphere, radiative transfer and climate, and associated feedbacks on the surface ocean than suggested by previous model studies.

  20. Mesoscale Biotransformation of Uranium: Influences of Organic Carbon Supply Rates and Sediment Oxides

    SciTech Connect (OSTI)

    Tetsu Tokunaga; Jiamin Wan; Yongman Kim; Rebecca Daly; Eoin Brodie; Mary Firestone; Terry Hazen; Steve Sutton; Matt Newville; Tony Lanzirotti; Bill Rao

    2007-04-19T23:59:59.000Z

    Remediation and long-term stewardship of uranium-contaminated sediments and groundwaters are critical problems at a number of DOE facilities and mining sites. Some remediation strategies based on in-situ bioreduction of U are potentially effective in significantly decreasing U concentrations in groundwaters. However, a number of basic processes require understanding in order to identify conditions more conducive to success of reduction-based U stabilization. Our current research targets several of these issues including: (1) effects of organic carbon (OC) forms and supply rates on stability of bioreduced U, (2) the roles of Fe(III)- and Mn(III,IV)-oxides as potential U oxidants in sediments, and (3) microbial community changes in relation to U redox changes. These issues were identified in our previous study on U bioreduction and reoxidation (Wan et al., 2005). Most of our studies are being conducted on historically U-contaminated sediments from Area 2 of the Field Research Center, Oak Ridge National Laboratory, in flow-through columns simulating in-situ field remediation.

  1. The Effects of Moisture and Organic Matter Lability on Carbon Dioxide and Methane Production in an

    E-Print Network [OSTI]

    Vallino, Joseph J.

    amounts of carbon in the form of peat and other undecomposed plant matter. Global climate change al. 2003). The carbon stored in wetlands is in the form of undecayed plant matter, or peat. Peat carbon are very useful for agricultural purposes. Their peat and preserved timber has been mined

  2. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  3. A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs

    E-Print Network [OSTI]

    Al-Douri, Ahmad F

    2014-05-28T23:59:59.000Z

    high corrosion rate. As a result, alternatives to HCl have been investigated including organic acids. In this work, the reaction of a new organic acid with calcite was investigated using the rotating disk apparatus and coreflood setup. The organic acid...

  4. Carbon and Nitrogen Isotopic Signatures and Nitrogen Profile To Identify Adulteration in Organic Fertilizers

    E-Print Network [OSTI]

    Mazumder, Asit

    growth regulators such as hormones, livestock antibiotics, food additives, genetically modified organisms

  5. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04T23:59:59.000Z

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  6. The significance of organic carbon and sediment surface area to the benthic biogeochemistry of the slope and deep water environments of the northern Gulf of Mexico

    E-Print Network [OSTI]

    Beazley, Melanie J.

    2004-09-30T23:59:59.000Z

    of sediment wt % <63 µm to surface area?????.... 19 4 5 Grain size tertiary diagram????????????????... Map of Gulf of Mexico wt % organic carbon???..?????? 19 22 6 Map of Gulf of Mexico organic carbon-to-surface area (OC/SA)?... 23 7 Map of Gulf... abundance.?????????... 35 14 Linear regression analysis of OC/SA and water depth for the GOM sample set????????????????.??????? 37 15 Linear regression analysis of OC/SA with an east/west gradient...

  7. 1256 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 5, SEPTEMBER 2005 Web Content Management by Self-Organization

    E-Print Network [OSTI]

    Yin, Hujun

    --We present a new method for content management and knowledge discovery using a topology-preserving neural to manually annotate electronic documents, e.g., webmas- ters and knowledge managers dealing with content-commerce, software contents management, doc- ument management and knowledge discovery [1]. Document management

  8. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

  9. A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Al-Douri, Ahmad F

    2014-05-28T23:59:59.000Z

    Carbonate acidizing has been carried out using HCl-based stimulation fluids for decades. However, at high temperatures, HCl does not produce acceptable results because of its fast reaction, acid penetration, and hence surface dissolution, and its...

  10. Electrodeposited Manganese Oxides on Three-Dimensional Carbon Nanotube Substrate: Supercapacitive Behaviour in Aqueous and Organic Electrolytes

    SciTech Connect (OSTI)

    Nam,K.W.; Yang,X.

    2009-03-01T23:59:59.000Z

    Thin amorphous manganese oxide layers with a thickness of 3-5nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure (denoted asMnO2/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO2 film electrode). The pseudocapacitive properties of the MnO2 film and MnO2/CNT electrodes are examined in both aqueous electrolyte (1.0M KCl) and nonaqueousorganic electrolyte (1.0M LiClO4 in propylene carbonate). While both types of electrode showpseudocapacitive behaviour in the aqueous electrolyte, only the MnO2/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO2 film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used.Use of the organic electrolyte results in a ?6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a threedimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energyof supercapacitors.

  11. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01T23:59:59.000Z

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  12. TRACE ELEMENTS LEACHING FROM ORGANIC SOILS STABILIZED WITH HIGH CARBON FLY ASH

    E-Print Network [OSTI]

    Aydilek, Ahmet

    and Se for organic soil-HCFA mixtures. Keywords: organic soil, fly ash, coal combustion products, CCPs INTRODUCTION Fly ash is a silt-size particulate collected by air pollution control systems at coal fly ashes (HCFAs) generally are disposed in landfills (Hodges and Keating 1999). However, many HCFAs

  13. Redistribution ofmulti-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system

    E-Print Network [OSTI]

    Sparkes, Robert B.; Lin, In-Tian; Hovius, Niels; Galy, Albert; Liu, James T.; Xu, Xiaomei; Yang, Rick

    2015-02-25T23:59:59.000Z

    coring less than 2 months after the event. We use the different origins of organic carbon, distinguished by their carbon and nitrogen concentrations and ?13C and ?15N isotopic composition, to compare and contrast standard and extreme sedimentological...

  14. Quantification of soil organic carbon using mid- and near- DRIFT spectroscopy 

    E-Print Network [OSTI]

    Kang, Misun

    2004-09-30T23:59:59.000Z

    New, rapid techniques to quantify the different pools of soil organic matter (SOM) are needed to improve our understanding of the dynamics and spatio-temporal variability of SOM in terrestrial ecosystems. In this study, ...

  15. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    E-Print Network [OSTI]

    Kroll, Jesse

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

  16. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    SciTech Connect (OSTI)

    Pekala, R.W.

    1998-04-28T23:59:59.000Z

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  17. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    SciTech Connect (OSTI)

    Pekala, Richard W. (Pleasant Hill, CA)

    1998-04-28T23:59:59.000Z

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes .ltoreq.1000 .ANG., and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050.degree. C. to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors.

  18. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  19. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    SciTech Connect (OSTI)

    Last, G.V. (Pacific Northwest Lab., Richland, WA (United States)); Rohay, V.J. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-05-06T23:59:59.000Z

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl{sub 4}), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl{sub 4}. This paper contains brief descriptions of the principal CCl{sub 4} waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl{sub 4} distributions.

  20. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    SciTech Connect (OSTI)

    Last, G.V. [Pacific Northwest Lab., Richland, WA (United States); Rohay, V.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1991-05-06T23:59:59.000Z

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site`s 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl{sub 4}), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford`s plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl{sub 4}. This paper contains brief descriptions of the principal CCl{sub 4} waste disposal facilities in Hanford`s 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl{sub 4} distributions.

  1. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    SciTech Connect (OSTI)

    Schilling, J.B.

