Powered by Deep Web Technologies
Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Jefferson Lab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

News item slideshow News item slideshow Final Piece Final Piece Workers install a section of the pre-shower calorimeter, or PCAL, which is part of the CLAS12 detector package in Jefferson Lab's Experimental Hall B. The new equipment is being installed for the 12 GeV Upgrade project. <<< Installation of PCAL in Hall B. Upgraded Detector Upgraded Detector Work on the 12 GeV Upgrade project continues at Jefferson Lab. Shown here is the new CLAS12 detector in Experimental Hall B after the recent installation of the pre-shower calorimeter, or PCAL. <<< Installation work on Hall B detector. Neutron Stopper Neutron Stopper Jefferson Lab engineer Paul Brindza holds up samples of a new system of concrete products designed to stop neutrons and other particles from harming sensitive scientific computers and detectors. The new system was

2

Jasper Wind | Open Energy Information  

Open Energy Info (EERE)

Jasper Wind Jasper Wind Place Athens, Greece Sector Solar, Wind energy Product Athens-based wind and solar project developer. Coordinates 37.97615°, 23.736415° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.97615,"lon":23.736415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Jefferson Lab Technology Transfer  

For more information about Intellectual Property and Inventions, please see the Jefferson Lab Employee Handbook, the Jefferson Lab Administrative ...

4

Jasper County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Jasper County Rural E M C Jump to: navigation, search Name Jasper County Rural E M C Place Indiana Utility Id 9665 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes...

5

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book The Jefferson Lab Coloring Book, Quarks - More Than Meets the Eye, was written to help...

6

Jefferson Lab Treasure Hunt  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab Treasure Hunt Students tour Jefferson Lab's site while searching for answers to challenging questions. Teacher Overview Download this Activity Lab Pages Questions...

7

Jefferson Lab Contract to be Awarded to Jefferson Science Associates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science...

8

Jasper, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jasper, Minnesota: Energy Resources Jasper, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8499711°, -96.3986493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8499711,"lon":-96.3986493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

10

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

11

Jefferson Lab Technology Transfer  

Tool for Breast Cancer Research - Reducing the need for Biopsy. ... Jefferson Lab is a Department of Energy national laboratory for nuclear physics re ...

12

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

13

Jasper Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Place Harrison, New York Zip 10528 Sector Renewable Energy, Solar, Wind energy Product String representation "Jasper Energy L ... greenpower”)." is too long. Coordinates 35.10917°, -85.143009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.10917,"lon":-85.143009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

A Community Responds to Collective Trauma: An Ecological Analysis of the James Byrd Murder in Jasper, Texas  

E-Print Network (OSTI)

and disasters. College Station, Texas: Hazard Reduction andData.com. (2004). Jasper, Texas. Retrieved March 20, 2004Byrd Murder in Jasper, Texas Thomas Wicke Roxane Cohen

Wicke, Thomas; Silver, Roxane Cohen

2009-01-01T23:59:59.000Z

15

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book Use the multi-colored crayon on the left-hand side of the screen to select a color....

16

Jefferson Lab's Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Currently, the date for Jefferson Lab's next Open House hasn't been announced. If you would like to be notified when a date has been set, you can subscribe to the Science Education...

17

The BEAMS Program at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Thomas Jefferson National Accelerator Facility and Newport News City Public Schools The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is a U.S....

18

Jasper-Newton Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Jasper-Newton Elec Coop, Inc Jasper-Newton Elec Coop, Inc Jump to: navigation, search Name Jasper-Newton Elec Coop, Inc Place Texas Utility Id 9668 Utility Location Yes Ownership C NERC Location SERC NERC ERCOT Yes NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Churches and Schools Service Commercial Farm and Home Services Residential General Service Commercial Large Power Service Industrial Security Lighting-100 W high pressure sodium Lighting Security Lighting-150 W high pressure sodium Lighting Security Lighting-400 W high pressure sodium Lighting

19

City of Jasper, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Jasper Jasper Place Indiana Utility Id 9667 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Demand Commercial General Service Demand 2 Commercial General Service Small Commercial Municipal Street Light (100 W HPS) Lighting Municipal Street Light (1000 W HPS) Lighting Municipal Street Light (1000 W Mercury Vapor) Lighting Municipal Street Light (150 W HPS) Lighting Municipal Street Light (175 W Mercury Vapor) Lighting Municipal Street Light (250 W HPS) Lighting

20

Jasper County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jasper County, Georgia: Energy Resources Jasper County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3246924°, -83.7199136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3246924,"lon":-83.7199136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

regional and national education community. Jefferson Lab's long-term commitment to science education continues to focus on increasing the number and quality of undergraduate...

22

Undergraduate Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

23

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

24

SF6 Emissions Management at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

SF 6 Emissions Management at Jefferson Lab Kevin Jordan PE Jefferson Lab November 16, 2010 Emissions Management Overview * SF 6 Gas Usage * SF 6 Transfer System * Remote Cesiator *...

25

Jefferson Lab Treasure Hunt - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

a chance to see more of Jefferson Lab. Objectives: In this activity students will: - tour Jefferson Lab - collect information to answer questions in the BEAMS Lab Book Notes: -...

26

Neutron Transversity at Jefferson Lab  

SciTech Connect

Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

2005-09-07T23:59:59.000Z

27

2013 Annual Planning Summary for the Thomas Jefferson Site Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and...

28

City of Jasper, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Texas Texas Utility Id 9664 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule 140-Residential service Residential Schedule 141-Commercial electrical service Commercial Schedule 142-Large light and power Commercial Schedule 143-Security lights Lighting Schedule 145-Industrial service Industrial Average Rates Residential: $0.1110/kWh Commercial: $0.1240/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Jasper,_Texas_(Utility_Company)&oldid=409778

29

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

30

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

31

Teacher Night at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Night at Jefferson Lab Night at Jefferson Lab Region II Physical Science Teacher Night for Elementary and Middle School Teachers April 2nd, 2014 6:30 pm - 8:00 pm Come for the FUN! You won't want to miss the annual Virginia Region II Teacher Night at Jefferson Lab! This year's focus is on physical science activities for upper elementary and middle school teachers. Format for the Evening Think of a Science Fair with enthusiactic students lined up at tables waiting to show you their projects... Teacher Night will be similar, except enthusiactic teachers will be waiting to share one of their favorite classroom activities with YOU! All teachers will have handouts and many will have starter supplies to accompany the handouts - that's right, FREE MATERIALS! Activity Topics Friction - Electrolysis - Water Cycle - Engineering Design Challenge -

32

What's used to steer Jefferson Lab's...  

NLE Websites -- All DOE Office Websites (Extended Search)

What's used to steer Jefferson Lab's electron beam? Although it may not look like it at first, the Jefferson Lab accelerator really works much like your TV set. Electrons are...

33

Osage Orange Mulch  

NLE Websites -- All DOE Office Websites (Extended Search)

Osage Orange Mulch Name: David Location: NA Country: NA Date: NA Question: Can wood chips from hedge trees (osage orange) be used as mulch in the garden? I know that the wood...

34

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National  

National Nuclear Security Administration (NNSA)

Conducts First Plutonium Shot Using the JASPER Gas Gun | National Conducts First Plutonium Shot Using the JASPER Gas Gun | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > LLNL Conducts First Plutonium Shot Using the ... LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun July 08, 2003 Nevada Test Site, NV

35

Independent Oversight Inspection, Thomas Jefferson National Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson National Thomas Jefferson National Accelerator Facility - August 2008 Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Thomas Jefferson Site Office (TJSO) and the Thomas Jefferson National Accelerator Facility (TJNAF) during May through July 2008. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. In coordination with TJSO, TJNAF has taken a number of actions to develop a

36

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson Lab Contract to be Awarded to Jefferson Science Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory April 12, 2006 - 10:17am Addthis OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility. The contract, which has a potential value of $2 billion, becomes effective on April 17, 2006. "We have selected the team that we believe is best equipped to lead this important Office of Science laboratory for the department, and we look

37

High School Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

38

Thomas Jefferson National Accelerator Facility Technologies ...  

Jefferson Lab also conducts a variety of research using its Free-Electron Laser, which is based on the same electron-accelerating technology used in CEBAF.

39

Electroweak Physics at Jefferson Lab  

SciTech Connect

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

R. D. McKeown

2012-03-01T23:59:59.000Z

40

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson Vascular...

42

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

43

JeffersonSTM09.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 12/2008 - Graciosa Island, Azores 4/2009 *BRW/NSA - Barrow Alaska *AMF2 ? Darwin? - What instruments support the science? AMF deployment in Shouxian China, HFE HFE was located at a rural, agricultural area ~120 km from Hefei, ~200 km from Nanking

44

Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana DOE/EA 1517  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

517 517 ENVIRONMENTAL ASSESSMENT Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana April 2005 U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 1 2 3 4 5 6 7 Environmental Assessment Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ...................................................................................................IV GLOSSARY ................................................................................................................................................ V UNITS OF MEASUREMENT ................................................................................................................. VII

45

Math and Science Activities from Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAMS is a program in which classes of 6th, 7th and 8th grade students are exposed to the scientific environment of Jefferson Lab. For five consecutive days during school hours, classes of 6th grade students and their teachers participate in science and math activities conducted with Jefferson Lab staff. The students return to the lab in the 7th and 8th grades for additional activities which reinforce their 6th grade experience. Feel free to copy and alter these activities for use in your class. 6th Grade Background Materials Vocabulary List What is Matter? What is Jefferson Lab? Careers at Jefferson Lab Periodic Table of Elements Puzzles and Games BEAMS Word Search Element Word Search Geometry Word Search BEAMS Bingo Element Bingo BEAMS Crossword Puzzle BEAMS Cryptograph

46

Jefferson Power Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Jefferson Power Biomass Facility Facility Jefferson Power Sector Biomass Owner Jefferson Power LLC Location Monticello, Florida Coordinates 30.5452022°, -83.8701636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5452022,"lon":-83.8701636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure  

NLE Websites -- All DOE Office Websites (Extended Search)

JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM JEFFERSON LAB HIGH SCHOOL SUMMER HONORS PROGRAM Application Procedure Dear Student Applicant: To be eligible to participate in the Jefferson Lab High School Summer Honors Program, you must attend a local high school (within 60 miles of Jefferson Lab), be at least 16 years old by the start date of the program, be in good academic standing, and maintain at least a 3.3 grade point average. Students who are selected to participate in the Jefferson Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program. The 2014 Jefferson Lab High School Summer Honors Program begins on June 23, 2014 and concludes on August 1, 2014. To apply to the Jefferson Lab High School Summer Honors Program, follow the

48

Jefferson Lab Guided Tour - What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is an accelerator? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

49

Jefferson Lab Guided Tour - How does the accelerator work?  

NLE Websites -- All DOE Office Websites (Extended Search)

How does the accelerator work? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

50

2012 Annual Planning Summary for Thomas Jefferson Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

51

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

52

Nucleon spin structure at Jefferson Lab  

Science Conference Proceedings (OSTI)

In the past decade an extensive experimental program to measure the spin structure of the nucleon has been carried out in the three halls at Jefferson Lab. Using a longitudinally polarized beam scattering off longitudinally or transversely polarized 3 He NH 3 and ND 3 targets

The CLAS collaboration

2011-01-01T23:59:59.000Z

53

Baryon spectroscopy with CLAS at Jefferson Lab  

Science Conference Proceedings (OSTI)

A substantial part of the experimental efforts at the experimental Hall-B of Jefferson Laboratory is dedicated to this studies of light baryon spectroscopy. In this report a general overview of the experimental capabilities in the Experimental Hall-B will be presented together with preliminary results of recent double polarization measurements and finally overall status of the program.

Eugene Pasyuk, CLAS Collaboration

2012-04-01T23:59:59.000Z

54

Petabyte Class Storage at Jefferson Lab (CEBAF)  

E-Print Network (OSTI)

By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line.

Rita Chambers Mark; Mark Davis

1996-01-01T23:59:59.000Z

55

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

56

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

R. D. McKeown

2013-03-26T23:59:59.000Z

57

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, R D

2013-01-01T23:59:59.000Z

58

2011 NNSS JASPER ORR Activity Report _July 18-28, 2011_ final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-07-28 NNSS-2011-07-28 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Nevada National Security Site Operational Readiness Review of the Joint Actinide Shock Physics Experimental Research Facility Dates of Activity : 07/18/2011 - 07/28/2011 Report Preparer: William Macon Activity Description/Purpose: At the request of the National Nuclear Security Administration (NNSA) Service Center, the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) site lead for the Nevada National Security Site (NNSS) participated in the NNSA Operational Readiness Review (ORR) of the Joint Actinide Shock Physics Experimental Research (JASPER) Facility Restart conducted on July 18-27, 2011.

59

The Future of Mr. Jefferson's Laboratory (nee CEBAF)  

E-Print Network (OSTI)

We present one viewpoint plus some general information on the plans for energy upgrades and physics research at the Jefferson Laboratory.

Carl E. Carlson

1997-01-27T23:59:59.000Z

60

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Jefferson Lab Science Videos on YouTube  

DOE Data Explorer (OSTI)

Jefferson Lab, a DOE physics research lab located in Virgina, has approximately 100 lab-produced videos on YouTube. These include selected presentations from the Jefferson Lab Science Series, short clips of simple experiments for educational purposes, clips from Frostbite Theater, and clips from the Physics Out Loud series.

62

Jefferson Lab Science Series - Current Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Science Series Schedule Current Science Series Schedule Lectures are free and open to students and adults with an interest in science. All lectures begin at 7:00 pm in CEBAF Center Auditorium [Download a Map] [Locate Jefferson Lab on Google Maps] [Display a QR Code for Scanning] and last for about an hour. Seating in the CEBAF Center Auditorium and overflow area is limited to about 300 people. Seating is on a first come, first served basis. Unfortunately, people arriving once capacity has been reached will be turned away. A live video stream will be available for those not able to attend in person. Lectures will be added to the video archive for on-demand viewing upon approval from the presenter. NOTICE: For security purposes, everyone over 16 is asked to carry a photo I.D. Security guards may inspect vehicles, book bags and purses.

63

Jefferson Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Jefferson Renewable Energy Place Warwick, Rhode Island Zip 2886 Product Rhode Island-based waste-to-energy and biofuel project developer. Coordinates 41.698591°, -71.461686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698591,"lon":-71.461686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

The Jefferson Lab Frozen Spin Target  

SciTech Connect

A frozen spin polarized target, constructed at Jefferson Lab for use inside a large acceptance spectrometer, is described. The target has been utilized for photoproduction measurements with polarized tagged photons of both longitudinal and circular polarization. Protons in TEMPO-doped butanol were dynamically polarized to approximately 90% outside the spectrometer at 5 T and 200-300 mK. Photoproduction data were acquired with the target inside the spectrometer at a frozen-spin temperature of approximately 30 mK with the polarization maintained by a thin, superconducting coil installed inside the target cryostat. A 0.56 T solenoid was used for longitudinal target polarization and a 0.50 T dipole for transverse polarization. Spin relaxation times as high as 4000 hours were observed. We also report polarization results for deuterated propanediol doped with the trityl radical OX063.

Christopher Keith, James Brock, Christopher Carlin, Sara Comer, David Kashy, Josephine McAndrew, David Meekins, Eugene Pasyuk, Joshua Pierce, Mikell Seely

2012-08-01T23:59:59.000Z

65

JEFFERSON LAB 12 GEV CEBAF UPGRADE  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

2010-04-09T23:59:59.000Z

66

The Jefferson Lab High Power Light Source  

Science Conference Proceedings (OSTI)

Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

James R. Boyce

2006-01-01T23:59:59.000Z

67

Frostbite Theater - Just for Fun - Jefferson Lab Open House (2010)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Viewer Requests! Nitrogen Viewer Requests! Previous Video (Liquid Nitrogen Viewer Requests!) Frostbite Theater Main Index Next Video (Season One Bloopers) Season One Bloopers Jefferson Lab Open House (2010) Highlights from Jefferson Lab's 2010 Open House including portions of our electron accelerator, a peek inside an end station, and a visit to the Free Electron Laser. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And we're here at Jefferson Lab's Open House! If you're interested in science, this is the place to be! Steve: Thousands of people have come to Jefferson Lab today to learn more about science, what we do here and to just have fun! Joanna: So what are some of the things that people can do when they're

68

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

69

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

70

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

71

Orange and Rockland Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 2012 0 2012 Orange and Rockland Case Study 1 Voltage Control Device A "Model-Centric" Approach to Smarter Electric Distribution Systems Orange and Rockland Utilities (ORU), is an investor-owned utility and a subsidiary of Consolidated Edison Incorporated (Con Edison), and is located in suburban New York, New Jersey, and Pennsylvania, west of New York City. ORU is a key participant in Con Edison's $272 million Smart Grid Investment Grant (SGIG) project to modernize electric distribution systems. With $136 million in Recovery Act funding from the U.S. Department of Energy, Con Edison and ORU expect to install smart grid technologies that provide: (1) lower frequency and duration of outages, (2)

72

Leavenworth-Jefferson E C, Inc | Open Energy Information  

Open Energy Info (EERE)

Leavenworth-Jefferson E C, Inc Leavenworth-Jefferson E C, Inc Jump to: navigation, search Name Leavenworth-Jefferson E C, Inc Place Kansas Utility Id 10801 Utility Location Yes Ownership C NERC Location SPP Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Area Lighting Service (HPS 100 W) Lighting Outdoor Area Lighting Service (HPS 250 W) Lighting Outdoor Area Lighting Service (HPS 400 W) Lighting Outdoor Area Lighting Service (MH 100 W) Lighting Outdoor Area Lighting Service (MH 250 W) Lighting Outdoor Area Lighting Service (MH 400 W) Lighting Outdoor Area Lighting Service (MV 175 W) Lighting

73

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

74

The 12 GeV Energy Upgrade at Jefferson Laboratory  

SciTech Connect

Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

Pilat, Fulvia C. [JLAB

2012-09-01T23:59:59.000Z

75

An Overview of Dark Matter Experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Dark Matter research at Jefferson Lab started in 2006 with the LIght Pseudoscalar and Scalar Search (LIPSS) collaboration to check the validity of results reported by the PVLAS collaboration. In the intervening years interest in dark matter laboratory experiments has grown at Jefferson Lab. Current research underway or in planning stages probe various mass regions covering 14 orders of magnitude: from 10{sup -6} eV to 100 MeV. This presentation will be an overview of our dark matter efforts, three of which focus on the hypothesized A' gauge boson.

James Boyce

2012-09-01T23:59:59.000Z

76

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

77

VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - In the Matter of Jefferson City Oil Co., Inc. 6 - In the Matter of Jefferson City Oil Co., Inc. VEE-0086 - In the Matter of Jefferson City Oil Co., Inc. On April 18, 2002, Jefferson City Oil Co., Inc. (Jefferson City Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). Jefferson City Oil requests that it be relieved of the requirement to prepare and file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782(b)). As explained below, we have concluded that Jefferson City Oil has not demonstrated that it is entitled to exception relief. vee0086.pdf More Documents & Publications VEE-0074 - In the Matter of H.A. Mapes, Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc.

