Powered by Deep Web Technologies
Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Organic carbon contents of sediments from Lake Schalkenmehrener Maar: A paleoclimate indicator  

Science Journals Connector (OSTI)

Investigations on orgnaic carbon in sediments of Maar lakes reveal a relationship to paleotemperatures as reconstructed from Camp Century ice cores. Of great influence are also...

B. Rein; J. F. W. Negendank

1993-01-01T23:59:59.000Z

2

Organic modification of carbon nanotubes  

Science Journals Connector (OSTI)

The organic modification of carbon nanotubes is a novel research field being developed ... and newest progress of organic modification of carbon nanotubes are reviewed from two aspects: organic covalent modificat...

Luqi Liu; Zhixin Guo; Liming Dai; Daoben Zhu

2002-03-01T23:59:59.000Z

3

The relation of energy and organic carbon in aquatic invertebrates  

Science Journals Connector (OSTI)

Oct 24, 1975 ... The ratio of energy content to the weight of organic carbon ... Even the use of the mean conversion factor of 46 kJ g-l organic carbon yields.

2000-01-04T23:59:59.000Z

4

Carbon nanotubes for organic electronics.  

E-Print Network [OSTI]

??This thesis investigated the use of carbon nanotubes as active components in solution processible organic semiconductor devices. We investigated the use of functionalized carbon nanotubes… (more)

Goh, Roland Ghim Siong

2008-01-01T23:59:59.000Z

5

Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles  

E-Print Network [OSTI]

between proxy records in a sediment drift, Science, 298,the Japan Sea measured with sediment traps, Mar. Chem. , 91,and organic constituents in sediments from the con- tinental

Hwang, Jeomshik; Druffel, Ellen R. M; Eglinton, Timothy I

2010-01-01T23:59:59.000Z

6

Carbon Sequestration in Organic Farming  

Science Journals Connector (OSTI)

Organic farming has been developed as a new mode of farming vs. conventional farming. Evidence showed that organic farming management can well maintain the soil carbon up to 2–3 times higher in organic matter ...

Raymond Liu; Jianming M. Xu; C. Edward Clapp

2013-01-01T23:59:59.000Z

7

ARM - Measurement - Organic Carbon Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

8

Aerosol and graphitic carbon content of snow  

SciTech Connect (OSTI)

Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

1987-08-20T23:59:59.000Z

9

5, 11391174, 2008 Organic carbon and  

E-Print Network [OSTI]

BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

Boyer, Edmond

10

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

11

Table of Contents Division Organization 2  

E-Print Network [OSTI]

National Initiative for Cybersecurity Education (NICE) 12 Smart Grid Cyber Security 13 Supply Chain Risk Security and Forensics 33 NIST Cloud Computing Project 34 Policy Machine 35 Security for Grid#12;2002 Table of Contents Welcome 1 Division Organization 2 The Computer Security Division

12

Excretion of dissolved organic carbon by eelgrass  

Science Journals Connector (OSTI)

Abstract. The release of dissolved organic carbon (DOC) by eelgrass (Zosteru marina) and its epiphytic ... tive agreement between the U.S. Energy Research.

2000-01-05T23:59:59.000Z

13

Berea College Student Organization Handbook Table of Contents  

E-Print Network [OSTI]

Berea College Student Organization Handbook 2013-2014 Table of Contents Campus Life Mission Eligibility for Membership Type of Organizations 2 2 Procedure for Establishing a Organization 2 Fundamentals

Baltisberger, Jay H.

14

Variation and removal efficiency of assimilable organic carbon (AOC) in an advanced water treatment system  

Science Journals Connector (OSTI)

This study investigates the microorganism growth indicator and determines the assimilable organic carbon (AOC) content at the Cheng-Ching Lake Advanced ... (CCLAWTP) in Kaohsiung, Taiwan. Notably, AOC is associat...

Jie-Chung Lou; Bi-Hsiang Chen; Ting-Wei Chang…

2011-07-01T23:59:59.000Z

15

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network [OSTI]

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

16

Effect of Graphitic Content on Carbon Supported Catalyst Performance  

SciTech Connect (OSTI)

The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

2011-07-01T23:59:59.000Z

17

Effect of Graphitic Content on Carbon Supported Catalyst Performance  

SciTech Connect (OSTI)

The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

2011-07-01T23:59:59.000Z

18

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries. The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries....

19

Caloric content of phytoplankton  

Science Journals Connector (OSTI)

Jul 10, 1972 ... from carbon content, enabling much smaller ... surement of the energy efficiency of primary ... caloric content of the tissues of organisms.

1999-12-27T23:59:59.000Z

20

Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint  

SciTech Connect (OSTI)

This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Investigation of assimilable organic carbon (AOC) in flemish drinking water  

Science Journals Connector (OSTI)

The aim of the study was to investigate the drinking water supplied to majority of residents of Flanders in Belgium. Over 500 water samples were collected from different locations, after particular and complete treatment procedure to evaluate the efficiency of each treatment step in production of biologically stable drinking water. In this study assimilable organic carbon (AOC) was of our interest and was assumed as a parameter responsible for water biostability. The influence of seasons and temperature changes on AOC content was also taken into account. The AOC in most of the non-chlorinated product water of the studied treatment plants could not meet the biostability criteria of 10 ?g/l, resulting in the mean AOC concentration of 50 ?g/l. However, majority of the examined chlorinated water samples were consistent with proposed criteria of 50–100 ?g/l for systems maintaining disinfectant residual. Here, mean AOC concentration of 72 ?g/l was obtained. Granular activated carbon filtration was helpful in diminishing AOC content of drinking water; however, the nutrient removal was enhanced by biological process incorporated into water treatment (biological activated carbon filtration). Disinfection by means of chlorination and ozonation increased the water AOC concentration while the ultraviolet irradiation showed no impact on the AOC content. Examination of seasonal AOC variations showed similar fluctuations in six units with the highest values in summer and lowest in winter.

Monika Polanska; Koen Huysman; Chris van Keer

2005-01-01T23:59:59.000Z

22

Determination of mercury and organic mercury contents in Malaysian seafood  

Science Journals Connector (OSTI)

The contents of mercury and organic mercury in various types of seafood from various location in Malaysia were determined...Rastrelliger kanagurta), Spanish mackerel (Scomberomurus commersoni), shrimp (Peneaus sp...

S. A. Rahman; A. K. Wood; S. Sarmani…

1997-03-01T23:59:59.000Z

23

Method for creating high carbon content products from biomass oil  

DOE Patents [OSTI]

In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

Parker, Reginald; Seames, Wayne

2012-12-18T23:59:59.000Z

24

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters Hydrology and Earth System Sciences, 6(6), 959970 (2002) EGS  

E-Print Network [OSTI]

Assessment of terrigenous organic carbon input to the total organic carbon in sediments from of terrigenous organic carbon input to the total organic carbon in sediments from Scottish transitional waters This paper addresses the assessment of terrestrially derived organic carbon in sediments from two Scottish

Paris-Sud XI, Université de

25

Comparison of assimilable organic carbon and UV-oxidizable carbon for evaluation of ultrapure-water systems.  

Science Journals Connector (OSTI)

...by modified assimilable organic carbon (AOC) and UV-oxidizable carbon tests. An...greater than or equal to 0.05) alter AOC values. UV radiation decreased UV-oxidizable carbon and increased AOC. Comparison of assimilable organic carbon...

R A Governal; M T Yahya; C P Gerba; F Shadman

1992-02-01T23:59:59.000Z

26

A method for the determination of dissolved organic carbon in sea water by gas chromatography  

E-Print Network [OSTI]

of organic matter was carried out at elevated temperature and pressure after collection of a large number of samples. The resulting carbon dioxide was flushed through a gas chromatograph with helium as the carrier gas and the signal was recorded on a strip... chart recorder. Chromatographic analysis time was approximately eleven minutes per sample with a precision of + Q. 1 mg C/l. The organic carbon content of the sample was determined by measurement of the peak area using an appropriate carbon dioxide...

Fredericks, Alan D

1965-01-01T23:59:59.000Z

27

FROELICH, P. N. Analysis of organic carbon in marine sediments  

Science Journals Connector (OSTI)

Jun 4, 1979 ... is analyzed for dissolved organic carbon, the .... tice is needed to achieve reliable sealing ... oxygenated Cr,O, reactor at 1,600”C. This.

2000-01-12T23:59:59.000Z

28

Dissolved Organic Carbon Thresholds Affect Mercury Bioaccumulation in Arctic Lakes  

Science Journals Connector (OSTI)

Barkay, T.; Gillman, M.; Turner, R. R.Effects of dissolved organic carbon and salinity on bioavailability of mercury Appl. ... Barkay, Tamar; Gillman, Mark; Turner, Ralph R. ...

Todd D. French; Adam J. Houben; Jean-Pierre W. Desforges; Linda E. Kimpe; Steven V. Kokelj; Alexandre J. Poulain; John P. Smol; Xiaowa Wang; Jules M. Blais

2014-02-13T23:59:59.000Z

29

Challenges for improving estimates of soil organic carbon stored in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

30

Bacterial Growth in Distribution Systems:? Effect of Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon  

Science Journals Connector (OSTI)

In the distribution systems fed by ozonated water, HPCs were correlated (R2 = 0.96) using an exponential model with the assimilable organic carbon (AOC) at each sampling site. ... Also, it was observed that ozonation caused a significant increase in the AOC concentration of the distribution system (over 100% increase) as well as a significant increase in the bacterial counts of the distribution system (average increase over 100%). ... The HPCs from the distribution systems fed by nanofiltration in parallel with lime-softening water also displayed an exponential correlation (R2 = 0.73) with an exponential model based on AOC. ...

Isabel C. Escobar; Andrew A. Randall; James S. Taylor

2001-08-01T23:59:59.000Z

31

Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC):: complementary measurements  

Science Journals Connector (OSTI)

The objective of this study was to evaluate the necessity of measuring both assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) as indicators of bacterial regrowth potential. AOC and BDOC have often been measured separately as indicators of bacterial regrowth, or together as indicators of bacterial regrowth and disinfection by-product formation potential, respectively. However, this study proposes that both AOC and BDOC should be used as complementary measurements of bacterial regrowth potential. In monitoring of full-scale membrane filtration, it was determined that nanofiltration (NF) removed over 90% of the BDOC while allowing the majority of the AOC through. Heterotrophic plate counts (HPC) remained low during the entire period of monitoring due to high additions of disinfectant residual. In a two-year monitoring of a water treatment plant that switched its treatment process from chlorination to chlorination and ozonation, it was observed that the plant effluent AOC increased by 127% while BDOC increased by 49% after the introduction of ozone. Even though AOC is a fraction of BDOC, measuring only one of these parameters can potentially under- or over-estimate the bacterial regrowth potential of the water.

Isabel C Escobar; Andrew A Randall

2001-01-01T23:59:59.000Z

32

Carbon isotope ratios of organic compound fractions in oceanic suspended particles  

E-Print Network [OSTI]

Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

Hwang, Jeomshik; Druffel, Ellen R. M

2006-01-01T23:59:59.000Z

33

Contribution of organic carbon to wood smoke particulate matter absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contribution of organic carbon to wood smoke particulate matter absorption Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Title Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation Publication Type Journal Article Year of Publication 2012 Authors Kirchstetter, Thomas W., and Tracy L. Thatcher Journal Atmospheric Chemistry and Physics Volume 12 Pagination 6067-6072 Abstract A spectroscopic analysis of 115 wintertime partic- ulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral se- lectivity. This is consistent with prior work that has demon- strated that organic carbon (OC), in addition to black car- bon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorp-

34

Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

35

A versatile metal-organic framework for carbon dioxide capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

versatile metal-organic framework for carbon dioxide capture and cooperative catalysis Previous Next List Jinhee Park, Jian-Rong Li, Ying-Pin Chen, Jiamei Yu, Andrey A. Yakovenko,...

36

Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio  

Science Journals Connector (OSTI)

Abstract This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67 ± 0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (?30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1 ? 1.2) and polar organic aerosols (OM2/OC2 ? 2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9 ± 0.2 and 1.8 ± 0.2, from paddy- and wheat-residue burning emissions.

Prashant Rajput; M.M. Sarin

2014-01-01T23:59:59.000Z

37

LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH  

E-Print Network [OSTI]

1 LEACHING BEHAVIOR OF PETROLEUM CONTAMINATED SOILS STABILIZED WITH HIGH CARBON CONTENT FLY ASH the stabilization of petroleum- contaminated soils (PCSs) using another recycled material, high carbon content fly; however, the level of petroleum contamination has a significant effect on the leaching properties

Aydilek, Ahmet

38

Management effects on labile organic carbon pools  

E-Print Network [OSTI]

It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal...

Kolodziej, Scott Michael

2005-08-29T23:59:59.000Z

39

Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries  

Science Journals Connector (OSTI)

Thermal instability of lithiated cathode materials with organic...4, LiMn2O4, and LiCoO2...were mixed with diethyl carbonate, dimethyl carbonate, ethylene carbonate, ethyl methyl carbonate, and propylene carbonat...

Wei-Jie Ou; Chen-Shan Kao; Yih-Shing Duh…

2014-06-01T23:59:59.000Z

40

Uncorrected Latitudinal Trends in Organic Carbon  

E-Print Network [OSTI]

of freshwater wetlands to sequester C. Keywords Cesium-137 (137 Cs), climate change, Histosol, precipitation author: e-mail: ccraft@indiana.edu J. Vymazal (ed.), Wastewater Treatment, Plant Dynamics and Management relation- ships between climate (temperature) and C accumulation. Organic C accumulation was inversely

Craft, Christopher B.

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect (OSTI)

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

42

Don't water down: Enhance content learning through the unit organizer routine  

E-Print Network [OSTI]

The writer considers a content enhancement routine called the unit organizer routine. This routine focuses on how a teacher introduces, builds, and gains closure on a content area unit's critical ideas and information. In ...

Bouda, Daniel J.; Lenz, B. Keith; Bulgren, Janis A.; Schumaker, Jean B.; Deshler, Donald D.

2000-01-01T23:59:59.000Z

43

Characterization of Bioluminescent Derivatives of Assimilable Organic Carbon Test Bacteria  

Science Journals Connector (OSTI)

...Jersey 08043 The assimilable organic carbon (AOC) test is a standardized measure of the bacterial...describe the design and initial development of an AOC assay that uses bioluminescent derivatives of AOC test bacteria. Our assay is based on the observation...

Pryce L. Haddix; Nancy J. Shaw; Mark W. LeChevallier

2004-02-01T23:59:59.000Z

44

Development of a Rapid Assimilable Organic Carbon Method for Water  

Science Journals Connector (OSTI)

...measurement of assimilable organic carbon (AOC) is proposed. The time needed to perform...There was no significant difference between AOC values determined with strain P17 for the...bacterial levels in some samples. Comparison of AOC values obtained by the Belleville laboratory...

Mark W. LeChevallier; Nancy E. Shaw; Louis A. Kaplan; Thomas L. Bott

1993-05-01T23:59:59.000Z

45

Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?  

E-Print Network [OSTI]

Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? David J. Burdige* Department of Ocean, Earth and Atmospheric Sciences, Old.1. Organic Geochemistry of Marine Sediments: General Considerations 468 2. Molecularly Uncharacterized

Burdige, David

46

Emission and Chemistry of Organic Carbon in the Gas and Aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Chemistry of Organic Carbon in the Gas and Aerosol Phase at a Sub-Urban Site Near Mexico City in March 2006 During Emission and Chemistry of Organic Carbon in the Gas and...

47

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2  

E-Print Network [OSTI]

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

Pittendrigh, Barry

48

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

49

Z .Marine Chemistry 67 1999 3342 Differences in seawater particulate organic carbon concentration  

E-Print Network [OSTI]

of the organic carbon retained by a glass-fiber filter against the volume filtered. The interceptZ .Marine Chemistry 67 1999 33­42 Differences in seawater particulate organic carbon concentration August 1998; accepted 11 May 1999 Abstract Z . Z . ZParticulate organic carbon POC data collected

50

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network [OSTI]

, and carbon dioxide. Introduction Carbon dioxide emissions resulting from the burning of fossil fuels 20 metric tons of carbon dioxide per capita are released annually into the atmosphere.1a,b CarbonStorage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks

Yaghi, Omar M.

51

Bioavailable organic carbon in wetland soils across a broad climogeographic area  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE Approved as to style and content by; David A. Zuberer (Co-Chair of Committee) Larry P. Wilding (Co-Chair of Committee) Thomas W. Boutton (Member) Mark A s ey (Head of Department) May 2002 Major Subject: Soil Science... ABSTRACT Bioavailable Organic Carbon in Wetland Soils Across a Broad Climogeographic Area. (May 2002) Andrew Dwight Baker, B. S. , Texas A&M University Co-Chairs of Advisory Committee. Dr. David A. Zuberer Dr. Larry P. Wilding Soils from a broad...

Baker, Andrew Dwight

2012-06-07T23:59:59.000Z

52

The Organic Content of the Tagish Lake Meteorite  

Science Journals Connector (OSTI)

...stone surrounded by fusion crust. We conducted water and solvent...relative to other organics. HF/HCl digestion of Tagish...further extracted (22). Laser desorption mass spectrometry...relative to other organics. HF/HCl digestion...further extracted (22). Laser desorption mass spectrometry...

Sandra Pizzarello; Yongsong Huang; Luann Becker; Robert J. Poreda; Ronald A. Nieman; George Cooper; Michael Williams

2001-09-21T23:59:59.000Z

53

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector  

E-Print Network [OSTI]

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

Zhou, Chongwu

54

Atomic-Scale Detection of Organic Molecules Coupled to Single-Walled Carbon Nanotubes  

E-Print Network [OSTI]

Atomic-Scale Detection of Organic Molecules Coupled to Single-Walled Carbon Nanotubes Sung You Hong.green@chem.ox.ac.uk; ben.davis@chem.ox.ac.uk Functionalized carbon nanotubes (f-CNTs) bearing organic molecules functionalization of single-walled carbon nanotubes (SWNTs) can tailor critical proper- ties such as solubility

Davis, Ben G.

55

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4881 david.lang@netl.doe.doe Richard Willis Principal Investigator UOP LLC 50 East Algonquin Road Des Plaines, IL 60016 847-391-3190 Richard.Willis@uop.com Carbon DioxiDe Separation with novel MiCroporouS Metal organiC FraMeworkS Background UOP LLC, in collaboration with Vanderbilt University and the University of Edinburgh, is working to develop novel microporous metal organic frameworks (MOFs) and an associated process for the removal of CO 2 from coal-fired power plant flue gas. This innovative project will exploit the latest discoveries in an extraordinary class of materials (MOFs) having extremely high adsorption capacities. MOFs have previously exhibited

56

Questions and Answers - Is carbon found in all organic and inorganic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

atoms make up sugar? atoms make up sugar? Previous Question (What atoms make up sugar?) Questions and Answers Main Index Next Question (In the equation for methane, why is there more hydrogen than carbon?) In the equation for methane, why isthere more hydrogen than carbon? Is carbon found in all organic and inorganic matter? The answer is yes and no. Yes, carbon IS found in all organic matter, but NOT in inorganic matter. Although there are many definitions of "organic," in the scientific disciplines, the basic definition comes from chemistry. In chemistry, organic means chemical compounds with carbon in them. In a more general sense, organic refers to living things. And this is connected to the idea of organic chemistry being based on carbon compounds. Organic

57

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration  

E-Print Network [OSTI]

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

Grunwald, Sabine

58

REMOVAL OF ORGANIC POLLUTANTS FROM SUBCRITICAL WATER WITH ACTIVATED CARBON  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has demonstrated that controlling the temperature (and to a lesser extent, the pressure) of water can dramatically change its ability to extract organics and inorganics from matrices ranging from soils and sediments to waste sludges and coal. The dielectric constant of water can be changed from about 80 (a very polar solvent) to <5 (similar to a nonpolar organic solvent) by controlling the temperature (from ambient to about 400 C) and pressure (from about 5 to 350 bar). The EERC has shown that hazardous organic pollutants such as pesticides, PACS (polycyclic aromatic hydrocarbons), and PCBs (polychlorinated biphenyls) can be completely removed from soils, sludges, and sediments at temperatures (250 C) and pressures (<50 atm) that are much milder than typically used for supercritical water processes (temperature >374 C, pressure >221 atm). In addition, the process has been demonstrated to be particularly effective for samples containing very high levels of contaminants (e.g., part per thousand). Current projects include demonstrating the subcritical water remediation process at the pilot scale using an 8-liter system constructed under separate funding during 1997. To date, subcritical water has been shown to be an effective extraction fluid for removing a variety of organic pollutants from soils and sludges contaminated with fossil fuel products and waste products, including PACS from soil (e.g., town gas sites), refining catalysts, and petroleum tank bottom sludges; PCBs from soil and sediments; toxic gasoline components (e.g., benzene) from soil and waste sludge; and phenols from petroleum refinery sludges. The obvious need to clean the wastewater from subcritical water processes led to preliminary experiments with activated carbon placed in line after the extractor. Initial experiments were performed before and after cooling the extractant water (e.g., with water at 200 C and with water cooled to 25 C). Surprisingly, the ability of activated carbon to remove organics from the water is better at a high temperature than at room temperature. These initial results are opposite to those expected from chromatographic theory, since the solubility of the organics is about 100,000-fold higher in the hot water than in ambient water. At present, the physicochemical mechanism accounting for these results is unknown; however, it is possible that the lower surface tension and lower viscosity of subcritical water (compared to water at ambient conditions) greatly increases the available area of the carbon by several orders of magnitude. Regardless of the mechanism involved, the optimal use of activated carbon to clean the wastewater generated from subcritical water remediation will depend on obtaining a better understanding of the controlling parameters. While these investigations focused on the cleanup of wastewater generated from subcritical water remediation, the results also apply to cleanup of any wastewater contaminated with nonpolar and moderately polar organics such as wastewaters from coal and petroleum processing.