    1997-09-01T23:59:59.000Z

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

  2. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot; Ron Himes

    2004-05-31T23:59:59.000Z

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  3. Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles

    E-Print Network [OSTI]

    Hwang, Jeomshik; Druffel, Ellen R. M; Eglinton, Timothy I

    2010-01-01T23:59:59.000Z

    waters is from sediment resuspension and lateral particleand Hovan, 1995]. Resuspension of sediment and subsequentet al. , 2005]. If sediment resuspension was responsible for

  4. Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

    SciTech Connect (OSTI)

    Bobrinetskiy, I. I.; Emelianov, A. V.; Nevolin, V. K., E-mail: vkn@miee.ru; Romashkin, A. V. [National Research University “Moscow Institute of Electronic Technology” (MIET) (Russian Federation)

    2014-12-15T23:59:59.000Z

    It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The I–V characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is.

  5. Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Warburton, William K. [XIA LLC

    2014-01-24T23:59:59.000Z

    This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

  6. Environmental effects of dredging. Lower limits of organic carbon normalization: Results of fish/sediment/water equilibrium partitioning studies. Technical note

    SciTech Connect (OSTI)

    McFarland, V.A.; Honeycutt, M.E.; Feldhaus, J.; Ace, L.N.; Brannon, J.M.

    1996-03-01T23:59:59.000Z

    This technical note reports the initial results of studies measuring biota/ sediment/water equilibrium partitioning of a polychlorinated biphenyl (PCB) congener. The focus of this technical note is on the validity of normalizing concentrations of neutral organic chemicals on sediment total organic carbon (TOC) when sediment TOC concentrations are low. Over the past 10 years, the U.S. Environmental Protection Agency (EPA) has aggressively pursued development of single-chemical sediment quality criteria (SQC). Equilibrium partitioning of neutral organic chemicals between the organic carbon fraction of bedded sediments and the interstitial water of the sediments provides the theoretical basis for the most popular approach to development of SQC. The solution phase of the chemical in equilibrium with the sediment is considered to represent the bioavailable fraction and to enable the conversion of existing water quality criteria (WQC) into SQC or sediment quality standards.

  7. Bioavailable organic carbon in wetland soils across a broad climogeographic area

    E-Print Network [OSTI]

    Baker, Andrew Dwight

    2002-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . 40 11 Microbial biomass determined using the CFI method. . . . . . 12 Microbial biomass determined by the CFE method for soils from each state . . 44 13 Microbial biomass determined by the CFI method without subtraction of a control . . . . . 47... and subsurface horizons from di fferent states. . . . 43 The percentage of SOC constituted by biomass (measured by CFE) in organic, mineral surface and subsurface horizons over thc whole data set and from different states. . . 46 The percentage of SOC...

  8. Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon

  9. {sup 210}Pb dating of sediments from the central and northern Adriatic Sea: deposition and preservation of sedimentary organic carbon

    SciTech Connect (OSTI)

    Hamilton, T. F., LLNL

    1998-04-01T23:59:59.000Z

    Lead-210 ({sup 21O}Pb) and organic C depth distribution profiles in sediments from the northern and central Adriatic Sea were measured as part of the EEC funded project on Eutrophic Limits of the Northern Adriatic (ELNA). {sup 210}Pb derived mass-accumulation rates decrease southward from between 0.15 and 0.2 g cm{sup -2}y{sup -1} close to the Po River outflow (> 24 m, water depth) to less than 0.04 g cm{sup -2}y{sup -1} in the Jabuka Pit (246 m, water depth) in the central Adriatic Sea. The mass- accumulation rates obtained in the Jabuka Pit correspond to mean sedimentation rates of about 0.03 cm y{sup -1} (ref. porosity = 0.5) and fall between 5 to 20 times lower than rates found for north Adriatic shelf cores. Estimated sedimentation rates are considered as upper limits because of the possible effects of bioturbation and physical disturbance on the {sup 21O}Pb sedimentary record but are consistent with data from previous work. Rates of sediment accumulation and carbon burial appear to be strongly influenced by the transport of fluvial materials from land and transport of fine-grained particles. First-order estimates of organic C burial rates into surface sediment ranged from 1 to 0.028 mMol cm{sup -2}y{sup -1} between the Po delta and the Jabuka Pit regions, respectively. We estimate that a maximum of 50% of organic C preserved in surface sediment may be derived from biological production in the overlying water column.

  10. Influence of age and water stress upon organic acid content and nitrogen metabolism of Gossypium hirsutum L

    E-Print Network [OSTI]

    Coon, Craig Nelson

    1970-01-01T23:59:59.000Z

    , The nitrate content of barley, sweet pea, and red kidney bean increases in relation to the amount of soil moisture tension (69, 44, 13). The soil moisture tension was increased by uniformly increasing the osmotic pressure of the nutrient solution... determined with a nitrogen analyzer. Nitrate- nitrogen was determined with a nitrate ion electrode in conjunction with an expanded scale pH meter. A Beckman Nodel 120B amino acid analyzer and a Barber-Coleman dual column, dual flame ionization ges...

  11. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  12. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    David A Lesch

    2010-06-30T23:59:59.000Z

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

  13. The effect of various cropping systems upon the stability of aggregates: the rate of water infiltration, and the organic matter content of three soil conditions in the Texas Blacklands.

    E-Print Network [OSTI]

    Quintero, Angel H

    1951-01-01T23:59:59.000Z

    of the soil snd its relation to water oonserxation and to crop production has been recognised for a long tixm by uorkmrs e~ in agricultural research Soil fertility and plant growth are affected by a nuaber of faotarsx among which structurex organic matter.... . . , ?, ~ . ~ ~ ~ 31 ~ ~ ~ 32 ~ ~ ~ 33 Average pex'oentages of organic carbon in tbe surface layer of three land classes in 6 different cropping systelwl ~ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 34 Analysis of varianoe of organic oarbon in tbs...

  14. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot

    2004-06-30T23:59:59.000Z

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  15. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

  16. Emission and Chemistry of Organic Carbon in the Gas and Aerosol Phase at a Sub-Urban Site Near Mexico City in March 2006 During the MILAGRO Study

    SciTech Connect (OSTI)

    de Gouw, Joost A.; Welsh-Bon, Daniel; Warneke, Carsten; Kuster, W. C.; Alexander, M. L.; Baker, Angela K.; Beyersdorf, Andreas J.; Blake, D. R.; Canagaratna, Manjula R.; Celada, A. T.; Huey, L. G.; Junkermann, W.; Onasch, Timothy B.; Salcido, A.; Sjostedt, S. J.; Sullivan, Amy; Tanner, David J.; Vargas-Ortiz, Leroy; Weber, R. J.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-05-28T23:59:59.000Z

    Volatile organic compounds (VOCs) and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives). Diurnal variations of hydrocarbons, elemental carbon (EC) and hydrocarbon-like organic aerosol (HOA) were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA) and water-soluble organic carbon (WSOC) stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the U.S., but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the U.S., due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the U.S. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC), and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps not dissimilar from observations in the U.S.

  17. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    SciTech Connect (OSTI)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03T23:59:59.000Z

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and 0.6 m in diameter. The concentrations of OC and BC{sub e} varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

  18. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  19. This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    to address these challenges. Keywords: soil organic carbon, Earth system models, uncertainty, carbon

  20. Computational modeling of metal-organic frameworks

    E-Print Network [OSTI]

    Sung, Jeffrey Chuen-Fai; Sung, Jeffrey Chuen-Fai

    2012-01-01T23:59:59.000Z

    11 1.3.1. Carbon Capture andOrganic Frameworks 1.3.1. Carbon Capture and Separation Theuseful materials for carbon capture and separation. In a

  1. Organic matter of anoxic and oxygenated marine waters

    E-Print Network [OSTI]

    Gershey, Robert Michael

    1974-01-01T23:59:59.000Z

    in the water column of the Trench indicated that no enrich- ment of organic matter has occurred with respect to the oxygenated water. The organic carbon content of the first 10 cm of a gravity core taken in the Trench was 3. 4%, as compared to a value of 1... Distributions of Sulfide Sulfur and Dis- solved Oxygen as a Function of Depth for Station 4 (10'38' N; 65'24' W) October, 1972 34 6 Distribution of Dissolved Organic Carbon (DOC) as a Function of Depth for Sta- tion 4 (10'38'N; 65'24'W) and Station 6 (11...