78

Thomas Jefferson Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Thomas Jefferson Site Office (TJSO) TJSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Thomas Jefferson Site Office Pictured Right: Thomas Jefferson Site Office Staff TJSO Staff Photo 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Thomas Jefferson Site Office (TJSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Thomas Jefferson National Accelerator Facility (TJNAF) in Newport News, Virginia. TJNAF is one of ten Office of Science Laboratories and is a single program

79

Strategic Petroleum Reserve Texoma Complex distribution enhancements: Orange and Jefferson Counties, Texas; Calcasieu and Cameron Parishes, Louisiana: Environmental assessment  

Science Conference Proceedings (OSTI)

The Department of Energy is proposing to construct and operate two buried crude oil pipelines to provide for unconstrained drawdown of three Strategic Petroleum Reserve (SPR) crude oil storage facilities of the Texoma Complex located in portions of Louisiana and Texas. The project is required to provide a crude oil distribution system capable of meeting a planned increase in the Texoma Complex drawdown rate to 2,340,000 barrels-per-day (bpd). The EA addresses a no-action alternative and alternative pipeline routes. Potential impacts from pipeline construction concern disturbances to prime farmlands, floodplains and wetlands. A very small acreage of prime farmlands is involved; the total is not considered significant. The Floodplain/Wetlands Assessment states that the effects of pipeline construction and operation on floodplains and associated wetlands will be temporary and localized. DOE determined in a Floodplain Statement of Findings that for the project as a whole there is no practicable alternative to locating in a floodplain, and that the proposal conforms to appropriate state and local floodplain protection standards. Potential impacts from pipeline operation are primarily concerned with accidental releases of crude oil to the environment. Because the pipelines will be buried, the probability of a major pipeline break releasing large quantities of crude oil is small and pipeline testing and the development of an oil spill contingency plan will reduce the seriousness of any oil spill. The proposed pipelines are expected to involve no other environmental concerns. It is the determination of DOE that the proposed Texoma Complex Distribution Enhancements do not constitute a major federal action significantly affecting the quality of the human environment; therefore an environmental impact statement will not be prepared. 27 refs., 3 tabs.

Not Available

1987-03-01T23:59:59.000Z

80

Undergraduate Research at Jefferson Lab - Analysis of Contamination Levels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compton Scattering Chamber Compton Scattering Chamber Previous Project (Compton Scattering Chamber) Undergraduate Research Main Index Next Project (Non-linear Multidimensional Optimization) Non-linear Multidimensional Optimization Analysis of Contamination Levels of Jefferson Laboratory SRF Clean Room Facilities during Power Outage Using FE-SEM/EDX Studies of Copper Coupons Student: Kaitlyn M. Fields School: College of William and Mary Mentored By: Ari D. Palczewski and Charles E. Reece Superconducting radiofrequency (SRF) accelerating cavities at Thomas Jefferson National Accelerator Facility support high surface electric and magnetic fields with minimal energy dissipation and resistance. The performance of these cavities can be limited by particulate contamination, which can become a source of enhanced field emission. Clean cavity assembly

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Old Jefferson, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson, Louisiana: Energy Resources Jefferson, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3826922°, -91.0170468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3826922,"lon":-91.0170468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Jefferson West High School Wind Project | Open Energy Information  

Open Energy Info (EERE)

High School Wind Project High School Wind Project Jump to: navigation, search Name Jefferson West High School Wind Project Facility Jefferson West High School Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.193382°, -95.560616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.193382,"lon":-95.560616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

A dynamically polarized hydrogen and deuterium target at Jefferson Lab  

DOE Green Energy (OSTI)

Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH{sub 3} and ND{sub 3}) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed.

Boyce, J.R.; Keith, C.; Mitchell, J.; Seely, M.

1998-07-01T23:59:59.000Z

84

Jefferson County, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jefferson County, Alabama: Energy Resources Jefferson County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.4914122°, -86.9824288° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4914122,"lon":-86.9824288,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Recent Results from Jefferson Lab RSS Spin Physics Program  

Science Conference Proceedings (OSTI)

The spin physics program in Jefferson Labs Hall C concentrates on high precision and high resolution studies of the nucleon spin structure that can be extracted from inclusive polarized scattering experiments. The Resonances Spin Structure RSS experiment has measured nucleon spin structure functions in the resonances region at an intermediate four?momentum transfer Q 2 ?1.3? GeV 2 . The polarized target in Hall C could be polarized longitudinally and transversely

Mahbub Khandaker; the RSS Collaboration

2009-01-01T23:59:59.000Z

86

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

Seonho Choi

2011-10-01T23:59:59.000Z

87

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g{sub 2} and g{sub 1} and spin observable A{sub 2} and A{sub 1} of the proton over Q{sup 2} region from 2.5 to 6.5 GeV{sup 2}/c{sup 2} and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH{sub 3} target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g{sub 2} and g{sub 1}. Physics motivations with the experimental methods will be presented with an overview of the current status of the data analysis.

Choi, Seonho [Department of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

2011-10-21T23:59:59.000Z

88

SBOT VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VIRGINIA VIRGINIA THOMAS JEFFERSON LAB POC Danny Llyod Telephone (757) 269-7121 Email lloyd@jlab.org ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Travel Agencies 561510 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Carpet and Upholstery Cleaning Services 561740 Hazardous Waste Collection 562112 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Highway, Street, and Bridge Construction 237310 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

89

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.

Volker Crede

2011-12-01T23:59:59.000Z

90

The Jefferson Lab 12 GeV Upgrade  

Science Conference Proceedings (OSTI)

A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

R.D. McKeown

2011-10-01T23:59:59.000Z

91

EM Calorimeters for SoLID at Jefferson Lab  

SciTech Connect

Several approved experiments at Jefferson Lab for the 12 GeV era will use the proposed Solenoid Large Intensity Device (SoLID) spectrometer. Two EM calorimeters with a total area of 15 square meters are required for electron identification and electron-pion separation. The challenge is to build calorimeters that can withstand high radiation doses in high magnetic field region and bring photon signals to low field region for readout. Several types of calorimeters were considered and we are favoring Shashlyk type as a result of balancing performance and cost. Our preliminary design and simulation of SoLID EM calorimeters are presented.

Z.W. Zhao, J. Huang, M. Meziane, X. Zheng, P.E. Reimer, D. Armstrong, T. Averett, W. Deconinck

2012-12-01T23:59:59.000Z

92

RF Power Upgrade for CEBAF at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

93

EMC effect for light nuclei: new results from Jefferson Lab  

Science Conference Proceedings (OSTI)

High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region. Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.

Daniel, A. [Dept. of Physics and Astronomy, Ohio University, Athens OH 45701 (United States)

2011-10-24T23:59:59.000Z

94

Optical modeling of the Jefferson Laboratory IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is in the process of building a 1 kW free-electron laser operates at 3 microns. The details of the accelerator driver are given in other papers in these proceedings. The optical cavity consists of a near-concentric resonator with transmissive outcoupling. Though several free-electron lasers have used similar designs, they have not had to confront the high average-power loading present in this laser. It is useful to know the limits of this type of optical cavity design. The optical system of the laser has been modeled using the commercial code GLAD{reg_sign} by using a Beer`s-law region to mimic the FEL interaction. The effects of mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wave-lengths has been estimated. The model developed here allows one to quickly determine whether the mirror substrates and coatings are adequate for operation at a given optical power level once the absorption of the coatings, substrate, and transmission are known. Results of calculations of the maximum power level expected using several different sets of mirrors will be presented. Measurements of the distortion in calcium fluoride from absorption of carbon dioxide laser light are planned to benchmark the simulations. Multimode simulations using the code ELIXER have been carried out to characterize the saturated optical mode quality. The results will be presented.

Benson, S.V.; Davidson, P.S.; Jain, R.; Kloeppel, P.K.; Neil, G.R.; Shinn, M.D.

1997-11-01T23:59:59.000Z

95

Jefferson Davis Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Davis Elec Coop, Inc Davis Elec Coop, Inc Jump to: navigation, search Name Jefferson Davis Elec Coop, Inc Place Louisiana Utility Id 9682 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Farm and Home Service Residential All Electric Farm and Home Service - Seasonal Residential Commercial and Industrial Services Commercial Extra Large Power Service Commercial Farm and Rice Dryers Residential Flood Lighting Service: 1000 watt- 140,000 Lumen High Pressure Sodium Lighting

96

Jefferson Lab Science Series - You Already Know This Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Living and Working in the Freezer Living and Working in the Freezer Previous Video (Living and Working in the Freezer) Science Series Video Archive Next Video (The Origin of the Elements) The Origin of the Elements You Already Know This Physics! Mr. Jack McKisson - Jefferson Lab, Detector and Imaging Group October 9, 2012 From a research path that includes a little bit of rocket science, under sea measurements, radiation detection and measurement, space experimentation and two expeditions to the Antarctic, Mr. McKisson brings a different view of how much physics most people already know from observing the world around them. With a minimal amount of math, attendees will learn a little of the history of physics and may discover that they know more than they thought about what some view as an inscrutable subject

97

Undergraduate Research at Jefferson Lab - Determining Electron Beam Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pretzelosity Distribution Pretzelosity Distribution Previous Project (Pretzelosity Distribution) Undergraduate Research Main Index Next Project (Buffered Chemical Polishing) Buffered Chemical Polishing Determining Electron Beam Energy through Spin Precession Methods Student: Gina Mayonado School: McDaniel College Mentored By: Douglas Higinbotham Nuclear physics experiments at Jefferson Lab require that the beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator be known to 0.01%. The g-2 spin precession of the electrons as they circulate in the machine can be used to determine the beam energy without relying on the absolute calibration of magnets and devices required for other methods. The precision of this approach needed to be fully investigated. Spin precession methods were investigated by writing an Apple application to

98

A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A LIMITED LIABILITY PARTNERSHIP A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW Seventh Floor Washington, DC 20007 (202) 298-1800 Phone (202) 338-2416 Fax MEMORANDUM TO: DOE Office of General Counsel FROM: Doug Smith DATE: August 29, 2013 RE: Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits. The communications occurred at a meeting held at 10:30 a.m. on August 20, 2013, following the close of the comment period on the initial framework document for ceiling fans and light kits. The meeting attendees included:

99

Probing the nucleon structure with SIDIS at Jefferson Lab  

Science Conference Proceedings (OSTI)

In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes have emerged as a powerful tool to probe nucleon structure. Many experiments worldwide are currently trying to pin down various effects related to nucleon structure through Semi-Inclusive Deep-Inelastic Scattering (SIDIS). Azimuthal distributions of final-state particles in semi-inclusive deep inelastic scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the study of Transverse Momentum Dependent parton distribution functions (TMDs) of quarks in the nucleon. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected semi-inclusive data using the CEBAF 6 GeV polarized electron beam on polarized solid NH{sub 3} and ND{sub 3} targets. An overview of these measurements is presented.

Pereira, Sergio Anafalos [INFN-Frascati

2013-01-01T23:59:59.000Z

100

Status of Jefferson Lab's Load Locked Polarized Electron Beam  

DOE Green Energy (OSTI)

A new 100 kV load locked polarized electron gun has been built at Jefferson Lab. The gun is installed in a test stand on a beam line that resembles the first few meters of the CEBAF nuclear physics photoinjector. With this gun, a GaAs photocathode can be loaded from atmosphere, hydrogen cleaned, activated and taken to high voltage in less than 8 hours. The gun is a three chamber design, with all of the moving parts remaining at ground potential during gun operation. Studies of gun performance, photocathode life times, transverse emittance at high bunch charge, helicity correlated effects and beam polarizations from new photocathode samples will all be greatly facilitated by the use of this load locked gun.

M.L. Stutzman; P. Adderley; M. Baylac; J. Clark; A. Day; J. Grames; J. Hansknecht; M. Poelker

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Jefferson Lab 12 GeV CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

Claus Rode

2010-04-01T23:59:59.000Z

102

ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN  

SciTech Connect

Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

2010-05-01T23:59:59.000Z

103

RICH detector at Jefferson Lab, design, performance and physics results  

Science Conference Proceedings (OSTI)

Since 2004 the hadron spectrometer of Hall A at Jefferson Lab is equipped with a proximity focusing RICH. This detector is capable of identify kaon from pion and proton with an angular separation starting from 6 sigma at 2 GeV/c. The RICH design is conceptually similar to the ALICE HMPID RICH; it uses a C6F14 liquid radiator and a 300 nm layer of CsI deposited on the cathode pad plane of an asymmetric MWPC. The RICH has operated for the Hypernuclear Spectroscopy Experiment E94-107, which took data in the last two years. Design details and performance along with first physics results from the hypernuclear experiment are shortly presented.

E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Frantoni; F. Garibaldi; F. Giuliani; M. Gricia; M. Lucentini; M.L. Magliozzi; L. Pierangeli; F. Santavenere; P. Veneroni; G.M. Urciuoli; M. Iodice; G. De Cataldo; R. De Leo; L. Lagamba; S. Marrone; E. Nappi; V. Paticchio; R. Feuerbach; D. Higinbotham; J. Lerose; B. Kross; R. Michaels; Y. Qiang; B. Reitz; J. Segal; B. Wojtsekhowski; C. Zorn; A. Acha; P. Markowitz; C.C. Chang; H. Breuer

2006-04-01T23:59:59.000Z

104

Studies of the Electromagnetic Structure of Mesons at Jefferson Lab  

SciTech Connect

The Jefferson Laboratory Hall B PrimEx Collaboration is using tagged photons to perform an absolute 1.4% level cross section measurement of the photoproduction of neutral pions in the Coulomb field of a nucleus. The absolute cross section for this process is directly proportional to the neutral pion radiative decay width and consequently the uncertainty in the luminosity is directly reflected in the final error bar of the measurement. The PI has taken primary responsibility for the photon flux determination and in this technical report, we outline the steps taken to limit the uncertainty in the tagged photon flux to the 1% level. These include the use of a total absorption counter for absolute flux calibration, a pair spectrometer for online relative flux monitoring, and updated procedures for postbremsstrahlung electron counting. The photon tagging technique has been used routinely in its various forms to provide quasimonochromatic photons for absolute photonuclear cross section measurements. The analysis of such experiments in the context of bremsstrahlung photon tagging was summarized by Owens in 1990. Since then, a number of developments have made possible significant improvements in the implementation of this technique. Here, we describe the steps taken by the PrimEx Collaboration in Hall B of Jefferson Laboratory to limit the systematic uncertainty in the absolute photon flux to 1%. They include an absolute flux calibration at low intensity with a total absorption counter, online relative flux monitoring with a pair spectrometer, and the use of multihit time to digital converters for post bremsstrahlung electron counting during production data runs. While this discussion focuses on the analysis techniques utilized by the PrimEx Collaboration which involves a bremsstrahlung based photon tagging system to measure the neutral pion lifetime, the methods described herein readily apply to other types of photon tagging systems.

Dale, Daniel, S.

2012-11-11T23:59:59.000Z

105

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

106

Questions and Answers - Why did it take so long to build Jefferson Lab? Why  

NLE Websites -- All DOE Office Websites (Extended Search)

are the Halls inbio-dome shapes? are the Halls in<br>bio-dome shapes? Previous Question (Why are the Halls in bio-dome shapes?) Questions and Answers Main Index Next Question (What would happen if part of the accelerator were to break?) What would happen if part ofthe accelerator were to break? Why did it take so long to build Jefferson Lab? Why was Jefferson Lab built in Newport News? Newport News was one of several places around the nation that competed for Jefferson Lab. The Southeastern Universities Research Association (SURA) won the contract to build and run Jefferson Lab in Newport News. A couple reasons helped bring the Lab to this area: 1) The city and state governments worked hard with SURA to earn the Department of Energy's approval to bring the Lab here. (Good teamwork means

107

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

108

Jefferson Park : case study of a public housing project in transformation  

E-Print Network (OSTI)

This study focuses on the redevelopment of Jefferson Park, a public housing project in Cambridge, Massachusetts. The work establishes the historical political, social, and physical context in which that redevelopment takes ...

Powers, David Thomas

1984-01-01T23:59:59.000Z

109

Evolution of the Generic Lock System at Jefferson Lab  

SciTech Connect

The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added for accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.

Brian Bevins; Yves Roblin

2003-10-13T23:59:59.000Z

110

The proton form factor ratio results from Jefferson Lab  

Science Conference Proceedings (OSTI)

The ratio of the proton form factors, GE p/GMp, has been measured extensively, from Q2 of 0.5 GeV2 to 8.5 GeV2, at the Jefferson Laboratory, using the polarization transfer method. This ratio is extracted directly from the measured ratio of the transverse and longitudinal polarization components of the recoiling proton in elastic electron-proton scattering. The polarization transfer results are of unprecedented high precision and accuracy, due in large part to the small systematic uncertainties associated with the experimental technique. There is an approved experiment at JLab, GEP(5), to continue the ratio measurements to 12 GeV2. A dedicated experimental setup, the Super Bigbite Spectrometer (SBS), will be built for this purpose. It will be equipped with a focal plane polarimeter to measure the polarization of the recoil protons. The scattered electrons will be detected in an electromagnetic calorimeter. In this presentation, I will review the status of the proton elastic electromagnetic form factors and discuss a number of theoretical approaches to describe nucleon form factors.

Vina Punjabi

2012-09-01T23:59:59.000Z

111

Optical modeling of the Jefferson Lab IR Demo FEL  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (formerly known as CEBAF) has embarked on the construction of a 1 kW free-electron laser operating initially at 3 microns that is designed for laser-material interaction experiments and to explore the feasibility of scaling the system in power and wavelength for industrial and Navy defense applications. The superconducting radio-frequency linac, and single-pass transport which accelerates the beam from injector to wiggler, followed by energy-recovery deceleration to a dump. The electron and optical beam time structure in the design consists of a train of pecosecond pulses at a 37.425 MHz pulse repetition rate. The initial optical configuration is a conventional near-concentric resonator with transmissive outcoupling. Future upgrades of the system will increase the power and shorten the operating wavelength, and utilize a more advanced resonator system capable of scaling to high powers. The optical system of the laser has been mode led using the GLAD code by using a Beer's-law region to mimic the FEL interaction. Effects such as mirror heating have been calculated and compared with analytical treatments. The magnitude of the distorium for several materials and wavelengths has been estimated. The advantages as well as the limitations of this approach are discussed.

G. Neil; S. Benson; Michelle D. Shinn; P. Davidson; P. Kloppel

1997-01-01T23:59:59.000Z

112

Orange and Rockland Utilities (Electric)- Residential Appliance Recycling Program  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

113

Orange and Rockland Utilities (Electric)- Residential Efficiency Program (New York)  

Energy.gov (U.S. Department of Energy (DOE))

Orange and Rockland Utilities provides rebates for residential customers for recycling older, inefficient refrigerators and freezers. All appliances must meet the program requirements listed on the...

114

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.

Xie, Ping (San Jose, CA); Gosnell, Timothy R. (Sante Fe, NM)

1998-01-01T23:59:59.000Z

115

Blue, green, orange, and red upconversion laser  

DOE Patents (OSTI)

A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.

Xie, P.; Gosnell, T.R.

1998-09-08T23:59:59.000Z

116

Charged Pion Photoproduction from Hydrogen and Deuterium at Jefferson Lab  

DOE Green Energy (OSTI)

The {gamma}n {yields} {pi}{sup -}p and {gamma}p {yields} {pi}{sup +}n reactions are essential probes of the transition from meson-nucleon degrees of freedom to quark-gluon degrees of freedom in exclusive processes. The cross sections of these processes are also, advantageous, for the investigation of oscillatory behavior around the quark counting prediction, since they decrease relatively slower with energy compared with other photon-induced processes. Moreover, these photoreactions in nuclei can probe the QCD nuclear filtering and color transparency effects. In this talk, I discuss the preliminary results on the {gamma}p {yields} {pi}{sup +}n and {gamma}n {yields} {pi}{sup -}p processes at a center-of-mass angle of 90{sup o} from Jefferson Lab experiment E94-104. I also discuss a new experiment in which singles {gamma}p {yields} {pi}{sup +}n measurement from hydrogen, and coincidence {gamma}n {yields} {pi}{sup -}p measurements at the quasifree kinematics from deuterium and {sup 12}C for photon energies between 2.25 GeV to 5.8 GeV in fine steps at a center-of-mass angle of 90{sup o} are planned. The proposed measurement will allow a detailed investigation of the oscillatory scaling behavior in photopion production processes and the study of the nuclear dependence of rather mysterious oscillations with energy that previous experiments have indicated. The various nuclear and perturbative QCD approaches, ranging from Glauber theory, to quark-counting, to Sudakov-corrected independent scattering, make dramatically different predictions for the experimental outcomes.