Steven B. Hawthorne; Arnaud J. Lagadec

1999-08-01T23:59:59.000Z

59

Liquid-phase adsorption of organic compounds by granular activated carbon and activated carbon fibers  

SciTech Connect (OSTI)

Liquid-phase adsorption of organic compounds by granular activated carbon (GAC) and activated carbon fibers (ACFs) is investigated. Acetone, isopropyl alcohol (IPA), phenol, and tetrahydrofuran (THF) were employed as the model compounds for the present study. It is observed from the experimental results that adsorption of organic compounds by GAC and ACF is influenced by the BET (Brunauer-Emmett-Teller) surface area of adsorbent and the molecular weight, polarity, and solubility of the adsorbate. The adsorption characteristics of GAC and ACFs were found to differ rather significantly. In terms of the adsorption capacity of organic compounds, the time to reach equilibrium adsorption, and the time for complete desorption, ACFs have been observed to be considerably better than GAC. For the organic compounds tested here, the GAC adsorptions were shown to be represented well by the Langmuir isotherm while the ACF adsorption could be adequately described by the Langmuir or the Freundlich isotherm. Column adsorption tests indicated that the exhausted ACFs can be effectively regenerated by static in situ thermal desorption at 150 C, but the same regeneration conditions do not do as well for the exhausted GAC.

Lin, S.H.; Hsu, F.M. [Yuan Ze Inst. of Tech., Taoyuan (Taiwan, Province of China). Dept. of Chemical Engineering

1995-06-01T23:59:59.000Z

60

Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater  

SciTech Connect (OSTI)

Reuse of treated wastewater through groundwater recharge has emerged as an integral part of water and wastewater management in arid regions of the world. Aerated-lagoon wastewater treatment followed by surface infiltration offers a simple low-tech, low-cost treatment option for developing countries. This study investigated the fate of dissolved organic carbon (DOC) through laboratory-scale soil aquifer treatment (SAT) soil columns over a 64-week period. Aerated-lagoon wastewater (average DOE = 17 mg/l) and two soils were collected near the USA/Mexico border near Nogales, AZ. Laboratory-scale SAT columns exhibited three phases of aging where infiltration rates and DOC removals were delineated. DOC removal ranged from 39% to greater than 70% during the study, with DOC levels averaging 3.7 and 5.8 mg/l for the SAT columns packed with different soils. Soil with a higher fraction of organic carbon content had higher effluent DOC levels, presumably due to leaching of soil organic matter. UV absorbance data indicated preferential biodegradation removal of low molecular weight, low aromatic DOC. Overall, SAT reduced the potential towards forming trihalomethanes (THMs) during disinfection, although the reactivity ({mu}g THM/mg DOC) increased. SAT and groundwater recharge would provide a high degree of DOC removal in an integrated low-tech wastewater reuse management strategy, especially for developing countries in arid regions of the world.

Westerhoff, P.; Pinney, M.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash  

E-Print Network [OSTI]

1 Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash M. Melih for retardation of petroleum contaminants in barrier applications. Sorbed amounts measured in batch scale tests on remediation efficiency. INTRODUCTION Remediation of groundwater contaminated with petroleum-based products has

Aydilek, Ahmet

62

Using rare earth elements to constrain particulate organic carbon flux in marginal seas.  

E-Print Network [OSTI]

??Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer… (more)

Chen, Ya-Feng

2014-01-01T23:59:59.000Z

63

Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin  

E-Print Network [OSTI]

an organic-rich coastal sediment. Geochim. Cosmochim. Actaorganic carbon in sediments from the North Carolinaexchange between deep ocean sediments and sea water. Nature

2013-01-01T23:59:59.000Z

64

Long-term patterns of dissolved organic carbon in lakes across ...  

Science Journals Connector (OSTI)

... dynamics of dissolved organic carbon (DOC) in 55 lakes during ice-free periods in five regions across eastern Canada in relation to total solar radiation (

65

Sorption of polycyclic aromatic hydrocarbons to minerals and low-organic-carbon aquifer sediments  

E-Print Network [OSTI]

The molecular mechanisms and major geochemical factors ics. controlling the sorption of nontoxic organic chemicals (NOC) to mineral surfaces in low-organic-carbon soils and sediments remain unclear. The objectives of this research were to study...

Grimaldi, Gabriel Orlando

2012-06-07T23:59:59.000Z

66

Sorption of polycyclic aromatic hydrocarbons to minerals and low-organic-carbon aquifer sediments.  

E-Print Network [OSTI]

??The molecular mechanisms and major geochemical factors ics. controlling the sorption of nontoxic organic chemicals (NOC) to mineral surfaces in low-organic-carbon soils and sediments remain… (more)

Grimaldi, Gabriel Orlando

2012-01-01T23:59:59.000Z

67

Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites  

SciTech Connect (OSTI)

Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

2014-05-06T23:59:59.000Z

68

Comparing removal of trace organic compounds and assimilable organic carbon (AOC) at advanced and traditional water treatment plants  

Science Journals Connector (OSTI)

Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms...254, and AOC) from water, experimental results indicate th...

Jie-Chung Lou; Chung-Yi Lin; Jia-Yun Han…

2012-06-01T23:59:59.000Z

69

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic  

E-Print Network [OSTI]

Doctoral Defense "Carbon Dioxide Capture on Elastic Layered Metal-Organic Framework Adsorbents requires drastic modifications to the current energy infrastructure. Thus, carbon capture and sequestration for use as carbon capture adsorbents. Ideal adsorbed solution theory (IAST) estimates of CO2 selectivity

Kamat, Vineet R.

70

Highly efficient carbon dioxide capture with a porous organic polymer impregnated with  

E-Print Network [OSTI]

Highly efficient carbon dioxide capture with a porous organic polymer impregnated environmental crises such as global warming and ocean acidication, efficient carbon dioxide (CO2) capture As CO2 capture mate- rials, numerous solid adsorbents such as silica5 and carbon materials,6 metal

Paik Suh, Myunghyun

71

Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for  

E-Print Network [OSTI]

Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications of SOC enrichment in dust emissions is necessary to evaluate the impact of wind erosion on the carbon) across landscapes and soil carbon emissions (van Oost et al., 2007). The dust cycle rep- resents

72

Analysis and removal of assimilable organic carbon (AOC) from treated drinking water using a biological activated carbon filter system  

Science Journals Connector (OSTI)

Abstract This study is focused on reducing the concentration of assimilable organic carbon (AOC) in treated drinking water. Experiments were conducted to evaluate the efficiency of AOC removal by biological activated carbon filters (BACF) in a pilot-scale system. The results show that BACF reduces the total concentration of AOC. The concentration of AOC primarily indicates microorganism growth in a water supply network, and the amount of AOC in water is significantly reduced after BACF treatment. The predicted and measured values of AOC in output water treated by the BACF system show linear relationships, and their correlation coefficients are high. An AOC empirical equation was established by determining the relationship between water quality parameters such as total organic carbon, dissolved organic carbon, UV254, ammonia nitrogen, and total phosphorous. These findings may be relevant to conventional water treatment plants or to water distribution systems to provide treated drinking water with a high level of biological stability.

Jie-Chung Lou; Chih-Yuan Yang; Che-Jung Chang; Wei-Hsiang Chen; Wei-Bin Tseng; Jia-Yun Han

2014-01-01T23:59:59.000Z

73

Sample storage impact on the assimilable organic carbon (AOC) bioassay  

Science Journals Connector (OSTI)

The effects of sample storage on the assimilable organic carbon (AOC) bioassay using Pseudomonas fluorescens strain P17 and Spirillum strain NOX have not been fully quantified to date, and in the current Standard Method, it is stated that samples can “probably be held for several days” (Standard Methods for the Examination of Water and Wastewater, ed. A. D. Eaton, L. S. Clesceri, A. E. Greenberg, 19th Edn., (1995)). Experiments were performed by splitting 22 samples after chlorine residual neutralization and pasteurization at 70°C for 30 min, and holding one half of the replicate samples at 4°C for one week prior to analysis. The majority of the samples were taken from a local water treatment plant and distribution system with source water from the deep Floridan aquifer. The others were taken from the laboratory tap water, whose source was also the Floridan aquifer. All collected samples were tested for effects due to storage, with each sample tested for AOC as soon as possible while an identical replicate was stored for one week. After one week, the AOC of the held samples was also determined. By comparing the AOC of samples that were not stored with samples that were stored, it was observed that after one week of storage, the AOC of the stored identical sample replicates increased by approximately 65%. This was determined to result from BOM (biodegradable organic matter) fermentation to AOC by a yeast, Cryptococcus neoformans. Of the 22 samples tested, only four displayed no significant change in AOC and none displayed a significant decrease in AOC. It was then determined that samples heat treated at 70°C for 30 min could be stored for less than 2 days, but a modified pasteurization of 72°C for 30 min immediately followed by an ice bath for 30 min allowed storage for at least 7 days without significant changes in AOC.

Isabel C Escobar; Andrew A Randall

2000-01-01T23:59:59.000Z

74

Effect of different secondary quinoline insoluble content on the cellular structure of carbon foam derived from coal tar pitch  

Science Journals Connector (OSTI)

Abstract Carbon foam was produced using mesophase pitches obtained under different temperatures as precursors, via foaming and carbonization process. The physicochemical properties of mesophase pitch, as well as the microstructure and physical properties of carbon foam were investigated by optical microscope, infrared spectrometer, thermograviment analyzer (TGA), X-ray diffractometer (XRD), scanning electron microscope (SEM) and universal testing machine, respectively. The results show that the amount of secondary quinoline insoluble in mesophase pitches increase with heat-treatment temperature increase, meanwhile, the cell size of carbon foams increased firstly and then reduced. Moreover, the compressive strength of carbon foams also exhibited the same variation trend. The cellular structure of carbon foam can be severely affected by the secondary quinoline insoluble content of mesophase pitch; thus it is critical to tailor the secondary quinoline insoluble content of mesophase pitch for obtaining carbon foam with high performance.

Heguang Liu; Tiehu Li; Yachun Shi; Xilin Wang; Jing Lv; Wenjuan Zhang

2014-01-01T23:59:59.000Z

75

Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves  

Science Journals Connector (OSTI)

Abstract In industrial areas, tree leaves contaminated by metals and metalloids could constitute a secondary source of pollutants. In the present study, water extraction kinetics of inorganic elements (IE: Pb, Zn, Cd, As, Fe and Mn), dissolved organic carbon, pH and biological activity were studied for industrial contaminated poplar leaves. Moreover, the distribution of the IE through the size fractions of the associated top soil was measured. High quantities of Mn, Zn and As and polysaccharides were released in the solution from the strongly contaminated leaves. The kinetic of release varied with time and metal type. The solution pH decreased while dissolved organic contents increased with time after 30 days. Therefore, these contaminated leaves could constitute a source of more available organic metals and metalloids than the initial inorganic process particles. However, the distribution of the IE through the size fractions of the top soil suggested that a great part of the released IE was adsorbed, reducing in consequence their transfers and bioavailability. It's concluded that mobility/bioavailability and speciation of metals and metalloids released from the decomposition of polluted tree leaves depends on soil characteristics, pollutant type and litter composition, with consequences for environmental risk assessment.

Muhammad Shahid; Tiantian Xiong; Maryse Castrec-Rouelle; Tibo Leveque; Camille Dumat

2013-01-01T23:59:59.000Z

76

Indoor air pollutants from unvented kerosene heater emissions in mobile homes: studies on particles, semivolatile organics, carbon monoxide, and mutagenicity  

Science Journals Connector (OSTI)

Indoor air pollutants from unvented kerosene heater emissions in mobile homes: studies on particles, semivolatile organics, carbon monoxide, and mutagenicity ...

Judy L. Mumford; Ron W. Williams; Debra B. Walsh; Robert M. Burton; David J. Svendsgaard; Jane C. Chuang; Virginia S. Houk; Joellen Lewtas

1991-10-01T23:59:59.000Z

77

Unexpected carbon-carbon coupling between organic cyanides and isopropyl {beta}-carbon in a hafnium ene diamide complex  

SciTech Connect (OSTI)

Reaction of the ene diamide complex Cp*Hf({sigma}{sup 2},{pi}-iPr-DAB)Cl (1; Cp* = {eta}{sup 5}-C{sub 5}Me{sub 5}, iPr-DAB = 1,4-diisopropyl-1,4-diaza-1,3-butadiene) with organic cyanides was investigated. The crystal structure of the product, Cp*Hf[iPrNCH{double_bond}CHNC(Me){double_bond}CHC(tBu){double_bond}NH]Cl, is reported. The reaction is thought to proceed by two hydrogen transfers and a C-C coupling on the {beta}-carbon of an isopropyl group. NMR was used to identify reaction intermediates in the hydrogen transfer scheme.

Bol, J.E.; Hessen, B.; Teuben, J.H. [Univ. of Groningen (Netherlands); Smeets, W.J.J.; Spek, A.L. [Univ. of Utrecht (Netherlands)

1992-06-01T23:59:59.000Z

78

Multi-Walled Carbon Nanotubes-Modified Polymer Organic Photovoltaics.  

E-Print Network [OSTI]

??Since the carbon nanotubes were first discovered by Iijima in 1991, CNTs have been the focus of intense research by many groups. Nearly 7000 papers… (more)

Chen, Tzu-Fan

2009-01-01T23:59:59.000Z

79

E-Print Network 3.0 - aerosol content monitoring Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbonaceous aerosols according to their organic carbon, elemental carbon and carbonate content... of Energy under Contract No. DE-AC02-98CH10886. BNL-61626 Visibility-reducing...

80

Snowball Earth prevention by dissolved organic carbon remineralization  

Science Journals Connector (OSTI)

... model of the co-evolution of Neoproterozoic climate and the carbon cycle that provides an alternative interpretation to the ‘hard snowball’ hypothesis of the origin of the observed ?13C variations ... carbon cycle component of the model. Supplementary Fig. 4 shows equivalent results for the case X = 1. ...

W. Richard Peltier; Yonggang Liu; John W. Crowley

2007-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations Office RPD relative percent difference RSD relative standard deviation TIC tentatively identified compound DOERL-96-68, HASQARD Table of Contents, Rev. 3 Volume...

82

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS March 21, 2013 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ......

83

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assurancecontrol) 3. Responsible operations manager 4. Equipment custodian 5. Cognizant engineer. *Reviewapproval is mandatory. 18.3.3 Hostile Environment Plan Contents The plan...

84

Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) was prepared by a carbonization of resorcinol–formaldehyde (RF) polymer gels, and it was chemically activated with KOH to obtain activated carbon aerogel (ACA) for electrode material for EDLC in organic electrolyte. Coin-type EDLC cells with two symmetrical carbon electrode were assembled using the prepared carbon materials. Electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods. Activated carbon aerogel (20.9 F/g) showed much higher specific capacitance than carbon aerogel (7.9 F/g) and commercial activated carbon (8.5 F/g) at a scan rate of 100 mV/s. This indicates that chemical activation with KOH served as an efficient method to improve electrochemical performance of carbon aerogel for EDLC electrode in organic electrolyte. The enhanced electrochemical performance of activated carbon aerogel was attributed to the high effective surface area and the well-developed pore structure with appropriate pore size obtained from activation with KOH.

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim; Sang-Gil Kim; Byung-Jun Lee; Myung-Soo Kim; Ji Chul Jung

2014-01-01T23:59:59.000Z

85

Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks Previous Next List A. Dzubak, L.-C. Lin, J. Kim, J. A. Swisher, R. Poloni, S. N. Maximoff, B. Smit, and L. Gagliardi,...

86

Improvement of the assimilable organic carbon (AOC) analytical method for reclaimed water  

Science Journals Connector (OSTI)

Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which dete...

Xin Zhao; Hongying Hu; Shuming Liu…

2013-08-01T23:59:59.000Z

87

Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.  

Science Journals Connector (OSTI)

...A modified assimilable organic carbon (AOC) bioassay is proposed. We evaluated all aspects of the AOC bioassay technique, including inoculum...raw waters need to be filtered prior to an AOC analysis. Glass fiber filters used with either...

L A Kaplan; T L Bott; D J Reasoner

1993-05-01T23:59:59.000Z

88

Development and Application of a Bioluminescence-Based Test for Assimilable Organic Carbon in Reclaimed Waters  

Science Journals Connector (OSTI)

...Jersey 08043 Assimilable organic carbon (AOC) is an important parameter governing the...protection) can have dramatic impacts on AOC levels in drinking water, few water utilities routinely measure AOC levels because of the difficulty of the...

Lauren A. Weinrich; Eugenio Giraldo; Mark W. LeChevallier

2009-10-09T23:59:59.000Z

89

Polymer and carbon nanotube materials for chemical sensors and organic electronics  

E-Print Network [OSTI]

This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

Wang, Fei, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

90

CONTENTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTENTS CONTENTS Introduction ........................................................................................................3 ON THE HORIZON: Promising Research Efforts Currently Underway A Smarter Charge .........................................................................................4 Unlocking Fire Ice .........................................................................................5 CRISP Crunches Cyber Threats ....................................................................6 Gel Zeroes in on Cancer ...............................................................................7 Liquid Solvent: A Solid Solution for CO 2 .....................................................8 Real-time Grid Stability ................................................................................9

91

Highly efficient separation of carbon dioxide by a metal-organic framework replete with  

E-Print Network [OSTI]

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal capture of CO2, which is essential for natural gas purifi- cation and CO2 sequestration, has been reported media. carbon dioxide capture dynamic adsorption reticular chemistry Selective removal of CO2 from

Yaghi, Omar M.

92

Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte  

Science Journals Connector (OSTI)

Energy-Density Enhancement of Carbon-Nanotube-Based Supercapacitors with Redox Couple in Organic Electrolyte ... The redox molecule also contributes to increasing the cell capacitance by a faradaic redox reaction, and therefore the energy density of the supercapacitor can be significantly increased. ... More specifically, the addition of redox-active decamethylferrocene in an organic electrolyte results in an approximately 27-fold increase in the energy density of carbon-nanotube-based supercapacitors. ...

Jinwoo Park; Byungwoo Kim; Young-Eun Yoo; Haegeun Chung; Woong Kim

2014-11-16T23:59:59.000Z

93

Limiting diffusion coefficients of heavy molecular weight organic contaminants in supercritical carbon dioxide  

E-Print Network [OSTI]

LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject: Chemical Engineering LIMITING DIFFUSION COEFFICIENTS OF HEAVY MOLECULAR WEIGHT ORGANIC CONTAMINANTS IN SUPERCRITICAL CARBON DIOXIDE A Thesis by MAURICIO OREJUELA Submitted...

Orejuela, Mauricio

1994-01-01T23:59:59.000Z

94

Fossil organic carbon in wastewater and its fate in treatment plants  

Science Journals Connector (OSTI)

Abstract This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

Yingyu Law; Geraldine E. Jacobsen; Andrew M. Smith; Zhiguo Yuan; Paul Lant

2013-01-01T23:59:59.000Z

95

Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separation with Separation with Novel Microporous Metal Organic Frameworks Background UOP LLC, the University of Michigan, and Northwestern University are collaborating on a three-year program to develop novel microporous metal organic frameworks (MOFs) suitable for CO 2 capture and separation. MOFs are hybrid organic/inorganic structures in which the organic moiety is readily derivatized. This innovative program is using sophisticated molecular modeling to evaluate the structurally

96

Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes  

E-Print Network [OSTI]

There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

Choi, Kyung Who

2013-12-03T23:59:59.000Z

97

Recent advances in carbon dioxide capture with metal-organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U. Wang, Hong-Cai Zhou, Greenhouse Gas Sci Technol, 2: 239-259, 2012 DOI: 10.1002ghg.1296 Abstract: Uncontrolled massive release of the primary greenhouse gas carbon...

98

Developing carbon-based "organic" compounds for microelectronic applications is a promising, rapidly  

E-Print Network [OSTI]

· Performance and production solutions to electronics, displays, solar cells, white lighting and room lightingDeveloping carbon-based "organic" compounds for microelectronic applications is a promising inorganic materials such as silicon and copper, organic microelectronics are flexible, lighter weight, less

Hayden, Nancy J.