  2. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10T23:59:59.000Z

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  3. Journal of Economic Behavior & Organization 90S (2013) S45S56 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Richerson, Peter J.

    2013-01-01T23:59:59.000Z

    .elsevier.com/locate/jebo A naturalistic theory of economic organization J.W. Stoelhorsta, , Peter J. Richersonb a Amsterdam Business-evolution Cooperation Economic organization Ethics a b s t r a c t We develop a theory of economic organization grounded a theory of human economic organization that is grounded in the naturalistic paradigm currently emerging

  4. Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy

    E-Print Network [OSTI]

    Kuo, Dave Ta Fu, 1978-

    2010-01-01T23:59:59.000Z

    The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

  5. Diffusional Motion of Redox Centers in Carbonate Electrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC) and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR...

  6. Carbon Mineralizability Determines Interactive Effects onMineralizatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Effects onMineralization of Pyrogenic Organic Matter and Soil Organic Carbon. Carbon Mineralizability Determines Interactive Effects onMineralization of Pyrogenic...

  7. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02T23:59:59.000Z

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  8. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10T23:59:59.000Z

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

  9. Refined conceptual model for the Volatile Organic Compounds-Arid Integrated Demonstration and 200 West Area Carbon Tetrachloride Expedited Response Action

    SciTech Connect (OSTI)

    Last, G.V. [Pacific Northwest Lab., Richland, WA (United States); Rohay, V.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-03-01T23:59:59.000Z

    This report presents a refined geohydrologic and geochemical conceptual model of the host site (Hanford Reservation) for the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) and 200 West Area Carbon Tetrachloride (CCl{sub 4}) Expedited Response Action (ERA), based on the results from fiscal year 1992 site characterization activities. The ERA was initiated in December 1990 to minimize or stabilize CCl{sub 4} migration within the unsaturated (vadose) zone in the vicinity of three CCl{sub 4} disposal sites in the 200 West Area (216-Z-1A tile field, 216-Z-9 trench, and 216-Z-18 crib). Implementation of this ERA was based on concerns that CCl{sub 4} residing in the soils was continuing to spread to the groundwater and, if left unchecked, would significantly increase the area of groundwater contamination. A soil-vapor-extraction system began operating at the site in February 1992.

  10. Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.

    E-Print Network [OSTI]

    Carrington, Emily

    Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one is without carbon. Where else is carbon on our Earth? In rocks, living organisms, the atmosphere, oceans Does carbon stay in one place? What processes include moving carbon? Introduce residence time: How long does

  11. Comparing local vs. global visible and near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C

    E-Print Network [OSTI]

    Lawrence, Rick L.

    ) calibrations for the prediction of soil clay, organic C and inorganic C Joel B. Sankey a, , David J. Brown b,1 samples for VisNIR-DRS predictions of soil clay content (clay), organic carbon content (SOC of Prediction (SEP)= 3.8, 6.7, and 26.2 g kg- 1 ]. This was similarly true for clay (SEP=95.3 and 102.5 g kg- 1

  12. 3D Fluorescence analysis of dissolved organic carbon in Tempe Town Lake Hilairy E.Hartnett1,2, Jesse Coe1, Zachary Smith1, Margaret Bowman2, Marissa Raleigh3, Andrew Chesley2, Gordana Pavlovic2

    E-Print Network [OSTI]

    Hall, Sharon J.

    water management (dam releases). Fluorescence spectroscopy using excitation-emission matrices (EEM's) provides information about the chemical character of the organic carbon compounds lake water. EEM techniques (e.g., SUVA254). We present EEM's from Tempe Town Lake samples collected from June 2011 to Dec

  13. Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N -T E I X E I R A *, S A R A H C . D AV I S w , M I C H A E L D . M A S T E R S * and

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N - T E I X E of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality

  14. Carbon Management Plan 1. Executive summary 5

    E-Print Network [OSTI]

    Haase, Markus

    Carbon Management Plan June 2011 #12;2 #12;3 CONTENTS 1. Executive summary 5 2. Introduction 15 3. Background and context 16 4. Carbon management strategy 18 5. Carbon emissions baseline and projections 22 6. Past actions and achievements 30 7. Carbon Management Plan implementation 33 8. Carbon Management Plan

  15. 4, 1367, 2007 Modelling carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

  16. ash aqueous carbonation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon content, specific surface area Aydilek, Ahmet 3 Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1* Environmental Management and Restoration Websites...

  17. 4, 719745, 2007 Fluvial organic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    changes and targets for carbon sequestration set by the Kyoto Protocol. In the UK the largest componentHESSD 4, 719­745, 2007 Fluvial organic carbon flux from an eroding peatland R. R. Pawson et al System Sciences Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK R

  18. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  19. Carbon-based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

    2011-12-31T23:59:59.000Z

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  20. Carbon-Based Supercapacitors Produced by Activation of Graphene

    SciTech Connect (OSTI)

    Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

    2011-06-24T23:59:59.000Z

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  1. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

    2009-01-01T23:59:59.000Z

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

  2. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  3. The significance of organic carbon and sediment surface area to the benthic biogeochemistry of the slope and deep water environments of the northern Gulf of Mexico 

    E-Print Network [OSTI]

    Beazley, Melanie J.

    2004-09-30T23:59:59.000Z

    The bioavailability of metabolizable organic matter within marine sediments is one of the more important driving mechanisms controlling benthic pelagic communities. Interactions between organic material and mineral surfaces ...

  4. Irradiation-induced phenomena in carbon

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-01-01T23:59:59.000Z

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  7. Correlation of Soil and Sediment Organic Matter Polarity to Aqueous

    E-Print Network [OSTI]

    and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC to their organic carbon-normalized sorption coefficients (Koc) for carbon tetrachloride (CT) and 1

  8. Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp....

  9. alkyl carbonate solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. 13 Solution-processed single walled carbon nanotube electrodes for organic thin-film transistors Physics Websites Summary: t Airbrushed single walled carbon nanotube...

  10. Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorted Single-Walled Carbon Nanotube Films for Transparent Electrodes in Organic Solar Cells Home > Research > ANSER Research Highlights > Sorted Single-Walled Carbon Nanotube...

  11. 3, 409447, 2006 Modeling carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 3, 409­447, 2006 Modeling carbon dynamics in farmland of China F. Zhang et al. Title Page impacts of management alternatives on soil carbon storage of farmland in Northwest China F. Zhang1,3 , C-term losses of soil organic carbon (SOC) have been observed in many agricul- ture lands in Northwest China

  12. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.

    SciTech Connect (OSTI)

    Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

    2012-06-07T23:59:59.000Z

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content of

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat ContentHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat Content

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content of

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content ofHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeatHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content of

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat ContentHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat Content

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat Content

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content of

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat ContentHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat Content

  11. Organic geochemical biosignatures in alkaline Hydrothermal ecosystems

    E-Print Network [OSTI]

    Bradley, Alexander Smith

    2008-01-01T23:59:59.000Z

    The 13C content of microbial products are controlled by many factors, including the 13C content of the growth substrate, growth rate, the flux of carbon through various parts of the biochemical network, and the isotopic ...