Haiyan Gao

2003-02-01T23:59:59.000Z

117

Orange County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange County REMC - Energy Efficient Equipment Rebate Program Orange County REMC - Energy Efficient Equipment Rebate Program Orange County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Electric Water Heaters: $25 - $150 Hybrid Heat Pump Water Heater: $300 - $400 Central Air Conditioning: $100 - $200 Air-Source Heat Pumps: $200 - $800 Geothermal Heat Pumps: $1,000 ETS Systems: varies CFL bulbs: see program web site Provider Orange County REMC Orange County REMC offers incentives for members to improve the energy

118

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Thomas Jefferson Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made. Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link

119

Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science  

Office of Science (SC) Website

Thomas Jefferson Site Office CX Determinations Thomas Jefferson Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Thomas Jefferson Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page As of October 31, 2010, there have been no CX determinations made.

120

Questions and Answers - What did Thomas Jefferson do as a scientist?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who invented magnets? Who invented magnets? Previous Question (Who invented magnets?) Questions and Answers Main Index Next Question (Why does the U.S. use Fahrenheit instead of Celsius?) Why does the U.S. useFahrenheit instead of Celsius? What did Thomas Jefferson do as a scientist? It's true that Thomas Jefferson contributed some new knowledge directly to science and technology. But his main scientific contribution was as a statesman of science. For half a century in public office and in private life, he led the growth of American optimism about science, technology, and the future. Jefferson wished he could be a scientist all the time. When he was leaving the presidency in early 1809, he wrote, "Nature intended me for the tranquil pursuits of science, by rendering them my supreme delight." In

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

VEE-0091 - In the Matter of Jefferson Smurfit Corp. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of Jefferson Smurfit Corp. 1 - In the Matter of Jefferson Smurfit Corp. VEE-0091 - In the Matter of Jefferson Smurfit Corp. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants incorporated an Application for Stay to prevent release of some of the

122

SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons  

Science Conference Proceedings (OSTI)

QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

Prokudin, Alexey [JLAB

2013-11-01T23:59:59.000Z

123

Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab  

Science Conference Proceedings (OSTI)

Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

2012-07-01T23:59:59.000Z

124

DOE/EA-1517: Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana (April 2005)  

DOE Green Energy (OSTI)

Based on action by the U.S. Congress, the U.S. Department of Energy (DOE) has funding available to support a proposal by the Iroquois Bio-energy Company (IBEC), an Indiana limited liability company, to construct a fuel ethanol plant in Jasper County, Indiana (the proposed plant). Congress has acknowledged the merit of this project by providing specific funding through DOE. Consequently, DOE proposes to provide partial funding to IBEC to subsidize the design and construction of the proposed plant (the Proposed Action). In accordance with DOE and National Environmental Policy Act (NEPA) implementing regulations, DOE is required to evaluate the potential environmental impacts of DOE facilities, operations, and related funding decisions. The proposal to use Federal funds to support the project requires DOE to address NEPA requirements and related environmental documentation and permitting requirements. In compliance with NEPA (42 U.S.C. {section} 4321 et seq.) and DOE's NEPA implementing regulations (10 CFR section 1021.330) and procedures, this environmental assessment (EA) examines the potential environmental impacts of DOE's Proposed Action and a No Action Alternative.

N /A

2005-04-29T23:59:59.000Z

125

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

126

Cornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting  

E-Print Network (OSTI)

,000 square foot building. The building was formerly a manufacturing plant for air freshenersCornell Cooperative Extension of Jefferson County Saving $6,000 per Year on Lighting Energy comfort and client experience throughout the building · More money to spend on other things Project Cost

Keinan, Alon

127

Orange & Rockland Utils Inc | Open Energy Information  

Open Energy Info (EERE)

Orange & Rockland Utils Inc Orange & Rockland Utils Inc (Redirected from Orange & Rockland) Jump to: navigation, search Name Orange & Rockland Utils Inc Place New York Utility Id 14154 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SC1 Residential (Multiple Bills, Full Service) Residential SC1 Residential (Multiple Bills, Retail Service) SC1 Residential (Single Bill, Retail Service) SC1 Residential - Residential SC15 Buyback Service SC15 Buyback Service SC16 Flood Lighting Sodium Vapor Overhead and Underground 250w (Customer

128

Orange County - Wind Permitting Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards < Back Eligibility Agricultural Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider OC Planning In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non-urbanized areas (as defined in Government Code Section 65944(d)(2)) within the unincorporated territory. Permitting standards are for systems of 50 kW or less per customer site, for which the energy is primarily for on-site consumption. Height: For systems 45 feet tall or less, a use permit must be approved by

129

OPERATION AND COMMISSIONING OF THE JEFFERSON LAB UV FEL USING AN SRF DRIVER ERL  

Science Conference Proceedings (OSTI)

We describe the operation and commissioning of the Jefferson Lab UV FEL using a CW SRF ERL driver. Based on the same 135 MeV linear accelerator as the Jefferson Lab 10 kW IR Upgrade FEL, the UV driver ERL uses a bypass geometry to provide transverse phase space control, bunch length compression, and nonlinear aberration compensation necessitating a unique set of commissioning and operational procedures. Additionally, a novel technique to initiate lasing is described. To meet these constraints and accommodate a challenging installation schedule, we adopted a staged commissioning plan with alternating installation and operation periods. This report addresses these issues and presents operational results from on-going beam operations.

R. Legg; S. Benson; G. Biallas; K. Blackburn; J. Boyce; D. Bullard; J. Coleman; C. Dickover; D. Douglas; F. Ellingsworth; P. Evtushenko; F. Hannon; C. Hernandez-Garcia; C. Gould; J. Gubeli; D. Hardy; K. Jordan; M. Klopf; J. Kortze; M. Marchlik; W. Moore; G. Neil; T. Powers; D. Sexton; Michelle D. Shinn; C. Tennant; R. Walker; G. Wilson

2011-03-01T23:59:59.000Z

130

ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI AT JEFFERSON LAB  

Science Conference Proceedings (OSTI)

DTlite is a Tcl/Tk script that is used as the primary interface for making entries into Jefferson Lab's electronic logbooks. DTlite was originally written and implemented by a user to simplify submission of entries into Jefferson Lab?s electronic logbook, but has subsequently been maintained and developed by the controls software group. The use of a separate, script-based tool for logbook submissions (as opposed to a web-based submission tool bundled with the logbook database/interface) provides many advantages to the users, as well as creating many challenges to the programmers and maintainers of the electronic logbook system. The paper describes the advantages and challenges of this design model and how they have affected the development lifecycle of the electronic logbook system.

T. McGuckin

2006-10-24T23:59:59.000Z

131

Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Electric) - Commercial Efficiency Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Prescriptive Rebates: 50% of cost Program Info Funding Source System Benefits Charge Start Date 4/1/2010 State New York Program Type Utility Rebate Program Rebate Amount Small Business Lighten Up Energy Savings Evaluation and CFLs: Free A/C A/C > 65 kBTU/h: $35/ton (11.5 EER); $55 (12 EER) Heat Pumps 14 SEER or 11.5 EER: $50-$65/ton

132

Hadronic Multi-Particle Final State Measurements with CLAS at Jefferson Lab  

E-Print Network (OSTI)

Precision measurements in the neutrino sector are becoming increasingly feasible due to the development of relatively high-rate experimental capabilities. These important developments command renewed attention to the systematic corrections needed to interpret the data. Hadronic multi-particle final state measurements made using CLAS at Jefferson Lab, together with a broad theoretical effort that links electro-nucleus and neutrino-nucleus data, will address this problem, and will elucidate long-standing problems in intermediate energy nuclear physics. This new work will ultimately enable precision determinations of fundamental quantities such as the neutrino mixing matrix elements in detailed studies of neutrino oscillations.

W. K. Brooks

2003-11-04T23:59:59.000Z

133

The GlueX experiment: Search for gluonic excitations via photoproduction at Jefferson Lab  

Science Conference Proceedings (OSTI)

Studies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as exotics, hybrids, multi-quarks, and glueballs. First discussion of the status of exotic meson searches is given followed by an overview of the progress at Jefferson Lab to double the energy of the machine to 12 GeV, which will allow us to access photoproduction of mesons in search for gluonic excited states.

Eugenio, Paul [Florida State U.

2013-07-01T23:59:59.000Z

134

The study of the elementary photo- and electro-production of kaons at Jefferson Lab  

DOE Green Energy (OSTI)

The subject of electromagnetic production of strangeness, covers an important part of the planned CEBAF experimental program at Jefferson Lab. In this review we will mainly focus on those experiments aiming to investigate the elementary mechanism of the associated production of kaon--hyperon pairs, on hydrogen target, induced by electron and by real photon beams. Complementary experiments, proposed for all the three experimental halls, allow to access a wide kinematical region where different theoretical approaches can be used for the interpretation of the (upcoming) data.

M. Iodice; E. Cisbani; S. Frullani; F. Garibaldi; G.M. Urciuoli; R. De Leo; R. Perrino; M. Sotona

1996-10-01T23:59:59.000Z

135

Characteristics and fabrication of a 499 MHz superconducting deflecting cavity for the Jefferson Lab 12 geV Upgrade  

Science Conference Proceedings (OSTI)

A 499 MHz parallel bar superconducting deflecting cavity has been designed and optimized for a possible implementation at the Jefferson Lab. Previously the mechanical analysis, mainly stress, was performed. Since then pressure sensitivity was studied further and the cavity parts were fabricated. The prototype cavity is not completed due to the renovation at Jefferson Lab which resulted in the temporary shutdown of the electron beam welding facility. This paper will present the analysis results and facts encountered during fabrication. The unique geometry of the cavity and its required mechanical strength present interesting manufacturing challenges.

HyeKyoung Park, S.U. De Silva, J.R. Delayen

2012-07-01T23:59:59.000Z

136

Thomas Jefferson  

NLE Websites -- All DOE Office Websites (Extended Search)

2 inches, with a freckled face, rather angular features, hazel-gray eyes, and thick sandy- red hair of silky texture. Although a bit awkward, he had an unusually intelligent...

137

City of Orange City, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Orange City Orange City Place Iowa Utility Id 14159 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Industrial Rate Industrial Residential Rate Residential Security Lighting 150 W Lighting Security Lighting 175W Lighting Security Lighting 400 W Lighting Average Rates Residential: $0.0858/kWh Commercial: $0.0863/kWh Industrial: $0.0735/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

138

South Orange, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orange, New Jersey: Energy Resources Orange, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7489897°, -74.2612583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7489897,"lon":-74.2612583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Baryon Resonances in the Double Pion Channel at Jefferson Lab (CEBAF): Experimental and Physical Analysis Status and Perspectives  

E-Print Network (OSTI)

Decay of light quark excited baryons in the double pion channel is discussed, as a particular way of investigating poorly know baryon resonances and searching for "missing states" predicted by quark models. A possible approach to the data analysis is discussed and some preliminary data from the CLAS collaboration at Jefferson Laboratory are presented.

Marco Ripani

1999-02-18T23:59:59.000Z

140

High School Research at Jefferson Lab - The Setup and Monitoring of a  

NLE Websites -- All DOE Office Websites (Extended Search)

12 GeV Safety Systems 12 GeV Safety Systems Previous Project (12 GeV Safety Systems) High School Research Main Index Next Project (Computational Physics) Computational Physics The Setup and Monitoring of a Honeypot at Jefferson Lab A honeypot is software that emulates an operating system and therefore can be used in many projects that should not be tested on a computer that could lose data. For my project it was put onto the network unprotected to see what hackers would do to it. This way we can research what the new or common methods of hacking are. Also, the honeypot does not install any of the malicious software, yet it saves a copy for further analysis. This allows Systems Security to see what bug the program exploits and the information found gives them the ability to fix the issue before hackers

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF  

Science Conference Proceedings (OSTI)

The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

Reece, Charles E.; Reilly, Anthony V.

2012-09-01T23:59:59.000Z

142

Coherent photoproduction of pi+ from He-3 with CLAS at Jefferson Laboratory  

Science Conference Proceedings (OSTI)

We have measured the differential cross section for the {gamma}{sup 3}He {yields} t{pi}{sup +} reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.5 to 1.55 GeV were incident on a cryogenic liquid {sup 3}He target. The differential cross sections for the {gamma}{sup 3}He {yields} i{pi}{sup +}t reaction were measured as a function of photon-beam energy and pion-scattering angle Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.

Rakhsha Nasseripour, Barry Berman

2011-09-01T23:59:59.000Z

143

Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade  

Science Conference Proceedings (OSTI)

The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

Jean Delayen, Michael Spata, Haipeng Wang

2009-05-01T23:59:59.000Z

144

Recent Results of Target Single-Spin Asymmetry Experiments at Jefferson Lab  

SciTech Connect

We report recent results from Jefferson Lab Hall A Neutron Transversity experiment (E06-010). Transversely polarized target single-spin asymmetry AUT and beam-target double-spin asymmetry A{sub LT} have been measured in semi-inclusive deep-inelastic scattering (SIDIS) reactions on a polarized neutron ({sup 3}He) target. Collins-type and Sivers-type asymmetries have been extracted from A{sub UT} for charged pion SIDIS productions, which are sensitive to quark transversity and Sivers distributions, correspondingly. Double spin asymmetry A{sub LT} is sensitive to a specific quark transverse momentum dependent parton distribution (TMD), the so-called transverse helicity (g{sub 1T} ) distributions. In addition, target single-spin asymmetries A{sub y} in inclusive electron scattering on a transversely polarized {sup 3}He target in quasi-elastic and deep inelastic kinematics were also measured in Hall A.

Jiang, Xiaodong [Los Alamos National Lab

2013-08-01T23:59:59.000Z

145

Performance and results of the RICH detector for kaon physics in Hall A at Jefferson Lab  

SciTech Connect

A proximity focusing RICH detector has been constructed for the hadron High Resolution Spectrometer (HRS) of Jefferson Lab Experimental Hall-A. This detector is intended to provide excellent hadron identification up to a momentum of 2.5 GeV/c. The RICH uses a 15 mm thick liquid perfluorohexane radiator in proximity focusing geometry to produce Cherenkov photons traversing a 100 mm thick proximity gap filled with pure methane and converted into electrons by a thin film of CsI deposited on the cathode plane of a MWPC. The detector has been successfully employed in the fixed target, high luminosity and high resolution hypernuclear spectroscopy experiment. With its use as a kaon identifier in the 2 GeV/c region, the very large contribution from pions and protons to the hypernuclear spectrum was reduced to a negligible level. The basic parameters and the resulting performance obtained during the experiment are reported in this paper.

M. Iodice; E. Cisbani; S. Colilli; F. Cusanno; S. Frullani; R. Fratoni; F. Garibaldi; M. Gricia; M. Lucentini; L. Pierangeli; F. Santavenere; G.M. Urciuoli; P. Veneroni; G. De Cataldo; R. De Leo; D. Di Bari; L. Lagamba; E. Nappi; S. Marrone; B. Kross; J.J. LeRose; B. Reitz; J. Segal; C. Zorn and H. Breuer

2005-11-01T23:59:59.000Z

146

An overview of the planned Jefferson Lab 12-GeV helium refrigerator upgrade  

SciTech Connect

In February 2006, Jefferson Laboratory in Newport News, VA, received Critical Decision 1 (CD-1) approval to proceed with the engineering and design of the long anticipated upgrade to increase the beam energy of CEBAF, the Continuous Electron Beam Accelerator Facility, from 6 GeV to 12 GeV. This will require the installation of 10 new cryomodules, and additional 2.1-K refrigeration beyond the available 4600 W to handle the increased heat loads. Additionally, a new experimental hall, Hall D, is planned that will require the installation of a small, available refrigerator. This paper will present an overview of the integration of the new proposed refrigeration system into CEBAF, the installation of the available refrigerator for Hall D, and includes planned work scope, current schedule plans and project status.

Arenius, Dana; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Knudsen, Peter; Sidi-Yekhlef, Ahmed; Wright, Mathew

2008-03-01T23:59:59.000Z

147

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory  

SciTech Connect

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

Malek Mazouz

2006-12-08T23:59:59.000Z

148

Preliminary Results from Integrating Compton Photon Polarimetry in Hall A of Jefferson Lab  

SciTech Connect

A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. We discuss the design and commissioning of an upgrade to this apparatus, and report preliminary results for experiments conducted at beam energies from 3.5 to 5.9 GeV and photon rates from 5 to 100 kHz.

D. Parno, M. Friend, F. Benmokhtar, G. Franklin, R. Michaels, S. Nanda, B. Quinn, P. Souder

2011-09-01T23:59:59.000Z

149

New photomultiplier active base for Hall C Jefferson Lab lead tungstate calorimeter  

Science Conference Proceedings (OSTI)

A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about ?1200 crystals of PbWO{sub 4} from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the L/T separated cross sections and their ratio R = ?L/?T in neutral-pion p(e,e??0)p deep exclusive and p(p(e,e??{sup 0})p)X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U.S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented.

Popov, Vladimir E. [JLAB; Mkrtchyan, Hamlet G. [Artem Alikhanian National Laboratory

2012-11-01T23:59:59.000Z

150

Orange County Great Park Welcomes U.S. Department of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT: MARCUS GINNATY 949-724-6574 Orange County Great Park Welcomes U.S. Department of Energy Solar Decathlon 2013 Collegiate Teams * Representatives from 20 collegiate teams...

151

Orang-utan feeding behaviour in Sabangau, Central Kalimantan  

E-Print Network (OSTI)

, Andrea Hing, Alexandra Gray, Okto, Ella, Marie Hammard and many OuTrop volunteers. I would also like to thank Laura DArcy, Laura Graham, Angela viii Benton-Browne, Ben Buckley, Marc Dragiewicz, Carly Waterman and Rosalie Dench. The amazing Ibu... also Muir et al., 1998, 2000; Warren et al., 2001; Brandon-Jones et al., 2004). The different (sub-) species will hybridise in captivity, but survival rates among Sumatra- Borneo hybrids are much lower, and captive Bornean orang-utans, many...

Harrison, Mark Edward

2009-04-14T23:59:59.000Z

152

Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges  

Science Conference Proceedings (OSTI)

The feasibility of reflectance Vis/NIR spectroscopy was investigated for taste characterization of Valencia oranges based on taste attributes including soluble solids content (SSC) and titratable acidity (TA), as well as taste indices including SSC to ... Keywords: BrimA, Nondestructive, Taste, Valencia orange, Vis/NIR spectroscopy

Bahareh Jamshidi; Saeid Minaei; Ezzedin Mohajerani; Hassan Ghassemian

2012-07-01T23:59:59.000Z

153

California Society of Professional Engineers and UCI Host Orange County MATHCOUNTS  

E-Print Network (OSTI)

California Society of Professional Engineers and UCI Host Orange County MATHCOUNTS Competition Juan Capistrano converged at the Student Union of the University of California at Irvine on Saturday was conducted by the Orange County Chapter of the California Society of Professional Engineers (CSPE

Russo, Bernard

154

Design of the Proposed Low Energy Ion Collider Ring at Jefferson Lab  

SciTech Connect

The polarized Medium energy Electron-Ion Collider (MEIC) envisioned at Jefferson Lab will cover a range of center-of-mass energies up to 65 GeV. The present MEIC design could also allow the accommodation of low energy electron-ion collisions (LEIC) for additional science reach. This paper presents the first design of the low energy ion collider ring which is converted from the large ion booster of MEIC. It can reach up to 25 GeV energy for protons and equivalent ion energies of the same magnetic rigidity. An interaction region and an electron cooler designed for MEIC are integrated into the low energy collider ring, in addition to other required new elements including crab cavities and ion spin rotators, for later reuse in MEIC itself. A pair of vertical chicanes which brings the low energy ion beams to the plane of the electron ring and back to the low energy ion ring are also part of the design.

Nissen, Edward W. [JLAB; Lin, Fanglei [JLAB; Morozov, Vasiliy [JLAB; Zhang, Yuhong [JLAB

2013-06-01T23:59:59.000Z

155

Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana  

DOE Green Energy (OSTI)

Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross activity and the concentration of radium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60/sup 0/C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background radioactivity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from fractured siliceous veins by ascending thermal waters, and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

Leonard, R.B.; Janzer, W.J.