99

Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton  

Science Journals Connector (OSTI)

Ozonation of natural surface water increases the concentration of oxygen-containing low molecular weight compounds. Many of these compounds support microbiological growth and as such are termed assimilable organic carbon (AOC). Phytoplankton can contribute substantially to the organic carbon load when surface water is used as source for drinking water treatment. We have investigated dissolved organic carbon (DOC) formation from the ozonation of a pure culture of Scenedesmus vacuolatus under defined laboratory conditions, using a combination of DOC fractionation, analysis of selected organic acids, aldehydes and ketones, and an AOC bioassay. Ozonation of algae caused a substantial increase in the concentration of DOC and AOC, notably nearly instantaneously upon exposure to ozone. As a result of ozone exposure the algal cells shrunk, without disintegrating entirely, suggesting that DOC from the cell cytoplasm leaked through compromised cell membranes. We have further illustrated that the specific composition of newly formed AOC (as concentration of organic acids, aldehydes and ketones) in ozonated lake water differed in the presence and absence of additional algal biomass. It is therefore conceivable that strategies for the removal of phytoplankton before pre-ozonation should be considered during the design of drinking water treatment installations, particularly when surface water is used.

Frederik Hammes; Sébastien Meylan; Elisabeth Salhi; Oliver Köster; Thomas Egli; Urs von Gunten

2007-01-01T23:59:59.000Z

100

Inferring Black Carbon Concentrations in Particulate Organic Matter by Observing Pyrene Fluorescence Losses  

Science Journals Connector (OSTI)

Inferring Black Carbon Concentrations in Particulate Organic Matter by Observing Pyrene Fluorescence Losses ... For example, most atmospheric scientists are interested in the “blackness” of aerosols and the resultant effect on the radiative heat balance (3, 7), while oceanographers and soil scientists are interested in the refractory properties of BC in soils and sediments influencing its role in carbon cycling (5). ... Studies since the late 1970s and early 1980s have suggested that absorption into biogenic and diagenetic organic matter is a key process controlling the fate and effects of hydrophobic organic pollutants (8, 9), and this process has been described using a linear sorption model where Kd is the solid?water distribution coefficient (L/kgsolid), and this parameter is estimated using the product of the total organic carbon (TOC) fraction (fTOC, kgTOC/kgsediment) and the TOC-normalized distribution coefficient (KTOC, L/kgTOC). ...

D. Xanat Flores-Cervantes; Christopher M. Reddy; Philip M. Gschwend

2009-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Trends Online - Area and Carbon Content of Sphagnum Since Last Glacial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area and Carbon Content of Sphagnum Since Last Glacial Maximum DOI: 10.3334/CDIAC/vrc.001 image Data image Graphics Investigators K. Gajewski, A. Viau, M. Sawada, D. Atkinson and S. Wilson Laboratory for Paleoclimatology and Climatology, Department of Geography, University of Ottawa, 165 Waller Street, Ottawa, Ontario, K1N 6N5 Canada. Period of Record 21000-0 years BP Methods The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds

102

August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle in  

E-Print Network [OSTI]

1 August 22, 2002 Contribution to Stein, R. and Macdonald, R. W. (eds.) The Organic Carbon Cycle. This problem is highlighted by a recent study of the carbon budget of the Mackenzie shelf by Macdonald et al

Eicken, Hajo

103

Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models  

SciTech Connect (OSTI)

Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

Xu, Xiaofeng [ORNL] [ORNL; Schimel, Joshua [University of California, Santa Barbara] [University of California, Santa Barbara; Thornton, Peter E [ORNL] [ORNL; Song, Xia [ORNL] [ORNL; Yuan, Fengming [ORNL] [ORNL; Goswami, Santonu [ORNL] [ORNL

2014-01-01T23:59:59.000Z

104

Enhanced top soil carbon stocks under organic farming  

Science Journals Connector (OSTI)

...the farming systems was still significant...zero net input systems for all data...compost or waste products from...by returning plant residues and...into the system. It is therefore...those from integrated or conventional...and do not control for potential...the organic treatment is ?1.0 ELU...

Andreas Gattinger; Adrian Muller; Matthias Haeni; Colin Skinner; Andreas Fliessbach; Nina Buchmann; Paul Mäder; Matthias Stolze; Pete Smith; Nadia El-Hage Scialabba; Urs Niggli

2012-01-01T23:59:59.000Z

105

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions  

Science Journals Connector (OSTI)

...the SOA potential of diesel emissions, especially...improve heavy-duty diesel engine performance with postcombustion...attention to gasoline and diesel fuel composition and emissions...carbon. Although total consumption of oil is minor relative...

Drew R. Gentner; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Timothy R. Dallmann; Laura Davis; Shang Liu; Douglas A. Day; Lynn M. Russell; Kevin R. Wilson; Robin Weber; Abhinav Guha; Robert A. Harley; Allen H. Goldstein

2012-01-01T23:59:59.000Z

106

Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC  

SciTech Connect (OSTI)

Simulation models integrate our knowledge of soil organic C (SOC) dynamics and are useful tools for evaluating impacts of crop management on soil C sequestration; yet, they require local calibration. Our objectives were to calibrate the Environmental Policy Integrated Climate (EPIC) model, and evaluate its performance for simulating SOC fractions as affected by soil landscape and management. An automated parameter optimization procedure was used to calibrate the model for a site-specific experiment in the Coastal Plain of central Alabama. The ability of EPIC to predict corn (Zea mays L.) and cotton (Gossypium hirsutum L.) yields and SOC dynamics on different soil landscape positions (summit, sideslope and drainageway) during the initial period of conservation tillage adoption (5 years) was evaluated using regression and mean squared deviations. Simulated yield explained 88% of measured yield variation, with greatest disagreement on the sideslope position and highest agreement in the drainageway. Simulations explained approximately 1, 34 and 40% of the total variation in microbial biomass C (MBC), particulate organic C (POC) and total organic C (TOC), respectively. Lowest errors on TOC simulations (0-20 cm) were found on the sideslope and summit. We conclude that the automated parameterization was generally successful, although further work is needed to refine the MBC and POC fractions, and to improve EPIC predictions of SOC dynamics with depth. Overall, EPIC was sensitive to spatial differences in C fractions that resulted from differing soil landscape positions. The model needs additional refinement for accurate simulations of field-scale SOC dynamics affected by short-term management decisions.

Causarano, Hector J.; Shaw, Joey N.; Franzluebbers, A. J.; reeves, D. W.; Raper, Randy L.; Balkcom, Kipling S.; Norfleet, M. L.; Izaurralde, R Cesar

2007-07-01T23:59:59.000Z

107

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source  

E-Print Network [OSTI]

Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment : deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input

Wehrli, Bernhard

108

Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment  

E-Print Network [OSTI]

Identification of Sediment Organic Carbon Location and Association with Polycyclic Aromatic Hydrocarbons (PAHs) in Contaminated Sediment Upal Ghosh1 , Richard G. Luthy1 , J. Seb Gillette2 , and Richard N long-term issue confronting sediment bioremediation is the lack of understanding of contaminant-sediment

109

Deep-Sea Research II 50 (2003) 655674 Determining true particulate organic carbon: bottles, pumps  

E-Print Network [OSTI]

Deep-Sea Research II 50 (2003) 655­674 Determining true particulate organic carbon: bottles, pumps or by in situ filtration with pumps and analyzing the filters. The concentrations measured by these two methods-latitude waters. Here we report that the ratio of bottle POC to pump POC ranged between 20 and 200 in the Ross Sea

Hansell, Dennis

110

Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tillage and Crop Rotation Tillage and Crop Rotation Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis DOI: 10.3334/CDIAC/tcm.002 PDF file Full text Soil Science Society of America Journal 66:1930-1946 (2002) CSITE image Tristram O. West and Wilfred M. Post DOE Center for Carbon Sequestration in Terrestrial Ecosystems (CSiTE) Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6290 U.S.A. Sponsor: U.S. Department of Energy's Office of Science, Biological and Environmental Research Program Abstract Global map Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil

111

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water  

E-Print Network [OSTI]

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture preservation of the IRMOF structure. Carbon dioxide capture from combustion sources such as flue gas in power this carbon capture challenge. The preferred method for measuring the efficiency of a given material

Yaghi, Omar M.

112

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S. Walker, and Geraldine L. Richmond*  

E-Print Network [OSTI]

Layered Organic Structure at the Carbon Tetrachloride-Water Interface Dennis K. Hore, Dave S remediation. The carbon tetrachloride-water interface in particular has been the subject of numerous the density profile across the interface. No detailed studies of the carbon tetrachloride structure

Richmond, Geraldine L.

113

The effects of harvesting intensity on soil CO2 efflux and carbon content in an east Texas bottomland hardwood ecosystem  

E-Print Network [OSTI]

land. I examined the effects of harvest intensity on in situ and mineral soil respiration, along with total soil and soluble organic carbon, were examined in a bottomland hardwood forest. Treatments included a clearcut, a partial cut, and a non-harvested...

Londo, Andrew James

1995-01-01T23:59:59.000Z

114

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

115

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

116

Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene  

E-Print Network [OSTI]

Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon for organic pseudo-bilayer solar cells J. Appl. Phys. 112, 084511 (2012) Addition of regiorandom poly(3 (2012) Tunable open-circuit voltage in ternary organic solar cells Appl. Phys. Lett. 101, 163302 (2012

Hone, James

117

T E C H N I C A L A D V A N C E Soil organic carbon dust emission: an omitted global  

E-Print Network [OSTI]

T E C H N I C A L A D V A N C E Soil organic carbon dust emission: an omitted global source emission, soil organic carbon Received 16 April 2013 and accepted 21 May 2013 Introduction Uncertainty, Gunnedah, NSW 2380, Australia Abstract Soil erosion redistributes soil organic carbon (SOC) within

118

Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites  

SciTech Connect (OSTI)

By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

2014-05-14T23:59:59.000Z

119

E-Print Network 3.0 - affects marine carbon Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the organic carbon content of marine aerosols... . Potential impact of ocean ecosystem changes due to global warming on marine341 ... Source: Russell, Lynn - Scripps...

120

Kinetics and Yields of Pesticide Biodegradation at Low Substrate Concentrations and under Conditions Restricting Assimilable Organic Carbon  

Science Journals Connector (OSTI)

...occurrence of assimilable organic carbon (AOC) in experimental systems which can be present...the target substrate. The occurrence of AOC effectively makes biodegradation assays...biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing...

Damian E. Helbling; Frederik Hammes; Thomas Egli; Hans-Peter E. Kohler

2013-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum  

Science Journals Connector (OSTI)

The concentration of easily assimilable organic carbon (AOC) largely determines the microbiological stability of drinking water. However, AOC determination is often neglected in practice due to the complex and tedious nature of the conventional bioassay. ...

Frederik A. Hammes; Thomas Egli

2005-03-31T23:59:59.000Z

122

ORGANIC CONTENT OF LAKE WATER By EDWARD A. BIRGE and CHANCEY JUDAY  

E-Print Network [OSTI]

of the nature of the organic compounds. Thus it furnishes the beginnings of an inventory of the primary food was based Oil the same samples as those employed in the present paper; it is the source of the nitrogen

123

Designing a Dynamic Data-Driven Application System for Estimating Real-Time Load of Dissolved Organic Carbon in a River  

Science Journals Connector (OSTI)

Understanding the dynamics of naturally occurring dissolved organic carbon (DOC) in a river is central to estimating surface water quality, aquatic carbon cycling, and global climate change. Currently, determinat...

Ying Ouyang

2012-10-01T23:59:59.000Z

124

Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells  

SciTech Connect (OSTI)

In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu{sub 0.6}Te{sub 0.4} based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580??m diameter dot TiN/Cu{sub 0.6}Te{sub 0.4}-C/Al{sub 2}O{sub 3}/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al{sub 2}O{sub 3} under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al{sub 2}O{sub 3} before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

Devulder, Wouter, E-mail: Wouter.Devulder@UGent.be; De Schutter, Bob; Detavernier, Christophe [Department of Solid State Sciences, Universiteit Gent, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Muller, Robert; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Belmonte, Attilio [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, 3001 Leuven (Belgium)

2014-02-07T23:59:59.000Z

125

The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast  

SciTech Connect (OSTI)

The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

2007-08-08T23:59:59.000Z

126

Molecular Characterization of Organic Content of Soot along the Centerline of a Coflow Diffusion Flame  

SciTech Connect (OSTI)

High-resolution mass spectrometry coupled with nanospray desorption electrospray ionization was used to probe chemical constituents of young soot particles sampled along the centerline of a coflow diffusion flame of a three-component Jet-A1 surrogate. In lower positions where particles are transparent to light extinction (n= 632.8 nm), peri-condensed polycyclic aromatic hydrocarbons (PAHs) are found to be the major components of the particle material. These particles become enriched with aliphatic components as they grow in mass and size. Before carbonization occurs, the constituent species in young soot particles are aliphatic and aromatic compounds 200-600 amu in mass, some of which are oxygenated. Particles dominated by PAHs or mixtures of PAHs and aliphatics can both exhibit liquid-like appearance observed by electron microscopy and be transparent to visible light. The variations in chemical composition observed here indicate that the molecular processes of soot formation in coflow diffusion flames may be more complex than previously thought. For example, the mass growth and enrichment of aliphatic components in an initially, mostly aromatic structure region of the flame that is absent of H atoms or other free radicals indicates that there must exist at least another mechanism of soot mass growth in addition to the hydrogen-abstraction-carbon addition mechanism currently considered in fundamental models of soot formation.

Cain, Jeremy P.; Laskin, Alexander; Kholghy, Mohammad Reza; Thomson, Murray; Wang, Hai

2014-10-29T23:59:59.000Z

127

Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system  

Science Journals Connector (OSTI)

This paper investigated the variation of assimilable organic carbon (AOC) concentrations in water from several typical water treatment plants and distribution systems in a northern city of China. It is concluded from this study that: (1) The AOC in most of the product water of the studied water treatment plants and the water from the associated distribution systems could not meet the biostability criteria of 50–100 ?g/L. (2) Only 4% of the measured AOC concentrations were less than 100 ?g/L. However, about half of the measured AOC values were less than 200 ?g/L. (3) Better source water quality resulted in lower AOC concentrations. (4) The variation of AOC concentrations in distribution systems was affected by chlorine oxidation and bacterial activity: the former resulted in an increase of AOC value while the latter led to a reduction in AOC. (5) The variation of AOC concentration followed different patterns in different distribution systems or different seasons due to their respective operational characteristics. (6) Less than 30% of AOC could be removed by a conventional treatment process, whereas 30–60% with a maximum of 50–60% could be removed by granular activated carbon (GAC). (7) The observation via scanning electron microscope (SEM) on distribution pipe tubercle samples demonstrated that the pipe inner wall was not smooth and bacteria multiplied in the crevice as well as in the interior wall of distribution pipes.

W Liu; H Wu; Z Wang; S.L Ong; J.Y Hu; W.J Ng

2002-01-01T23:59:59.000Z

128

The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries  

SciTech Connect (OSTI)

The effect of different kinds of aprotic organic solvents on the discharge performance and discharge products in Li-O2 batteries was systematically investigated. The discharge products deposited in air cathodes were analyzed by X-ray diffraction, in situ gas chromatography/mass spectroscopy and X-ray photoelectron spectroscopy. We found that a significant amount of Li2O2 can be formed in glyme-based electrolytes during the discharge process, while only small amount of Li2O2 is produced in electrolytes of phosphate, nitrile, ionic liquid and sulfoxide. However, in all the seven types of solvent systems we studied, Li2CO3 and LiF were still formed as byproducts whose compositions are strongly related to the solvents. Li2CO3 is produced not from the carbon air electrode but from oxidation and decomposition of the solvent as we verified by using a 13C-labeled carbon electrode and the solid-state 13C-MAS NMR technique. The formation of Li2CO3 and LiF during discharge will greatly reduce the Coulombic efficiency and cycle life of the Li-air batteries. Therefore, better electrolytes that can ensure the formation of Li2O2 but minimize other reaction products formed on air electrodes of Li-air batteries need to be further investigated.

Xu, Wu; Hu, Jian Z.; Engelhard, Mark H.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Feng, Ju; Hu, Mary Y.; Zhang, Jian; Ding, Fei; Gross, Mark E.; Zhang, Jiguang

2012-05-18T23:59:59.000Z

129

Effects of Organic Carbon Supply Rates on Uranium Mobility in a  

E-Print Network [OSTI]

respiration caused increased (bi)carbonate concentration and formation of stable uranyl carbonate complexes remediation. Dissolved oxygen, nitrate and denitrification products have been demonstrated to mobilize U

Hazen, Terry

130

An analysis of the dependence of thermal transport parameters on organic content for Green River oil shales  

Science Journals Connector (OSTI)

An analysis of the trends in the variation of the thermal transport parameters with organic content (taking thermal diffusivity as an example) is presented for oil shales of the Green River formation. The Cheng?Vachon model gives good agreement with experimental data for oil shales of medium grade (100–250 l/ton) and for heat flowing in directions perpendicular to the orientation of the shale bedding planes. The degree of anisotropy experimentally observed for thermal conductivity and thermal diffusivity for these materials is much less than that predicted by theory. The marked discrepancy between the experimental data and the trends predicted by theory for heat flow in directions parallel to the shale stratigraphic planes is explained in terms of departure from a strict parallel configuration and an effective lower value for the thermal diffusivity of the mineral phase. Good agreement with experimental data is shown by the geometric mean model and Maxwell’sequation for the parallel case. Possible reasons for the failure of these models at low levels of shale organic content (

Y. Wang; K. Rajeshwar; J. DuBow

1979-01-01T23:59:59.000Z

131

Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97  

SciTech Connect (OSTI)

'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

Blake, D.M.; Bryant, D.L.; Reinsch, V.

1997-09-30T23:59:59.000Z

132

Influences of Organic Carbon Supply Rate on Uranium Bioreduction in Initially Oxidizing, Contaminated Sediment  

SciTech Connect (OSTI)

Remediation of uranium (U) contaminated sediments through in-situ stimulation of bioreduction to insoluble UO{sub 2} is a potential treatment strategy under active investigation. Previously, we found that newly reduced U(IV) can be reoxidized under reducing conditions sustained by a continuous supply of organic carbon (OC) because of residual reactive Fe(III) and enhanced U(VI) solubility through complexation with carbonate generated through OC oxidation. That finding motivated this investigation directed at identifying a range of OC supply rates that is optimal for establishing U bioreduction and immobilization in initially oxidizing sediments. The effects of OC supply rate, from 0 to 580 mmol OC (kg sediment){sup -1} year{sup -1}, and OC form (lactate and acetate) on U bioreduction were tested in flow-through columns containing U-contaminated sediments. An intermediate supply rate on the order of 150 mmol OC (kg sediment){sup -1} year{sup -1} was determined to be most effective at immobilizing U. At lower OC supply rates, U bioreduction was not achieved, and U(VI) solubility was enhanced by complexation with carbonate (from OC oxidation). At the highest OC supply rate, resulting highly carbonate-enriched solutions also supported elevated levels of U(VI), even though strongly reducing conditions were established. Lactate and acetate were found to have very similar geochemical impacts on effluent U concentrations (and other measured chemical species), when compared at equivalent OC supply rates. While the catalysts of U(VI) reduction to U(IV) are presumably bacteria, the composition of the bacterial community, the Fe reducing community, and the sulfate reducing community had no direct relationship with effluent U concentrations. The OC supply rate has competing effects of driving reduction of U(VI) to low solubility U(IV) solids, as well as causing formation of highly soluble U(VI)-carbonato complexes. These offsetting influences will require careful control of OC supply rates in order to optimize bioreduction-based U stabilization.

Tokunaga, Tetsu K.; Wan, Jiamin; Kim, Yongman; Daly, Rebecca A.; Brodie, Eoin L.; Hazen, Terry C.; Herman, Don; Firestone, Mary K.

2008-06-10T23:59:59.000Z

133

Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars  

SciTech Connect (OSTI)

This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

2013-03-16T23:59:59.000Z

134

Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer  

SciTech Connect (OSTI)

Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in the water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.

Guo, L. Santschi, P.H.

2000-02-01T23:59:59.000Z

135

Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination  

Science Journals Connector (OSTI)

...bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the...luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a...treatment. This article presents a marine AOC test for determining the biological growth...

Lauren A. Weinrich; Orren D. Schneider; Mark W. LeChevallier

2010-12-10T23:59:59.000Z

136

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4 viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

137

Black carbon in the Gulf of Maine : new insights into inputs and cycling of combustion-derived organic carbon  

E-Print Network [OSTI]

Emissions of black carbon (BC), the soot and char formed during incomplete combustion of fossil and biomass fuels, have increased over the last century and are estimated to be between 8 and 270 Tg BC/yr. BC may affect ...

Flores Cervantes, Déborah Xanat, 1978-

2008-01-01T23:59:59.000Z

138

Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

None

1981-04-01T23:59:59.000Z

139

Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water  

Science Journals Connector (OSTI)

Ozonation of drinking water results in the formation of low molecular weight (LMW) organic by-products. These compounds are easily utilisable by microorganisms and can result in biological instability of the water. In this study, we have combined a novel bioassay for assessment of assimilable organic carbon (AOC) with the detection of selected organic acids, aldehydes and ketones to study organic by-product formation during ozonation. We have investigated the kinetic evolution of LMW compounds as a function of ozone exposure. A substantial fraction of the organic compounds formed immediately upon exposure to ozone and organic acids comprised 60–80% of the newly formed AOC. Based on experiments performed with and without hydroxyl radical scavengers, we concluded that direct ozone reactions were mainly responsible for the formation of small organic compounds. It was also demonstrated that the laboratory-scale experiments are adequate models to describe the formation of LMW organic compounds during ozonation in full-scale treatment of surface water. Thus, the kinetic and mechanistic information gained during the laboratory-scale experiments can be utilised for upscaling to full-scale water treatment plants.