  12. The Importance of Carbon Footprint Estimation Boundaries

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Importance of Carbon Footprint Estimation Boundaries H . S C O T T M A T T H E W S , C H R I and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints

  13. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-Print Network [OSTI]

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  14. Original article Belowground biomass and nutrient content in a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    useful when using estimates of the aerial biomass of a stand to calculate the carbon storage content of the belowground compartment. Douglas-fir / root system / C sequestration / nutrient content carbone dans le compartiment souterrain, connaissant la biomasse aérienne d'un peuplement. Pour ce qui

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click

  2. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon AboutOrganizing Committee

  3. Advertiser retains sole responsibility for content ADVERTISEMENT FEATURE

    E-Print Network [OSTI]

    Cai, Long

    of the CAS among those elected in 2013. Carbon aerogels sop up hydrocarbons A team led by Professor Shuhong Yu at the HFNL is pursuing carbon aerogel #12;Advertiser retains sole responsibility for content -- as a precursor for the production of ultralight carbon nanofi- bre aerogels on a largescale. This biomass can

  4. Table of Contents Division Organization 2

    E-Print Network [OSTI]

    National Initiative for Cybersecurity Education (NICE) 12 Smart Grid Cyber Security 13 Supply Chain Risk 140-3, Security Requirements for 23 Cryptographic Modules Systems and Emerging Technologies Security Activities 28 Research in Emerging Technologies 30 Access Control - Information Sharing Environment 30

  5. Carbon emissions reduction strategies in Africa from improved waste management: A review

    SciTech Connect (OSTI)

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2010-11-15T23:59:59.000Z

    The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298 36,4875

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear JanAnnual",2014

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014 ,"Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014 ,"Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014Monthly","4/2015"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name or

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet%)"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground Storage

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- UndergroundTotal

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click-

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"Monthly","4/2015"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015" ,"Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015" ,"Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"Annual",2014

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015" ,"Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"Annual",2014

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"ReleaseAnnual",2014

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"Monthly","4/2015"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release Date:","2015/06/30"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014 ,"Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015" ,"Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and Distribution

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015" ,"Next

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"ReleaseDaily","7/20/2015"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"Monthly","4/2015","1/15/1973"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data" ,"Worksheet

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas Proved

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas ProvedCoalbed

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural Gas

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDryNonproducing

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves, Wet

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves,

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available from

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from Web

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900" ,"Data

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural Gas

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973" ,"Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2Total

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.Propane

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.PropaneMotor

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products "

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available from

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click worksheet

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"ClickPercentages

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts by

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker, Pipeline,

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil by

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof by

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of Total

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers Prices

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices -

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPricesNo.

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea" ,"Click

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"for

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users "

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End UsersAcquisition

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2 Distillate

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo.

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil Weekly

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating OilPropane

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand Petroleum

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and Petroleum

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil andDomestic

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct SuppliedMonthly","4/2015","1/15/1981"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981" ,"Data

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"Data

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"Marketed ProductionMarketedHeat Content

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural Gas

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural GasHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeatHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeatHeat

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeatHeat

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural Gas

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of NaturalHeat

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeatHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeatto

  18. Methods and systems for chemoautotrophic production of organic compounds

    DOE Patents [OSTI]

    Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

    2013-01-08T23:59:59.000Z

    The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

  19. Effective Presentations Organization

    E-Print Network [OSTI]

    Shull, David H.

    1 Pericles Effective Presentations · Content · Organization · Delivery · Visual aids and graphics Be brave Graphics · KISS · Powerpoint: ­ Font · Bigger than you'd expect · San serif ­ Lines · Thicker than · Organization · Energy · Clarity · Poise Key: Practice Web Resources · http

  20. Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes

    SciTech Connect (OSTI)

    Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

    2011-04-15T23:59:59.000Z

    The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

  1. Graphic values for some organic constituents of beneficiated coal samples

    SciTech Connect (OSTI)

    Kohlenberger, L.B.

    1991-01-01T23:59:59.000Z

    The first objective of this one-year project is to obtain analytical data on a series of fractions of coal sample IBC-101 of widely varying ash content obtained via a froth flotation physical coal cleaning process. Froth flotation is the fractionation technique to be used rather than float/sink testing as in the Stansfield-Sutherland method because (1) most of the data in our files which were used in the development of these techniques were froth flotation tests and (2) as a way of showing that the fractionating is as effective by one technique as the other, so long as no chemical changes are effected. Analytical values will be obtained in the Coal Analysis Laboratory for moisture, ash, volatile matter, fixed carbon, total carbon, hydrogen, nitrogen, oxygen, total sulfur, sulfate sulfur, organic sulfur, and calorific value. The next objective will be to plot the various values of each of the analyzed species versus its corresponding ash values to obtain x/y plots for each as a function of ash. From the resulting curves, it should be possible to calculate for coal sample IBC-101 a precise measure of its mineral matter content, its dry or moist ,mineral-matter-free calorific value as used in determining the rank of the coal sample, calculate organic sulfur values corresponding to each ash value in cases where the relationship is linear, and possibly find other analyzed values which have a direct correlation with the mineral matter content of the coal.

  2. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14T23:59:59.000Z

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  3. Carbon dynamics in arctic vegetation 

    E-Print Network [OSTI]

    Street, Lorna Elizabeth

    2011-11-24T23:59:59.000Z

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  4. Adsorption -capacity data for 283 organic compounds

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. [Lamar Univ., Beaumont, TX (United States)

    1995-05-01T23:59:59.000Z

    Adsorption on activated carbon is a widely used method for removing volatile organic compounds (VOCs) from gases and other exhaust streams. This article presents a compilation of adsorption-capacity data as a function of the VOC concentration in the gas. The results are useful in engineering and environmental studies, and in the design of carbon-based adsorption systems to remove unwanted organic pollutants from gases. For vapor control, carbon-based systems typically combine a carbon-adsorption unit with a secondary control method to reclaim or destroy the vapors desorbed during carbon-bed regeneration. To remove organics dissolved in wastewater, air stripping is typically used to transfer the organics to a vapor stream. Carbon adsorption is then used to separate the organics from the stripper exhaust. Collected vapors can be recovered for reuse or destroyed, depending on their value.

  5. Laboratory and field investigation of the adsorption of gaseous organic compounds onto quartz filters

    SciTech Connect (OSTI)

    Kirchstetter, Thomas W.; Corrigan, Craig E.; Novakov, T.

    2000-07-01T23:59:59.000Z

    A common method for measuring the mass of organic carbon in airborne particulate matter involves collection on a quartz filter and subsequent thermal analysis. If unaccounted for, the adsorption of organic gases onto quartz filters will lead to the overestimation of aerosol organic carbon concentrations (positive artifact). A recommended method of correction for the positive artifact involves sampling with a backup filter. Placed behind either the primary quartz filter, or behind a Teflon filter and collected in parallel with the primary quartz filter, the carbon content of the quartz backup filter is a measure of the adsorbed organic material on the primary quartz filter. In this paper, we illustrate the application of this technique to samples collected in Berkeley, California. While the tandem quartz filter method can be successfully applied to correct for the positive artifact, we discuss two cases when this method will fail. We have found that the capacity for adsorption of organic gases is not uniform for all filters. Instead, filters manufactured by the same company, but having different lot numbers, exhibit variable adsorption capacity. Thus, a filter pair composed of filters from different lots may lead to significant under- or overestimation of particulate organic carbon concentration. Additionally, we have observed that the tandem filter method under-corrects for the positive artifact if the sampling time is short (few hours). Laboratory experiments with vapors of single organic compounds corroborate results based on ambient samples. The evolution of adsorbed organic gases, particularly polar compounds, during thermal analysis indicates that a single compound may experience two distinct adsorbent-adsorbate binding energies. Adsorbed gases may co-evolve with particles at temperatures in excess of 250-degree C.