1977-08-01T23:59:59.000Z

156

Electroproduction de pions neutres dans le Hall A au Jefferson Laboratory  

SciTech Connect

The past decade has seen a strong evolution of the study of the hadron structure through exclusive processes, allowing to access to a more complete description of this structure. Exclusive processes include DVCS (Deeply Virtual Compton Scattering) as well as hard exclusive meson production. This document is particularly focussed on the latter, and more particularly on exclusive neutral pion production. In this thesis is described the analysis of triple coincidence events H(e, e'{gamma}{gamma})X, which were a consequent by-product of the DVCS experiment which occured during Fall 2004 at Jefferson Lab Hall A, to extract the ep {yields} ep{pi}{sup 0} cross section. This cross section has been measured at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2}. The statistical precision for these measurements is achieved at better than 5 %. The kinematic range allows to study the evolution of the extracted cross section as a function of Q{sup 2} and W. Results are be confronted with Regge inspired calculations and Generalized (GPD) predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering is also discussed.

Eric Fuchey

2010-06-01T23:59:59.000Z

157

Orange & Rockland Utils Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Orange & Rockland Utils Inc Place New York Utility Id 14154 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SC1 Residential (Multiple Bills, Full Service) Residential SC1 Residential (Multiple Bills, Retail Service) SC1 Residential (Single Bill, Retail Service) SC1 Residential - Residential SC15 Buyback Service SC15 Buyback Service SC16 Flood Lighting Sodium Vapor Overhead and Underground 250w (Customer owned, retail service, single bill)

158

Orange County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

County Rural E M C County Rural E M C Jump to: navigation, search Name Orange County Rural E M C Place Indiana Utility Id 14160 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 101- 2012 Rate Schedule for Standard Service Residential Rate 104 and 106- 2012 Rate Schedule for Electric Thermal Storage (ETS) Residential Rate 105- 2012 Rate Schedule for Dual Fuel Service Commercial Rate 177- 2012 Rate Schedule for Security Lighting, Security Lighting- 100 W HPS (45 kwh) Lighting Rate 177- 2012 Rate Schedule for Security Lighting, Security Lighting- 175W

159

Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab  

SciTech Connect

We are at the dawn of a new era in the study of hadronic nuclear physics. The non-Abelian nature of Quantum Chromodynamics (QCD) and the resulting strong coupling at low energies represent a significant challenge to nuclear and particle physicists. The last decade has seen the development of new theoretical and experimental tools to quantitatively study the nature of confinement and the structure of hadrons comprised of light quarks and gluons. Together these will allow both the spectrum and the structure of hadrons to be elucidated in unprecedented detail. Exotic mesons that result from excitation of the gluon field will be explored. Multidimensional images of hadrons with great promise to reveal the dynamics of the key underlying degrees of freedom will be produced. In particular, these multidimensional distributions open a new window on the elusive spin content of the nucleon through observables that are directly related to the orbital angular momenta of quarks and gluons. Moreover, computational techniques in Lattice QCD now promise to provide insightful and quantitative predictions that can be meaningfully confronted with, and elucidated by, forthcoming experimental data. In addition, the development of extremely high intensity, highly polarized and extraordinarily stable beams of electrons provides innovative opportunities for probing (and extending) the Standard Model, both through parity violation studies and searches for new particles. Thus the 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new experimental program with substantial discovery potential to address these and other important topics in nuclear, hadronic and electroweak physics.

Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry

2012-08-01T23:59:59.000Z

160

The Jefferson Lab program: From 6 GeV operations to the 12 GeV upgrade  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Laboratory and the CEBAF accelerator operated for more than a decade, running a comprehensive scientific program that improved our understanding of the strong interaction. The facility is now moving toward an upgrade of the machine, from 6 to 12 GeV; a new experimental hall will be added and the equipment of the three existing halls will be enhanced. In this contribution some selected results from the rich physics program run at JLab, as well as the prospects for the near future, will be presented.

Marco Battaglieri

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility Test Run of C-12(e,e'K{sup +}) Reaction at Thomas Jefferson National Accelerator Facility  

DOE Green Energy (OSTI)

The high quality and high duty factor (100%) electron beam at Jefferson Lab offers an opportunity to broaden their view of hypernuclear physics by studying the (e,e{prime}K{sup +}) reaction with high resolution. The present data represent a feasibility study of such a reaction on a carbon target. The test run was carried out during experiments E91-16 (Electroproduction of Kaons and Light Hypernuclei) and E93-18 (Kaon Electroproduction on p(e,e{prime}K{sup +})Y). These two experiments used liquid deuterium and hydrogen targets, respectively. There exist data on an aluminum target for the background calibration of the liquid targets which are suitable also for a feasibility study of electroproduction of hypernuclei. These data are still under analysis. The goal of this test run is to evaluate issues concerned with the electroproduction of hypernuclei. These issues include: (1) the quasi-free production rate, which had not been measured previously, (2) random coincidence background, (3) keon identification over a possibly large hadronic background, and (4) possible evaluation of the production rate of the bound hypernuclear structures. This test run will supply significant knowledge for running high quality hypernuclear experiments at Jefferson Lab. The spectroscopy of hypernuclei has been studied mainly in two ways: the strangeness-exchange reaction (K{sup -}, {pi}{sup -}), and associated strangeness production ({pi}{sup +}, K{sup +}). The (e,e{prime}K{sup +}) reaction has the advantage of exciting both natural- and unnatural-parity states and the possibility of obtaining good energy resolution. The cross section for the (e,e{prime}K{sup +}) reaction is about a hundred times smaller than for the corresponding hadronic production reactions but it is compensated for by the availability of high intensity and high duty factor electron beams. In order to optimize the production rate, the kinematic setting requires both the scattered electron and kaon to be detected at very forward angles. The test run was not optimized for hypernuclear production, but it serves as an important technical evaluation for future hypernuclear programs at Jefferson Lab. The first high-resolution spectroscopy experiment on p-shell lambda hypernuclei is tentatively scheduled to run in 1999 in Hall C at Jefferson Lab.

Wendy Hinton

1998-08-01T23:59:59.000Z

162

The search for gluonic degrees of freedom in QCD using the GlueX facility at Jefferson Lab  

Science Conference Proceedings (OSTI)

The search for gluonic degrees of freedom in mesons is an experimental challenge. The most promising approach is to look for mesons with exotic quantum numbers that can not be described by quark degrees of freedom only. The GlueX experiment at Jefferson Lab in Hall-D, currently under construction, will search for such hybrid mesons with exotic quantum numbers by scattering a linearly polarized high energetic photon beam off a liquid hydrogen target. An amplitude analysis will be employed to search for such resonances in the data and determine their quantum numbers.

Benedikt Zihlmann

2011-05-01T23:59:59.000Z

163

Light Vector Meson Photoproduction off of H at Jefferson Lab and rho-omega Interference in the Leptonic Decay Channel  

SciTech Connect

Recent studies of light vector meson production in heavy nuclear targets has generated interest in {rho}-{omega} interference in the leptonic e{sup +}e{sup -} decay channel. An experimental study of the elementary process provides valuable input for theoretical models and calculations. In experiment E04-005 (g12), high statistics photoproduction data has been taken in Jefferson Lab's Hall B with the Cebaf Large Acceptance Spectrometer (CLAS). The invariant mass spectrum is fitted with two interfering relativistic Breit-Wigner functions to determine the interference phase. Preliminary analysis indicate a measurable {rho}-{omega} interference.

Chaden Djalali

2011-12-01T23:59:59.000Z

164

The design and performance of the electromagnetic calorimeters in Hall C at Jefferson Lab  

Science Conference Proceedings (OSTI)

The design and performance of the electromagnetic calorimeters in the magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers, construction information and comparisons of simulated and experimental results are presented. The design and simulated performance for a new calorimeter to be used in the new SHMS spectrometer is also presented. We have developed and constructed electromagnetic calorimeters from TF-1 type lead-glass blocks for the HMS and SOS magnetic spectrometers at JLab Hall C. The HMS/SOS calorimeters are of identical design and construction except for their total size. Blocks of dimension 10 cm 10 cm 70 cm are arranged in four planes and stacked 13 and 11 blocks high in the HMS and SOS respectively. The energy resolution of these calorimeters is better than 6%/?E, and pion/electron (?/e) separation of about 100:1 has been achieved in energy range 15 GeV. Good agreement has been observed between the experimental and GEANT4 simulated energy resolutions. The HMS/SOS calorimeters have been used nearly in all Hall C experiments, providing good energy resolution and a high pion suppression factor. No significant deterioration in their performance has been observed in the course of use since 1994. For the SHMS spectrometer, presently under construction, details on the calorimeter design and accompanying GEANT4 simulation efforts are given. A Preshower+Shower design was selected as the most cost-effective among several design choices. The preshower will consist of a layer of 28 modules with TF-1 type lead glass radiators, stacked in two columns. The shower part will consist of 224 modules with F-101 type lead glass radiators, stacked in a fly's eye configuration of 14 columns and 16 rows. The active area of 120 130 cm(2) will encompass the beam envelope at the calorimeter. The anticipated performance of the new calorimeter is simulated over the full momentum range of the SHMS, predicting resolution and yields similar to the HMS calorimeter. Good electron/hadron separation can be achieved by using energy deposition in the Preshower along with total energy deposition in the calorimeter. In this case the PID capability is similar to or better than that attainable with HMS calorimeter, with a pion suppression factor of a few hundreds predicted for 99% electron detection efficiency.

Vardan Tadevosyan, Hamlet Mkrtchyan, Arshak Asaturyan, Arthur Mkrtchyan, Simon Zhamkochyan

2012-12-01T23:59:59.000Z

165

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

166

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue, Newport News VA 23692  

E-Print Network (OSTI)

A High-Energy High-Luminosity p+-p* Collider David V. Neuffer, CEBAF', 12000 Jefferson Avenue be costly and does not use our ability to recirculate p's. A recirculating linac (RLA) like CEBAF" can and M. S. Zolotorev, Phys. Rev. Lett.71, 4146 (1993). 11. CEBAF Design Report, CEBAF, Newport News VA

McDonald, Kirk

167

Large area, high spatial resolution tracker for new generation of high luminosity experiments in Hall A at Jefferson Lab  

Science Conference Proceedings (OSTI)

In 2014 the CEBAF electron accelerator at Jefferson Lab (JLab) will deliver a longitudinally polarized (up to 85%), high intensity (up to 100 ?A) beam with maximum energy of 12 GeV, twice the present value. To exploit the new opportunities that the energy upgrade will offer, a new spectrometer (Super BigBite - SBS) is under development, featuring very forward angle, large acceptance and ability to operate in high luminosity environment. The tracking system of SBS will consist of large area (40150 cm2 and 50200 cm2), high spatial resolution (better than 100 ?m) chambers based on the GEM technology and 2 small (1020 cm) Silicon Strip Detector planes. The design of the GEM chambers and its sub-components such as the readout electronics is resented here.

Bellini, V; Castelluccio, D; Colilli, S; Cisbani, E; De Leo, R; Fratoni, R; Frullani, S; Garibaldi, F; Guiliani, F; Guisa, A; Gricia, M; Lucentini, M; Meddi, F; Minutoli, S; Musico, P; Noto, F; De Oliveira, R; Santavenere, F; Sutera, M C

2011-06-01T23:59:59.000Z

168

HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab  

Science Conference Proceedings (OSTI)

Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4? detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first application of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.

Wei, Xiangdong [JLAB; Bass, Christopher [JLAB; D'Angelo, Annalisa [INFN-Roma Tor Vegata; Deur, Alexandre P. [JLAB; Dezern, Gary L. [JLAB; Ho, Dao Hoang [Carnegie Mellon U.; Kageya, Tsuneo [JLAB; Khandaker, Mahbubul A, [Idaho State U.; Kashy, David H. [JLAB; Laine, Vivien Eric [Universite de Clermont Ferrand; Lowry, Michael M. [JLAB; O'Connell, Thomas Robert [University of Connecticut; Sandorfi, Andrew M. [JLAB; Teachey, II, Robert W. [JLAB; Whisnant, Charles Steven [James Madison U.; Zarecky, Michael R. [JLAB

2012-12-01T23:59:59.000Z

169

Jasper County REMC - Residential Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for more information. Heat Pump Water Heater: 2.0 EF Air Source Heat Pump (Package): SEER 14, HSPF 8 Air Source Heat Pump (Split): SEER 15, HSPF 8.5 Dual Fuel Heat Pump...

170

The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 GeV CEBAF Upgrade 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility" Audit Report Number: OAS-RA-L-11-13 BACKGROUND In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam

171

New Inventions - Jefferson Lab | Jefferson Lab  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

172

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

173

Jefferson Lab Technology Transfer - Thomas Jefferson National ...  

JSA Invention Disclosure; Technology Transfer Issues (Ombudsman) Programs and Facilities. Free-Electron Laser Program (FEL) Applied Research Center ...

174

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

E-Print Network (OSTI)

The $\\pi_1(1600)$, a $J^{PC} = 1^{-+}$ exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the $\\pi_1(1600)$ is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K $\\gamma p \\to \\pi^+\\pi^+\\pi^-n$ events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the $a_1(1260)$, $a_2(1320)$, and $\\pi_2(1670)$. However, we observe no evidence for the production of the $\\pi_1(1600)$ in either the partial-wave intensities or the relative complex phase between the $1^{-+}$ and the $2^{-+}$ (corresponding to the $\\pi_2$) partial waves.

Craig Bookwalter

2011-08-31T23:59:59.000Z

175

The Search for Exotic Mesons in gammap-->pi+pi+pi?n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

In addition to ordinary qq-bar pairs, quantum chromodynamics (QCD) permits many other possibilities in meson spectra, such as gluonic hybrids, glueballs, and tetraquarks. Experimental discovery and study of these exotic states provides insight on the nonperturbative regime of QCD. Over the past twenty years, some searches for exotic mesons have met with controversial results, especially those obtained in the three-pion system. Prior theoretical work indicates that in photoproduction one should find gluonic hybrids at significantly enhanced levels compared to that found in pion production. To that end, the CLAS g12 run was recently completed at Jefferson Lab, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. The CLAS experimental apparatus was modified to maximize forward acceptance for peripheral production of mesons. The resulting data contains the world's largest 3pi photoproduction dataset, with gammap-->pi+pi+pi?n events numbering in the millions. Early results describing the data quality, kinematics, and dysnamics will be shown.

Craig Bookwalter

2010-08-01T23:59:59.000Z

176

The Search for Exotic Mesons in gamma p -> pi+pi+pi-n with CLAS at Jefferson Lab  

DOE Green Energy (OSTI)

The {pi}{sub 1}(1600), a J{sup PC} = 1{sup {-+}} exotic meson has been observed by experiments using pion beams. Theorists predict that photon beams could produce gluonic hybrid mesons, of which the {pi}{sub 1}(1600) is a candidate, at enhanced levels relative to pion beams. The g12 rungroup at Jefferson Lab's CEBAF Large Acceptance Spectrometer (CLAS) has recently acquired a large photoproduction dataset, using a liquid hydrogen target and tagged photons from a 5.71 GeV electron beam. A partial-wave analysis of 502K {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n events selected from the g12 dataset has been performed, and preliminary fit results show strong evidence for well-known states such as the a{sub 1}(1260), a{sub 2}(1320), and {pi}{sub 2}(1670). However, we observe no evidence for the production of the {pi}{sub 1}(1600) in either the partial-wave intensities or the relative complex phase between the 1{sup {-+}} and the 2{sup {-+}} (corresponding to the {pi}{sub 2}) partial waves.

Craig Bookwalter

2011-12-01T23:59:59.000Z

177

EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion (Orange Book) Revision  

Science Conference Proceedings (OSTI)

This report is an updated edition of the longtime industry standard on vibration, EPRI Transmission Line Reference Book: Wind-Induced Conductor Motion, the "Orange Book," which was last issued in 1979. Publication of this new edition is the culmination of three years of research by an international team of experts in the field. The report includes the latest information on research, technology, and materials and represents a significant contribution to the global industry of electric power transmission.

2009-03-27T23:59:59.000Z

178

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. (ed.)

1992-10-01T23:59:59.000Z

179

Osage Orange  

NLE Websites -- All DOE Office Websites (Extended Search)

hunt wild game, there have been herdsmen and farmers who have had to build fences. Fence building and fence repairing, whether they be stone walls, living thorn hedges, rail...

180

Jefferson Lab Technology Transfer  

This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Technology Transfer.

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; Achievements at JLab. Patents; New Inventions; New Technologies; New Advances; ...

182

Jefferson Lab Technology Transfer  

Title to invention of sponsor or laboratory operator goes to sponsor under class patent waiver and sponsor ... Disclosure to sponsor of laboratory ...

183

Jefferson Lab Technology Transfer  

Invention Disclosure; CRADA/WFO Routing; Fairness ... Every JLab employee who has an idea that may be patentable is encouraged to follow the simple In ...

184

Jefferson Lab Technology Transfer  

Research was done in collaboration with the Department of Biology at the College of William and Mary which obtained a grant from NSF and with the support of the ...

185

Jefferson Lab Technology Transfer  

Cryogenic Liquid Level Measuring Apparatus; Uniform Raster Pattern Generating System; ... Injection Mode-locking Ti-Sapphire Laser System; Radial ...

186

Structural Determinats Underlying Photoprotection in the Photoactive Orange Carotenoid Protein of Cyanobacteria  

SciTech Connect

The photoprotective processes of photosynthetic organisms involve the dissipation of excess absorbed light energy as heat. Photoprotection in cyanobacteria is mechanistically distinct from that in plants; it involves the Orange Carotenoid Protein (OCP), a water-soluble protein containing a single carotenoid. The OCP is a new member of the family of blue light photoactive proteins; blue-green light triggers the OCP-mediated photoprotective response. Here we report structural and functional characterization of the wildtype and two mutant forms of the OCP, from the model organism Synechocystis PCC6803. The structural analysis provides highresolution detail of the carotenoidprotein interactions that underlie the optical properties of the OCP, unique among carotenoid-proteins in binding a single pigment per polypeptide chain. Collectively, these data implicate several key amino acids in the function of the OCP and reveal that the photoconversion and photoprotective responses of the OCP to blue-green light can be decoupled.

Wilson, Adjele; Kinney, James N.; Zwart, Petrus H.; Punginelli, Claire; D'Haene, Sandrine; Perreau, Francois; Klein, Michael G.; Kirilovsky, Diana; Kerfeld, Cheryl

2010-04-01T23:59:59.000Z

187

Dynamically polarized target for the g{sub 2}{sup p} and G{sub E}{sup p} experiments at Jefferson Lab  

SciTech Connect

Recently, two experiments were concluded in Hall A at Jefferson Lab which utilized a newly assembled, solid, polarized hydrogen target. The primary components of the target are a new, high cooling power {sup 4}He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH{sub 3} at a temperature of 1 K and at fields of 2.5 and 5.0 tesla. Maximum polarizations of 55% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 with respect to the incident electron beam.

Pierce, Joshua J. [JLAB; Maxwell, James D. [MIT; Keith, Christopher D. [JLAB

2014-01-01T23:59:59.000Z

188

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report  

DOE Green Energy (OSTI)

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. [ed.

1992-10-01T23:59:59.000Z

189

Evaluation of Orange and Rockland Utilities, Inc.`s competitive bidding program for demand-side resources. Final report  

SciTech Connect

The process evaluation reports on the implementation of Orange and Rockland Utilities demand-side bidding program in New York State during 1991 and 1992. The program is implemented by two energy service companies in Orange and rockland`s New York State service territory. The process evaluation methodology included interviews with utility staff (3), energy service company staff (2), and participating (6) and nonparticipating (7) utility customers. The two energy service companies had enrolled 14 customers in the program by summer 1992. One company had achieved 90% of their 2.75 MW bid and the other had achieved less than 90% of their 6.9 MW bid. Critical factors in success were determination of a reasonable bid amount for the market and marketing to the appropriate customers. Customers most interested in the program included those with limited access to capital and medium-sized firms with poor cash flows, particularly schools and hospitals. The findings also show that due to the incentive structure and associated need for substantial customer contributions, lighting measures dominate all installations. Customers, however, were interested in the potential savings and six of the nonparticipants chose to either install measures on their own or enroll in the utility`s rebate program.