Frederik Hammes; Elisabeth Salhi; Oliver Köster; Hans-Peter Kaiser; Thomas Egli; Urs von Gunten

2006-01-01T23:59:59.000Z

140

Organic geochemistry and organic petrography  

SciTech Connect (OSTI)

The Vermillion Creek coals and shales contain dominantly humic organic matter originating from woody plant tissues except for one shale unit above the coals, which contains hydrogen-rich kerogen that is mostly remains of filamentous algae, of likely lacustrine origin. The coals have two unusual features - very low inertinite content and high sulfur content compared to mined western coals. However, neither of these features points to the limnic setting reported for the Vermillion Creek sequence. The vitrinite reflectance of Vermillion Creek shales is markedly lower than that of the coals and is inversely proportional to the H/C ratio of the shales. Rock-Eval pyrolysis results, analyses of H, C, and N, petrographic observations, isotope composition of organic carbon, and amounts and compositions of the CHCl/sub 3/-extractable organic matter all suggest mixtures of two types of organic matter in the Vermillion Creek coals and clay shales: (1) isotopically heavy, hydrogen-deficient, terrestrial organic matter, as was found in the coals, and (2) isotopically light, hydrogen-rich organic matter similar to that found in one of the clay-shale samples. The different compositions of the Vermillion Creek coal, the unnamed Williams Fork Formation coals, and coals from the Middle Pennsylvanian Marmaton and Cherokee Groups are apparently caused by differences in original plant composition, alteration of organic matter related to different pH conditions of the peat swamps, and slightly different organic maturation levels.

Bostick, N.H.; Hatch, J.R.; Daws, T.A.; Love, A.H.; Lubeck, S.C.M.; Threlkeld, C.N.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Organic carbon and nitrogen in the surface sediments of world oceans and seas: distribution and relationship to bottom topography  

SciTech Connect (OSTI)

Information dealing with the distribution of organic carbon and nitrogen in the top sediments of world oceans and seas has been gathered and evaluated. Based on the available information a master chart has been constructed which shows world distribution of sedimentary organic matter in the oceans and seas. Since organic matter exerts an influence upon the settling properties of fine inorganic particles, e.g. clay minerals and further, the interaction between organic matter and clay minerals is maximal, a relationship between the overall bottom topography and the distribution of clay minerals and organic matter should be observable on a worldwide basis. Initial analysis of the available data indicates that such a relationship does exist and its significance is discussed.

Premuzic, E.T.

1980-06-01T23:59:59.000Z

142

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

143

Modelling of CO2 content in the atmosphere until 2300: influence of energy intensity of gross domestic product and carbon intensity of energy  

Science Journals Connector (OSTI)

The study provides a model of CO2 content in the atmosphere based on the global carbon cycle and the Kaya identity. The influences of: 1) energy intensity of GDP; 2) carbon intensity of energy on CO2 trajectories are given under four scenarios. The results from the most optimistic and technologically challenging scenario show that the atmospheric CO2 concentration can stabilise at 610 ppmv. It is also shown that the annual growth rates of atmospheric CO2 peak for all the scenarios before 2100 due to the expected world population peak in 2075 and the large share of fossil fuel energy.

Wojciech M. Budzianowski

2013-01-01T23:59:59.000Z

144

Stable Carbon Isotope Ratios of Phenolic Compounds in Secondary Particulate Organic Matter Formed by Photooxidation of Toluene  

E-Print Network [OSTI]

Compound-specific stable carbon isotope ratios for phenolic compounds in secondary particulate organic matter (POM) formed by photooxidation of toluene were studied. Secondary POM generated by photooxidation of toluene using a continuous-flow reactor and an 8 cubic meter indoor smog chamber was collected, and then extracted with acetonitrile. Eight phenolic compounds were identified in the extracts by a gas chromatograph coupled with a mass spectrometer, and their compound-specific stable carbon isotope ratios were determined by a gas chromatograph coupled with a combustion furnace followed by an isotope ratio mass spectrometer. The majority of the products, including methylnitrophenols and methylnitrocatechols, were isotopically depleted by 5 to 6 permil compared to the initial isotope ratio for toluene, whereas the isotope ratio for 4_nitrophenol remained the same as the initial isotope ratio for toluene. Based on the reaction mechanisms postulated in literature, stable carbon isotope ratios of these produc...

Irei, Satoshi; Huang, Lin; Auld, Janeen; Collin, Fabrice; Hastie, Donald

2014-01-01T23:59:59.000Z

145

Impacts of Labile Organic Carbon Concentration on Organic and Inorganic Nitrogen Utilization by a Stream Biofilm Bacterial Community  

Science Journals Connector (OSTI)

...High DON bioavailability in boreal streams during a spring flood. Limnol. Oceanogr. 45 :1298-1307. 32. Mulholland...organic nitrogen in minimally disturbed montane streams of Colorado, U. S. A. Biogeochemistry 74 :303-321. 44. Chrost...

Suchismita Ghosh; Laura G. Leff

2013-09-13T23:59:59.000Z

146

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

SciTech Connect (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

147

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms  

Science Journals Connector (OSTI)

...strategy for capturing electrical energy in carbon-carbon bonds of...strategy for converting electrical energy harvested with renewable strategies, such as solar or wind, into forms that can be stored...particular concern for solar energy, because it is a vast energy...

Kelly P. Nevin; Sarah A. Hensley; Ashley E. Franks; Zarath M. Summers; Jianhong Ou; Trevor L. Woodard; Oona L. Snoeyenbos-West; Derek R. Lovley

2011-03-04T23:59:59.000Z

148

Carbon Sequestration Rates in Organic Layers of Soils Under the Grey Poplar (Populus x canescens) Stands Impacted by Heavy Metal Pollution  

Science Journals Connector (OSTI)

To describe carbon sequestration processes in organic layers of forest soils ... limit-value method was used to estimate C sequestration rate in poplar litters. A two-year ... using the ignition method. Input of ...

Agnieszka Medy?ska-Juraszek; Leszek Kuchar

2013-01-01T23:59:59.000Z

149

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

150

Bacterioplankton and Organic Carbon Dynamics in the Lower Mesohaline Chesapeake Bay  

Science Journals Connector (OSTI)

...organic matter fuels the upper mesohaline...organic matter fuels the upper mesohaline...of the oxygen consumption (25-27) and...aboard the research vessel immediately after...north, serving to fuel bacterial oxygen consumption. Major differences...

Robert B. Jonas; Jon H. Tuttle

1990-03-01T23:59:59.000Z

151

Frustrated Organic Solids Display Unexpected Gas Sorption  

SciTech Connect (OSTI)

Calixarene based organic solid can hold guests such as toluene and other organic molecules we have discovered a new type of material which believe involves a frustration of the solvate lattice as it moves toward the thermodynamically stable desolvated state. The intermediated phase with partial solvent content unexpectedly sorbs gases such as carbon dioxide and highly explosive acetylene deep inside the crystal lattice.

Thallapally, Praveen K.; Dalgarno, Scott J.; Atwood, Jerry L.

2006-11-27T23:59:59.000Z

152

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...extracellular organic compounds...directly to the cells with a graphite...dioxide to organic compounds...microbial production of multicarbon...to convert solar energy that...hydrogen production was verified...outlet, but a solar-powered...a) H-cell device for...errors of the organic acid and...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

153

A New Organic Acid to Stimulate Deep Wells in Carbonate Reservoirs  

E-Print Network [OSTI]

Carbonate acidizing has been carried out using HCl-based stimulation fluids for decades. However, at high temperatures, HCl does not produce acceptable results because of its fast reaction, acid penetration, and hence surface dissolution, and its...

Al-Douri, Ahmad F

2014-05-28T23:59:59.000Z

154

Changes in soil organic carbon storage predicted by Earth system models during the 21st century  

E-Print Network [OSTI]

carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

2013-01-01T23:59:59.000Z

155

Design, Synthesis and Evaluation of Liquid-like Nanoparticle Organic Hybrid Materials for Carbon Dioxide Capture.  

E-Print Network [OSTI]

??Given the rapid increase in atmospheric concentration of CO2, the development of efficient CO2 capture technologies is critical for the future of carbon-based energy. Currently,… (more)

Lin, Kun-Yi

2012-01-01T23:59:59.000Z

156

Oxygen Utilization and Organic Carbon Remineralization in the Upper Water Column of the Pacific Ocean  

Science Journals Connector (OSTI)

As a part of the JGOFS synthesis and modeling project, researchers have been working to synthesize the WOCE/JGOFS/DOE/NOAA global CO2...survey data to better understand carbon cycling processes in the oceans. Wor...

Richard A. Feely; Christopher L. Sabine; Reiner Schlitzer…

157

The carbon isotope composition of ancient CO2 based on higher-plant organic matter  

Science Journals Connector (OSTI)

...carbon dioxide, and global warming. Geophys. Res...an indicator of global ecological change...invertebrates and coals from the Australian...potential of humic coals from dry pyrolysis...Fossil plants and global warming at the TriassicJurassic...

2002-01-01T23:59:59.000Z

158

Proximate Analysis, in Vitro Organic Matter Digestibility, and Energy Content of Common Guava (Psidium guajava L.) and Yellow, Strawberry Guava (Psidium cattleianum Var. lucidum) Tree Parts and Fruits as Potential Forage  

Science Journals Connector (OSTI)

Proximate Analysis, in Vitro Organic Matter Digestibility, and Energy Content of Common Guava (Psidium guajava L.) and Yellow, Strawberry Guava (Psidium cattleianum Var. ... Nutritional contents of guava were assessed accordingly: guava content × site, guava content × season, and guava content × site × season. ... Previous work found that the seeds of the fruit when evaluated by dry weight contain 14% oil, with 15% proteins and 13% starch;(14) and phenolic and flavonoid compounds,(15) with some isolated compounds being cytotoxic. ...

Julie Ann Luiz Adrian; Norman Q. Arancon; Bruce W. Mathews; James R. Carpenter

2012-10-11T23:59:59.000Z

159

The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas)  

Science Journals Connector (OSTI)

Concentrations of many trace elements in aquatic systems can become enriched due to anthropogenic as well as natural processes. In order to investigate particle enrichment processes from the river through an estuary, the changes in solid phase speciation and particle–water partitioning of a number of trace metals (e.g., Fe, Pb, Cd, Cu, Ni, Zn, Co, V) were evaluated from the Trinity River through Galveston Bay to the Ocean. An established way to detect anthropogenic contamination is by normalization of contaminant concentrations to Fe, Al, and/or organic carbon (OC). Particulate metal (Mn, Co, Ni, Cu, Pb, V, Ni, Zn, Cd) to Fe, Al, and metal to OC ratios were determined in waters of the Trinity River and Galveston Bay, in order to test 1) if the system is contaminated, and 2) whether Fe, Al, or organic carbon act as a master variable for determining metal concentrations. All particulate trace metals from Trinity River were present in ratios to Fe or Al similar to those from drainage basin soils, which were similar to world world-average soil. As expected, concentrations of Fe, Al and OC in particles from both the Trinity River as well as Galveston Bay were strongly correlated, from which one might conclude that Fe can be used as a reference element that is representative for all three of them. However, ratios to Fe of particle-reactive elements, such as Pb, were found to be significantly and positively correlated to the Fe content of particles from Galveston Bay, while nutrient-type elements, such as Cu, Ni, and Cd, were negatively correlated to their Fe content. Interestingly, suspended particles from the Trinity River did not exhibit any such correlations at all and only varied within a very limited range. The reason for such distinctive correlative behavior that distinguishes riverine from estuarine particles is likely caused by internal cycling of these elements within Galveston Bay, and their relationship to OC. Relationships of trace metals to OC revealed that differences in sources and cycling of OC in the estuary significantly altered the soil imprinted particle make-up. Results from selective leaching experiments of suspended particles in Galveston Bay confirmed the selective enrichment and fractionation processes for the different metals.

Liang-Saw Wen; Kent W. Warnken; Peter H. Santschi

2008-01-01T23:59:59.000Z

160

Chlorine Decay and Disinfection By-product Formation of Dissolved Organic Carbon Fractions with Goethite.  

E-Print Network [OSTI]

??Water from the raw water intake at Barberton, Ohio water treatment plant was collected on two separate dates and fractionated into operationally defined dissolved organic… (more)

Wannamaker, Christopher L.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming  

Science Journals Connector (OSTI)

Abstract The tidal freshwater marshes dominated by Phragmites australis (common reed) in the Chongxi Wetland are important components of the Yangtze River estuary in China. The litter from P. australis is exported to the surrounding estuarine area and the sea with the tidal flushing in the form of plant residue, particulate organic matter, and dissolved organic matter and is an important organic carbon resource of the East China Sea. A model was constructed using STELLA® software (version 9.1.3) to simulate the contribution of macrophyte-derived organic carbon to surrounding estuary and ocean ecosystems. The model is based on the monitoring and observational data from field surveys and published information on the Chongxi Wetland from 2008 to 2011, and the response of the total organic carbon flowing out of the wetland to global changes was also predicted in conditions of plant shoots that were annually harvested in winter. The results demonstrate the following: (1) the annual contributed organic carbon is 891 g C m?2, of which 612 g C m?2 flows out of the wetland directly as plant residue; (2) total organic carbon continually increases after a short decrease at the start of April of 2010, retains a high value from mid-July to mid-November and rapidly decreases to approximately zero during the harvest of the aboveground plant organs; and (3) accumulated annual organic carbon contributions to the surrounding estuarine and oceanic ecosystems are predicted to increase as the global average temperature rises, and the sea level increases.

Jiarui Zhang; Sven E. Jørgensen; Jianjian Lu; Søren N. Nielsen; Qiang Wang

2014-01-01T23:59:59.000Z

162

Melson et 01. Carbon Balance and Management 2011, 6:2 http://www.cbmjournal.com/content/6/112 CARBON BALANCE  

E-Print Network [OSTI]

and conversion factors that can be plausibly justified as locally applicable to calculate the carbon store from expressed as biomass using density conversion factors) to some easily measured tree dimension obtained from and conversion factors. Each source contributes to uncertainty about the live-tree C estimate (uncertainty

Fried, Jeremy S.

163

Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms  

Science Journals Connector (OSTI)

...powered by solar energy is...converted to organic compounds...strategies for the production of fuels...harvesting solar energy...electrodes to cells, has received...microbial fuel cells. Bioresour...microbial production platform...challenges in solar energy utilization...conversion of organic matter to...

Kelly P. Nevin; Sarah A. Hensley; Ashley E. Franks; Zarath M. Summers; Jianhong Ou; Trevor L. Woodard; Oona L. Snoeyenbos-West; Derek R. Lovley

2011-03-04T23:59:59.000Z

164

Some relationships between contents of photosynthetic intermediates and the rate of photosynthetic carbon assimilation in leaves of Zea mays L.  

Science Journals Connector (OSTI)

The relationship between the gas-exchange characteristics of attached leaves of Zea mays L. and the contents of photosynthetic intermediates was examined at different intercellular partial pressure of CO2 and at ...

Richard C. Leegood; Susanne von Caemmerer

165

Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes  

Science Journals Connector (OSTI)

......synthesized by the conventional DC arc discharge method. Synthesized carbon nanotubes...aligned on a glass plate. An ac electric field of 5 MHz and 1.8 kV cm...Hl-induced compaction in aligned in an arc. The largest subunit was always......

Ken I. Hohmura; Yutakatti Itokazu; Shige H. Yoshimura; Gaku Mizuguchi; Yu-suke Masamura; Kunio Takeyasu; Yasushi Shiomi; Toshiki Tsurimoto; Hidehiro Nishijima; Seiji Akita; Yoshikazu Nakayama

2000-01-01T23:59:59.000Z

166

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...Microbiology, University of Massachusetts, Amherst, Massachusetts, USA Citation Nevin, K...attractive strategy to convert solar energy that is harvested intermittently...photosynthesis that might convert solar energy to organic products...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

167

Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds  

Science Journals Connector (OSTI)

...photosynthesis that might convert solar energy to organic products more effectively...nature of renewable sources of energy, most notably solar and wind, is leading to a search for strategies to capture the electrical energy produced from these sources in...

Kelly P. Nevin; Trevor L. Woodard; Ashley E. Franks; Zarath M. Summers; Derek R. Lovley

2010-06-01T23:59:59.000Z

168

Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles  

E-Print Network [OSTI]

Basin; CEP, central Equatorial Pacific; C?JES, central Japan/East Sea; JT, Japan Trench; MAB, Middle Atlantic Bight;

Hwang, Jeomshik; Druffel, Ellen R. M; Eglinton, Timothy I

2010-01-01T23:59:59.000Z

169

Soil temperature is an important regulatory control on dissolved organic carbon supply and uptake of soil solution nitrate  

Science Journals Connector (OSTI)

Abstract The role of abiotic processes on dissolved organic matter (DOM) production is often underappreciated. However, abiotic processes appear to be especially important in subsoils where, with increasing depth, microbial activity declines and soil organic matter (SOM) becomes a progressively more important contributor to DOM. Within three soil depths (20, 40, and 60 cm) in a temperate forest, soil temperature was positively associated with dissolved organic carbon (DOC) concentration (R2 = 0.23–0.77) and the DOM humification index (R2 = 0.35–0.72) for soil solutions in slow and fast flowpaths. With increasing soil temperature from 5 to 24 °C, average DOC concentrations increased by 86% at 20 cm, 12% at 40 cm and 12% at 60 cm soil depths. Our data suggest that DOM supply, especially in subsoils, is temperature dependent. We attribute this to the influence of temperature on DOM replenishment through direct processes such as SOM dissolution, diffusion and exchange reactions as well as indirect processes such as rhizodeposition and exoenzyme activity. In contrast, negative relationships (R2 = 0.71–0.88) between temperature and nitrate concentrations in subsoil suggested that the temperature-dependent supply of DOM drives microbial processes such as dissimilatory and assimilatory nitrate consumption.

Ehsan R. Toosi; John P. Schmidt; Michael J. Castellano

2014-01-01T23:59:59.000Z

170

Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering  

SciTech Connect (OSTI)

This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

Warburton, William K. [XIA LLC

2014-01-24T23:59:59.000Z

171

Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets  

Science Journals Connector (OSTI)

...fig. S14 and table S3). This membrane thus offers an innovative ultrafiltration membrane for organic solvents. The observed flux is overwhelmingly...synthesis (23), production of biofuels (24), environmental remediation (25), and oil extraction in the food industry (19...

Santanu Karan; Sadaki Samitsu; Xinsheng Peng; Keiji Kurashima; Izumi Ichinose

2012-01-27T23:59:59.000Z

172

Potential responses of soil organic carbon to global environmental?change  

Science Journals Connector (OSTI)

...this organic matter fraction. The Bomb 14 C Tracer. The incorporation of 14 C produced in the early 1960s by atmospheric thermonuclear weapons testing (bomb 14 C) into SOM during the past 30 years provides a direct measure of the amount of fast-cycling...

Susan E. Trumbore

1997-01-01T23:59:59.000Z

173

Organization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Print Organization Print 2012-12 org chart A complete ALS organization chart (June 2013) is available in PDF. Appointed and elected members of advisory panels provide guidance to Berkeley Lab and ALS management in developing the ALS scientific and user programs. ALS Staff Photo staff photo thumb Click on the image to see a recent photo of ALS staff in front of the dome. The photo was taken on May 14, 2013. ALS Management and Advisory Team Steve Kevan, Deputy Division Director, Science Michael J. Banda, Deputy Division Director, Operations Robert W. Schoenlein, Senior Staff Scientist, Next Generation Light Source Initiative Janos Kirz, Scientific Advisor Paul Adams, Division Deputy for Biosciences ALS Scientific, Technical, and User Support Groups Accelerator Physics

174

The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon  

SciTech Connect (OSTI)

The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch [Dresden University of Technology, Dresden (Germany). Institute of Water Chemistry

2007-09-15T23:59:59.000Z

175

of the earth, but both oxygen and carbon dioxide con-tent have changed dramatically through time. Oxygen  

E-Print Network [OSTI]

, OVERVIEW KARINA J. NIELSEN Sonoma State University Marine algae are photosynthetic organisms that fuel algae and other plants, as evidenced by paleontological analyses of stomatal density and other proxies. Vogel, S. 1994. Life in moving fluids, 2nd ed. Princeton, NJ: Princeton University Press. ALGAE

Nielsen, Karina J.

176

Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope  

E-Print Network [OSTI]

Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

International Electrotechnical Commission. Geneva

2004-01-01T23:59:59.000Z

177

Dependence of thermal diffusivity on organic content for Green River oil shales—Extension of the modified Cheng?Vachon model to the parallel heat?flow case  

Science Journals Connector (OSTI)

In an earlier paper [J. Appl. Phys. 50 2776 (1979)] the modified Cheng?Vachon model was found to give good agreement with experimental data on the variation of thermal diffusivity with organic content for Green River oil shales. Calculations using the model were carried out for the case where heat flows in directions perpendicular to the shale stratigraphic planes. In the present paper the above model is modified to account for experimental trends in the parallel heat?flow case. The modified model provides a self?consistent explanation for the lower degree of anisotropy (relative to theory) that has been experimentally observed for the thermal diffusivity of Green River oil shales.