  6. Rapid prototyping of carbon-based chemiresistive gas sensors on paper

    E-Print Network [OSTI]

    Mirica, Katherine

    Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and ...

  7. Carbon-Based Materials, High-Surface-Area Sorbents, and New Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies includes a range of carbon-based materials such as carbon nanotubes, aerogels, nanofibers (including metal-doped hybrids), as well as metal-organic frameworks,...

  8. Carbon and Nitrogen Dynamics in Agricultural Soils

    E-Print Network [OSTI]

    Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

  9. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  10. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15T23:59:59.000Z

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  11. Graphic values for some organic constitutents of beneficiated coal samples

    SciTech Connect (OSTI)

    Kohlenberger, L.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  12. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  13. Prospects for Improved Carbon Capture Technology

    E-Print Network [OSTI]

    Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY ................................................................................................................ 7 CHAPTER 3. OVERVIEW OF CO2 CAPTURE TECHNOLOGIES

  14. Carbon stored in human settlements: the conterminous United States

    E-Print Network [OSTI]

    Brown, Daniel G.

    value for mitigation of carbon dioxide emissions, the organic carbon storage in human settlements has of energy (Newman & Kenworthy, 1999) and to an increase in the anthropogenic release of carbon dioxide release of carbon dioxide and 76% of wood used for industrial purposes. By 2050 the proportion

  15. Effects of Additives and Templates on Calcium Carbonate Mineralization in vitro

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Accepted M anuscript Effects of Additives and Templates on Calcium Carbonate Mineralization controlling the calcium carbonate crystals formation and the complexity of the crystal morphologies in vitro organic matrices mediate calcium carbonate mineralization. Keywords: additive; template; in vitro

  16. Precambrian Research 224 (2013) 169183 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    2013-01-01T23:59:59.000Z

    and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic North China Carbon isotopes Organic carbon Ocean oxygenation a b s t r a c t Analyses of marine carbon Yua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences

  17. Introduction to carbon physics Carbon is in many ways a unique element. Most importantly, it is crucial for life on earth as

    E-Print Network [OSTI]

    Johannesson, Henrik

    5 Chapter 2 Introduction to carbon physics Carbon is in many ways a unique element. Most out of carbon. Scientifically, the whole huge field of organic chemistry deals entirely with carbon-based compounds; and in the field of physics carbon is one of the most intensively studied materials. There even

  18. RESEARCH ARTICLE Carbon quantity defines productivity while its quality defines

    E-Print Network [OSTI]

    Vincent, Warwick F.

    RESEARCH ARTICLE Carbon quantity defines productivity while its quality defines community that dissolved organic carbon (DOC) quantity and quality differently influence bacterioplankton. The ponds were production, abundance, biomass were highest in mid-summer and correlated positively with the concentration

  19. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    SciTech Connect (OSTI)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01T23:59:59.000Z

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  20. APPLICATION OF CARBOHYDRATES AND PHENOLS AS BIOMARKERS TO STUDY DISSOLVED ORGANIC MATTER RESERVOIRS IN ARCTIC RIVERS.

    E-Print Network [OSTI]

    McMahon, Rachel

    2014-01-22T23:59:59.000Z

    Arctic rivers are the dominant pathways for the transport of terrestrial dissolved organic carbon to the Arctic Ocean, but knowledge of sources, transformations and transfer of organic carbon and nitrogen in Arctic river watersheds is extremely...

  1. The temporal dynamics of terrestrial organic matter transfer to the oceans : initial assessment and application

    E-Print Network [OSTI]

    Drenzek, Nicholas J

    2007-01-01T23:59:59.000Z

    This thesis employs compound-specific stable carbon and radiocarbon isotopic analysis of organic biomarkers to (a) resolve petrogenic from pre-aged vascular plant organic carbon (OC) in continental margin sediments, (b) ...

  2. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  3. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13T23:59:59.000Z

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  4. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. Technical report, December 1, 1992--February 28, 1993

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Hackley, K.; Dagamac, M. [Illinois State Geological Survey, Champaign, IL (United States); Berger, R. [Illinois Univ., Urbana, IL (United States); Schanche, G. [Army Construction Engineering Research Lab., Champaign, IL (United States)

    1993-05-01T23:59:59.000Z

    Pelletization of fine coal with calcium hydroxide, a sulfur capturing sorbent, represents a method to produce a fuel which will burn in compliance with the recently passed Clean Air Act Amendments (CAAA`s). To harden the pellets, the reaction of carbon dioxide with calcium hydroxide, referred to as carbonation, is being studied. Carbonation forms a bonding matrix of calcium carbonate. This is a two-year research program. This report covers the second quarter of the second year. Research is indicating that 5 to 10 wt% calcium hydroxide pellets can be produced via a roller-and-die pellet mill and air cured to achieve sufficient quality for handling and transportation. This quarter, 1/2 inch-diameter pellets containing 10% calcium hydroxide were demonstrated to gradually react with atmospheric carbon dioxide (3 days) while air drying to achieve compressive strengths equivalent to those attained for fully dried pellets which had been carbonated for one-hour with 100% commercial grade carbon dioxide. It was also demonstrated that an organic, adhesive binder, corn starch, can be very effective at producing strong pellets but drying is required before appreciable pellet strength is attained. For pellets containing 2 wt% corn starch, it was determined that less than 50% of the ultimate strength was achieved as the pellets were dried from 20 wt% to 5 wt% moisture. Strength improved considerably as the pellet moisture content was reduced below 5 wt%.

  5. Storage and turnover of organic matter in soil

    E-Print Network [OSTI]

    Torn, M.S.

    2009-01-01T23:59:59.000Z

    of organic carbon from peat soils. Nature 412 , 785. Fried,Plant Litter. Standard Soil Methods for Long-Term Ecological2007). Role of proteins in soil carbon and nitrogen storage:

  6. Climate Change and Air Quality People's emission of carbon

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    carbon dioxide out of the air using existing "air capture" technologies could cost about the same or lessClimate Change and Air Quality · People's emission of carbon dioxide will affect Earth's sea level to the North Slope of Alaska in the summer of 2009, to study the carbon content in permafrost. Policy · Pulling

  7. What is the Price of Carbon? Five definitions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . The social cost of carbon, 4. The politically negotiated value and 5. CO2 market prices. TABLE OF CONTENTS 1. The social cost of carbon: SCC 5. Politically negotiated value: the "shadow price" 6. CO2 market prices 7. The social cost of carbon, 4. The politically negotiated value and 5. CO2 market prices. 2. THE EXPECTED

  8. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar [ORNL

    2007-06-01T23:59:59.000Z

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  9. Sulfate in foraminiferal calcium carbonate : investigating a potential proxy for sea water carbonate ion concentration

    E-Print Network [OSTI]

    Berry, Jeffrey Nicholas

    1988-01-01T23:59:59.000Z

    The sulfur content of planktonic and benthic foraminifera was measured in specimens recovered from deep-sea sediment cores and individuals grown in culture. A new method for measuring sulfur in foraminiferal calcium carbonate ...

  10. Identification of Location and Nature of Organic Matter and Contaminants on Sediments

    E-Print Network [OSTI]

    importance of these different forms of organic carbon in the sequestration of PAHs in sediments. Our to identify organic carbon location in sediment particles. Scanning electron microscopy with wavelength silica particles. It has been suggested previously that PAHs partition into organic carbon on soils

  11. Sorbents and Carbon-Based Materials for Hydrogen Storage R &...

    Broader source: Energy.gov (indexed) [DOE]

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  12. Sorbents and Carbon-Based Materials for Hydrogen Storage Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for storing hydrogen in high-surface-area sorbents such as hybrid carbon nanotubes, aerogels, and nanofibers, as well as metal-organic frameworks and conducting polymers. A...