Peters, J.S.; Stucky, L.; Seratt, P.; Darden-Butler, D. [Barakat and Chamberlin, Inc., Portland, OR (United States)

1993-02-01T23:59:59.000Z

190

Jasper County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7.1422895° 7.1422895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0040981,"lon":-87.1422895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Jasper County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5°, -88.0900762° 5°, -88.0900762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0554965,"lon":-88.0900762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

192

Jasper County, South Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

436°, -81.0754657° 436°, -81.0754657° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.491436,"lon":-81.0754657,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

193

Jasper County, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

565°, -94.356513° 565°, -94.356513° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.1745565,"lon":-94.356513,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Jasper, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

22571°, -77.5030413° 22571°, -77.5030413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.122571,"lon":-77.5030413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Jasper County, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9.1705998° 9.1705998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0810429,"lon":-89.1705998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Jasper County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3.9878427° 3.9878427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9263644,"lon":-93.9878427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Pages that link to "Jasper Wind" | Open Energy Information  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

198

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Shock physics experiments complement the ongoing subcritical experiment program at NTS as part of the NNSA's stockpile stewardship program to maintain the safety and...

199

Jasper County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -93.0175712° °, -93.0175712° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6414924,"lon":-93.0175712,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Community Action Partnership of Orange County - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009, OAS-RA-13-03  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Action Partnership of Community Action Partnership of Orange County - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 OAS-RA-13-03 October 2012 Department of Energy Washington, DC 20585 October 17, 2012 MEMORANDUM FOR THE ASSISTANT SECRETARY, ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audit Services Office of Inspector General SUBJECT: INFORMATION: Examination Report on "Community Action Partnership of Orange County - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009" BACKGROUND The attached report presents the results of an examination of the Community Action Partnership

202

Jefferson Lab Technology Transfer - JLab  

Grants and cooperative agreements are entered into solely by the government with a recipient whereby money or property is transferred to the recipient to support ...

203

Jefferson Lab Technology Transfer - JLab  

Proponents say scintimammography could save patients or their health care providers a lot of money on biopsies.

204

Career Opportunities at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

more courses from time to time after they 'finish' school to improve or update their skills and knowledge. They know they must always be learning if they want to be successful....

205

Jefferson Lab Science Series - Holograms  

NLE Websites -- All DOE Office Websites (Extended Search)

Clocks and Timekeeping Previous Video (Clocks and Timekeeping) Science Series Video Archive Next Video (Which Way is Up?) Which Way is Up? Holograms Mr. Paul Christie - Liti...

206

Jefferson Lab Technology Transfer - JLab  

Dual Design Resistor for High Voltage Conditioning and Transmission Lines; Anatomic and Functional Imaging of Tagged Molecules in Animals;

207

Jefferson Science Associates, LLC - JLab  

Chief Financial Officer & Business Operations Manager, be based on JLab Management view ... risk capital and expenses necessary to bring the invention to the point of ...

208

Jefferson Lab Technology Transfer - JLab  

This control system must provide supervisory I/O, local feedback control, analysis capability, and operator interfaces for numerous accelerator ...

209

Flat Stanley visits Jefferson Lab!  

NLE Websites -- All DOE Office Websites (Extended Search)

halls, helps with the filming of an episode of Frostbite Theater, watches a National Science Bowl competition and strolls the sands of nearby Virginia Beach Next Page ...

210

Jefferson Lab Technology Transfer - JLab  

Invention Disclosure; CRADA/WFO Routing; Fairness of Opportunity; America Invents Act Summary; Achievements at JLab. Patents; New Inventions; New ...

211

Jefferson Lab Technology Transfer - JLab  

.6. A brief description of the company's commitment and overall plans to successfully develop, manufacture and sell products under the proposed ...

212

Jefferson Lab Technology Transfer - JLab  

... Health Sciences Center will be conducting the test programs including phantom studies to identify the detector type with the ... such a facility ...

213

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Privacy and Security Notice Science Education Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Science Education As a...

214

EA-1841: Department of Energy Loan Guarantee for the Taylor Biomass Montgomery Project in the Town of Montgomery, Orange County, New York  

Energy.gov (U.S. Department of Energy (DOE))

Taylor Biomass, LLC (Taylor) submitted an application to DOE for a Federal loan guarantee to support the construction and startup of a biomass gasification-to energy facility at a 95-acre recycling facility in the Town of Montgomery, Orange County, NY. The Project would involve the construction of a Post-Collection Separation Facility, a Gasification System and a Combined Cycle Gas Turbine Power Island.

215

Identification and confirmation of molecular markers and orange flesh color associated with major QTL for high beta-carotene content in muskmelon  

E-Print Network (OSTI)

Beta-carotene presence or absence in muskmelon is controlled by two genes, green flesh gf and white flesh wf. In its dominant form the wf gene is responsible for orange flesh color; however, the epistatic interactions of gf and wf can create three flesh colors: orange, white and green. Two F2 populations, consisting of 77 greenhouse grown and 117 field grown plants, from the cross of Sunrise (white fleshed) by TAM Uvalde (orange fleshed), were used to examine the relationships of beta-carotene content, flesh color, and flesh color intensity. Bulk segregent analysis was used with RAPD markers to identify molecular markers associated with high beta-carotene content. Flesh color and flesh color intensity both had significant relationships with beta-carotene content. A significant correlation between total soluble solids and beta-carotene content was also found. Molecular markers were identified in both F2 populations and all significant, associated markers from TAM Uvalde were linked with WF. A single QTL was also found to be linked with the WF locus. The identified QTL can be used to screen potential breeding lines for high beta-carotene. It was also confirmed that the visual ratings of flesh color intensity can be reliably used to select high beta-carotene content melons.

Napier, Alexandra Bamberger

2006-12-01T23:59:59.000Z

216

Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility  

SciTech Connect

We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receives these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.

C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

2009-11-01T23:59:59.000Z

217

Jefferson Lab Science Series - Einstein for Everyone  

NLE Websites -- All DOE Office Websites (Extended Search)

The Restoration of the USS Monitor The Restoration of the USS <i>Monitor</i> Previous Video (The Restoration of the USS Monitor) Science Series Video Archive Next Video (The Mysterious Universe) The Mysterious Universe Einstein for Everyone Dr. Robert Piccioni October 5, 2010 Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy. Is the space above this area blank? If so, there may be a problem loading the embedded version of the video from YouTube. Either their server is having issues or your school is actively blocking access to YouTube. If

218

Jefferson Lab Science Series - The Ultimate Speed  

NLE Websites -- All DOE Office Websites (Extended Search)

Higgs Boson and Our Life Higgs Boson and Our Life Previous Video (The Higgs Boson and Our Life) Science Series Video Archive Next Video (What Is CEBAF All About?) What Is CEBAF All About? The Ultimate Speed Dr. William Bertozzi - Massachusetts Institute of Technology Sometime in 1962 In his youth, Dr. William Bertozzi, an MIT professor who has long been a leader in experimental nuclear physics using beams of electrons, carried out an experiment in which he explored the relationship between the velocity of electrons and their kinetic energy by measurements over a range of accelerating voltages between 0.5 MeV and 15 MeV. The kinetic energy is measured using calorimetry and the velocity is measured by time-of-flight. This educational film, made in 1962, documents the experiment and shows

219

Jefferson, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

645565°, -77.1877587° 645565°, -77.1877587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8645565,"lon":-77.1877587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Jefferson Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

Electric Member Corp Electric Member Corp Place Georgia Utility Id 9689 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE SCHEDULE B Commercial HIGH LOAD FACTOR SERVICE SCHEDULE HLF-13-R Commercial PREPAID RESIDENTIAL SERVICE SCHEDULE APP Residential RESIDENTIAL SERVICE SCHEDULE A Residential SCHEDULE ARP-1 ALLOCATED RESOURCE PRICING Commercial SCHEDULE ARP-2 McE ALLOCATED RESOURCE PRICING Commercial SCHEDULE C TOU TIME-OF-USE SERVICE Commercial SCHEDULE I-8 - greater than 30 kVA (Single Phase - Time-of-Use Energy

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Jefferson Lab Science Series - Adventures in Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics IQ Test Previous Video (Physics IQ Test) Science Series Video Archive Next Video (Polymers, Foams and Gels) Polymers, Foams and Gels Adventures in Science Professor Cynthia...

222

Jefferson Lab Science Series - Space Shuttle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Atlantis in the Chesapeake? Previous Video (Atlantis in the Chesapeake?) Science Series Video Archive Next Video (Mechanical Properties of Soda Cans) Mechanical Properties of Soda...

223

New Advances - Jefferson Lab Technology Transfer  

The Detector Group is collaborating with University of Virginia, on a medical instumentation project to improve breast tumor detection. The ...

224

Jefferson Lab Science Series - Symmetry - From Kaleidoscopes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Einstein's Gravity Waves Previous Video (Detecting Einstein's Gravity Waves) Science Series Video Archive Next Video (Physics IQ Test) Physics IQ Test Symmetry - From...

225

New Advances - Jefferson Lab Technology Transfer  

New Advances Commercial Spin-offs Abound For New Free Electron Laser. The world of laser technology took a giant leap forward recently as researchers ...

226

Jefferson Lab Science Series - Comic Book Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

(Multi-Million Dollar Forgeries Exposed) Multi-Million Dollar Forgeries Exposed Comic Book Physics Dr. Jim Kakalios - University of Minnesota March 25, 2003 Even superheroes must...

227

Jefferson Lab Science Series - Where's the Beach?  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is CEBAF All About? Previous Video (What Is CEBAF All About?) Science Series Video Archive Next Video (Superconducting BAYCO Bits) Superconducting BAYCO Bits Where's the...

228

Jefferson Lab Science Series - What's for Dinner?  

NLE Websites -- All DOE Office Websites (Extended Search)

lurking in your food? How are they produced and how harmful are they? Dr. Kristen Kulp, a cancer research scientist, will perform demonstrations to illustrate methods used to...

229

Jefferson Lab Science Series - Guesstimating the Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Video (The Origin of the Elements) Science Series Video Archive Next Video (The Higgs Boson and Our Life) The Higgs Boson and Our Life Guesstimating the Environment Dr....

230

Thomas Jefferson National Accelerator Facility Technology ...  

Energy Innovation Portal Technologies. Search Help ... This invention can produce copious quantities of carbon nanotubes at rates near grams per hour.

231

Jefferson City - Property Assessed Clean Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Insulation Other Bioenergy Manufacturing Buying & Making Electricity Solar Wind Program Information Missouri Program Type PACE Financing Property-Assessed Clean Energy...

232

Nucleon spin physics at Jefferson Lab  

Science Conference Proceedings (OSTI)

In this talk I shall review some of the important results from the spin physics program at JLab and give an outlook for the 12 GeV upgrade spin program.

Zein-Eddine Meziani

2006-06-05T23:59:59.000Z

233

Jefferson Lab Science Series - Investigating Earth's Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

Byron Meadows - NASALangley Research Center May 14, 1991 Demonstrations of weather forecasting tools and techniques for experiments in the atmosphere and of lasers used to...

234

Jefferson Lab Science Series - Lowering the Boom!  

NLE Websites -- All DOE Office Websites (Extended Search)

with Earth) Science Series Video Archive Next Video (Environmental Impact of Global Burning) Environmental Impact of Global Burning Lowering the Boom Dr. Christine Darden -...

235

Jefferson Lab Science Series - Volcanoes in Virginia!  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Elizabeth Baedke Johnson - James Madison University January 24, 2012 The recent earthquake may have you wondering what other surprises Virginia's geology may hold. Could there...

236

Analysis Of Microseismic Location Accuracy For Hydraulic Fracturing At The DWTI Site, Jasper, Texas  

E-Print Network (OSTI)

This report presents the results of a feasibility study designed to assess whether microseismic location techniques can provide enough accuracy and precision to enable a

Rieven, Shirley

1995-01-01T23:59:59.000Z

237

2011 NNSS JASPER ORR Activity Report _July 18-28, 2011_ final  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR-NNSS-2011-07-28 Site: Nevada National Security Site Subject: Office of Enforcement and Oversight's Office of Safety and...

238

2011 NNSS JASPER ORR Activity Report _July 18-28, 2011_ final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Nevada National Security Site Operational Readiness Review of the Joint Actinide Shock Physics Experimental Research Facility Dates of Activity : 07182011 - 07282011...

239

Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta,  

E-Print Network (OSTI)

, succeeding either to forb­grassland and forest (Table 4) or being reclaimed by water (Table 5). Wetlands to automate the conversion of the repeat ground photographs into planar views, thus making standard analyses

Macdonald, Ellen

240

Leslie Shao-ming Sun Field Station at Jasper Ridge Biological Preserve  

E-Print Network (OSTI)

ergonomically superior diffuse light to meet daytime lighting needs. · All appliances are Energy Star rated as an educational tool to demonstrate principles of sustain- ability and energy efficiency. With this in mind, the Leslie Shao-ming Sun Field Station was designed for an annual energy budget of net zero carbon emissions

Ford, James

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Orange and Rockland Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

west of New York City. ORU is a key participant in Con Edison's 272 million Smart Grid Investment Grant (SGIG) project to modernize electric distribution systems. With 136...

242

A Community Responds to Collective Trauma: An Ecological Analysis of the James Byrd Murder in Jasper, Texas  

E-Print Network (OSTI)

perspectives on disaster response. Journal of Personal anddoes traditional disaster response have on the creation orWhile most disaster response research examines the

Wicke, Thomas; Silver, Roxane Cohen

2009-01-01T23:59:59.000Z

243

Jefferson Hills, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9°, -79.9319942° 9°, -79.9319942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2911809,"lon":-79.9319942,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

244

Jefferson Valley-Yorktown, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Valley-Yorktown, New York: Energy Resources Valley-Yorktown, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3138618°, -73.800734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3138618,"lon":-73.800734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Jefferson Lab Science Series - Proton Therapy - Accelerating Protons to  

NLE Websites -- All DOE Office Websites (Extended Search)

The Science of Chocolate The Science of Chocolate Previous Video (The Science of Chocolate) Science Series Video Archive Next Video (Adventures in Infectious Diseases) Adventures in Infectious Diseases Proton Therapy - Accelerating Protons to Save Lives Dr. Cynthia Keppel - Hampton University Proton Therapy Institute October 25, 2011 In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy

246

Jefferson County, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -78.9288242° °, -78.9288242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.147013,"lon":-78.9288242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Jefferson County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -83.4643551° °, -83.4643551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0417825,"lon":-83.4643551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Jefferson Parish, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parish, Louisiana: Energy Resources Parish, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.3911214°, -91.0634024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3911214,"lon":-91.0634024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Jefferson County, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2310301°, -90.5257823° 2310301°, -90.5257823° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2310301,"lon":-90.5257823,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Jefferson County, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -123.3040062° °, -123.3040062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7424541,"lon":-123.3040062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Jefferson Lab Science Series - Science Series Video Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Series Video Archive Science Series Video Archive Couldn't make it to the last Science Series lecture? Did you like a lecture so much that you just had to see it again? Not to worry! Past lectures are now available on demand! The Higgs Boson and Our Life The Higgs Boson and Our Life On July 4th, 2012, the ATLAS and CMS experiments operating at the CERN Large Hadron Collider (LHC) announced the discovery of a new particle compatible with the Higgs boson (hunted for almost 50 years), which is a crucial piece for our understanding of fundamental physics and thus the structure and evolution of the universe. This lecture describes the unprecedented instruments and challenges that have allowed such an accomplishment, the meaning and relevance of this discovery to physics... April 30, 2013

252

West Jefferson, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

364°, -81.4928829° 364°, -81.4928829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4037364,"lon":-81.4928829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Jefferson County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

91.9099238° 91.9099238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0236358,"lon":-91.9099238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Jefferson County, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

5.3102505° 5.3102505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2827652,"lon":-95.3102505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Jefferson County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

421°, -75.9927652° 421°, -75.9927652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0607421,"lon":-75.9927652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Jefferson County, Arkansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -91.9099238° °, -91.9099238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.227351,"lon":-91.9099238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Jefferson County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1543°, -85.4788065° 1543°, -85.4788065° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7751543,"lon":-85.4788065,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Jefferson Lab Science Series - Understanding Flight: A Physical Description  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics of Stock Car Racing Physics of Stock Car Racing Previous Video (The Physics of Stock Car Racing) Science Series Video Archive Next Video (The Hidden World of Technology) The Hidden World of Technology Understanding Flight: A Physical Description of How Airplanes Fly Dr. Scott Eberhardt - University of Washington March 23, 2004 Did you ever wonder how a Boeing 747, weighing 910,000 lbs at takeoff can possibly get off the ground? Or, did you ever wonder how airplanes fly upside down? Why is there a "backside of the power curve?" What makes a wing efficient? These questions can be answered when lift is developed in terms of Newton's laws. A Newtonian description of lift gives an intuitive feel for how airplanes fly, without the need for complicated analysis or approximations. Through the application of Newton's three laws, we will

259

Jefferson Lab Science Series - The Mysterious Universe: Exploring Our World  

NLE Websites -- All DOE Office Websites (Extended Search)

Einstein for Everyone Einstein for Everyone Previous Video (Einstein for Everyone) Science Series Video Archive Next Video (DNA: The Strand That Connects Us All) DNA: The Strand That Connects Us All The Mysterious Universe: Exploring Our World With Particle Accelerators Dr. James E. Brau - University of Oregon November 23, 2010 The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view

260

Jefferson Lab Science Series - Living and Working in the Freezer  

NLE Websites -- All DOE Office Websites (Extended Search)

Volcanoes in Virginia! Volcanoes in Virginia! Previous Video (Volcanoes in Virginia!) Science Series Video Archive Next Video (You Already Know This Physics!) You Already Know This Physics! Living and Working in the Freezer Dr. Victoria Hill - Old Dominion University, Bio-Optics Group February 7, 2012 Very little data of any kind exists from the early spring in the Arctic. The reason? It's extremely cold and that makes it difficult to survive, let alone conduct science. From March through the end of April, 2011, scientists from around the world braved temperatures of -48°C in the high Canadian Arctic in the name of science. At the Catlin Arctic Survey's floating 'Ice Base' off Ellef Ringnes Island, Dr. Victoria Hill was investigating how organic material in fresh water near the surface of the

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Jefferson County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3°, -112.0752952° 3°, -112.0752952° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.1450553,"lon":-112.0752952,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Jefferson County, Kentucky: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

097°, -85.643487° 097°, -85.643487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1938097,"lon":-85.643487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Jefferson County, West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1°, -77.8824596° 1°, -77.8824596° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3059841,"lon":-77.8824596,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Undergraduate Research at Jefferson Lab - Non-linear Multidimensional  

NLE Websites -- All DOE Office Websites (Extended Search)

Contamination Levels Contamination Levels Previous Project (Contamination Levels) Undergraduate Research Main Index Next Project (Data Acquisition Components) Data Acquisition Components Non-linear Multidimensional Optimization for use in Wire Scanner Fitting Student: Alyssa Henderson School: University of Virginia Mentored By: Alicia Hofler and Balša Terzić To ensure experiment efficiency and quality from the Continuous Electron Beam Accelerator, beam energy, size, and position must be measured. Wire scanners are inserted into the beamline to produce measurements which can obtain beam properties. Extracting physical information from wire scanner measurements begins by fitting Gaussian curves to the data. This study focuses on optimizing and automating this curve-fitting procedure. We use a

265

Jefferson Lab Science Series - The Higgs Boson and Our Life  

NLE Websites -- All DOE Office Websites (Extended Search)