Y. Wang; K. Rajeshwar; J. DuBow

1980-01-01T23:59:59.000Z

178

Gas speciation, and [sup 13]C and [sup 18]O content of gases produced by laser sampling of carbonate  

SciTech Connect (OSTI)

To determine the concentration of gaseous carbon- and oxygen-bearing species produced by laser ablation, an Ion Trap mass spectrometer (ITD) was added to a standard Nd-YAG laser microprobe system. Ultra-pure He carrier gas, flowing through a stainless steel flanged reaction chamber, sweeps laser-generated gases from the chamber during ablation. The gas is split prior to introduction in the ITD, allowing a small percentage of the effluent to enter the ITD while the majority is passed through two liquid nitrogen cold traps for collection of CO[sub 2] for standard stable isotope ratio analysis. Gas speciation is determined from multiple mass/charge spectral scans of the gas using the ITD. When lasing is performed at 30A in cw mode, the delta C-13 of laser-generated CO[sub 2] co-varies positively as a function of the CO[sub 2]/(CO+CO[sub 2]) ratio with values increasingly by 2% from 35 to 90% CO[sub 2]. As a general rule, the delta C-13 of CO[sub 2] is closest to that of the carbonate when CO[sub 2] ratios and yields are small. The delta O-18 of CO[sub 2] remains nearly constant throughout the range of CO[sub 2] ratios or yields investigated. When lasing is performed at 35A in Q-switch mode (5kHZ), the delta C-13 of CO[sub 2] decreases by 4% as the CO[sub 2] ratio increases from 40 to 60%. The delta C-13 of laser-generated CO[sub 2] approaches that of the carbonate as CO[sub 2] ratio increases and yield decreases. The delta O-18 of CO[sub 2] remains nearly constant throughout the range of CO[sub 2] ratios or yields investigated despite the fact that O[sub 2] comprises 10 to 21% of the laser-generated gas.

Romanek, C.S.; Gibson, E.K. Jr. (Planetary Science Branch/SN2, Houston, TX (United States)); Socki, R.A. (NASA/Johnson Space Center, Houston, TX (United States))

1992-01-01T23:59:59.000Z

179

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents [OSTI]

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

180

Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

David A Lesch

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biogeochemical cycling in an organic-rich coastal marine basin. 10. The role of amino acids in sedimentary carbon and nitrogen cycling  

SciTech Connect (OSTI)

Hydrolyzable amino acids were measured in cores and surface sediment samples collected over a 14 month period from the rapidly accumulating, anoxic sediments of Cape Lookout Bight, NC. The concentration of total hydrolyzable amino acids (THAAs) shows an exponential decrease with depth, in a manner similar to total organic carbon and total nitrogen. Carbon and nitrogen in THAAs averages 10-15% of the total organic carbon and 30-40% of the total nitrogen in these sediments. In surface sediments the concentration of THAAs do not show strong seasonal variations, with the exception of a small apparent decrease during the winter months. Aspartic acid, glutamic acid, glycine and alanine are the most abundant individual amino acids in Cape Lookout Bight sediments. The distribution of individual amino acids in these sediments is very similar to that observed in the two major sources of organic matter, vascular salt marsh plants and marine plankton. The mole fractions of most amino acids show no depth variation in Cape Lookout Bight sediments. Kinetic modeling of these data indicates that the deposition of amino acids to the surface of these sediments is 5.8 {plus minus} 1.0 mol{center dot}m{sup {minus}2}{center dot}yr{sup {minus}1}. Approximately 46 {plus minus} 16% of this input is remineralized in the upper 40 cm. The recycling of amino acids accounts for 82 {plus minus} 43% of the total nitrogen regeneration and 27 {plus minus} 11% of the regeneration of total organic carbon in these sediments. The mean residence time of metabolizable amino acids is approx. 9 months, a value which is comparable to the mean residence time of both metabolizable organic carbon and nitrogen in these sediments.

Burdige, D.J.; Martens, C.S. (Univ. of North Carolina, Chapel Hill (USA))

1988-06-01T23:59:59.000Z

182

Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds  

Science Journals Connector (OSTI)

Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15–36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0–30 cm depth were studied for the period of 1939–1999 at the North Appalachian Experimental Watersheds (pool ranged from 24.5 Mg ha?1 in the 32-years moldboard tillage corn (Zea mays L.)–wheat (Triticum aestivum L.)–meadow–meadow rotation with straight row farming and annual application of fertilizer (N:P:K=5:9:17) of 56–112 kg ha?1 and cattle (Bos taurus) manure of 9 Mg ha?1 as the prevalent system (MTR-P) to 65.5 Mg ha?1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170–225 kg N ha?1 and appropriate amounts of P and K, and 6–11 Mg ha?1 of cattle manure as the improved system (NTC-M). The difference in SOC pool among management systems ranged from 2.4 to 41 Mg ha?1 and was greater than 25 Mg ha?1 between NTC-M and the other five management systems. The difference in the SOC pool of NTC-M and that of no tillage continuous corn (NTC) were 16–21 Mg ha?1 higher at the lower slope position than at the middle and upper slope positions. The effect of slope positions on SOC pools of the other management systems was significantly less (water conservation farming on SOC pool were accumulative. The NTC-M treatment with application of NPK fertilizer, lime, and cattle manure is an effective cropland management system for SOC sequestration.

Y Hao; R Lal; L.B Owens; R.C Izaurralde; W.M Post; D.L Hothem

2002-01-01T23:59:59.000Z

183

US EPA (Environmental Protection Agency) perspective on AOC (assimilable organic carbon) research as related to coliform colonization and compliance problems  

SciTech Connect (OSTI)

The biological stability of treated drinking water has become a major concern for water utilities. The U.S. E.P.A. is concerned from the perspective of coliform MCL compliance and remediation of coliform biofilm problems. The levels of readily assimilable nutrients present in treated water are affected by water treatment processes, but of greatest concern are those processes, such as ozonation, that cause increases in the levels of assimilable organic carbon (AOC) and therefore contribute to biological instability of the water. Thus, the combined use of ozonation (pre-oxidant) and a lower disinfectant residual as an approach to reducing disinfectant byproducts may result in increased bacterial growth, including coliforms, in the distribution system. Information is needed on: the AOC flux level that stimulate coliform growth in biofilm: the specific nutrients and concentrations that can stimulate growth of both coliforms and HPC; treatment strategies to reduce AOC levels and strategies to effectively control biofilm formation where AOC levels cannot be reduced.

Reasoner, D.J.; Rice, E.W.

1989-01-01T23:59:59.000Z

184

The effect of low concentrations of assimilable organic carbon (AOC) in water on biological clogging of sand beds  

Science Journals Connector (OSTI)

Infiltration of pretreated surface water with recharge wells is hampered by biological clogging processes in the aquifer. The influence of the concentration of easily assimilable organic carbon (AOC) in water on clogging was investigated in filter beds operated under well-defined laboratory conditions using acetate as a model substrate. Acetate concentrations in the water as low as 0.01 mg C/l promoted clogging with the main head loss, caused by bacterial growth, in the first centimeter of the sand bed. An empirical model was developed describing a linear relationship between the operation period to reach a certain increase in head loss (TPi) and the reciprocal value of the acetate concentration or acetate load [Lac g C/ (m2 · d)] at a constant filtration rate. The rate of clogging, designated as the microbiological clogging factor (Cr), is defined by the slope of the linear relationship between the square root of the increase of the head loss (P112) and the operation time. This linear relationship demonstrated that the increase in clogging rate was constant with time. Observations at several locations with experimental recharge wells revealed that the AOC concentration is an important parameter for the biological clogging potential of water. The AOC concentration of water used for infiltration in a recharge well should be less than 0.01 mg acetate-C equiv/l to prevent biological clogging for a period of more than a year.

W.A.M. Hijnen; D. Van der Koou

1992-01-01T23:59:59.000Z

185

Tracing the Fate of Enhanced Organic Carbon Production during a Southern Ocean Fe Fertilization Experiment using Natural Variations in Carbon and Nitrogen Isotopic Composition  

SciTech Connect (OSTI)

This project focused on the N and C natural stable isotope response during SOFeX--a purposeful iron (Fe) addition experiment in the Fe limited Southern Ocean. One purpose of the study was to determine if relief of phytoplankton Fe stress would increase productivity sufficiently to enhance C export from surface to deep waters. We proposed that N and C stable isotopes would be useful for tracing this export. Iron was added to waters north and south of the Antarctic Polar Front in waters to the southwest of New Zealand. While both sites have high-nutrient, low chlorophyll conditions (HNLC) typical of Fe limitation, [SiO4] a required nutrient for diatoms was low at the northerly site and high at the southern location. The most extensive coverage occurred at the southern site. Here, FeSO4 was added four different times over an {approx}two week period. We found that: (1) Particulate organic nitrogen and carbon in the mixed layer increased by a factor of 2-3 in response to the Fe addition in the southern patch. (2) PN accumulation and NO3- drawdown were both 1-2 {micro}M during the occupation of the bloom, suggesting retention of particulates within the mixed layer of the southern patch. (3) {sub 15}N of PN and of NO{sub 3}{sup -} increased by 1-2{per_thousand} as [NO{sub 3}{sup -}] decreased, and there is a clear contrast between in- and out-patch stations with respect to particulate {sub 15}N. The isotopic fractionation factor for NO{sub 3}{sup -} was near 5-6{per_thousand} and appears to have been unaffected by Fe fertilization. In contrast, there was little change in {delta}{sup 13}C. (4) The > 54 {micro}m size fraction was typically lighter than the 1-54 {micro}m size fraction by about 0.5 {per_thousand} in {delta}{sup 13}C. In the south patch, this difference increased as the bloom progressed, and with increasing PN concentration. This result may have been caused by large chain-forming diatoms responded to the Fe addition and were likely isotopically lighter than smaller flagellates. Similar observations were made for {delta}{sup 13}C.

Altabet, M.A.

2005-02-05T23:59:59.000Z

186

Possible approach to cleaning 'problematic' LRW with large contents of suspended particles, oils and other organic substances  

SciTech Connect (OSTI)

A general structural scheme for cleaning 'problematic' liquid radioactive wastes (LRW) containing a large amount of suspended particles, oils and other organic substances has been proposed. The technological scheme includes two main stages: 1) separation of suspended particles, oil product emulsions and the larger part of colloidal particles from LRW by filtration, 2) purification of radioactive waters from radionuclides by membrane-sorption to the levels of radiation safety norms applied. The filtration stage is considered as a three-step process of 'problematic' LRW treatment including: 1) 'problematic' LRW extraction from storage tanks with a robot type device intended for washing out the bottom sediment (slurry), 2) separation of suspended particles, oil product emulsions and larger part of colloidal particles from LRW by filtration through porous or gauze diaphragms of 0.1 to 10 {mu}m pores (cells) in size, 3) concentration of separated slurry up to 100-200 g/l. Two main options of the membrane-sorption technologies, AQUA-EXPRESS and Reverse Osmosis, for LRW purification have been considered. Two possible options of porous or gauze diaphragms productivity and lifetime increase between their surface regenerations have been shown: 1) possibility of an oxidizer introduction into initial LRW, 2) possibility to rotate a filtering element (disk or cylinder type). (authors)

Ilin, V.; Karlin, Yu.; Laurson, A.; Volkov, Eu.; Dmitriev, S. [Moscow Scientific Industrial Association 'Radon' (Russian Federation)

2007-07-01T23:59:59.000Z

187

Influence of Stand Composition on Soil Organic Carbon Stabilization and Biochemistry in Aspen and Conifer Forests of Utah.  

E-Print Network [OSTI]

?? Quacking aspen (Populus tremuloides Michx.) is an iconic species in western United States that offers multiple ecosystem services, including carbon sequestration. A shift in… (more)

Roman Dobarco, Mercedes

2014-01-01T23:59:59.000Z

188

This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details  

E-Print Network [OSTI]

to address these challenges. Keywords: soil organic carbon, Earth system models, uncertainty, carbon

Ickert-Bond, Steffi

189

Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control  

Science Journals Connector (OSTI)

The advantages of printed electronics and semiconducting single-walled carbon nanotubes (SWCNTs) are combined for the first time for display electronics. Conductive silver ink and 98% semiconductive SWCNT solutions are used to print back-gated thin film ...

Pochiang Chen; Yue Fu; Radnoosh Aminirad; Chuan Wang; Jialu Zhang; Kang Wang; Kosmas Galatsis; Chongwu Zhou

2011-11-03T23:59:59.000Z

190

Barium in Twilight Zone suspended matter as a potential proxy for particulate organic carbon remineralization: Results for the North Pacific  

E-Print Network [OSTI]

considering TdR conversion factors 1 and 2 x 10 18 cellsrates using TdR conversion factors of 1 - 2 x 10 18mol -1 and a carbon conversion factor of 15 fg C cell -1 ;

Dehairs, F.

2008-01-01T23:59:59.000Z

191

Tables Of Contents, Vol 1-43  

Science Journals Connector (OSTI)

apparent dissociation constants of phosphoric acid in seawater . ... tions of organic carbon in seawater · 264 ... occurring during seawater sample storage .

Web Editor

2000-06-23T23:59:59.000Z

192

Acetylenic carbon allotrope  

DOE Patents [OSTI]

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

193

Carbon Sequestration Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

194

PII S0016-7037(99)00066-6 Fluxes of dissolved organic carbon from California continental margin sediments  

E-Print Network [OSTI]

sediments DAVID J. BURDIGE,1, * WILLIAM M. BERELSON,2 KENNETH H. COALE,3 JAMES MCMANUS,4 and KENNETH S) from marine sediments represent a poorly constrained component of the oceanic carbon cycle that may measurements of DOC fluxes from continental margin sediments (water depths ranging from 95 to 3,700 m

Burdige, David

195

Regional Workshop on Opportunities and Priorities for Low Carbon Green  

Open Energy Info (EERE)

Regional Workshop on Opportunities and Priorities for Low Carbon Green Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Jump to: navigation, search Tool Summary Name: Regional Workshop on Opportunities and Priorities for Low Carbon Green Growth in Asia Agency/Company /Organization: Asian Development Bank Institute Topics: Policies/deployment programs, Pathways analysis Resource Type: Workshop, Training materials Website: www.adbi.org/cd-roms/2010/08/27/4054.low.carbon.green.growth.asia/ UN Region: Central Asia, Eastern Asia, South-Eastern Asia References: ADB Regional Workshop[1] Contents "Concepts of Low Carbon Green Growth: Challenges and Current Status in the Asia Pacific Region Inside the Low Carbon Green Growth: Innovations in Green Energy Supply Demand Side Energy Efficiency Solutions: A Low Hanging

196

Improvement of LNG production technology in gas-distribution stations with an increased content of carbon dioxide in supply-line gas  

Science Journals Connector (OSTI)

The possibility is considered of reducing the weight of absorbent in a carbon dioxide gas cleaning system during liquefied natural gas production in gas-distribution stations (due to use of a pressure drop ... is...

S. P. Gorbachev; S. V. Lyugai

2009-11-01T23:59:59.000Z

197

Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration  

Science Journals Connector (OSTI)

Abstract The evolution of mineral reactive surface area is an important control on the progress of carbon mineralization reactions that sequester anthropogenic CO2. Dry conditions in unsaturated porous media and the passivation of reactive surface area by secondary phase precipitation complicate predictions of reactive surface during carbon mineralization reactions. Unsaturated brucite [Mg(OH)2] bearing column experiments were used to evaluate the effects of water saturation and hydrous Mg-carbonate precipitation on reaction of brucite with 10% CO2 gas streams at ambient conditions. We demonstrate that a lack of available water severely limits reaction progress largely due to the requirement of water as a reactant to form hydrated Mg-carbonates. The precipitation of a poorly crystalline carbonate phase in the early stages of the reaction does not significantly hinder brucite dissolution, as the carbonate coating remains sufficiently permeable. It is postulated that the conversion of this phase to substantially less porous, crystalline nesquehonite [MgCO3·3H2O] results in passivation of the brucite surface. Although a mechanistic model describing the passivating effect of nesquehonite remains elusive, reactive transport modeling using MIN3P-DUSTY confirms that conventional geometric surface area update models do not adequately reproduce observed reaction progress during brucite carbonation, while an empirically based model accounting for surface passivation is able to capture the transient evolution of CO2 uptake. Both water limits and surface passivation effects may limit the efficiency of CO2 sequestration efforts that rely on the conversion of mafic and ultramafic rock to carbonate minerals.

Anna L. Harrison; Gregory M. Dipple; Ian M. Power; K. Ulrich Mayer

2015-01-01T23:59:59.000Z

198

Thermodynamics and kinetics of hydrophobic organic compound sorption in natural sorbents and quantification of black carbon by electron microscopy  

E-Print Network [OSTI]

The sorption behaviors of hydrophobic organic compounds (HOCs) in sediments were investigated using pyrene. Native pyrene desorbed slowly, taking from weeks to months to equilibrate. The end-point data suggested that, at ...

Kuo, Dave Ta Fu, 1978-

2010-01-01T23:59:59.000Z

199

Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols  

SciTech Connect (OSTI)

The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

2012-07-02T23:59:59.000Z

200

Content Developer | Open Energy Information  

Open Energy Info (EERE)

Content Developer Content Developer Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Scientist.jpg Content Developer Are you interested in adding, contributing, and editing content on OpenEI? Find out how to create and grow OpenEI's content. Frequently Added Information Some content can easily be added to OpenEI using forms, which means users can easily contribute information without necessarily learning to use the wiki markup format. Some of the most frequently added information is described below. Organizations Within OpenEI, there are numerous types of Organizations. Some are very broadly defined, such as Companies, and others are more specific, such as Utility Companies and Policy Organizations. The types of organizations are described below.

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report  

SciTech Connect (OSTI)

The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with

Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

2010-06-10T23:59:59.000Z

202

One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

step step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis Xiao-Zhou Zhang a , Noppadon Sathitsuksanoh a,b , Zhiguang Zhu a , Y.-H. Percival Zhang a,b,c,n a Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA b Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA 24061, USA c BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA a r t i c l e i n f o Article history: Received 28 December 2010 Received in revised form 9 April 2011 Accepted 25 April 2011 Keywords: Bacillus subtilis Cellulase engineering Consolidated bioprocessing Endoglucanase Lactate Metabolic engineering Directed evolution a b s t r a c t Although intensive efforts have been made to create recombinant cellulolytic microorganisms,

203

Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature  

Science Journals Connector (OSTI)

Carbon aerogel was chemically activated with KOH at various activation temperatures with the aim of improving the electrochemical performance of carbon aerogel for EDLC electrode. Electrochemical performance o...

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim…

2014-11-01T23:59:59.000Z

204

Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N -T E I X E I R A *, S A R A H C . D AV I S w , M I C H A E L D . M A S T E R S * and  

E-Print Network [OSTI]

Changes in soil organic carbon under biofuel crops K R I S T I N A J . A N D E R S O N - T E I X E of growing biofuel crops will be the sequestration or release of carbon (C) in soil. Soil organic carbon (SOC) represents an important C sink in the lifecycle C balances of biofuels and strongly influences soil quality

DeLucia, Evan H.

205

4, 1367, 2007 Modelling carbon  

E-Print Network [OSTI]

BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

Paris-Sud XI, Université de

206

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic...

207

energy content  

Science Journals Connector (OSTI)

energy content, (weight) strength ? Arbeitsvermögen n (im ballistischen Mörser gemessen), Sprengenergie f (im ballistischen Mörser gemessen) [Mit 10 g Sprengstoff ermittelt

2014-08-01T23:59:59.000Z

208

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

209

Physiological changes in cultured Sorghum bicolor (L.) Moench cells in response to induced water stress: osmotic potential, relative water content, carbohydrates, organic acids, potassium, and amino acids  

E-Print Network [OSTI]

, Table 1). At week 2 the weight of absorbed PEG in DT-s was 50% of its DW and 1. 8 times more than that of DS-s. It is obvious then that calculations could be misleading if the added weight of PEG is not subtracted 28 v 9 / III 9 S00 450 400 2S0... differences, and Duncan's test of pEG content of DT and DS calli in control and stressed conditions. (a). Cultivar-treatment WEEK 0 1 2 4 7 DT-c DT-s S S S S DT-c DS-c DT-s DS-s S S DS-c DS-s S S S S 29 TABLE 1. Continued. (h) WEEK 0...