  13. actinidevi carbonate speciation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil Organic Carbon under Varying Landscape Topographic Positions at the Molecular Scale Environmental Management and Restoration Websites Summary: Distribution, Speciation, and...

  14. Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin

    SciTech Connect (OSTI)

    Daly, A.R.

    1988-01-01T23:59:59.000Z

    Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

  15. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05T23:59:59.000Z

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  16. Aged black carbon identified in marine dissolved organic carbon

    E-Print Network [OSTI]

    Ziolkowski, Lori A; Druffel, Ellen R.M.

    2010-01-01T23:59:59.000Z

    pool in the northeast Pacific Ocean, Deep Sea Res. , Part I,?445‰ in the deep NE Pacific Ocean (Table S1). The Suwanneein the northeast Pacific Ocean. If the BC in the Amazon

  17. Graphene Produces More Efficient Charge Transport Inside an Organic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Graphene, a two dimensional semi-metal made of sp 2 hybridized carbon, is an outstanding material...

  18. Graphene Produces More Efficient Charge Transport Inside an Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graphene Produces More Efficient Charge Transport Inside an Organic Semiconductor Friday, January 30, 2015 Graphene, a two dimensional semi-metal made of sp2 hybridized carbon, is...

  19. 1Table of Contents TABLE OF CONTENTS

    E-Print Network [OSTI]

    Hull, Elaine

    of Illicit Drugs and Alcohol ..............................................12 Standards of Conduct University History....................................13 University Organization...........................14......................................21 International Programs.......................23 International Commitment.......................23

  20. New Species of Cyanobacteria Forms Intracellular Carbonates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years by assimilating CO2 into organic compounds and triggering calcium carbonate (CaCO3) precipitation. Despite the importance of this cyanobacteria-mediated CaCO3...

  1. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  2. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  3. Page 1 of 38 Estimating the permafrost-carbon feedback on2

    E-Print Network [OSTI]

    Levermann, Anders

    , the proportion of soil carbon that might be emitted as carbon dioxide via aerobic25 decomposition or as methane characterized regional heterogeneities in soil properties, carbon28 content, and hydrology. Here, we couple triggers a reaction from land biomass and soils49 that leads to carbon dioxide emissions, which in turn

  4. ccsd00003923, Combination of carbon nanotubes and

    E-Print Network [OSTI]

    of composite optical limiters, in which two complementary nonlinear optical materials are mixed togetherccsd­00003923, version 1 ­ 18 Jan 2005 Combination of carbon nanotubes and two-photon absorbers-linear scattering from single-wall carbon nanotubes (SWNT) and multiphoton absorption (MPA) from organic

  5. Gas adsorption on metal-organic frameworks

    DOE Patents [OSTI]

    Willis, Richard R. (Cary, IL); Low, John J. (Schaumburg, IL), Faheem, Syed A. (Huntley, IL); Benin, Annabelle I. (Oak Forest, IL); Snurr, Randall Q. (Evanston, IL); Yazaydin, Ahmet Ozgur (Evanston, IL)

    2012-07-24T23:59:59.000Z

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  6. Method of stripping metals from organic solvents

    DOE Patents [OSTI]

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24T23:59:59.000Z

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  7. Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis

    SciTech Connect (OSTI)

    McElderry, John-David P.; Zhu, Peizhi [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Mroue, Kamal H. [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Xu, Jiadi [Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Pavan, Barbara [Department of Chemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Fang, Ming [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T. [School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Holl, Mark M.Banaszak [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Tecklenburg, Mary M.J., E-mail: mary.tecklenburg@cmich.edu [Department of Chemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Ramamoorthy, Ayyalusamy [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Morris, Michael D. [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States)

    2013-10-15T23:59:59.000Z

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3?}?{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3–10.3 wt% CO{sub 3}{sup 2?} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ?{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: • Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. • Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. • Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

  8. Annual Review of Low-Carbon Development in China (2011-2012)...

    Open Energy Info (EERE)

    Review of Low-Carbon Development in China (2011-2012): Chapter Summaries Focus Area: Energy Efficiency Topics: Best Practices Website: climatepolicyinitiative.orgwp-content...

  9. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  10. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01T23:59:59.000Z

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  11. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  12. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  13. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  14. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau

    E-Print Network [OSTI]

    Xiao, Jingfeng

    RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

  15. Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of carbon sequestration. The quality and quantity of soil organic carbon is probably influenced. It is suggested that, in conservation projects based on higher carbon sequestration, the plant species with more sequestration, Plant species, Soil organic carbon, Vegetation type, Prangus uloptera stands. hal-00875310

  16. Method for making carbon films

    SciTech Connect (OSTI)

    Tan, M.X.

    1999-07-29T23:59:59.000Z

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  17. Graphic values for some organic constituents of beneficiated coal samples. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Kohlenberger, L.B.

    1991-12-31T23:59:59.000Z

    The first objective of this one-year project is to obtain analytical data on a series of fractions of coal sample IBC-101 of widely varying ash content obtained via a froth flotation physical coal cleaning process. Froth flotation is the fractionation technique to be used rather than float/sink testing as in the Stansfield-Sutherland method because (1) most of the data in our files which were used in the development of these techniques were froth flotation tests and (2) as a way of showing that the fractionating is as effective by one technique as the other, so long as no chemical changes are effected. Analytical values will be obtained in the Coal Analysis Laboratory for moisture, ash, volatile matter, fixed carbon, total carbon, hydrogen, nitrogen, oxygen, total sulfur, sulfate sulfur, organic sulfur, and calorific value. The next objective will be to plot the various values of each of the analyzed species versus its corresponding ash values to obtain x/y plots for each as a function of ash. From the resulting curves, it should be possible to calculate for coal sample IBC-101 a precise measure of its mineral matter content, its dry or moist ,mineral-matter-free calorific value as used in determining the rank of the coal sample, calculate organic sulfur values corresponding to each ash value in cases where the relationship is linear, and possibly find other analyzed values which have a direct correlation with the mineral matter content of the coal.

  18. CONTENTS PAGE INTRODUCTION

    E-Print Network [OSTI]

    Aslaksen, Helmer

    THE APPLICATIONS AND VALIDITY OF BODE'S LAW CAN WE EXPLAIN BODE'S LAW USING GRAVITY? 8 Law of Gravitation 8 Centre#12;#12;CONTENTS CONTENTS PAGE INTRODUCTION WHO, HOW AND WHEN IS THE BODE'S LAW DISCOVERED? 1 THE BODE'S LAW HOW THE BODE'S LAW SATISFIED URANUS 3 HOW THE BODE'S LAW LED TO THE DISCOVERY OF CERES

  19. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic

    E-Print Network [OSTI]

    Chorover, Jon

    ). Direct correlations between organic carbon and specific surface area in many soils and sediments (3, 4 are not well understood. Cycling of organic carbon in sediments and soils has been characterized by complex in the sequestration and preservation of sedimentary OM (19, 21). This may occur by physical occlusion of OM within

  20. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    SciTech Connect (OSTI)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14T23:59:59.000Z

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

  1. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-OrganicCarbon Bearing

  2. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  3. Capturing carbon | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon Released: October 02, 2011 New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

  4. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01T23:59:59.000Z

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  5. "The disintegration of organic compounds by microorganisms is accompanied by the liberation of

    E-Print Network [OSTI]

    Lovley, Derek

    comple- ment of enzymes necessary to completely oxidize organic fuels to carbon dioxide is not yet they are `carbon-neutral'; the oxidation of the organic matter only releases recently fixed carbon back and sediments. The ubiquitous and innocuous properties of fuels for microbial fuel cells alleviates the need

  6. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01T23:59:59.000Z

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  7. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01T23:59:59.000Z

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  8. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  9. Rock Physics Characterization of Organic-Rich Shale Formations to Predict Organic Properties

    E-Print Network [OSTI]

    Bush, Brandon

    2013-07-29T23:59:59.000Z

    rely on to assess the economic potential of these formations are: total organic carbon (TOC), thermal maturity, hydrocarbon saturation, porosity, mineralogy and brittleness. In this thesis, I investigate rock physics models and methods for the possible...