Guesstimating the Environment Guesstimating the Environment Previous Video (Guesstimating the Environment) Science Series Video Archive Next Video (The Ultimate Speed) The Ultimate Speed The Higgs Boson and Our Life Dr. Fabiola Gianotti - European Organization for Nuclear Research (CERN) April 30, 2013 On July 4th, 2012, the ATLAS and CMS experiments operating at the CERN Large Hadron Collider (LHC) announced the discovery of a new particle compatible with the Higgs boson (hunted for almost 50 years), which is a crucial piece for our understanding of fundamental physics and thus the structure and evolution of the universe. This lecture describes the unprecedented instruments and challenges that have allowed such an accomplishment, the meaning and relevance of this discovery to physics, and

266

Port Jefferson, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

464875°, -73.0692732° 464875°, -73.0692732° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9464875,"lon":-73.0692732,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Port Jefferson Station, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Station, New York: Energy Resources Station, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9253764°, -73.0473284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9253764,"lon":-73.0473284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Jefferson Lab Science Series - The Origin of the Elements  

NLE Websites -- All DOE Office Websites (Extended Search)

You Already Know This Physics! You Already Know This Physics! Previous Video (You Already Know This Physics!) Science Series Video Archive Next Video (Guesstimating the Environment) Guesstimating the Environment The Origin of the Elements Dr. Edward Murphy - University of Virginia, Department of Astronomy November 13, 2012 The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang,

269

Jefferson County, Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

97.179026° 97.179026° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1680732,"lon":-97.179026,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Jefferson County, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wisconsin: Energy Resources Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.089927°, -88.7108964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.089927,"lon":-88.7108964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Jefferson County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7.87216° 7.87216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1672949,"lon":-97.87216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Jefferson County, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

121.1785788° 121.1785788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6673324,"lon":-121.1785788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Jefferson County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

8.864698° 8.864698° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2267348,"lon":-88.864698,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Jefferson, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

20403°, -81.4734376° 20403°, -81.4734376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.420403,"lon":-81.4734376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Jefferson County, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2°, -80.7657804° 2°, -80.7657804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3871722,"lon":-80.7657804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Jefferson County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

98°, -105.2662931° 98°, -105.2662931° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5800298,"lon":-105.2662931,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Jefferson Davis County, Mississippi: Energy Resources | Open Energy  

Open Energy Info (EERE)

281°, -89.8130356° 281°, -89.8130356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5825281,"lon":-89.8130356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Jefferson Davis Parish, Louisiana: Energy Resources | Open Energy  

Open Energy Info (EERE)

90.1500395° 90.1500395° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9686923,"lon":-90.1500395,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Jefferson County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

94.1513764° 94.1513764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.8165398,"lon":-94.1513764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Jefferson Lab Science Series - Iceland: Dynamic Land of Ice and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Next Video (The Physics of Baseball) The Physics of Baseball Iceland: Dynamic Land of Ice and Fire Dr. Richard S. Williams Jr. - U.S. Geological Survey February 8, 2002...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Jefferson Lab Science Series - Cloning: The Science Behind Jurassic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subatomic Particles at CEBAF Previous Video (Finding Subatomic Particles at CEBAF) Science Series Video Archive Next Video (Pollution Sleuthing Using an Accelerator) Pollution...

282

Jefferson Lab Science Series - The Science and Technology Behind...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecules are Everywhere Previous Video (Molecules are Everywhere) Science Series Video Archive Next Video (Iceland: Dynamic Land of Ice and Fire) Iceland: Dynamic Land of Ice and...

283

Bio-medical Applications of Jefferson Lab's Nuclear Physics ...  

Science Conference Proceedings (OSTI)

... contamination to crops Carbon sequestration Dual 15 cm x 20 cm Planar PET system ?3.03 mm step pixellated, 10 mm thick LGSO ...

2010-10-29T23:59:59.000Z

284

Jefferson Lab's Workbench Projects - The Ring Fling Machine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

iron core has been removed from the coil. The circuit starts at the hot side of the AC power line, passes through the fuse, then through the switch, then through the coil and...

285

Jefferson Lab Science Series - Detecting Einstein's Gravity Waves  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Series Video Archive Next Video (Symmetry) Symmetry Detecting Einstein's Gravity Waves Dr. David Shoemaker - Massachusetts Institute of Technology March 18, 1997 LIGO...

286

Jefferson Lab Science Series - The Physics of Baseball  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Series Video Archive Next Video (Worlds Beyond the Matrix) Worlds Beyond the Matrix The Physics of Baseball Dr. Robert Adair - Yale University December 9, 2003 From...

287

Jefferson Lab Science Series - Chemistry - It's More Than Puffs...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Dinosaur Extinctions and Giant Asteroids) Dinosaur Extinctions and Giant Asteroids Chemistry - It's More Than Puffs and Bangs Dr. Joe Schwarcz - McGill Office for Chemistry and...

288

Generating Test Data from SOFL Specifications \\Lambda A. Jefferson Offutt  

E-Print Network (OSTI)

of Information Sciences Hiroshima City University Asaminami­ku, Hiroshima 731­31 Japan email: shaoying@cs.hiroshima

Offutt, Jeff

289

Jefferson Lab Science Series - A TACT-ful Chemical Musical  

NLE Websites -- All DOE Office Websites (Extended Search)

Einstein's Biggest Blunder Previous Video (Einstein's Biggest Blunder) Science Series Video Archive Next Video (The Restoration of the USS Monitor) The Restoration of the USS...

290

Thomas Jefferson Site Office Categorical Exclusions | U.S. DOE...  

Office of Science (SC) Website

Safety & Health Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC Categorical Exclusions and NEPA Documents SLI & SS Budget Contact Information Safety,...

291

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

292

Jefferson Lab Science Series - What Is CEBAF All About?  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Series Video Archive Next Video (Where's the Beach?) Where's the Beach? What Is CEBAF All About? Dr. Beverly Hartline and Kathryn Strozak - CEBAF September 27, 1990 An...

293

Jefferson Lab Science Series - Magnets and Their Attractions...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Teenager Magnets and Their Attractions for Technology Dr. Leigh Harwood - CEBAF December 11, 1991 How do scientists and engineers use magnets? What do magnets promise...

294

Jefferson Lab Science Series - Explore the World of Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Scientific Computing LIVE Dr. Roy Whitney, Ms. Rita Chambers and Dr. Chip Watson - CEBAF March 6, 1991 Simulations and demonstrations of the human interface for real-time data...

295

Jefferson Lab Science Series - Finding Subatomic Particles at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jurassic Park) Cloning: The Science Behind Jurassic Park Finding Subatomic Particles at CEBAF Dr. Keith Baker - Hampton University and CEBAF November 16, 1993 How physicists detect...

296

Jefferson Lab Science Series - Neutrinos: Much Ado About (Almost...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Big Sting) Science Series Video Archive Next Video (Finding Subatomic Particles at CEBAF) Finding Subatomic Particles at CEBAF Neutrinos: Much Ado About (Almost) Nothing Dr....

297

Jefferson Lab Science Series - Mars Missions and the Search for...  

NLE Websites -- All DOE Office Websites (Extended Search)

me?) Radiation: What is it and how can it affect me? Mars Missions and the Search for Life Dr. Robert Mitcheltree - NASA Langley Research Center February 15, 2000 How engineering...

298

The DVCS program in Hall A at Jefferson Lab  

Science Conference Proceedings (OSTI)

The DVCS Hall A/JLab experiments aim at providing data relevant to the '3-D structure of the nucleon' exploration by measuring precise absolute cross sections in the Deep Exclusive domain. Deeply Virtual Compton Scattering off the nucleon is the simplest process which is sensitive to the Generalized Parton Distribution functions. Currently, the DVCS in Hall A program is articulated in three steps. The first generation of experiments showed the power of precise measurement of absolute cross sections to test factorization of the DVCS amplitude. The second generation of experiments (data under analysis) will separate (at twist-2 order) all of the terms making up the unpolarized cross section. And the third generation of experiments (data to be taken with the 12 GeV beam at JLab) will provide measurements over an extended kinematic range. In this conference proceeding, the status of the DVCS in Hall A/JLab program is reviewed.

Julie Roche

2012-09-01T23:59:59.000Z

299

Jefferson Lab's Workbench Projects - Go Far Car Ramps - Component...  

NLE Websites -- All DOE Office Websites (Extended Search)

(roughly 3 feet needed) 1 6 pine board (roughly 1 foot needed) 14" thick oak or poplar plywood (a section 4 feet long and 7 58" wide needed) 6 3 38" screw hook (2...

300

Jefferson Lab's Workbench Projects - Go Far Car Ramps - Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

spaced 5 centimeters apart. The ramp itself is made from a 4 foot long sheet of oak or poplar plywood. The smoothness of the plywood is the primary consideration when choosing a...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preliminary mode distortion measurements on the Jefferson Lab IRFEL  

SciTech Connect

We previously reported analytical calculations of mirror distortion in a high power FEL with a near-concentric cavity. Naive assumptions about the FEL power vs. distortion led us to believe that mirror losses were much lower than expected. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 microns. The resonator mirrors were calcium fluoride. This material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index v temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced results inconsistent with cold cavity expectations. Removing the effects of the angular jitter produces results in reasonable agreement with analytical models assuming mirror losses comparable to the original expectations.

Stephen V. Benson; Joe Gubeli; Michelle D. Shinn

2001-08-01T23:59:59.000Z

302

2010 DOE National Science Bowl Photos - Thomas Jefferson High...  

Office of Science (SC) Website

Facebook Facebook External link Share with Twitter Twitter External link Share with Google Bookkmarks Google Bookmarks External link Email a Friend Email link to: send 2010 DOE...

303

Jefferson Lab Science Series - Is Something Wrong With the Weatherman...  

NLE Websites -- All DOE Office Websites (Extended Search)

LIVE Is Something Wrong With the Weatherman? Dr. Mike Kaplan - North Carolina State University January 22, 1991 What makes weather forecasting so hard? How can computers help?...

304

Jefferson Lab Science Series - Interactive Computer Games and...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Detecting Einstein's Gravity Waves) Detecting Einstein's Gravity Waves Interactive Computer Games and Animation Ms. Stephanie Barish - Shoah Foundation December 10, 1996...

305

Jefferson Lab Science Series - Multi-Million Dollar Forgeries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comic Book Physics Previous Video (Comic Book Physics) Science Series Video Archive Next Video (Science Headlines from the 21st Century) Science Headlines from the 21st Century...

306

Jefferson Lab Science Series - Hidden Worlds - Hunting for Quarks...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extinctions and Giant Asteroids) Science Series Video Archive Next Video (Comic Book Physics) Comic Book Physics Hidden Worlds - Hunting for Quarks in Ordinary Matter Dr....

307

Very high power THz radiation at Jefferson Lab  

E-Print Network (OSTI)

AM Frequency (THz) JLab ERL NSLS Black Body Watts/cm 1E-4scientific program at the NSLS infrared beamline Nucl.The blackbody is at 2000K, the NSLS source is described in

Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

2002-01-01T23:59:59.000Z

308

Jefferson Lab Science Series - Earth on Fire: The Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste: You Can't Just Throw It Away Earth on Fire: The Environmental Impact of Global Burning Dr. Joel Levine - NASA Langely Research Center January 11, 1995 How human actions and...

309

Undergraduate Research at Jefferson Lab - Light Yield Measurements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Characteristics) Field Emission Characteristics Light Yield Measurements of Heavy Photon Search (HPS) Muon Scintillator Hodoscopes Student: Marianne Skolnik School:...

310

Jefferson Lab's Workbench Projects - The Ring Fling Machine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

cord (18 AWG, 3 conductor) fuse holder (1" 14 " fuse, 20 amp capacity) 8 amp, 240 volt fast acting fuse (1 14" 14 ") 1 4 plank of white pine (roughly 4 feet needed)...

311

Jefferson Lab Science Series - Worlds Beyond the Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

Video (The Physics of Baseball) Science Series Video Archive Next Video (The Physics of Stock Car Racing) The Physics of Stock Car Racing Worlds Beyond the Matrix Nigel Hey -...

312

Jefferson Lab Science Series - The Physics of Stock Car Racing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Next Video (Understanding Flight) Understanding Flight The Physics of Stock Car Racing from a NASCAR Champion's Perspective Dr. Scott Winters - Lawrence Livermore...

313

Jefferson Lab's Workbench Projects - Go Far Car Ramps - Main...  

NLE Websites -- All DOE Office Websites (Extended Search)

Go Far Car Ramps | Background | Overview | Component List | Ramp Construction | Support Arm Preparation | | Base Board Preparation | Top Board Preparation | Support Frame Assembly...

314

Jefferson Lab Science Series - The Restoration of the USS Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

A TACT-ful Chemical Musical A TACT-ful Chemical Musical Previous Video (A TACT-ful Chemical Musical) Science Series Video Archive Next Video (Einstein for Everyone) Einstein for Everyone The Restoration of the USS Monitor David Krop - Conservation Project Manager, The Mariner's Museum March 2, 2010 The ongoing efforts to conserve and exhibit the iconic Civil War ironclad USS Monitor at The Mariners' Museum will be discussed. The presentation will cover past conservation accomplishments by conservators and NOAA specialists, current activities in the lab, and future plans to bring back to life one of the world's most famous warships. Learn about the complex methods and procedures used to treat the ship's revolving gun turret, steam engine, Dahlgren guns and carriages, as well as numerous small artifacts

315

Jefferson Lab Science Series - AIDS: The Science, The Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote Control with Computers Previous Video (Remote Control with Computers) Science Series Video Archive Next Video (Exploring the Microwave Universe) Exploring the Microwave...

316

Jefferson Lab Science Series - Remote Control with Computers  

NLE Websites -- All DOE Office Websites (Extended Search)

(AIDS: The Science, The Impact) AIDS: The Science, The Impact Remote Control with Computers Dr. Chip Watson - CEBAF March 14, 1995 Making hundreds of computers do your bidding...

317

Jefferson Lab Science Series - Strange Matters: Science Headlines...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Science Series | Current Lecture Schedule | Video Archive | Multi-Million Dollar Forgeries Exposed Previous Video (Multi-Million Dollar Forgeries Exposed) Science...

318

Jefferson County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

112.2493671° 112.2493671° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7640903,"lon":-112.2493671,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Jefferson County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

82.4319405° 82.4319405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0740753,"lon":-82.4319405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Orange, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

7877944°, -117.8531119° 7877944°, -117.8531119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7877944,"lon":-117.8531119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Orange, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

758°, -81.4806744° 758°, -81.4806744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4497758,"lon":-81.4806744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Orange County - OCHEEP! (Florida) | Open Energy Information  

Open Energy Info (EERE)

CaulkingWeather-stripping, Ceiling Fan, Central Air conditioners, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Programmable Thermostats,...

323

Trusted Computer System Evaluation Criteria ["Orange Book"  

Science Conference Proceedings (OSTI)

Page 1. DoD 5200.28-STD Supersedes CSC-STD-00l-83, dtd l5 Aug 83 Library No. S225,7ll DEPARTMENT OF DEFENSE STANDARD ...

2013-04-16T23:59:59.000Z

324

Orange and Rockland Utilities (Electric) - Residential Appliance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recycling Program < Back Eligibility Residential Commercial Savings Category Appliances & Electronics Construction Commercial Heating & Cooling Program Info Funding Source...

325

Orange and Rockland Utilities (Electric) - Residential Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (New York) < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate...

326

Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRPT)  

SciTech Connect

Deinococcus proteolyticus (ex Kobatake et al. 1973) Brook and Murray 1981 is one of currently 47 species in the genus Deinococcus within the family Deinococcaceae. Strain MRPTT was isolated from faeces of Lama glama; it shares with various other species of the genus the extreme radiation resistance, with D. proteolyticus being resistant up to 1.5 Mrad of gamma radiation. Strain MRPT{sup T} is of further interest for its carotenoid pigment. The genome presented here is only the fifth completed genome sequence of a member of the genus Deinococcus (and the forth type strain) to be published, and will hopefully contribute to a better understanding of how members of this genus adapted to high gamma- or UV ionizing-radiation. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,886,836 bp long genome with its four large plasmids of 97 kbp, 132 kbp, 196 kbp and 315 kbp harbours 2,741 protein-coding and 58 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Copeland, A [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

2012-01-01T23:59:59.000Z

327

Frostbite Theater - Liquid Nitrogen Experiments - Shattering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema...

328

May 22, 2011 Joplin, MO Tornado Study  

Science Conference Proceedings (OSTI)

... (residential or small business) or FEMA 361 (community) safe room ... (Sources: Joplin/Jasper County Emergency Management Agency and FEMA) ...

2012-10-30T23:59:59.000Z

329

West Orange, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

987113°, -74.2390353° 987113°, -74.2390353° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7987113,"lon":-74.2390353,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Orange County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4°, -86.4996546° 4°, -86.4996546° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5169004,"lon":-86.4996546,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Orange County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3°, -74.3118212° 3°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3911653,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Orange Cove, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

624394°, -119.3137301° 624394°, -119.3137301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.624394,"lon":-119.3137301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Orange County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

033°, -93.8655303° 033°, -93.8655303° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.1484033,"lon":-93.8655303,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Orange, New Hampshire: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

6545168°, -71.9714725° 6545168°, -71.9714725° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6545168,"lon":-71.9714725,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Orange County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4186°, -72.4003713° 4186°, -72.4003713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0014186,"lon":-72.4003713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Orange County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4°, -77.973865° 4°, -77.973865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.2426674,"lon":-77.973865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Orange, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

706562°, -74.2326463° 706562°, -74.2326463° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7706562,"lon":-74.2326463,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Orange County, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

2°, -79.1096901° 2°, -79.1096901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.0263022,"lon":-79.1096901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Orange County, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, California: Energy Resources County, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

ESnet, Orange Silicon Valley, and Bay Microsystems Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems Demonstrate the World's First Long Distance 40Gbps RDMA Data Transfer Public-Private Collaborative Demo Leveraged New ESnet Advanced Networking Initiative (ANI)...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Adsorptive Removal of Arsenic and Fluoride by Using Orange Juice ...  

Science Conference Proceedings (OSTI)

Aug 1, 2003 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description Industrial application of...

342

Orange County - Solar Hot Water Rebate Program (Florida) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

343

The France Telecom Orange Labs (Beijing) Video Semantic ...  

Science Conference Proceedings (OSTI)

... Index Terms TRECVID, INS, Vocabulary Tree, Ap- proximate K-Means ... the highest low-level similarities and enter- s the interactive search loop ...

2012-11-29T23:59:59.000Z

344

Orange County, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

28.4844995°, -81.2518833° 28.4844995°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4844995,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Kelp Wrack: Hopping with Life in Orange County  

E-Print Network (OSTI)

of mechanically removing it from sandy beaches. Results fromecology and sustainability of sandy beaches, many of whichthe animal species living on sandy beaches depend on wrack.

Dugan, Jenifer E.