Diquez, Ricardo

2012-06-07T23:59:59.000Z

210

Charting a New Carbon Route to Development | Open Energy Information  

Open Energy Info (EERE)

Charting a New Carbon Route to Development Charting a New Carbon Route to Development Jump to: navigation, search Tool Summary Name: Charting a New Carbon Route to Development Agency/Company /Organization: United Nations Development Programme (UNDP) Topics: Low emission development planning Resource Type: Guide/manual Website: www.beta.undp.org/content/undp/en/home/ourwork/environmentandenergy/fo Cost: Free Language: English Charting a New Carbon Route to Development Screenshot "UNDP recognizes the critical need to support developing country governments to build on their existing development strategies and coordination experiences (e.g., National Communications, National Adaptation Plan of Action, National Biodiversity Strategy and Action Plan, UN Development Assistance Framework, Country Assistance Strategy,

211

Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature  

Science Journals Connector (OSTI)

The effect of temperature on the chemical composition (carbon, nitrogenand ash content) and the energy content of the rotifers Brachionusplicatilis and Brachionus rotundiformis ... populations. Dry weightand carb...

M. Yúfera; G. Parra; E. Pascual

212

2011 Annual Report Table of Contents  

E-Print Network [OSTI]

) ...................12 Smart Grid Cyber Security.....................................................13 ICT Supply ChainComputer Security Division 2011 Annual Report #12;Table of Contents Welcome ................................................................. 1 Division Organization .................................................2 The Computer Security

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

222014 5:11:47 PM" "Back to Contents","Data 1: U.S. Gasoline and Diesel Retail Prices" "Sourcekey","EMMEPM0PTENUSDPG","EMMEPM0UPTENUSDPG","EMMEPM0RPTENUS...

214

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:08:27 PM" "Back to Contents","Data 1: Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012MO2" "Date","Missouri...

215

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9262014 3:44:37 PM" "Back to Contents","Data 1: Natural Gas Pipeline & Distribution Use " "Sourcekey","N9170US2","NA1480SAL2","NA1480SAK2","NA1480SAZ...

216

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Russia (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NRSDMCF"...

217

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:55 PM" "Back to Contents","Data 1: Natural...

218

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Texas...

219

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:41 PM" "Back to Contents","Data 1: Natural...

220

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:11:23 PM" "Back to Contents","Data 1:...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:32:23 PM" "Back to Contents","Data 1:...

222

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Virginia...

223

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:26:30 PM" "Back to Contents","Data 1: Alabama...

224

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1: Rhode...

225

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:58 PM" "Back to Contents","Data 1: Natural...

226

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:23 PM" "Back to Contents","Data 1: Vermont...

227

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:10 PM" "Back to Contents","Data 1:...

228

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oregon...

229

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:53 PM" "Back to Contents","Data 1: Utah...

230

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Michigan...

231

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:30 PM" "Back to Contents","Data 1: New...

232

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:52 PM" "Back to Contents","Data 1: Natural...

233

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:24:23 PM" "Back to Contents","Data 1: Kansas...

234

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: U.S....

235

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:02 PM" "Back to Contents","Data 1: South...

236

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:03 PM" "Back to Contents","Data 1: Tennessee...

237

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Montana...

238

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:32 PM" "Back to Contents","Data 1: New...

239

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:54 PM" "Back to Contents","Data 1: Natural...

240

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:04 PM" "Back to Contents","Data 1: Utah...

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:31 PM" "Back to Contents","Data 1: Natural...

242

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:00 PM" "Back to Contents","Data 1: Oklahoma...

243

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:08:23 PM" "Back to Contents","Data 1: Illinois...

244

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:06:23 PM" "Back to Contents","Data 1: Maryland...

245

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:23 PM" "Back to Contents","Data 1: Percent...

246

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:01 PM" "Back to Contents","Data 1:...

247

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:54 PM" "Back to Contents","Data 1: Virginia...

248

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:08 PM" "Back to Contents","Data 1: U.S....

249

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:04:51 PM" "Back to Contents","Data 1: Natural...

250

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:05:23 PM" "Back to Contents","Data 1: Natural...

251

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1:...

252

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: Wyoming...

253

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:05 PM" "Back to Contents","Data 1: Vermont...

254

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:57 PM" "Back to Contents","Data 1:...

255

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:23:07 PM" "Back to Contents","Data 1: West...

256

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:00:57 PM" "Back to Contents","Data 1: Iowa...

257

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:01:45 PM" "Back to Contents","Data 1: South...

258

Terrestrial Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

259

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

260

Coking of coal batch with different content of oxidized coal  

Science Journals Connector (OSTI)

The use of oxidized coal in coking batch increases the analytical moisture content and ... increases the oxygen content; reduces the gross coke yield and the yield of tar, benzene ... of carbon dioxide, pyrogenet...

D. V. Miroshnichenko; I. D. Drozdnik; Yu. S. Kaftan; N. B. Bidolenko…

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CEDR Content  

Broader source: Energy.gov (indexed) [DOE]

CEDR Content" CEDR Content" "The Consolidated Energy Data Report (CEDR) consists of 27 worksheets that should be completed by each site, as applicable, and included as part each site's SSP in a MS Excel electronic format. The CEDR is due to the SPO no later than December 9th." "Worksheet",,"Overview","Action" 1.1,"Content","Stand-alone overview of the CEDR tabs.","None" 2.1,"Funds, Meters, Training","Collects information on energy and water spending, and metering status.","If applicable, complete cells highlighted in orange. Edited and new data cells should be highlighted in light blue." 3.1,"BTU & Gal Key","Reference tab containing all factors and dropdown menu information for all tabs starting with ""3"". If you need to divide up the CEDR, please keep all tabs starting with ""3"" together to ensure calculation links are not broken. ","None"

262

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Workbook Contents" Workbook Contents" ,"U.S. State-to-State capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units of Measurement","Frequency","Updated Date" ,"Pipeline State-to-State Capacity","State-to-State capacity","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Inflow Capacity","Inflow capacity from other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel" ,"State Outflow Capacity","Outflow capacity to other States","Million cubic feet per day (MMcf/d)","Quarterly","application/vnd.ms-excel"

263

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

264

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Kitchin July 2010 #12;(this page intentionally left blank) #12;Prospects for Improved Carbon Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY

265

11, 26552696, 2011 Organic functional  

E-Print Network [OSTI]

) name biomass burning (BB) as the largest (42%) combustion source of pri- mary organic carbon fossil-fuel combustion and burning and non-burning forest sources of the measured organic aerosol. The OM

Russell, Lynn

266

Correlation of Soil and Sediment Organic Matter Polarity to Aqueous  

E-Print Network [OSTI]

and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution of the measured partition coefficients (Koc) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC to their organic carbon-normalized sorption coefficients (Koc) for carbon tetrachloride (CT) and 1

267

content | OpenEI Community  

Open Energy Info (EERE)

419 419 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234419 Varnish cache server content Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 25 June, 2013 - 07:39 How to create formatted blocks to hold OpenEI wiki content content formatting user interface wiki The OpenEI wiki frontpage uses "boxes" that help organize content. These boxes are frequently re-used across the site. Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load)

268

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

269

Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' manual and technical documentation.  

SciTech Connect (OSTI)

The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, miscanthus, and switchgrass. This document discusses the version of CCLUB released May 31, 2012 which includes corn, as did the previous CCLUB version, and three cellulosic feedstocks: corn stover, miscanthus, and switchgrass. CCLUB calculations are based upon two data sets: land change areas and above- and below-ground carbon content. Table 1 identifies where these data are stored and used within the CCLUB model, which is built in MS Excel. Land change area data is from Purdue University's Global Trade Analysis Project (GTAP) model, a computable general equilibrium (CGE) economic model. Section 2 describes the GTAP data CCLUB uses and how these data were modified to reflect shrubland transitions. Feedstock- and spatially-explicit below-ground carbon content data for the United States were generated with a surrogate model for CENTURY's soil organic carbon sub-model (Kwon and Hudson 2010) as described in Section 3. CENTURY is a soil organic matter model developed by Parton et al. (1987). The previous CCLUB version used more coarse domestic carbon emission factors. Above-ground non-soil carbon content data for forest ecosystems was sourced from the USDA/NCIAS Carbon Online Estimator (COLE) as explained in Section 4. We discuss emission factors used for calculation of international greenhouse gas (GHG) emissions in Section 5. Temporal issues associated with modeling LUC emissions are the topic of Section 6. Finally, in Section 7 we provide a step-by-step guide to using CCLUB and obtaining results.

Mueller, S; Dunn, JB; Wang, M (Energy Systems); (Univ. of Illinois at Chicago)

2012-06-07T23:59:59.000Z

270

Organic geochemical biosignatures in alkaline Hydrothermal ecosystems  

E-Print Network [OSTI]

The 13C content of microbial products are controlled by many factors, including the 13C content of the growth substrate, growth rate, the flux of carbon through various parts of the biochemical network, and the isotopic ...

Bradley, Alexander Smith

2008-01-01T23:59:59.000Z

271

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

272

CarbonSolve | Open Energy Information  

Open Energy Info (EERE)

CarbonSolve CarbonSolve Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarbonSolve Agency/Company /Organization: CarbonSolve Sector: Climate Focus Area: Greenhouse Gas Resource Type: Software/modeling tools User Interface: Website Website: www.carbonsolve.com Web Application Link: www.carbonsolve.com Cost: Paid CarbonSolve Screenshot References: CarbonSolve[1] Logo: CarbonSolve The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability objectives - including carbon, water, waste, employee engagement, or supply chain related initiatives into measureable metrics and trackable processes. Overview The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability

273

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

274

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes  

E-Print Network [OSTI]

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

Wang, Yang

275

Differential detection of genetic loci underlying stem and root lignin content in Populus  

SciTech Connect (OSTI)

For simultaneous applications directed towards improved pulp yields, enhanced bioethanol production and increased carbon sequestration, it would be desirable to reduce lignin in the harvested stem while increasing the lignin content in nonharvested roots. In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Gunter, Lee E [ORNL; Ranjan, Priya [ORNL; Sykes, Robert [National Renewable Energy Laboratory (NREL); Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Wullschleger, Stan D [ORNL

2010-11-01T23:59:59.000Z

276

Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NT0005638 NT0005638 Cruise Report 1-19 July 2009 HYFLUX Sea Truth Cruise Northern Gulf of Mexico Submitted by: Texas A&M University - Corpus Christi 6300 Ocean Dr. Corpus Christi, TX 78412 Principal Authors: Ian R. MacDonald and Thomas Naehr Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2009 Office of Fossil Energy HYFLUX Seatruth Cruise Report -1- Texas A&M University - Corpus Christi Table of Contents Summary ............................................................................................................................. 2 Participating Organizations ................................................................................................. 3 Major Equipment ................................................................................................................ 4

277

Advertiser retains sole responsibility for content ADVERTISEMENT FEATURE  

E-Print Network [OSTI]

of the CAS among those elected in 2013. Carbon aerogels sop up hydrocarbons A team led by Professor Shuhong Yu at the HFNL is pursuing carbon aerogel #12;Advertiser retains sole responsibility for content -- as a precursor for the production of ultralight carbon nanofi- bre aerogels on a largescale. This biomass can

Cai, Long

278

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010PA2" "Date","Pennsylvania Natural Gas Residential Consumption (MMcf)" 24653,279817 25019,285978 25384,295027 25749,297022 26114,304327

279

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Bcf)" Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Production (Bcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:14 PM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (Bcf)"

280

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:14 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 37271,98.3 37302,98.5 37330,98.4 37361,98.1

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:09 PM" "Back to Contents","Data 1: U.S. Total Natural Gas Injections into Underground Storage (MMcf)" "Sourcekey","N5050US2" "Date","U.S. Total Natural Gas Injections into Underground Storage (MMcf)" 26679 26710 26738 26769 26799

282

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:19 PM" "Back to Contents","Data 1: Hawaii Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010HI2" "Date","Hawaii Natural Gas Residential Consumption (MMcf)" 29402,1416 29767,1289 30132,1197 30497,1121 30863,1048 31228,625 31593,579 31958,591

283

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:59 PM" "Back to Contents","Data 1: Texas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010TX2" "Date","Texas Natural Gas Residential Consumption (MMcf)" 24653,201407 25019,211763 25384,220728 25749,232189 26114,237387 26480,240662

284

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 35079,232 35110,193 35139,232 35170,176 35200,230 35231,258 35261,269

285

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DE3" "Date","Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

286

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:29 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)" "Sourcekey","N3020FL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Florida (MMcf)"

287

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)" "Sourcekey","N3020CT2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Connecticut (MMcf)"

288

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:17 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)" "Sourcekey","N3020AZ2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arizona (MMcf)"

289

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:19 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)" "Sourcekey","N3020CA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (MMcf)"

290

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:24 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)" "Sourcekey","N3020DC2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the District of Columbia (MMcf)"

291

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:21 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)" "Sourcekey","N3020CO2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Colorado (MMcf)"

292

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010md2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010md2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:30 PM" "Back to Contents","Data 1: Maryland Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MD2" "Date","Maryland Natural Gas Residential Consumption (MMcf)" 24653,77130 25019,79015 25384,84406 25749,86811 26114,87617 26480,89042

293

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

294

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:07 PM" "Back to Contents","Data 1: West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WV3" "Date","West Virginia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

295

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:28 PM" "Back to Contents","Data 1: Louisiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010LA2" "Date","Louisiana Natural Gas Residential Consumption (MMcf)" 24653,74386 25019,77762 25384,82965 25749,86148 26114,79893 26480,82847

296

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

297

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nm3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nm3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:45 PM" "Back to Contents","Data 1: New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NM3" "Date","New Mexico Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

298

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:22 PM" "Back to Contents","Data 1: Idaho Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ID2" "Date","Idaho Natural Gas Residential Consumption (MMcf)" 24653,6179 25019,6545 25384,6980 25749,7711 26114,8455 26480,10887 26845,9947 27210,9652

299

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WA2" "Date","Washington Natural Gas Residential Consumption (MMcf)" 24653,23160 25019,26342 25384,30479 25749,31929 26114,33934 26480,38631

300

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 35445,4.08

302

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 24653,5992 25019,5987 25384,4058 25749,2909 26114,2823 26480,5696 26845,3791 27210,1227

303

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,4 27941,5

304

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 24653,2656 25019,1514 25384,1326 25749,7126 26114,2843 26480,4758 26845,3008 27210,2957

305

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:09 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

306

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,1 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

307

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ma2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ma2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MA2" "Date","Massachusetts Natural Gas Residential Consumption (MMcf)" 24653,73471 25019,74919 25384,78451 25749,82646 26114,83434 26480,86171

308

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 35079,32 35110,38 35139,34 35170,40 35200,43 35231,27 35261,63 35292,59 35323,60

309

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 13331,392528 13696,526159 14061,649106 14426,677311 14792,655967 15157,630212 15522,626782 15887,684115

310

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 35079,277 35110,277 35139,277 35170,277 35200,277 35231,277 35261,277

311

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1997" Annual",2012,"6/30/1997" ,"Data 2","Futures Prices",4,"Annual",2012,"6/30/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:13 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

312

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9012us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9012us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:55 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" "Sourcekey","N9012US2" "Date","U.S. Natural Gas Gross Withdrawals from Oil Wells (MMcf)" 33253,475614 33526,500196 33984,513068 34015,462218

313

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

314

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

315

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9050us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9050us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:04 AM" "Back to Contents","Data 1: U.S. Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050US2" "Date","U.S. Natural Gas Marketed Production (MMcf)" 26679,1948000 26710,1962000 26738,1907000 26769,1814000 26799,1898000 26830,1839000

316

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_a.xls" mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:23 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","MCRFPWV1","MCRFPP21","MCRFPIL1","MCRFPIN1","MCRFPKS1","MCRFPKY1","MCRFP_SMI_1","MCRFPMO1","MCRFPNE1","MCRFPND1","MCRFPOH1","MCRFPOK1","MCRFPSD1","MCRFPTN1","MCRFPP31","MCRFPAL1","MCRFPAR1","MCRFPLA1","MCRFPMS1","MCRFPNM1","MCRFPTX1","MCRFP3FM1","MCRFPP41","MCRFPCO1","MCRFPMT1","MCRFPUT1","MCRFPWY1","MCRFPP51","MCRFPAK1","MCRFPAKS1","MANFPAK1","MCRFPAZ1","MCRFPCA1","MCRFPNV1","MCRFP5F1"

317

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:11 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)" "Sourcekey","N3020AL2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alabama (MMcf)"

318

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 31228,3.21 31593,2.43 31958,1.95 32324,1.84

319

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34515,1.934 34880,1.692 35246,2.502 35611,2.475 35976,2.156 36341,2.319

320

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:23 PM" "Back to Contents","Data 1: U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9130US2" "Date","U.S. Natural Gas Exports (MMcf)" 26679,5808 26710,6079 26738,4021 26769,8017 26799,8741 26830,4131 26860,5744 26891,8726 26922,6403 26952,5473

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010KS3" "Date","Kansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

322

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 35079,97 35110,103 35139,109 35170,107 35200,107 35231,104 35261,108

323

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:17 PM" "Back to Contents","Data 1: U.S. Liquefied Natural Gas Imports (MMcf)" "Sourcekey","N9103US2" "Date","U.S. Liquefied Natural Gas Imports (MMcf)" 35445,9977 35476,7667 35504,2530 35535,2557 35565,5007 35596,5059 35626,5026 35657,7535

324

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: Montana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MT2" "Date","Montana Natural Gas Vented and Flared (MMcf)" 24653,5022 25019,12551 25384,26458 25749,5203 26114,4917 26480,4222 26845,3691 27210,3901

325

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 33253,2478 33284,2147 33312,2113 33343,2353 33373,3203 33404,2833 33434,3175

326

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 31228,4.77 31593,2.81 31958,3.07 32324,2.74

327

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ny2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ny2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New York Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NY2" "Date","New York Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,0 27575,0 27941,0 28306,0 28671,0

328

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 24653,2630 25019,2529 25384,2666 25749,2713 26114,2669 26480,2681 26845,2377 27210,889 27575,846

329

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 33253,23 33284,13 33312,12 33343,7 33373,13 33404,28 33434,28 33465,30

330

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:15 PM" "Back to Contents","Data 1: Delaware Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DE2" "Date","Delaware Natural Gas Residential Consumption (MMcf)" 24653,6844 25019,7068 25384,7475 25749,7843 26114,8172 26480,8358 26845,7514

331

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_a.xls" mbblpd_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbblpd_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/27/2013 9:07:25 AM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","MCRFPWV2","MCRFPP22","MCRFPIL2","MCRFPIN2","MCRFPKS2","MCRFPKY2","MCRFP_SMI_2","MCRFPMO2","MCRFPNE2","MCRFPND2","MCRFPOH2","MCRFPOK2","MCRFPSD2","MCRFPTN2","MCRFPP32","MCRFPAL2","MCRFPAR2","MCRFPLA2","MCRFPMS2","MCRFPNM2","MCRFPTX2","MCRFP3FM2","MCRFPP42","MCRFPCO2","MCRFPMT2","MCRFPUT2","MCRFPWY2","MCRFPP52","MCRFPAK2","MCRFPAKS2","MANFPAK2","MCRFPAZ2","MCRFPCA2","MCRFPNV2","MCRFP5F2"

332

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_fgc_sky_mmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_fgc_sky_mmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:59:11 AM" "Back to Contents","Data 1: Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) " "Sourcekey","NGM_EPG0_FGC_SKY_MMCF" "Date","Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (MMcf) "

333

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:34 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020HI3" "Date","Hawaii Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

334

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

poe2_dcu_nus-z00_a.xls" poe2_dcu_nus-z00_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_move_poe2_dcu_nus-z00_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 6:58:44 PM" "Back to Contents","Data 1: U.S. Total Exports " "Sourcekey","N9132US2","N9132US3","N9133US2","N9133US3" "Date","U.S. Natural Gas Pipeline Exports (MMcf)","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)","Liquefied U.S. Natural Gas Exports (MMcf)","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

335

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 24653,7098 25019,5910 25384,8097 25749,7233 26114,5090 26480,3672 26845,10767 27210,10787

336

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OK3" "Date","Oklahoma Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

337

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:40 PM" "Back to Contents","Data 1: North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ND3" "Date","North Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

338

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oregon Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OR2" "Date","Oregon Natural Gas Vented and Flared (MMcf)" 35246 35611,0 35976,0 36341,0 36707,0 37072,0 37437,0 37802,0 38168,0 38533,0 38898,0 39263,0

339

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:27 PM" "Back to Contents","Data 1: Kentucky Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KY2" "Date","Kentucky Natural Gas Residential Consumption (MMcf)" 24653,69542 25019,75824 25384,83815 25749,86473 26114,84197 26480,85881

340

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9160us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9160us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" "Sourcekey","N9160US2" "Date","U.S. Natural Gas Lease and Plant Fuel Consumption (MMcf)" 29235,93000 29266,87000 29295,93000 29326,85000

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:28 AM" "Back to Contents","Data 1: U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" "Sourcekey","N9030US2" "Date","U.S. Nonhydrocarbon Gases Removed from Natural Gas (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891

342

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MI3" "Date","Michigan Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

343

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9070us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9070us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM" "Back to Contents","Data 1: U.S. Dry Natural Gas Production (MMcf)" "Sourcekey","N9070US2" "Date","U.S. Dry Natural Gas Production (MMcf)" 35445,1617923 35476,1465907 35504,1627602 35535,1551268 35565,1610527 35596,1525325

344

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:55 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports (MMcf)" "Sourcekey","N9102US2" "Date","U.S. Natural Gas Pipeline Imports (MMcf)" 35445,268310 35476,232878 35504,254455 35535,235621 35565,236725 35596,227059 35626,230567