  10. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  11. Origins of volatile organic compounds emerging from tank 241-C-106 during sluicing

    SciTech Connect (OSTI)

    STAUFFER, L.A.

    1999-06-02T23:59:59.000Z

    Unexpectedly high concentrations of inorganic gases and volatile organic compounds (VOC) were released from the ventilation stack of tank 241-C-106 during sluicing operations on November 18, 1998. Workers experienced serious discomfort. They reported an obnoxious acrid odor and the 450 ppm VOC in ventilation stack 296-C-006 exceeded the level approved in the air discharge permit. Consequently, the operation was terminated. Subsequent analyses of samples collected opportunistically from the stack indicated many organic compounds including heptenes, heptanones, and normal paraffin hydrocarbons (NPH) and their remnants were present. Subsequently, a process test designed to avoid unnecessary worker exposure and enable collection of analytical samples from the stack, the breathing area, and the receiver tank was conducted on December 16, 1998. The samples obtained during that operation, in which the maximum VOC content of the stack was approximately 35 ppm, have been analyzed by teams at Pacific Northwest National Laboratory and Special Analytic Services (SAS). This report examines the results of these investigations. Future revisions of the report will examine the analytical results obtained for samples collected during sluicing operations in March. This report contains the available evidence about the source term for these emissions. Chapter 2 covers characterization work, including historical information about the layers of waste in the tank, the location of organic compounds in these layers, the total organic carbon (TOC) content and the speciation of organic compounds. Chapter 3 covers the data for the samples from the ventilation stack, which has the highest concentrations of organic compounds. Chapter 4 contains an interpretation of the information connecting the composition of the organic emissions with the composition of the original source term. Chapter 5 summarizes the characterization work, the sample data, and the interpretation of the results.

  12. Black carbon in Arctic snow and its effect on surface albedo

    E-Print Network [OSTI]

    1 Black carbon in Arctic snow and its effect on surface albedo Stephen Warren, University wavelengths: ice is nearly transparent. Absorptive impurities: Black carbon (soot) Brown carbon (organics broadband albedo: 83% 71% (2) by addition of black carbon (BC) (20 ppb): 0.5% for r = 100 µm 1.6% for r

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28T23:59:59.000Z

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  17. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16T23:59:59.000Z

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  18. Inorganic origin of carbon dioxide during low temperature thermal recovery of bitumen: Chemical and isotopic evidence

    SciTech Connect (OSTI)

    Hutcheon, I.; Abercrombia, H.J.; Krouse, H.R. (Univ. of Calgary, Alberta (Canada))

    1990-01-01T23:59:59.000Z

    Carbon dioxide, produced at low temperatures, is the dominant gaseous species evolved during steam-assisted thermal recovery of bitumen at the Tucker Lake pilot, Cold Lake, Alberta. Two possible sources for the produced CO{sub 2} are considered: pyrolysis of bitumen and dissolution of carbonate minerals. Data from natural systems and experiments by other authors suggest that clay-carbonate reactions are the dominant source of CO{sub 2}. Bitumen pyrolysis may contribute small amounts of CO{sub 2}, probably by decarboxylation, early in the production cycle but cannot contribute significant volumes. The recognition of production of CO{sub 2} by reactive calcite destruction at temperatures between 70 and 220{degree}C suggests that this process may be responsible for the production of large quantities of CO{sub 2} in natural systems, particularly in lithofeldspathic sands and shales with high carbonate content and abundant clays. Organic acids have been suggested to be the source of CO{sub 2} in diagenetic fluids, but the results presented here suggest that this hypothesis requires more complete investigation.

  19. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. For

  20. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  1. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  2. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30T23:59:59.000Z

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be inferred from their physical and chemical properties. The developed porosity of the activated carbon was a function of the oxygen content, porosity and H/C ratio of the parent unburned carbon feedstock. It was observed that extended activation times and high activation temperatures increased the porosity of the produced activated carbon at the expense of the solid yield. The development of activated carbon from unburned carbon in fly ash has been proven to be a success by this study in terms of the higher surface areas of the resultant activated carbons, which are comparable with commercial activated carbons. However, unburned carbon samples obtained from coal-fired power plants as by-product have high ash content, which is unwanted for the production of activated carbons. Therefore, the separation of unburned carbon from the fly ash is expected to be beneficial for the utilization of unburned carbon to produce activated carbons with low ash content.

  3. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

  4. Mercury capture by distinct fly ash carbon forms

    SciTech Connect (OSTI)

    Hower, J.C.; Maroto-Valer, M.M.; Taulbee, D.N.; Sakulpitakphon, T.

    1999-07-01T23:59:59.000Z

    Carbon was separated from the fly ash from a Kentucky power plant using density gradient centrifugation. Using a lithium heterolpolytungstate high-density media, relative concentrations of inertinite (up to 85% vol.), isotropic carbon (up to 79% vol.), and anisotropic carbon (up to 76% vol.) were isolated from the original fly ash. Mercury concentration was lowest in the parent fly ash (which contains non-carbon components); followed by inertinite, isotropic coke, mixed isotropic-anisotropic coke fraction, and, with the highest concentration, the anisotropic coke concentrate. The latter order corresponds to the increase in BET surface area of the fly ash carbons. Previous studies have demonstrated the capture of mercury by fly ash carbon. This study confirms prior work demonstrating the varying role of carbon types in the capture, implying that variability in the carbon content influences the amount of mercury retained on the fly ash.

  5. Device for staged carbon monoxide oxidation

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Nguyen, Trung V. (College Station, TX); Guante, Jr., Joseph (Denver, CO)

    1993-01-01T23:59:59.000Z

    A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

  6. Selecting activated carbon for water and wastewater treatability studies

    SciTech Connect (OSTI)

    Zhang, W.; Chang, Q.G.; Liu, W.D.; Li, B.J.; Jiang, W.X.; Fu, L.J.; Ying, W.C. [East China University of Chemical Technology, Shanghai (China)

    2007-10-15T23:59:59.000Z

    A series of follow-up investigations were performed to produce data for improving the four-indicator carbon selection method that we developed to identify high-potential activated carbons effective for removing specific organic water pollutants. The carbon's pore structure and surface chemistry are dependent on the raw material and the activation process. Coconut carbons have relatively more small pores than large pores; coal and apricot nutshell/walnut shell fruit carbons have the desirable pore structures for removing adsorbates of all sizes. Chemical activation, excessive activation, and/or thermal reactivation enlarge small pores, resulting in reduced phenol number and higher tannic acid number. Activated carbon's phenol, iodine, methylene blue, and tannic acid numbers are convenient indicators of its surface area and pore volume of pore diameters < 10, 10-15, 15-28, and > 28 angstrom, respectively. The phenol number of a carbon is also a good indicator of its surface acidity of oxygen-containing organic functional groups that affect the adsorptive capacity for aromatic and other small polar organics. The tannic acid number is an indicator of carbon's capacity for large, high-molecular-weight natural organic precursors of disinfection by-products in water treatment. The experimental results for removing nitrobenzene, methyl-tert-butyl ether, 4,4-bisphenol, humic acid, and the organic constituents of a biologically treated coking-plant effluent have demonstrated the effectiveness of this capacity-indicator-based method of carbon selection.