2011-01-01T23:59:59.000Z

346

Undergraduate Research at Jefferson Lab - LabVIEW Software Based Program to  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Acquisition Components Data Acquisition Components Previous Project (Data Acquisition Components) Undergraduate Research Main Index Next Project (Spin-Polarization of Helium-3 Target Cell) Spin-Polarization of Helium-3 Target Cell LabVIEW Software Based Program to Minimize Data File Size of the Slow Controls System (SCS) of the Silicon Vertex Tracker (SVT) Student: Zulqarnain M Jamal School: Georgia Institute of Technology Mentored By: Amrit Yegneswaran SVT is a detector, made of silicon modules. It tracks charged particles and helps to determine interaction vertices. SCS controls and monitors currents and voltages, and monitors temperatures and humidity. SCS produces large data files. Smart Logger, a LabVIEW program, has been developed in to minimize data file size. Smart Logger discards data-sets if any the

347

Undergraduate Research at Jefferson Lab - Designing a Multi-Purpose Dark  

NLE Websites -- All DOE Office Websites (Extended Search)

Noise Correlation Noise Correlation Previous Project (Noise Correlation) Undergraduate Research Main Index Next Project (Proton-Deuteron Drell-Yan Reaction) Proton-Deuteron Drell-Yan Reaction Designing a Multi-Purpose Dark Box Optimized for PMT Uniformity Testing Student: Nicholas M. Dowdle School: Emory & Henry College at Emory Mentored By: Jack McKisson This paper describes the process of designing a means for measuring the response uniformity for position-sensitive photomultiplier tubes (PSPMTs), a trait which, in the ideal case, suggests identical responses for every pixel on the face of a PSPMT in a field of uniform light. However, significant non-uniformities arise in the practical usage of PSPMTs, necessitating some form of compensation before or after experimentation. A

348

OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB  

SciTech Connect

We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

Ari Palczewski, Rongli Geng, Hui Tian

2012-07-01T23:59:59.000Z

349

LEIC - A Polarized Low Energy Electron-ion Collider at Jefferson Lab  

Science Conference Proceedings (OSTI)

A polarized electron-ion collider is envisioned as the future nuclear science program at JLab beyond the 12 GeV CEBAF. Presently, a medium energy collider (MEIC) is set as an immediate goal with options for a future energy upgrade. A comprehensive design report for MEIC has been released recently. The MEIC facility could also accommodate electron and proton/ion collisions in a low CM energy range, covering proton energies from 10 to 25 GeV and ion energies with a similar magnetic rigidity, for additional science reach. In this paper, we present a conceptual design of this low energy collider, LEIC, showing its luminosity can reach above 10{sup 33} cm{sup -2}s{sup -1}. The design specifies that the large booster of the MEIC is converted to a low energy ion collider ring with an interaction region and an electron cooler integrated into it. The design provides options for either sharing the detector with the MEIC or a dedicated low energy detector in a third collision point, with advantages of either a minimum cost or extra detection parallel to the MEIC operation, respectively. The LEIC could be positioned as the first and low cost phase of a multi-stage approach to realize the full MEIC.

Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Nissen, Edward W. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Yunn, Byung C. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Sullivan, Michael K. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

350

JLIFE: THE JEFFERSON LAB INTERACTIVE FRONT END FOR THE OPTICAL PROPAGATION CODE  

SciTech Connect

We present details on a graphical interface for the open source software program Optical Propagation Code, or OPC. This interface, written in Java, allows a user with no knowledge of OPC to create an optical system, with lenses, mirrors, apertures, etc. and the appropriate drifts between them. The Java code creates the appropriate Perl script that serves as the input for OPC. The mode profile is then output at each optical element. The display can be either an intensity profile along the x axis, or as an isometric 3D plot which can be tilted and rotated. These profiles can be saved. Examples of the input and output will be presented.

Watson, Anne M. [JLAB; Shinn, Michelle D. [JLAB

2013-08-01T23:59:59.000Z

351

Executive Summary The Eastern Panhandle (Berkeley, Jefferson, and Morgan counties) has been among the fastest  

E-Print Network (OSTI)

distance from Pittsburgh, PA, Cleveland, OH, Washington DC, and New York City. Within the state Orchestra, and conducted the University Choir in the Kennedy Center in Washington, D.C. During the last Graduate Reid Hartman at the Smithsonian Folklife Festival in Washington, DC 8 school of music | college

Mohaghegh, Shahab

352

Design and implementation of a slow orbit control package at Thomas Jefferson National Accelerator Facility  

SciTech Connect

The authors describe the design and implementation of a C++ client/server based slow orbit and energy control package based on the CDEV software control bus. Several client applications are described and operational experience is given.

Zeijts, J. van; Witherspoon, S.; Watson, W.A.

1997-06-01T23:59:59.000Z

353

High School Research at Jefferson Lab - 3D Model Creation for...  

NLE Websites -- All DOE Office Websites (Extended Search)

these parts look simple, adding these essential pieces was an arduous task requiring human precision, error diagnostics, and critical thinking. It was no small feat creating...

354

Multipass Beam Breakup Study at Jefferson Lab for the 12 GeV CEBAF Upgrade.  

E-Print Network (OSTI)

?? Recirculating linear accelerators (linacs) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac (more)

SHIN, ILKYOUNG

2013-01-01T23:59:59.000Z

355

Jefferson Lab Science Series - Waste: You Can't Just Throw It...  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Impact of Global Burning Previous Video (Environmental Impact of Global Burning) Science Series Video Archive Next Video (Remote Control with Computers) Remote...

356

Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule R100  

SciTech Connect

A series production of eight superconducting RF cavities for the cryomodule R100 was conducted at JLab in 2010. The cavities underwent chemical post-processing prior to vertical high power testing and routinely exceeded the envisaged performance specifications. After cryomodule assembly, cavities were successfully high power acceptance tested. In this paper, we present the achievements paving the way for the first demonstration of 100 MV (and beyond) in a single cryomodule to be operated at CEBAF.

F. Marhauser, W.A. Clemens, M.A. Drury, D. Forehand, J. Henry, S. Manning, R.B. Overton, R.S. Williams

2011-09-01T23:59:59.000Z

357

High-Resolution Search for Pentaquark Partners in Hall A at Jefferson Lab  

DOE Green Energy (OSTI)

We have carried out a high-resolution search ({sigma} = 1.5 MeV) for narrow exotic resonances ({Gamma} < 10 MeV) in the mass range M {approx} 1500-1850 MeV in ep {yields} e'K{sup +}X, ep {yields} e'K{sup -}X and ep {yields} e'{pi}{sup +}X electroproduction at forward angles ({theta}{sup CM} {approx} 6-7 degrees). Such narrow resonances would be candidates for partner states of the speculative {Theta}{sup +}(1540) pentaquark. The experiment employed a 5 GeV CW electron beam incident on a liquid hydrogen target and two high-resolution magnetic spectrometers covering a total center-of-mass solid angle of {Delta}{Omega} {approx} 30-40 msr. We do not observe a statistically significant signal in any of the three reaction channels. Upper limits on the production cross sections were determined to be between 3 and 16 nb/sr, depending on the channel and the assumed width of the state. In addition, precise electroproduction data of the {Lambda}(1116), {Sigma}(1193) and {Lambda}(1520) resonances were obtained for calibration purposes.

Jens-ole Hansen

2005-08-26T23:59:59.000Z

358

Data acquisition system of Moeller polarimeter Hall A Jefferson Lab (in Russian)  

SciTech Connect

The structure, parameters and test results of a new data acquisition system for Moller polarimeter based on flash-ADC are presented. Flash-ADC is electronic module in VME format that consists of high-speed multichannel ADC piped type and FPGA unit on board. The use of flash-ADC has a lot of advantages: reduce of cable interconnections, events registration with higher rate, considerable decreases of system deadtime and, as result, the accuracy of polarization measurements is increases.

Roman Pomatsalyuk

2012-11-01T23:59:59.000Z

359

High School Research at Jefferson Lab - Development of the GRINCH Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonlinear Particle Dynamics Nonlinear Particle Dynamics Previous Project (Nonlinear Particle Dynamics) High School Research Main Index Next Project (Fire Alarm Monitoring Systems) Fire Alarm Monitoring Systems Development of the GRINCH Gas Cherenkov Detector This project was done as a summation of all of the projects I have done referencing A1n and the GRINCH detector. To assist in the preparation of the A1n experiment, I helped develop and model a magnetic shielding box for an array of PMT's in the GRINCH detector. Using this box, as well as a compensation coil, seemed to provide ample shielding from the BigBite magnets magnetic field. The PMT's in the array were salvaged from a detector where they were submerged in water and sustained damage (micro-fractures) on their acceptance windows. By putting a layer of glue

360

Jefferson Lab Science Series - DNA: The Strand That Connects Us All  

NLE Websites -- All DOE Office Websites (Extended Search)

The Mysterious Universe The Mysterious Universe Previous Video (The Mysterious Universe) Science Series Video Archive Next Video (The Science of Chocolate) The Science of Chocolate DNA: The Strand That Connects Us All Dr. Matt Kaplan - University of Arizona Genetics Core March 29, 2011 Learn how the methods and discoveries of human population genetics are applied for personal genealogical reconstruction and anthropological testing. We will start with a short general review of human genetics and the biology behind this form of DNA testing. We will look at how DNA testing is performed and how samples are processed in our laboratory. We will also examine examples of personal genealogical results from Family Tree DNA and personal anthropological results from the Genographic Project. Finally, I will describe the newest project in our laboratory, the DNA

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Browse by Discipline -- E-print Network Subject Pathways: Renewable...  

Office of Scientific and Technical Information (OSTI)

Thomas Jefferson National Accelerator Facility - Hall A Thomas Jefferson National Accelerator Facility - Hall B Thomas Jefferson National Accelerator Facility - Hall C Thomas...

362

Categorical Exclusion (CX) Determination for Transfer of Property at 55 Jefferson (Turnpike Building) (CX-ORO-04-0002)`  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Installing an Ammunition Storage Building and a for Installing an Ammunition Storage Building and a Training Tower at the Central Training Facility (CTF) (CX-ORR-10-0001) The U.S. Department of Energy (DOE) Oak Ridge Office (ORO) proposes to install an ammunition storage building and a training tower at the Central Training Facility (CTF) located on West Bear Creek Road. The existing facilities at the CTF are used for training federal and contract security personnel in the use and safe handling of firearms, security responses, and in the protection of personnel and property. The ammunition storage building would be used for storing larger shipments of training ammunition. Currently, the CTF does not have adequate facilities for truck-load type of deliveries. The proposed action consists of constructing a 40-ft by 50-ft one-story precast

363

Development of digital feedback systems for beam position and energy at the Thomas Jefferson National Accelerator Facility  

SciTech Connect

The development of beam-based digital feedback systems for the CEBAF accelerator has gone through several stages. As the accelerator moved from commissioning to operation for the nuclear physics program, the top priority was to stabilize the beam against slow energy and position drifts (<1 Hz). These slow drifts were corrected using the existing accelerator monitors and actuators driven by software running on top of the EPICS control system. With slow drifts corrected, attention turned to quantifying the higher frequency disturbances on the beam and to designing the required feedback systems needed to achieve the CEBAF design stability requirements. Results from measurements showed the major components in position and energy to be at harmonics of the power line frequencies of 60, 120, and 180 Hz. Hardware and software was installed in two locations of the accelerator as prototypes for the faster feedback systems needed. This paper gives an overview of the measured beam disturbances and the feedback systems developed.

Karn, J.; Chowdhary, M.; Hutton, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

1997-06-01T23:59:59.000Z

364

Finding of no significant impact, decontamination and decommissioning of Battelle Columbus Laboratories in Columbus and West Jefferson, Ohio  

Science Conference Proceedings (OSTI)

This Environmental Assessment has been developed by the Department of Energy in accordance with the requirements of the National Environmental Policy Act of 1969 for the proposed decommissioning of contaminated areas at the Battelle Memorial Institute, Columbus, Ohio. The discussions in Section 1.0 provide general background information on the proposed action. Section 2.0 describes the existing radiological and non-radiological condition of the Battelle Columbus Laboratories. Section 3.0 identifies the alternatives considered for the proposed action and describes in detail the proposed decommissioning project. Section 4.0 evaluates the potential risks the project poses to human health and the environment. Section 5.0 presents the Department of Energy's proposed action. As a result of nuclear research and development activities conducted over a period of approximately 43 years performed for the Department of Energy, its predecessor agencies, and under commercial contracts, the 15 buildings became contaminated with varying amounts of radioactive material. The Department of Energy no longer has a need to utilize the facilities and is contractually obligate to remove that contamination such that they can be used by their owners without radiological restrictions. This Environmental Assessment for the Battelle Columbus Laboratories Decommissioning Project is consistent with the direction from the Secretary of Energy that public awareness and participation be considered in sensitive projects and is an appropriate document to determine action necessary to satisfy the requirements of the National Environmental Policy Act. 30 refs., 6 figs., 9 tabs.

Not Available

1990-01-01T23:59:59.000Z

365

Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab  

SciTech Connect

The design of the cryogenic system for the 11 GeV/c Super High Momentum Spectrometer (SHMS) is presented. A description of the cryogenic control reservoir and the cryogenic transfer line is given. Details of the cryogenic control reservoirs, cryogenic transfer lines, and pressure piping are summarized. Code compliance is ensured through following the requirements of the ASME Pressure Vessel Code and Pressure Piping Code. An elastic-plastic-analysis-based combined safety factor approach is proposed to meet the low stress requirement of ASME 2007 Section VIII, Division 2 so that Charpy V-notch (CVN) impact testing can be avoided through analysis. Material toughness requirements in ASME 2007 Section VIII, Division 2 are adopted as CVN impact testing rules of stainless steel 304 piping at 4.2 K and 77 K. A formula-based combined safety factor approach for pressure piping is also proposed to check whether the impact testing can be avoided due to low stress. Analysis and calculation have shown that no CVN impact testing of base metal and heat affected zones is required for the helium reservoir, nitrogen reservoir, and their relevant piping. Total heat loads to liquid helium and liquid nitrogen are studied also. The total heat load to LHe for SHMS is estimated to be 137 W, and the total load to LN2 is calculated to be 420 W.

Eric Sun, Paul Brindza, Steven Lassister, Mike Fowler

2012-07-01T23:59:59.000Z

366

The Superconducting Horizontal Bend Magnet for the Jefferson Lab's 11 GeV/c Super High Momentum Spectrometer  

SciTech Connect

A collaboration between NSCL and Jlab has developed the reference design and coil winding for Jlab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet. A warm iron ??C?? type superferric dipole magnet will bend the 12 GeV/c particles horizontally by 3?? to allow the SHMS to reach angles as low as 5.5??. This requires an integral field strength of up to 2.1 T.m. The major challenges are the tight geometry, high and unbalanced forces and a required low fringe field in primary beam path. A coil design based on flattened SSC Rutherford cable that provides a large current margin and commercially available fiberglass prepreg epoxy tape has been developed. A complete test coil has been wound and will be cold tested. This paper present the modified magnet design includes coil forces, coil restraint system and fringe field. In addition, coil properties, quench calculations and the full mechanical details are also presented.

S. Chouhan, J. DeKamp, A. Zeller, P. Brindza, S. Lassiter, M. Fowler, E. Sun

2010-06-01T23:59:59.000Z

367

Coupled Transient Finite Element Simulation of Quench in Jefferson Lab's 11 GeV Super High Momentum Spectrometer Superconducting Magnets  

Science Conference Proceedings (OSTI)

This paper presents coupled transient thermal and electromagnetic finite element analysis of quench in the Q2, Q3, and dipole superconducting magnets using Vector Fields Quench code. Detailed temperature distribution within coils and aluminum force collars were computed at each time step. Both normal (quench with dump resistor) and worst-case (quench without dump resistor) scenarios were simulated to investigate the maximum temperatures. Two simulation methods were utilized, and their algorithms, implementation, advantages, and disadvantages are discussed. The first method simulated the coil using nonlinear transient thermal analysis directly linked with the transient circuit analysis. It was faster because only the coil was meshed and no eddy current was modeled. The second method simulated the whole magnet including the coil, the force collar, and the iron yoke. It coupled thermal analysis with transient electromagnetic field analysis which modeled electromagnetic fields including eddy currents within the force collar. Since eddy currents and temperature in the force collars were calculated in various configurations, segmentation of the force collars was optimized under the condition of fast discharge.

E. Sun, P. Brindza, S. Lassiter, M. Fowler, E. Xu

2010-06-01T23:59:59.000Z

368

FPLO  

Science Conference Proceedings (OSTI)

Feb 7, 2007 ... R. Gumeniuk, W. Schnelle, H. Rosner, M. Nicklas, A. Leithe-Jasper, Yu Grin, " Superconductivity in the Platinum Germanides MPt_4Ge_12...

369

www.eia.gov  

U.S. Energy Information Administration (EIA)

Corning City of Corning 7 IC 6 IN Jasper ... Forest Creek Wind Farm LLC ... Hawaii Hawi Renewable Development LLC Hawi Wind Farm V-47 Niagara

370

Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion batteries at elevated temperatures. Author(s), Dawei Liu, Jasper Wright, Wei...

371

Defense Nuclear Facilities Safety Board Review at the Nevada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

air filters. The Board members and staff toured CEF, DAF, and the Joint Actinide Shock Physics Experimental Research (JASPER) facility. Additional discussions of subcritical...

372

Arrowheads  

NLE Websites -- All DOE Office Websites (Extended Search)

fine- grained silicates such as hornstone, chalcedony, agate, jasper, and especially, flint. This dark gray or black rock was found in southern Illinois, Indiana and the Ozarks...

373

Microsoft Word - DSQ Fall 2009_26oct09  

National Nuclear Security Administration (NNSA)

readiness activities which were already planned for achieving Hazard Category 3 non-reactor nuclear facility status. JASPER experiments are planned to resume in the fourth...

374

Submarine Warfare in the A Bibliography  

E-Print Network (OSTI)

......................................orange natural resources...........................russet (rust) Philosophy

375

GrAnt hALL soCietY diaMond leVel  

E-Print Network (OSTI)

.........................................................................Orange Natural Resources....................................................Russet (Rust) Philosophy

Linder, Tamás

376

PROSPERITY IN SOUTH CAROLINA: AN ANALYSIS OF 46 COUNTIES  

E-Print Network (OSTI)

95 Horry 114 26 Newberry 95 Jasper 86 27 Clarendon 95 Kershaw 99 28 Saluda 94 Lancaster 97 29Cormick 91 33 McCormick 91 Marion 89 34 Union 91 Marlboro 76 35 Fairfield 90 Newberry 95 36 Marion 89 Oconee Orangeburg 96 Hampton 90 25 Cherokee 95 Horry 112 26 Fairfield 95 Jasper 94 27 Newberry 95 Kershaw 100 28

Bolding, M. Chad

377

Energy Department Applauds Worlds First Fuel Cell and Hydrogen Energy Station in Orange County  

Energy.gov (U.S. Department of Energy (DOE))

Washington, D.C. The U.S. Department of Energy today issued the following statement in support of the commissioning of the worlds first tri-generation fuel cell and hydrogen energy station to...

378

Apples and oranges: don't compare levelized cost of renewables: Joskow  

SciTech Connect

MIT Prof. Paul Joskow points out that the levelized metric is inappropriate for comparing intermittent generating technologies like wind and solar with dispatchable generating technologies like nuclear, gas combined cycle, and coal. The levelized comparison fails to take into account differences in the production profiles of intermittent and dispatchable generating technologies and the associated large variations in the market value of the electricity they supply. When the electricity is produced by an intermittent generating technology, the level of output and the value of the electricity at the times when the output is produced are key variables that should be taken into account.

NONE

2010-12-15T23:59:59.000Z

379

0301 1-5 KEY VISUAL CUES: man-orange outfit, apple, black ...  

Science Conference Proceedings (OSTI)

... RossInKansasJune2007._-o-_.2007_arrangement_of_districts143_512kb. mp4 0306 QUERY: Find the video of Lions banquet that includes a skit ...

2011-01-06T23:59:59.000Z

380

Orange and White Society Members 2010 Ruby J. Allman and Jordan London  

E-Print Network (OSTI)

Dr. William M. and Jo Ann Parker Marvin McVey and Suzanne Peden Todd and Karen S. Pegram Carl Arthur. Col. Nancy D. and Col. G. Vaden Blackwood Kathryn S. and David J. Blankenship Martha Bourland Sara L. Bowden Emma R. Boyd Dr. Leonard A. and Gail Brabson Dr. Steven M. and Mary Ellen Brewington Sharon K

Tennessee, University of

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TRANSIENT ABSORPTION AND STIMULATED EMISSION OF THE ORGANIC DYE "DISPERSE ORANGE 11"  

E-Print Network (OSTI)

.002), CuSO4·5H2O (0.002), ZnSO4·7H2O (0.002), CoSO4·7H2O (0.002); (NH4)6Mo7O24 (0.001), and H3BO3 (0-flow mode at 3 ml/h using both a peristaltic pump (Masterflex Model 7519-15, Barnant, Barrington, IL, USA) to supply the mineral medium and a syringe pump (Harvard Apparatus Model 22, South Natick, MA, USA

Collins, Gary S.