345

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:08 PM" "Back to Contents","Data 1: Wyoming Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WY2" "Date","Wyoming Natural Gas Residential Consumption (MMcf)" 24653,11939 25019,12592 25384,16592 25749,17984 26114,19463 26480,22242 26845,13868

346

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:09 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)" "Sourcekey","N3020AK2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Alaska (MMcf)"

347

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 26679,843900 26710,747331 26738,648504 26769,465867 26799,326313

348

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:38 PM" "Back to Contents","Data 1: Montana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MT2" "Date","Montana Natural Gas Residential Consumption (MMcf)" 24653,19756 25019,19711 25384,21463 25749,24794 26114,25379 26480,23787 26845,24923

349

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 35445,3 35476,3

350

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Exports (MMcf)" "Sourcekey","N9132US2" "Date","U.S. Natural Gas Pipeline Exports (MMcf)" 35445,6424 35476,6846 35504,10601 35535,8211 35565,6284 35596,5741 35626,6380 35657,10101

351

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:10 PM" "Back to Contents","Data 1: Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3035US4" "Date","Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

352

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WI3" "Date","Wisconsin Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

353

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040al2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040al2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Alabama Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AL2" "Date","Alabama Natural Gas Vented and Flared (MMcf)" 35079,194 35110,200 35139,140 35170,132 35200,106 35231,82 35261,205 35292,152

354

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: West Virginia Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WV2" "Date","West Virginia Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0

355

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1993" Monthly","9/2013","1/15/1993" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_pct_dc_nus_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:23:48 AM" "Back to Contents","Data 1: U.S. Refinery Yield" "Sourcekey","MLRRYUS3","MGFRYUS3","MGARYUS3","MKJRYUS3","MKERYUS3","MDIRYUS3","MRERYUS3","MNFRYUS3","MOTRYUS3","MNSRYUS3","MLURYUS3","MWXRYUS3","MCKRYUS3","MAPRYUS3","MSGRYUS3","MMSRYUS3","MPGRYUS3"

356

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:36 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)" "Sourcekey","N3020US2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in the U.S. (MMcf)"

357

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: U.S. Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040US2" "Date","U.S. Natural Gas Vented and Flared (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

358

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013","1/15/1997" Monthly","11/2013","1/15/1997" ,"Data 2","Futures Prices",4,"Monthly","11/2013","12/15/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:17 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD","NGM_EPG0_PLC_NUS_DMMBTU"

359

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010pa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010pa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:52 PM" "Back to Contents","Data 1: Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010PA3" "Date","Pennsylvania Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

360

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ut3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ut3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010UT3" "Date","Utah Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: District of Columbia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010DC2" "Date","District of Columbia Natural Gas Residential Consumption (MMcf)" 29402,13730 29767,13686 30132,13041 30497,13007

362

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tx3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tx3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TX3" "Date","Texas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

363

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1993" Annual",2012,"6/30/1993" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_stoc_typ_d_nus_skn_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skn_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:29 AM" "Back to Contents","Data 1: U.S. Natural Gas Processing Plant " "Sourcekey","MAOSNUS1","MPPSNUS1","MLPSNUS1","METSNUS1","MPRSNUS1","MBNSNUS1","MBISNUS1"

364

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: Arizona Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AZ2" "Date","Arizona Natural Gas Vented and Flared (MMcf)" 26114,347 26480,367 26845,277 27210,26 27575,47 27941,32 29036,101 29402,143 29767,106 30132,162

365

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:20 PM" "Back to Contents","Data 1: California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CA3" "Date","California Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

366

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:49 PM" "Back to Contents","Data 1: Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010OH3" "Date","Ohio Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

367

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:30 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020FL3" "Date","Florida Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

368

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ks2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ks2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Kansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040KS2" "Date","Kansas Natural Gas Vented and Flared (MMcf)" 35079,63 35110,63 35139,63 35170,61 35200,62 35231,57 35261,57 35292,55 35323,56

369

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nv2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nv2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: Nevada Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NV2" "Date","Nevada Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0 33526,0

370

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Mississippi Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MS2" "Date","Mississippi Natural Gas Vented and Flared (MMcf)" 35079,217 35110,199 35139,223 35170,219 35200,237 35231,234 35261,239

371

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:54:18 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103US3" "Date","Price of U.S. Natural Gas LNG Imports (Dollars per Thousand Cubic Feet)" 31228,4.6 31593,4.62 32324,2.71

372

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9130us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9130us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:24 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9130US3" "Date","Price of U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" 32523,2.69 32554,2.4

373

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Texas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TX2" "Date","Texas Natural Gas Vented and Flared (MMcf)" 24653,129403 25019,124584 25384,111499 25749,100305 26114,70222 26480,59821 26845,36133 27210,34431

374

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AL2" "Date","Alabama Natural Gas Residential Consumption (MMcf)" 24653,45543 25019,51708 25384,54804 25749,55779 26114,54867 26480,53397 26845,55685

375

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:33 PM" "Back to Contents","Data 1: Michigan Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010MI2" "Date","Michigan Natural Gas Residential Consumption (MMcf)" 24653,302472 25019,315694 25384,333264 25749,340033 26114,343773 26480,355266

376

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CO3" "Date","Colorado Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

377

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wa3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wa3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:05 PM" "Back to Contents","Data 1: Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010WA3" "Date","Washington Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

378

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:05 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 24653,1958 25019,2293 25384,4573 25749,6211 26114,6893 26480,8394 26845,5024

379

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 24653,52777 25019,56346 25384,58322 25749,59792 26114,48737 26480,47387

380

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:42 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040OK2" "Date","Oklahoma Natural Gas Vented and Flared (MMcf)" 24653,126629 25019,129408 25384,130766 25749,129629 26114,39799 26480,38797 26845,36411

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

382

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

383

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CA3" "Date","California Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

384

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 33253,1788 33284,1684 33312,1571 33343,1593 33373,1807 33404,1690 33434,2042

385

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:44 AM" "Back to Contents","Data 1: Tennessee Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040TN2" "Date","Tennessee Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

386

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:06 PM" "Back to Contents","Data 1: Wisconsin Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WI2" "Date","Wisconsin Natural Gas Residential Consumption (MMcf)" 24653,90994 25019,93425 25384,101124 25749,105208 26114,109758 26480,104648

387

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:38 PM" "Back to Contents","Data 1: Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)" "Sourcekey","N3020US4" "Date","Percent of Commercial Natural Gas Deliveries in U.S. Total Represented by the Price (%)"

388

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nh3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nh3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:43 PM" "Back to Contents","Data 1: New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NH3" "Date","New Hampshire Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

389

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:24 PM" "Back to Contents","Data 1: Indiana Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010IN2" "Date","Indiana Natural Gas Residential Consumption (MMcf)" 24653,139519 25019,145955 25384,156699 25749,158699 26114,162747 26480,169267

390

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:23 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020CT3" "Date","Connecticut Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

391

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mo3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mo3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:36 PM" "Back to Contents","Data 1: Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MO3" "Date","Missouri Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

392

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040la2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040la2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:36 AM" "Back to Contents","Data 1: Louisiana Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040LA2" "Date","Louisiana Natural Gas Vented and Flared (MMcf)" 24653,161849 25019,166439 25384,158852 25749,154089 26114,103564 26480,63667 26845,102091

393

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:46 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 34592,646 34834,696 34865,4590 34895,4767 34926,4382 34957,4389 34987,4603 35018,4932

394

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AZ2" "Date","Arizona Natural Gas Residential Consumption (MMcf)" 24653,25376 25019,26681 25384,28426 25749,29679 26114,32619 26480,34259 26845,36280

395

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AK3" "Date","Alaska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

396

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9132us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9132us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:27 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9132US3" "Date","Price of U.S. Natural Gas Pipeline Exports (Dollars per Thousand Cubic Feet)" 31228,3.92 31593,2.35

397

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:23 PM" "Back to Contents","Data 1: Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ID3" "Date","Idaho Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

398

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010ME2" "Date","Maine Natural Gas Residential Consumption (MMcf)" 24653,3967 25019,3571 25384,4910 25749,5247 26114,5591 26480,6036 26845,6027 27210,6174

399

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ne3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ne3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:42 PM" "Back to Contents","Data 1: Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NE3" "Date","Nebraska Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

400

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040wy2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040wy2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:47 AM" "Back to Contents","Data 1: Wyoming Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040WY2" "Date","Wyoming Natural Gas Vented and Flared (MMcf)" 24653,1498 25019,13038 25384,17632 25749,18419 26114,3860 26480,8376 26845,6618 27210,6102

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010mn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010mn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:34 PM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010MN3" "Date","Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

402

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:10 PM" "Back to Contents","Data 1: California Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CA2" "Date","California Natural Gas Residential Consumption (MMcf)" 24653,522122 25019,517636 25384,562127 25749,552544 26114,630998 26480,637289

403

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: South Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040SD2" "Date","South Dakota Natural Gas Vented and Flared (MMcf)" 33253,384 33284,350 33312,382 33343,380 33373,382 33404,376 33434,405

404

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nm2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nm2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:41 AM" "Back to Contents","Data 1: New Mexico Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NM2" "Date","New Mexico Natural Gas Vented and Flared (MMcf)" 35079,236 35110,220 35139,240 35170,230 35200,241 35231,229 35261,217

405

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010co2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010co2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:11 PM" "Back to Contents","Data 1: Colorado Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CO2" "Date","Colorado Natural Gas Residential Consumption (MMcf)" 24653,75351 25019,78371 25384,81068 25749,82595 26114,84864 26480,89187

406

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc2d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc2d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:40 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 2 (Dollars per Million Btu)" "Sourcekey","RNGC2" "Date","Natural Gas Futures Contract 2 (Dollars per Million Btu)" 34346,2.13 34347,2.072 34348,2.139 34351,2.196 34352,2.131

407

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

408

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mo2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mo2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:38 AM" "Back to Contents","Data 1: Missouri Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MO2" "Date","Missouri Natural Gas Vented and Flared (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0 33404,0 33434,0 33465,0 33496,0

409

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc4d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc4d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:29 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 4 (Dollars per Million Btu)" "Sourcekey","RNGC4" "Date","Natural Gas Futures Contract 4 (Dollars per Million Btu)" 34323,1.894 34324,1.83 34325,1.859 34326,1.895 34330,1.965

410

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9010us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9010us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:17 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010US2" "Date","U.S. Natural Gas Gross Withdrawals (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103

411

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ut2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ut2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:45 AM" "Back to Contents","Data 1: Utah Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040UT2" "Date","Utah Natural Gas Vented and Flared (MMcf)" 24653,3000 25019,2906 25384,2802 25749,2852 26114,2926 26480,5506 26845,7664 27210,5259 27575,1806

412

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ak2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ak2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:06 PM" "Back to Contents","Data 1: Alaska Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AK2" "Date","Alaska Natural Gas Residential Consumption (MMcf)" 32523,1793 32554,2148 32582,1566 32613,1223 32643,858 32674,638

413

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040nd2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040nd2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:39 AM" "Back to Contents","Data 1: North Dakota Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040ND2" "Date","North Dakota Natural Gas Vented and Flared (MMcf)" 24653,25795 25019,22050 25384,22955 25749,19862 26114,2686 26480,20786 26845,22533

414

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010al3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010al3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:07 PM" "Back to Contents","Data 1: Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AL3" "Date","Alabama Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

415

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AR3" "Date","Arkansas Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

416

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:02 PM" "Back to Contents","Data 1: Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VA2" "Date","Virginia Natural Gas Residential Consumption (MMcf)" 24653,41495 25019,43582 25384,46663 25749,49554 26114,49488 26480,55427

417

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:33 AM" "Back to Contents","Data 1: Colorado Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CO2" "Date","Colorado Natural Gas Vented and Flared (MMcf)" 35079,112 35110,77 35139,78 35170,91 35200,100 35231,89 35261,100 35292,106

418

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:17 PM" "Back to Contents","Data 1: Georgia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010GA2" "Date","Georgia Natural Gas Residential Consumption (MMcf)" 24653,80322 25019,84072 25384,87878 25749,87359 26114,88319 26480,85256 26845,86191

419

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020hi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020hi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:33 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)" "Sourcekey","N3020HI2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Hawaii (MMcf)"

420

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:31 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)" "Sourcekey","N3020GA2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Georgia (MMcf)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:14 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)" "Sourcekey","N3020AR2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Arkansas (MMcf)"

422

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:12 PM" "Back to Contents","Data 1: Connecticut Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010CT2" "Date","Connecticut Natural Gas Residential Consumption (MMcf)" 24653,26177 25019,26437 25384,29048 25749,31187 26114,31878 26480,32879

423

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010dc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010dc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:14 PM" "Back to Contents","Data 1: District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010DC3" "Date","District of Columbia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

424

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ri3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ri3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:54 PM" "Back to Contents","Data 1: Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010RI3" "Date","Rhode Island Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

425

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:56 PM" "Back to Contents","Data 1: South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SD3" "Date","South Dakota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

426

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:26 PM" "Back to Contents","Data 1: Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)" "Sourcekey","N3020DE2" "Date","Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Delaware (MMcf)"

427

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010tn3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010tn3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:58 PM" "Back to Contents","Data 1: Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010TN3" "Date","Tennessee Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

428

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ny3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ny3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NY3" "Date","New York Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

429

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010or2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010or2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:51 PM" "Back to Contents","Data 1: Oregon Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OR2" "Date","Oregon Natural Gas Residential Consumption (MMcf)" 24653,13427 25019,15126 25384,20507 25749,19742 26114,21217 26480,23331 26845,22271

430

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9140us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9140us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Total Consumption (MMcf)" "Sourcekey","N9140US2" "Date","U.S. Natural Gas Total Consumption (MMcf)" 36906,2676998 36937,2309464 36965,2246633 36996,1807170 37026,1522382 37057,1444378

431

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/17/2013" Daily","12/17/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1d.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:45 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34347,2.194 34348,2.268 34351,2.36 34352,2.318 34353,2.252

432

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:16 PM" "Back to Contents","Data 1: Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010FL3" "Date","Florida Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

433

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:08 PM" "Back to Contents","Data 1: U.S. Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035US2" "Date","U.S. Natural Gas Industrial Consumption (MMcf)" 36906,686540 36937,640026 36965,664918 36996,622054 37026,576532 37057,536820

434

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 26114,355 26480,284 27941,837 28306,607 29402,677 29767,428 30132,435 30497,198 30863,34

435

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ok2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ok2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:50 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OK2" "Date","Oklahoma Natural Gas Residential Consumption (MMcf)" 24653,67395 25019,74782 25384,75310 25749,77460 26114,75238 26480,77608

436

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:31 AM" "Back to Contents","Data 1: Arkansas Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040AR2" "Date","Arkansas Natural Gas Vented and Flared (MMcf)" 24653,997 25019,895 25384,1326 25749,226 26114,1734 26480,2649 26845,1947 27210,1716 27575,1318

437

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010me3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010me3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:32 PM" "Back to Contents","Data 1: Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010ME3" "Date","Maine Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

438

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3060us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3060us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:27:25 PM" "Back to Contents","Data 1: Natural Gas Delivered to Consumers in the U.S. (MMcf)" "Sourcekey","N3060US2" "Date","Natural Gas Delivered to Consumers in the U.S. (MMcf)" 36906,2505011 36937,2156873 36965,2086568 36996,1663832

439

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010US2" "Date","U.S. Natural Gas Residential Consumption (MMcf)" 11139,295700 11504,294406 11870,298520 12235,283197 12600,288236 12965,313498 13331,343346

440

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010in3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010in3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:25 PM" "Back to Contents","Data 1: Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010IN3" "Date","Indiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9011us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9011us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:55:36 AM" "Back to Contents","Data 1: U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" "Sourcekey","N9011US2" "Date","U.S. Natural Gas Gross Withdrawals from Gas Wells (MMcf)" 33253,1482053 33526,1363737 33984,1452098 34015,1305490

442

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:37 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020US3" "Date","U.S. Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

443

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010nv3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010nv3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:46 PM" "Back to Contents","Data 1: Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010NV3" "Date","Nevada Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

444

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9133US3" "Date","Price of Liquefied U.S. Natural Gas Exports (Dollars per Thousand Cubic Feet)"

445

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:55 PM" "Back to Contents","Data 1: South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010SC3" "Date","South Carolina Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

446

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010vt2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010vt2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:03 PM" "Back to Contents","Data 1: Vermont Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010VT2" "Date","Vermont Natural Gas Residential Consumption (MMcf)" 29402,1301 29767,1290 30132,1278 30497,1252 30863,1352 31228,1456 31593,1595

447

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly","12/13/2013","1/10/1997" Weekly","12/13/2013","1/10/1997" ,"Data 2","Futures Prices",4,"Weekly","12/13/2013","12/24/1993" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","ng_pri_fut_s1_w.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_fut_s1_w.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:18 PM" "Back to Contents","Data 1: Spot Price" "Sourcekey","RNGWHHD" "Date","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

448

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040in2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040in2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:35 AM" "Back to Contents","Data 1: Indiana Natural Gas Vented and Flared (Million Cubic Feet)" "Sourcekey","N9040IN2" "Date","Indiana Natural Gas Vented and Flared (Million Cubic Feet)" 33253,0 33284,0 33312,0 33343,0 33373,0

449

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3020ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3020ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:32 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3020GA3" "Date","Georgia Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)"

450

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010hi3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010hi3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:20 PM" "Back to Contents","Data 1: Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010HI3" "Date","Hawaii Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

451

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:26 PM" "Back to Contents","Data 1: Kansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010KS2" "Date","Kansas Natural Gas Residential Consumption (MMcf)" 24653,84912 25019,89372 25384,94320 25749,97317 26114,98644 26480,100720 26845,96468

452

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Imports (MMcf)" "Sourcekey","N9100US2" "Date","U.S. Natural Gas Imports (MMcf)" 26679,92694 26710,83870 26738,91581 26769,88407 26799,85844 26830,79121 26860,79428 26891,84400 26922,81157

453

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:18 PM" "Back to Contents","Data 1: Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010GA3" "Date","Georgia Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

454

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9133us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9133us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 2:23:31 PM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports (MMcf)" "Sourcekey","N9133US2" "Date","Liquefied U.S. Natural Gas Exports (MMcf)" 35445,5604 35476,5596 35504,5675 35535,5660 35565,3812 35596,3786 35626,3756 35657,7532

455

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9170us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9170us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:33:48 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline & Distribution Use (MMcf)" "Sourcekey","N9170US2" "Date","U.S. Natural Gas Pipeline & Distribution Use (MMcf)" 36906,76386 36937,65770 36965,63626 36996,50736

456

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1504_nus_4a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1504_nus_4a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:46:13 PM" "Back to Contents","Data 1: U.S. Natural Gas % of Total Residential - Sales (%)" "Sourcekey","NA1504_NUS_4" "Date","U.S. Natural Gas % of Total Residential - Sales (%)" 32689,99.9 33054,99.2 33419,99.2 33785,99.1 34150,99.1 34515,99.1

457

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ct3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ct3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:13 PM" "Back to Contents","Data 1: Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010CT3" "Date","Connecticut Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

458

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040fl2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040fl2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:34 AM" "Back to Contents","Data 1: Florida Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040FL2" "Date","Florida Natural Gas Vented and Flared (MMcf)" 35079 35110 35139 35170 35200 35231 35261 35292 35323 35353 35384 35414 35445,0

460

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040mi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040mi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:37 AM" "Back to Contents","Data 1: Michigan Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040MI2" "Date","Michigan Natural Gas Vented and Flared (MMcf)" 24653,1861 25019,1120 25384,808 25749,809 26480,1032 26845,1117 27210,1268 27575,1612

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010ar2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010ar2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010AR2" "Date","Arkansas Natural Gas Residential Consumption (MMcf)" 32523,6774 32554,7118 32582,6736 32613,3835 32643,1927 32674,1402

462

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010la3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010la3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:29 PM" "Back to Contents","Data 1: Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010LA3" "Date","Louisiana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

463

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9100us3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9100us3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/13/2013 3:53:51 PM" "Back to Contents","Data 1: Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" "Sourcekey","N9100US3" "Date","Price of U.S. Natural Gas Imports (Dollars per Thousand Cubic Feet)" 32523,1.72 32554,1.88

464

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ne2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ne2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:40 AM" "Back to Contents","Data 1: Nebraska Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040NE2" "Date","Nebraska Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,1558 26480,1263 26845,834 27210,2137 27575,1398 27941,797

465

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9020us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9020us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:13 AM" "Back to Contents","Data 1: U.S. Natural Gas Repressuring (MMcf)" "Sourcekey","N9020US2" "Date","U.S. Natural Gas Repressuring (MMcf)" 26679 26710 26738 26769 26799 26830 26860 26891 26922 26952 26983 27013 27044 27075 27103 27134 27164

466

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:43 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040PA2" "Date","Pennsylvania Natural Gas Vented and Flared (MMcf)" 24653,0 25019,0 25384,0 25749,0 26114,0 26480,0 26845,0 27210,98 27575,96 27941,99

467

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010oh2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010oh2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:48 PM" "Back to Contents","Data 1: Ohio Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010OH2" "Date","Ohio Natural Gas Residential Consumption (MMcf)" 24653,442360 25019,444964 25384,456414 25749,459972 26114,460820 26480,478331 26845,439212

468

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9040ca2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9040ca2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:32 AM" "Back to Contents","Data 1: California Natural Gas Vented and Flared (MMcf)" "Sourcekey","N9040CA2" "Date","California Natural Gas Vented and Flared (MMcf)" 24653,3565 25019,2780 25384,3074 25749,2499 26114,575 26845,1999 27210,1560 27575,1537

469

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010us3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010us3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:22:01 PM" "Back to Contents","Data 1: U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010US3" "Date","U.S. Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

470

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","11/2013" Monthly","11/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngc1m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngc1m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:41 PM" "Back to Contents","Data 1: Natural Gas Futures Contract 1 (Dollars per Million Btu)" "Sourcekey","RNGC1" "Date","Natural Gas Futures Contract 1 (Dollars per Million Btu)" 34349,2.347 34380,2.355 34408,2.109 34439,2.111 34469,1.941

471

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3010az3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3010az3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:21:09 PM" "Back to Contents","Data 1: Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3010AZ3" "Date","Arizona Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet)"

472

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:13 PM" "Back to Contents","Data 1: U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045US2" "Date","U.S. Natural Gas Deliveries to Electric Power Consumers (MMcf)" 36906,340292 36937,312843 36965,362843

473

E-Print Network 3.0 - authigenic carbonate formation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the flux of carbon... to the deep sea. However, the accumulation rate of authigenic uranium depends not only on the organic carbon... into an organic carbon rain rate (export...