  7. Understanding and engineering interfacial charge transfer of carbon nanotubes and graphene for energy and sensing applications

    E-Print Network [OSTI]

    Paulus, Geraldine L. C. (Geraldine Laura Caroline)

    2013-01-01T23:59:59.000Z

    Graphene is a one-atom thick planar monolayer of sp2 -bonded carbon atoms organized in a hexagonal crystal lattice. A single walled carbon nanotube (SWCNT) can be thought of as a graphene sheet rolled up into a seamless ...

  8. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  9. Carbonation Behavior of Pure Cement Hydrates under Supercritical Carbon Dioxide Conditions - 12199

    SciTech Connect (OSTI)

    Hirabayashi, Daisuke; Enokida, Youichi [Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Sawada, Kayo [EcoTopia Science Institute, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8603 (Japan); Hertz, Audrey; Charton, Frederic [CEA, DEN, Marcoule, DTCD/SPDE/L2ED, BP 17171, F-30207 Bagnols-sur-Ceze (France); Frizon, Fabien [CEA, DEN, Marcoule, DTCD/SPDE/LFSM, BP 17171, F-30207 Bagnols-sur-Ceze (France); Brouno, Fournel [CEA, DEN, Marcoule, DTCD, BP 17171, F-30207 Bagnols-sur-Ceze (France)

    2012-07-01T23:59:59.000Z

    Carbonation of cement-based waste forms using a supercritical carbon dioxide (SCCO{sub 2}) is a developing technology for the waste immobilization of radioactive and non-radioactive wastes. However, the detail carbonation behaviors of cement matrices under the SCCO{sub 2} condition are unknown, since cement matrices forms very complex phases. In this study, in order to clarify the crystal phases, we synthesized pure cement hydrate phases as each single phases; portlandite (Ca(OH){sub 2}), ettringite (Ca{sub 6}Al{sub 2}(SO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), and calcium silicate hydrate (n CaO---m SiO{sub 2} ---x H{sub 2}O), using suspensions containing a stoichiometric mixture of chemical regents, and performed carbonation experiments using an autoclave under supercritical condition for carbon dioxide. The XRD results revealed both the carbonate phases and co-product phases depending on the initial hydrate phases; gypsum for Ettringite, amorphous or crystalline silica for calcium silicate hydroxide. Thermogravimetric analysis was also performed to understand carbonation behaviors quantitatively. According to the experimental results, it was found that the major reaction was formation of calcium carbonate (CaCO{sub 3}) in all cases. However, the behaviors of H{sub 2}O and CO{sub 2} content were quietly different: Portlandite was most reactive for carbonation under SCCO{sub 2} conditions, and the CO{sub 2} content per one molar CaO was ranged from 0.96 ? 0.98. In the case of Ettringite, the experiment indicates partial decomposition of ettringite phase during carbonation. Ettringite was comparatively stable even under the SCCO{sub 2} conditions. Therefore, a part of ettringite remained and formed similar phases after the ettringite carbonation. The CO{sub 2} content for ettringite showed almost constant values around 0.86 ? 0.87. In the case of calcium silicate hydrate, the carbonation behavior was significantly influenced by the condition of SCCO{sub 2}. The CO{sub 2} content for the calcium silicate hydrate had values that ranged from 0.51 ? 1.01. The co-products of the carbonation were gypsum (CaSO{sub 4}) for ettringite, silica gel (SiO{sub x}) and silica (SiO{sub 2}) for calcium silicate hydrate, which also contributed to the densification of the particles. The production of co-products enhanced the change to their morphology after the carbonation. (authors)

  10. Viscosity of carbon nanotubes water based nanofluids: Influence of1 concentration and temperature2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Viscosity of carbon nanotubes water based nanofluids: Influence of1 concentration and temperature of carbon nanotubes water-based nanofluids24 are presented considering the influence of particle volume nanofluids behave as shear-thinning materials for high particle content. For lower particle29 content

  11. Carbon Management Plan for the Exeter Campuses 2010-2020

    E-Print Network [OSTI]

    Bearhop, Stuart

    Programme www.exeter.ac.uk/sustainability #12;Version 2010v1 dated 8/03/2011 Page 2 Owner ­ G Whitehouse ­ Energy Manager Carbon Management Plan 2010 - 2020 Contents 1 Forewords 1.1 Foreword from the Vice Drivers 3.4.2 National Drivers - Legislation 3.4.3 National Drivers ­ Government Strategy for Carbon

  12. Quantity and Spatial Variability of Soil Carbon in the Conterminous United States Yinyan Guo, Ronald Amundson,* Peng Gong, and Qian Yu

    E-Print Network [OSTI]

    Yu, Qian

    , Ronald Amundson,* Peng Gong, and Qian Yu ABSTRACT We estimated the soil organic carbon (SOC) and soil

  13. Leadership, Organizations

    E-Print Network [OSTI]

    Palmeri, Thomas

    Leadership, Policy & Organizations #12;2 At Peabody students have the opportunity to develop new College, in the Department of Leadership, Policy and Organizations (LPO). The faculty believes Patricia and Rodes Hart Chair, and Professor of Education Policy and Leadership, Ellen Goldring also serves

  14. Biomass combustion as a source of terrigenous organic matter to the coastal ocean 

    E-Print Network [OSTI]

    Peirce, Kayce

    2012-04-12T23:59:59.000Z

    Natural and anthropogenic combustion processes are major sources of organic carbon into the environment. Biomarkers of biomass combustion can be used to monitor the impact of combustion on carbon cycling at multiple scales, particularly in natural...

  15. Carbon Trading, Carbon Taxes and Social Discounting

    E-Print Network [OSTI]

    Weiblen, George D

    Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

  16. Polymer Grafted Janus Multi-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Priftis, Dimitrios [ORNL; Sakellariou, Georgios [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Hadjichristidis, Nikos [University of Athens, Athens, Greece

    2009-01-01T23:59:59.000Z

    We describe a novel and facile strategy to modify the surface of carbon nanotubes (CNTs) with two chemically different polymer brushes utilizing the grafting from technique. A [4 + 2] Diels Alder cycloaddition reaction was used to functionalize multi-walled carbon nanotubes (MWNTs) with two different precursor initiators, one for ring opening polymerization (ROP) and one for atom transfer radical polymerization (ATRP). The binary functionalized MWNTs were used for the simultaneous surface initiated polymerizations of different monomers resulting in polymer grafted MWNTs that can form Janus type structures under appropriate conditions. 1H NMR, FTIR and Raman spectra showed that the precursor initiators were successfully synthesized and covalently attached on the CNT surface. Thermogravimetric analysis (TGA) revealed that the grafted polymer content varies when different monomer ratios and polymerization times are used. The presence of an organic layer around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the grafted polymers are affected by the presence of the CNTs, while circular dichroism (CD) spectra indicated that the PLLA ahelix conformation remains intact.

  17. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01T23:59:59.000Z

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

  18. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  19. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  20. Climate-sensitive ecosystem carbon dynamics along the soil chronosequence of the Damma glacier forefield,

    E-Print Network [OSTI]

    Gilli, Adrian

    Climate-sensitive ecosystem carbon dynamics along the soil chronosequence of the Damma glacier formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable by small end moraines that resulted from two gla- cier re-advances. The net ecosystem carbon balance (NECB