474

Carbon Dynamics in Aquatic Ecosystems in Response to Elevated Atmospheric CO2 and Altered Nutrients Availability  

E-Print Network [OSTI]

. Our results show that elevated CO2 led to enhanced photosynthetic carbon uptake and dissolved organic carbon (DOC) production. DOC occupied larger percentage in total organic carbon production in high CO2 environment. N addition stimulated biomass...

Song, Chao

2011-04-26T23:59:59.000Z

475

Carbon for Farmers: Assessing the Potential for Soil Carbon Sequestration in the Old Peanut Basin of Senegal  

Science Journals Connector (OSTI)

Carbon sequestration in soil organic matter of degraded Sahelian ... could play a significant role in the global carbon (C) uptake through terrestrial sinks while,...in situ soil and biomass carbon

Petra Tschakert

2004-12-01T23:59:59.000Z

476

Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs  

Science Journals Connector (OSTI)

Abstract Studies of carbon sources in plankton communities are important because carbon content has become the main currency used in functional studies of aquatic ecosystems. We evaluated the contribution to the total organic carbon pool from different plankton communities (phytoplankton, bacterioplankton, and zooplankton – C-biota) and its drivers in eight tropical hydroelectric reservoirs with different trophic and hydrological status and different physical features. Our systems were separated into three groups based on trophic status and water residence time: (i) mesotrophic with low residence time (ML); (ii) mesotrophic with high residence time (MH); and (iii) eutrophic with low residence time (EL). Our hypothesis that reservoirs with low water residence times and low nutrient concentrations would show the lowest C-biota was supported. Phytoplankton carbon (C-phy) showed the highest concentrations in the EL, followed by MH and ML systems. The EL group also showed significantly higher zooplankton carbon (C-zoo). No significant difference was observed for bacteria carbon (C-bac) among the three system groups. In addition to trophic status and water residence time, regression analyses revealed that water temperature, light, pH, and dissolved organic carbon concentrations were the main drivers of plankton communities in these large tropical hydroelectric reservoirs.

Lúcia H.S. Silva; Vera L.M. Huszar; Marcelo M. Marinho; Luciana M. Rangel; Jandeson Brasil; Carolina D. Domingues; Christina C. Branco; Fábio Roland

2014-01-01T23:59:59.000Z

477

Black Carbon and the Carbon Cycle  

Science Journals Connector (OSTI)

...reduces net CO 2 release by permanent deforestation...constitute a substantial fraction of the “missing carbon...estimate of oxygen release assuming 10% of...constitute a substantial fraction of sedimentary organic...formation by vegetation fires may be important...from soils becoming airborne by wind erosion...

Thomas A. J. Kuhlbusch

1998-06-19T23:59:59.000Z

478

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

479

JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 2000 / 865 CARBON FIBER ADSORPTION USING QUANTITATIVE  

E-Print Network [OSTI]

JOURNAL OF ENVIRONMENTAL ENGINEERING / SEPTEMBER 2000 / 865 CARBON FIBER ADSORPTION USING carbon fiber (ACF) adsorbents. The DR isotherm parameter, k, depends on the adsorbate as well volatile organic compound adsorbates and activated carbon fiber adsorbents. INTRODUCTION Activated carbon

Cal, Mark P.

480

Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes  

SciTech Connect (OSTI)

The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

2011-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "organic carbon content" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1997" Monthly","9/2013","1/15/1997" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_lsum_a_epg0_fpd_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_lsum_a_epg0_fpd_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:41:46 AM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_R3FM_2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

482

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1930" Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_a_epg0_fpd_mmcf_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_a_epg0_fpd_mmcf_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:08:03 PM" "Back to Contents","Data 1: Natural Gas Dry Production (Annual Supply & Disposition) " "Sourcekey","N9070US2","NA1160_SAL_2","NA1160_SAK_2","NA1160_SAZ_2","NA1160_SAR_2","NA1160_SCA_2","NA1160_SCO_2","NA1160_SFL_2","NA1160_R3FM_2","NA1160_SIL_2","NA1160_SIN_2","NA1160_SKS_2","NA1160_SKY_2","NA1160_SLA_2","NA1160_SMD_2","NA1160_SMI_2","NA1160_SMS_2","NA1160_SMO_2","NA1160_SMT_2","NA1160_SNE_2","NA1160_SNV_2","NA1160_SNM_2","NA1160_SNY_2","NA1160_SND_2","NA1160_SOH_2","NA1160_SOK_2","NA1160_SOR_2","NA1160_SPA_2","NA1160_SSD_2","NA1160_STN_2","NA1160_STX_2","NA1160_SUT_2","NA1160_SVA_2","NA1160_SWV_2","NA1160_SWY_2"

483

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:48 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS2","MCREXUS2","MNGEXUS2","MPPEXUS2","MLPEXUS2","METEXUS2","MPREXUS2","MBNEXUS2","MBIEXUS2","MOLEXUS2","MOHEXUS2","M_EPOOXXFE_EEX_NUS-Z00_MBBLD","MMTEX_NUS-Z00_2","MOOEX_NUS-Z00_2","M_EPOOR_EEX_NUS-Z00_MBBLD","M_EPOOXE_EEX_NUS-Z00_MBBLD","M_EPOORDB_EEX_NUS-Z00_MBBLD","MBCEXUS2","MO1EX_NUS-Z00_2","MO5EX_NUS-Z00_2","MBAEXUS2","MTPEXUS2","MGFEXUS2","MGREXUS2","MG4EX_NUS-Z00_2","MGAEXUS2","MKJEXUS2","MKEEXUS2","MDIEXUS2","M_EPDXL0_EEX_NUS-Z00_MBBLD","MD1EX_NUS-Z00_2","MDGEXUS2","MREEXUS2","MNFEXUS2","MOTEXUS2","MNSEXUS2","MLUEXUS2","MWXEXUS2","MCKEXUS2","MAPEXUS2","MMSEXUS2"

484

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:09 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS1","MCRUPUS1","MNGUPUS1","MPPUPUS1","MLPUPUS1","METUPUS1","MPRUPUS1","MBNUPUS1","MBIUPUS1","MOLUPUS1","MOHUPUS1","MUOUPUS1","MBCUPUS1","MO1UP_NUS_1","MO5UP_NUS_1","MBAUPUS1","MTPUPUS1","MGFUPUS1","MGRUPUS1","MG4UP_NUS_1","MGAUPUS1","MKJUPUS1","MKEUPUS1","MDIUPUS1","MD0UP_NUS_1","MD1UP_NUS_1","MDGUPUS1","MREUPUS1","MPCUP_NUS_1","MNFUPUS1","MOTUPUS1","MNSUPUS1","MLUUPUS1","MWXUPUS1","MCKUPUS1","MCMUP_NUS_1","MCOUP_NUS_1","MAPUPUS1","MSGUPUS1","MMSUPUS1"

485

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1985" Monthly","9/2013","1/15/1985" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_unc_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_unc_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:30:03 AM" "Back to Contents","Data 1: U.S. Refinery Utilization and Capacity" "Sourcekey","MGIRIUS2","MOCLEUS2","MOCGGUS2","MOCIDUS2","MOPUEUS2" "Date","U.S. Gross Inputs to Refineries (Thousand Barrels Per Day)","U. S. Operable Crude Oil Distillation Capacity (Thousand Barrels per Calendar Day)","U. S. Operating Crude Oil Distillation Capacity (Thousand Barrels per Day)","U. S. Idle Crude Oil Distillation Capacity (Thousand Barrels per Day)","U.S. Percent Utilization of Refinery Operable Capacity"

486

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capwork_a_(na)_8sw0_mbbl_a.xls" capwork_a_(na)_8sw0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capwork_a_(na)_8sw0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:20:16 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SW0_NUS_MBBL","8_NA_8SW0_R10_MBBL","8_NA_8SW0_R20_MBBL","8_NA_8SW0_R30_MBBL","8_NA_8SW0_R40_MBBL","8_NA_8SW0_R50_MBBL" "Date","U.S. Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Working Storage Capacity as of January 1 (Thousand Barrels)"

487

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbblpd_m.xls" mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:26:11 AM" "Back to Contents","Data 1: U.S. Product Supplied for Crude Oil and Petroleum Products" "Sourcekey","MTTUPUS2","MCRUPUS2","MNGUPUS2","MPPUPUS2","MLPUPUS2","METUPUS2","MPRUPUS2","MBNUPUS2","MBIUPUS2","MOLUPUS2","MOHUPUS2","MUOUPUS2","MBCUPUS2","MO1UP_NUS_2","MO5UP_NUS_2","MBAUPUS2","MTPUPUS2","MGFUPUS2","MGRUPUS2","MG4UP_NUS_2","MGAUPUS2","MKJUPUS2","MKEUPUS2","MDIUPUS2","MD0UP_NUS_2","MD1UP_NUS_2","MDGUPUS2","MREUPUS2","MPCUP_NUS_2","MNFUPUS2","MOTUPUS2","MNSUPUS2","MLUUPUS2","MWXUPUS2","MCKUPUS2","MCMUP_NUS_2","MCOUP_NUS_2","MAPUPUS2","MSGUPUS2","MMSUPUS2"

488

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

capshell_a_(na)_8ss0_mbbl_a.xls" capshell_a_(na)_8ss0_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_capshell_a_(na)_8ss0_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"6/20/2013 4:17:24 PM" "Back to Contents","Data 1: Total " "Sourcekey","8_NA_8SS0_NUS_MBBL","8_NA_8SS0_R10_MBBL","8_NA_8SS0_R20_MBBL","8_NA_8SS0_R30_MBBL","8_NA_8SS0_R40_MBBL","8_NA_8SS0_R50_MBBL" "Date","U.S. Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","East Coast (PADD 1) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Midwest (PADD 2) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Gulf Coast (PADD 3) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","Rocky Mountain (PADD 4) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)","West Coast (PADD 5) Refinery Shell Storage Capacity as of January 1 (Thousand Barrels)"

489

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1936" Annual",2012,"6/30/1936" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:40 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

490

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_inpt_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:19:29 AM" "Back to Contents","Data 1: U.S. Refinery & Blender Net Input" "Sourcekey","MTTRIUS1","MCRRIUS1","MNGRIUS1","MPPRIUS1","MLPRIUS1","METRIUS1","MBNRIUS1","MBIRIUS1","MOLRIUS1","MOHRIUS1","M_EPOOOH_YIR_NUS_MBBL","M_EPOOXXFE_YIR_NUS_MBBL","MMTRIUS1","MOORIUS1","M_EPOOR_YIR_NUS_MBBL","MFERIUS1","M_EPOORD_YIR_NUS_MBBL","M_EPOORO_YIR_NUS_MBBL","M_EPOOOXH_YIR_NUS_MBBL","MUORIUS1","MNLRI_NUS_1","MKORI_NUS_1","MH1RI_NUS_1","MRURI_NUS_1","MBCRIUS1","MO1RI_NUS_1","M_EPOBGRR_YIR_NUS_MBBL","MO3RI_NUS_1","MO4RI_NUS_1","MO2RI_NUS_1","MO5RI_NUS_1","MO6RI_NUS_1","MO7RI_NUS_1","MO9RI_NUS_1","MBARIUS1"

491

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1936" Monthly","9/2013","1/15/1936" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_refp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:25:41 AM" "Back to Contents","Data 1: U.S. Refinery and Blender Net Production" "Sourcekey","MTTRPUS1","MLPRPUS1","METRPUS1","MENRPUS1","MEYRPUS1","MPRRPUS1","MPARP_NUS_1","MPLRPUS1","MBNRPUS1","MBURPUS1","MBYRPUS1","MBIRPUS1","MIIRPUS1","MIYRPUS1","MGFRPUS1","MGRRPUS1","MG1RP_NUS_1","M_EPM0RO_YPR_NUS_MBBL","MG4RP_NUS_1","MG5RP_NUS_1","M_EPM0CAL55_YPR_NUS_MBBL","M_EPM0CAG55_YPR_NUS_MBBL","MG6RP_NUS_1","MGARPUS1","MKJRPUS1","MKERPUS1","MDIRPUS1","MD0RP_NUS_1","MD1RP_NUS_1","MDGRPUS1","MRERPUS1","MRLRPUS1","MRMRPUS1","MRGRPUS1","MPCRPUS1","MNFRPUS1","MOTRPUS1","MNSRPUS1","MLURPUS1","MWXRPUS1","MCKRPUS1","MCMRPUS1","MCORPUS1","MAPRPUS1","MSGRPUS1","MMSRPUS1","MPGRPUS1"

492

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

mbbl_m.xls" mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:47 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

493

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

494

PlaneCarbon | Open Energy Information  

Open Energy Info (EERE)

PlaneCarbon PlaneCarbon Jump to: navigation, search Name PlaneCarbon Address 9149 N. 109th Place Place Scottsdale, Arizona Zip 85259 Sector Carbon Product PlaneCarbon Year founded 2002 Number of employees 1-10 Phone number 480-205-0881 Website http://iteknowledgies.com/tran References Iteknowledgies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Determine if all of this content is appropriate and has a neutral point of view. PlaneCarbon, a division of Iteknowledgies International, is a company based in Scottsdale, Arizona. PlaneCarbon purchases carbon credits to achieve carbon neutral operation of your aircraft based on the average utilization of a specific aircraft in hours per year and then calculating the amount of fuel burned and purchasing offsetting carbon credits to achieve carbon

495

Metal-Organic Frameworks with Precisely Designed Interior for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water...

496

Methods and systems for chemoautotrophic production of organic compounds  

DOE Patents [OSTI]

The present disclosure identifies pathways, mechanisms, systems and methods to confer chemoautotrophic production of carbon-based products of interest, such as sugars, alcohols, chemicals, amino acids, polymers, fatty acids and their derivatives, hydrocarbons, isoprenoids, and intermediates thereof, in organisms such that these organisms efficiently convert inorganic carbon to organic carbon-based products of interest using inorganic energy, such as formate, and in particular the use of organisms for the commercial production of various carbon-based products of interest.

Fischer, Curt R.; Che, Austin J.; Shetty, Reshma P.; Kelly, Jason R.

2013-01-08T23:59:59.000Z

497

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" Natural Gas Marketed Production ",35,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_prod_whv_a_epg0_vgm_mmcf_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_prod_whv_a_epg0_vgm_mmcf_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/19/2013 6:54:27 AM" "Back to Contents","Data 1: Natural Gas Marketed Production " "Sourcekey","N9050US2","N9050FX2","N9050AL2","N9050AK2","N9050AZ2","N9050AR2","N9050CA2","N9050CO2","N9050FL2","N9050IL2","N9050IN2","N9050KS2","N9050KY2","N9050LA2","N9050MD2","N9050MI2","N9050MS2","N9050MO2","N9050MT2","N9050NE2","N9050NV2","N9050NM2","N9050NY2","N9050ND2","N9050OH2","N9050OK2","N9050OR2","N9050PA2","N9050SD2","N9050TN2","N9050TX2","N9050UT2","N9050VA2","N9050WV2","N9050WY2"

498

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1870" Annual",2012,"6/30/1870" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_move_exp_dc_nus-z00_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_move_exp_dc_nus-z00_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 7:27:46 AM" "Back to Contents","Data 1: U.S. Exports of Crude Oil and Petroleum Products" "Sourcekey","MTTEXUS1","MCREXUS1","MNGEXUS1","MPPEXUS1","MLPEXUS1","METEXUS1","MPREXUS1","MBNEXUS1","MBIEXUS1","MOLEXUS1","MOHEXUS1","M_EPOOXXFE_EEX_NUS-Z00_MBBL","MMTEX_NUS-Z00_1","MOOEX_NUS-Z00_1","M_EPOOR_EEX_NUS-Z00_MBBL","M_EPOOXE_EEX_NUS-Z00_MBBL","M_EPOORDB_EEX_NUS-Z00_MBBL","MBCEXUS1","MO1EX_NUS-Z00_1","MO5EX_NUS-Z00_1","MBAEXUS1","MTPEXUS1","MGFEXUS1","MGREXUS1","MG4EX_NUS-Z00_1","MGAEXUS1","MKJEXUS1","MKEEXUS1","MDIEXUS1","M_EPDXL0_EEX_NUS-Z00_MBBL","MD1EX_NUS-Z00_1","MDGEXUS1","MREEXUS1","MNFEXUS1","MOTEXUS1","MNSEXUS1","MLUEXUS1","MWXEXUS1","MCKEXUS1","MAPEXUS1","MMSEXUS1"

499

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/2002" Monthly","9/2013","1/15/2002" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_pri_sum_a_epg0_vrx_pct_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_vrx_pct_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:00:27 PM" "Back to Contents","Data 1: Percentage of Total Natural Gas Residential Deliveries included in Prices " "Sourcekey","NA1504_NUS_4","NA1504_SAL_4","NA1504_SAK_4","NA1504_SAZ_4","NA1504_SAR_4","NA1504_SCA_4","NA1504_SCO_4","NA1504_SCT_4","NA1504_SDE_4","NA1504_SDC_4","NA1504_SFL_4","NA1504_SGA_4","NA1504_SHI_4","NA1504_SID_4","NA1504_SIL_4","NA1504_SIN_4","NA1504_SIA_4","NA1504_SKS_4","NA1504_SKY_4","NA1504_SLA_4","NA1504_SME_4","NA1504_SMD_4","NA1504_SMA_4","NA1504_SMI_4","NA1504_SMN_4","NA1504_SMS_4","NA1504_SMO_4","NA1504_SMT_4","NA1504_SNE_4","NA1504_SNV_4","NA1504_SNH_4","NA1504_SNJ_4","NA1504_SNM_4","NA1504_SNY_4","NA1504_SNC_4","NA1504_SND_4","NA1504_SOH_4","NA1504_SOK_4","NA1504_SOR_4","NA1504_SPA_4","NA1504_SRI_4","NA1504_SSC_4","NA1504_SSD_4","NA1504_STN_4","NA1504_STX_4","NA1504_SUT_4","NA1504_SVT_4","NA1504_SVA_4","NA1504_SWA_4","NA1504_SWV_4","NA1504_SWI_4","NA1504_SWY_4"

500

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

60,"Monthly","9/2013","1/15/1981" 60,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_d_nus_skr_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_d_nus_skr_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:41:32 AM" "Back to Contents","Data 1: U.S. Refinery " "Sourcekey","MTTRSUS1","MCRRSUS1","MPERSUS1","MPPRSUS1","MLPRSUS1","METRSUS1","MPRRSUS1","MBNRSUS1","MBIRSUS1","M_EPOOOXH_SKR_NUS_MBBL","M_EPOOXXFE_SKR_NUS_MBBL","MMTRSUS1","MOORSUS1","M_EPOOR_SKR_NUS_MBBL","MFERSUS1","M_EPOORD_SKR_NUS_MBBL","M_EPOORO_SKR_NUS_MBBL","MUORSUS1","MNLRSUS1","MKORSUS1","MH1RSUS1","MRURSUS1","MBCRSUS1","MO1RS_NUS_1","M_EPOBGRR_SKR_NUS_MBBL","MO3RS_NUS_1","MO4RS_NUS_1","MO5RS_NUS_1","MO6RS_NUS_1","MO7RS_NUS_1","MO9RS_NUS_1","MBARSUS1","MGFRSUS1","MGRRSUS1","MG1RS_NUS_1","M_EPM0RO_SKR_NUS_MBBL","MG4RS_NUS_1","MG5RS_NUS_1","M_EPM0CAL55_SKR_NUS_MBBL","MG6RS_NUS_1","MGARSUS1","MKJRSUS1","MKERSUS1","MDIRSUS1","MD0RS_NUS_1","MD1RS_NUS_1","MDGRSUS1","MRERSUS1","MRLRSUS1","MRMRSUS1","MRGRSUS1","MPCRS_NUS_1","MNFRSUS1","MOTRSUS1","MNSRSUS1","MLURSUS1","MWXRSUS1","MCKRSUS1","MAPRSUS1","MMSRSUS1"