382

Airport Electrification Strategy at the John Wayne Airport in Orange County, California  

Science Conference Proceedings (OSTI)

As a growth-oriented airport in the Los Angeles Metropolitan area, John Wayne Airport is taking a proactive approach to emission reduction in order to facilitate low environmental impact growth. This report evaluates existing electrification efforts at John Wayne Airport and explores new electrification opportunities in an effort to develop an overall strategy for minimizing emissions in the future.

2010-02-05T23:59:59.000Z

383

Morphological and Temporal Projectile Point Types: Evidence from Orange County, California  

E-Print Network (OSTI)

and shale from the Monterey Formation. Both the medial andmaterial from the Monterey formation and is a small leaf. Itof chert from the Monterey formation. Remnants of notching

Koerper, Henry C; Schroth, Adella B; Mason, Roger D

1994-01-01T23:59:59.000Z

384

Molecular Imaging for Bio-medical Research with Mice  

Molecular Imaging Researchers at the Department of Energys Thomas Jefferson National Accelerator Facility (Jefferson Lab) are collaborating with the ...

385

elementbingo_all.id  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson National Accelerator Facility - Office of Science Education http:education.jlab.org Thomas Jefferson National Accelerator Facility - Office of Science Education http:...

386

The role of superconductivity and cryogenics in the neutrino factory  

E-Print Network (OSTI)

Brookhaven National Laboratory, Upton N Y 11973, USA d. Jefferson Lab,Brookhaven National Laboratory, Upton N Y 11973, U S A d. Jefferson Lab,

2001-01-01T23:59:59.000Z

387

jlabtreasurehunt_2001  

NLE Websites -- All DOE Office Websites (Extended Search)

by: * Looking at signs posted around Jefferson Lab * Watching carefully during your tour * Listening carefully to your guide * What are Jefferson Lab's superconducting cavities...

388

Hands-on Activities - Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

tennis balls down a straight line. Jefferson Lab Treasure Hunt - students take a tour of Jefferson Lab. Looking for the Top Quark - students practice locating coordinates on...

389

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume II. Well test data: testing geopressured geothermal reservoirs in existing wells. Final report  

DOE Green Energy (OSTI)

The following are included in the appendices: field test data, combined and edited raw data, time/pressure data, sample log, reservoir fluid study, gas data, sample collection and analysis procedure, scale monitoring and water analysis, sand detector and strip charts, and Horner-type plot data. (MHR)

Not Available

1980-01-01T23:59:59.000Z

390

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report  

DOE Green Energy (OSTI)

The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

Not Available

1980-01-01T23:59:59.000Z

391

Study of Generalized Parton Distributions and Deeply Virtual Compton Scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory  

SciTech Connect

The exclusive leptoproduction of a real photon is considered to be the "cleanest" way to access the Generalized Parton Distribution (GPD). This process is called Deeply Virtual Compton Scattering (DVCS) lN {yields} lN{gamma} , and is sensitive to all the four GPDs. Measuring the DVCS cross section is one of the main goals of this thesis. In this thesis, we present the work performed to extract on a wide phase-space the DVCS cross-section from the JLab data at a beam energy of 6 GeV.

Baptiste Guegan

2012-11-01T23:59:59.000Z

392

A FULL-ORDER, ALMOST-DETERMINISTIC OPTICAL MATCHING Yu-Chiu Chao, Thomas Jefferson National Accelerator Facility, Newport News, VA 23606  

E-Print Network (OSTI)

to provide input to this algorithm. Preliminary on-line testing on the CEBAF accelerator has positively, the numerical tool for obtaining global solutions, adaptation to realistic matching problems at CEBAF 3.1 Transport Matching at CEBAF In the CEBAF accelerator proper where electron beam passes through 2

393

RF CONTROL REQUIREMENTS FOR THE CEBAF ENERGY UPGRADE C. Hovater, J. Delayen, L. Merminga, T. Powers, C. Reece, Jefferson Lab, Newport News, VA  

E-Print Network (OSTI)

arXiv:physics/000908727Sep2000 MEASURING AND CONTROLLING ENERGY SPREAD IN CEBAF G. A. Krafft, J spread from a CEBAF-type machine to be relatively small; the measured energy spread from CEBAF at 4 Ge, the various subsystems contributing to the energy spread of a CEBAF-type accel- erator are reviewed, as well

394

The Q{sub weak} Experiment at Jefferson Lab--A Search for New Physics at the TeV Scale  

Science Conference Proceedings (OSTI)

The Q{sub weak} collaboration will make the first precision determination of the proton's weak charge, Q{sub W}{sup P} = 1-4 sin{sup 2} {theta}{sub w}, from a measurement of the parity-violating asymmetry in elastic electron-proton scattering at very low momentum transfer. The results will determine the proton's weak charge with a 4% total error. The Standard Model makes a firm prediction of Q{sub W}{sup P}, based on the running of the weak mixing angle, sin{sup 2} {theta}{sub w}, from the Z{sup 0} pole down to low energies, corresponding to a 10{sigma} effect in this experiment. Any significant deviation of sin{sup 2} {theta}{sub w} from the Standard Model prediction at low Q{sup 2} would be a signal of new physics, wheras agreement would place new and significant constraints on possible Standard Model extensions at the TeV mass scale.

Pitt, Mark L. [Institute for Particle, Nuclear, and Astronomical Sciences and Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

2009-12-17T23:59:59.000Z

395

Convergence Studies of Thermal and Electromagnetic Transient Quench Analysis of 11 GeV Super High Momentum Spectrometer Superconducting Magnets in Jefferson Lab  

Science Conference Proceedings (OSTI)

This paper presents results of convergence studies of transient thermal and electromagnetic quench analysis of five Super High Momentum Spectrometer (SHMS) superconducting magnets: HB, Q1, Q2, Q3, and Dipole, using Vector Fields Quench analysis codes. The convergence of the hot spot temperature and solution solve times were used to investigate the effects of element types, mesh densities, and tolerance criteria. The comparisons between tetrahedral elements and hexahedral elements was studied, and their advantages and disadvantages were discussed. Based on the results of convergence studies, a meshing guideline for coils is presented. The impact of iteration tolerance to the hot spot temperature was also explored, and it is found that tight tolerances result in extremely long solve times with only marginal improvements in the results.

Eric Sun, Paul Brindza, Steve Lassiter, Mike Fowler, E. Xu

2010-11-01T23:59:59.000Z

396

Search for pentaquark partners [Theta]??, [Sigma]? and N? in H (e,e'K [pi])) X reactions at Jefferson Lab Hall A  

E-Print Network (OSTI)

In 1997, D. Diakonov et al. using a soliton model predicted a SU(3)F flavor antide-cuplet of pentaquarks. The most striking prediction using this symmetry group is a narrow exotic state, E+(1540), which has quark component ...

Qiang, Yi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

397

Audit Report: OAS-L-12-05 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Audit Report: OAS-L-12-05 April 23, 2012 The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site The Department of Energy, National Nuclear Security Administration's (NNSA), Joint Actinide Shock Physics Experimental Research (JASPER) facility plays an integral role in the certification of the Nation's nuclear weapons stockpile. In February 2009, JASPER, located at the Nevada National Security Site, discontinued operations and all JASPER experiments with Special Nuclear Materials ceased when an abnormal amount of contamination was identified as a result of an alpha plutonium experiment. Our review disclosed NNSA returned the JASPER Facility to full operational status within the budgeted cost and schedule milestones

398

Environmental Assessment for the Design and Construction of a...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Jasper County Coop Pleasant Ridge Elevator. Daily use of the track consists of an Amtrak train into and out of Chicago, eight through freight trains and two local freight...

399

EA 1517: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment EA 1517: Final Environmental Assessment Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana Based on action by the U.S. Congress, the U.S....

400

Best of the Canadian RoCkies  

E-Print Network (OSTI)

to beautiful Moraine Lake; the crystal-clear lake is nestled in the Valley of the Ten Peaks. Return to your adventure on the Athabasca River led by Rocky Mountain River Guides; and a trip on the Jasper Tramway

Connor, Ed

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gemstones  

E-Print Network (OSTI)

Pd to Pt/R. Source: no mine known, but rock crystal depositsMK/2IP. Source: no mine known, but granitic rocks with largeSource: no mine known, but red jasper is commonly associated with metavolcanic rocks

Harrell, James

2012-01-01T23:59:59.000Z

402

Accumulation and Metabolism of Halogenated Compounds in Sea Turtles  

E-Print Network (OSTI)

Lexington: The University of Kentucky Press, 35-46. JewellLexington, KY: The University of Kentucky Press, xi- xxx.Lexington: The University of Kentucky Press, 35-46. Jaspers

Richardson, Kristine Lynn

2010-01-01T23:59:59.000Z

403

100th shot for LLNL's 'gun in the desert'  

NLE Websites -- All DOE Office Websites (Extended Search)

09262012 | NR-12-09-04 100th shot for LLNL's 'gun in the desert' Robert H Hirschfeld, LLNL, (925) 422-2379, hirschfeld2@llnl.gov Printer-friendly The JASPER two-stage gas gun, as...

404

Record of Decision for the Orlando Gasification Project, Orlando, Orange County, FL (DOE/EIS-0383)(04/06/07)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 Federal Register 43 Federal Register / Vol. 72, No. 66 / Friday, April 6, 2007 / Notices c. Submission of Paper Applications by Hand Delivery. If you submit your application in paper format by hand delivery, you (or a courier service) must deliver the original and two copies of your application by hand, on or before the application deadline date, to the Department at the following address: U.S. Department of Education, Application Control Center, Attention: (CFDA Number 84.184E), 550 12th Street, SW., Room 7041, Potomac Center Plaza, Washington, DC 20202-4260. The Application Control Center accepts hand deliveries daily between 8 a.m. and 4:30 p.m., Washington, DC time, except Saturdays, Sundays, and Federal holidays. Note for Mail or Hand Delivery of Paper Applications: If you mail or hand deliver

405

H&SS Event Archives Event Title: The World War II Experience of Orange County Nikkei in History and  

E-Print Network (OSTI)

, except for a cousin and a great aunt, were killed by the U.S. military's atomic bombing of that city, the youngest of 9 children. On August 6, 1945, her father's entire family in his hometown of Hiroshima, Japan

de Lijser, Peter

406

Appendix A: CMAP Capital Improvement Recommendations and Transit Line History for the Red, Orange and Yellow Lines  

E-Print Network (OSTI)

identified 3 Need for new revenue sources, public-private partnership 4 Funding has been secured 5 Capital

Illinois at Chicago, University of

407

Fatality and Injury Severity of Older Adult Motor Vehicle Collisions in Orange County, California, 1998-2007  

E-Print Network (OSTI)

Report of Fatal and Injury Motor Vehicle Traffic Collisions.of state regulations on motor vehicle fatalities for youngerXIV, NO . 1 : February 2013 motor vehicle traffic crashes.

2013-01-01T23:59:59.000Z

408

Science Education Mailing Lists  

NLE Websites -- All DOE Office Websites (Extended Search)

programs that are open to the general public. Events, such as the Jefferson Lab Science Series and the Jefferson Lab Open House, will be announced through this list. To...

409

How much money does it cost a year to...  

NLE Websites -- All DOE Office Websites (Extended Search)

How much money does it cost a year to run Jefferson Lab? Do you get funds from an entrepreneurship? The budget for Jefferson Lab is around 70 million dollars per year. That comes...

410

CX-005076: Categorical Exclusion Determination  

Energy.gov (U.S. Department of Energy (DOE))

Jefferson County Sheriff's Department Propane Infrastructure ProjectCX(s) Applied: B5.1Date: 01/27/2011Location(s): Jefferson, WisconsinOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

411

Notice of Availability of a Supplement Analysis for Transportation, Storage, Characterization, and Disposal of Transuranic Waste Currently Stored at the Batelle West Jefferson Site Near Columbus, Ohio (DOE/EIS-0200-SA-02) (09/08/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Register Federal Register / Vol. 70, No. 173 / Thursday, September 8, 2005 / Notices meeting, NIST scientists presented preliminary reports on technical work tasks defined by resolutions adopted at the January plenary meeting and one additional resolution was adopted by the Development Committee. The Development Committee approved with edits initial recommendations for voluntary voting system guidelines at the April 20 and 21, 2005 meeting. The document, Voluntary Voting System Guidelines Version 1: Initial Report was submitted by the Development Committee to the EAC as required by HAVA on May 9, 2005. The EAC is currently accepting public comment on proposed voluntary voting system guidelines through September 30, 2005. Proposed guidelines and public comment procedures are available at

412

We thank L. Anderson, D. Crowley, G. Friedman, P. Gilmer, P. Hackney, B. Jefferson, N. Koban, P. Landweber, A. Lindenstrauss, T. Nguyen, Q. Khan, N. St. John, A. Wilkerson,  

E-Print Network (OSTI)

. Landweber, A. Lindenstrauss, T. Nguyen, Q. Khan, N. St. John, A. Wilkerson, E. Wilson, B. Wong, J. Skryzalin is as follows. For each q Z one is given an indexed set {bj Fq(Mj)}jJ where Mj M such that for every X A, Fq : (Dn , Sn-1 ) (X, A), i I so that the set theoretic function A iI (int Dn i ) X given

Davis, James F.

413

Brookhaven National Laboratory - Long Island Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

414

Sandia National Laboratories - Las Positas Regional Science Bowl...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

415

Sandia National Laboratories/Las Positas College Regional Science...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

416

Brookhaven National Laboratory - Long Island | U.S. DOE Office...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

417

Lawrence Berkeley National Laboratory Regional Science Bowl ...  

Office of Science (SC) Website

Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and...

418

Laboratory Directed Research and Development Program FY 2001  

E-Print Network (OSTI)

Brookhaven National Laboratory to measure the coherent far-infrared emitted from a bend magnet in the Jefferson Lab

Hansen, Todd; Levy, Karin

2002-01-01T23:59:59.000Z

419

Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system  

Science Conference Proceedings (OSTI)

In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design

V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

2002-01-01T23:59:59.000Z

420

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson City - Property Assessed Clean Energy Missouri Commercial Residential Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Search Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Science Education at Jefferson Lab Send us your suggestions and we'll see what we can do Loading...

422

2010 Biomedical Technology Partnership Forum (6/10)  

Science Conference Proceedings (OSTI)

... of Jefferson Lab's Nuclear Physics Detector ... 12:10 TREATMENT TECHNOLOGY: Novel Therapeutics ... Novel Technologies for Cancer Therapy and ...

2013-03-11T23:59:59.000Z

423

VCE--Stafford County in the Rowser Building  

E-Print Network (OSTI)

LOCATION-- VCE--Stafford County in the Rowser Building 1739 Jefferson Davis Highway Stafford, VA 22555 Directions to VCE--Stafford From Culpeper (Route 3) Follow Route 3 to north Jefferson Davis Highway (US Route 1); continue north on Jefferson Davis Highway into Stafford County (approx. 2 miles

Liskiewicz, Maciej

424

Figure 1 -Spectra from all bubbled solutions. With organic functional group absorption regions; Acids-Green, Amines-Orange, Alkane-Blue and Alcohols  

E-Print Network (OSTI)

, 15 (2006). Investigating Concentration and Composition of Aerosol Particles of Seawater change is impacted by both anthropogenic and natural sources. Particles in the atmosphere may increase particles suspended in a gas, and test two different types of aerosol-producing instruments to collect

Russell, Lynn

425

teacher_packet_partial  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Jefferson Lab Physics Fest Classroom Activity Pack http://education.jlab.org/ Introduction to Jefferson Lab Jefferson Lab is a laboratory for basic research in nuclear physics. Nuclear physics is the science of studying the nucleus of the atom. Jefferson Lab also works with industry to develop technologies for businesses to use and with schools to motivate students and assist teachers. Jefferson Lab's mission is to provide scientists around the world with opportunities to experiment with and learn more about nucleons. Jefferson Lab's main instrument is a machine, called an accelerator, that is able to make electrons go really fast. The accelerator is in an underground, racetrack-shaped tunnel, 1.4 km around, that delivers a beam of electrons to experiments in three large experimental halls called end stations.

426

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

FLT TOU RTP Consolidated Edison Niagara Mohawk Orange andRTP FLT TOU Consolidated Edison Niagara Mohawk FLT TOU RTPFLT TOU RTP Consolidated Edison Niagara Mohawk Orange and

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

427

3/14/08 5:40 PMGeotimes -March 2008 -Dunes: they're electric Page 1 of 2http://www.geotimes.org/mar08/article.html?id=nn_dunes.html  

E-Print Network (OSTI)

the strategic petroleum reserve right now, considering oil prices are at historic highs? Yes No Don't know of the particles never get more than a few centimeters off the ground. Now, new research shows that electric fields at the University of Michigan in Ann Arbor, and doctoral student Jasper Kok speculate that all the wind

Michigan, University of

428

No Slide Title  

Science Conference Proceedings (OSTI)

... yellow (?) window glass broken orange (?) granite and underlying truss damage red (?) damage to exterior structural steel ...

2011-10-05T23:59:59.000Z

429

Microsoft Word - CX_Memo_Fairmount.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Project Manager - TERR-3 Proposed Action: Fairmount Substation Equipment Acquisition Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.24 Property Transfers. Location: Jefferson County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: In response to a request by Jefferson County Public Utility District No.1 (Jefferson PUD), BPA is proposing to take ownership of equipment owned by Jefferson PUD within BPA's existing Fairmount Substation in Jefferson County, WA. Jefferson PUD, a Network Integration Customer of BPA, would sell its 115-kilovolt (kV) line terminal in Bay

430

About | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About About Thomas Jefferson Site Office (TJSO) TJSO Home About Organization Chart .pdf file (136KB) Jobs Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 About Print Text Size: A A A RSS Feeds FeedbackShare Page The TJSO Site Office represents the Department of Energy (DOE) in conducting business with the Jefferson Science Associates, LLC External link (JSA) and others at the Thomas Jefferson National Accelerator Facility External link (also known as TJNAF) in Newport News, Virginia. Located at Jefferson Lab, the Site Office reports to the Deputy Director for Field Operations, Office of Science, with support from the DOE Oak Ridge Office (ORO) in Oak Ridge,

431

CX-005671: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-005671: Categorical Exclusion Determination Lafarge Groundwater Monitoring Wells (NREL 11-023) CX(s) Applied: B3.1 Date: 04202011 Location(s): Jefferson County,...

432

Application Deadline - February 24, 2014  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab High School Summer Honors Program are chosen on the basis of demonstrated skills and merit. Dependents of Jefferson Lab employees are not eligible for this program....

433

Oobleck - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

weird substance. As students participate in this activity, they will develop important skills in scientific observation. Scientists at Jefferson Lab use a similar process to...

434

NERSC/DOE NP Requirements Workshop Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Accelerators Joseph Carlson Los Alamos National Laboratory Low Energy Nuclear Theory Robert Edwards Jefferson Laboratory Lattice QCD Jon Engel University of North...

435

Maps of Selected State Subdivisions  

U.S. Energy Information Administration (EIA)

Martin St. Mary Avoyelles Rapides La Salle Catahoula Con-cordia West Baton Rouge Jef-fer-son St. John the Baptist NORTH SOUTH Webster Lafayette Louisiana - North ...

436

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Jennifer Knipe 01012010-12312011 Wheat Ridge, Jefferson County, CO A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell - Based Combined...

437

The Shape of Things  

NLE Websites -- All DOE Office Websites (Extended Search)

Privacy and Security Notice Math and Science Activities from Jefferson Lab The Shape of Things How can scientists study something they can't see? In this experiment,...

438

Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

A A RSS Feeds FeedbackShare Page Applicationinstrumentation: Land Mine detection and security imaging using THz radiation Developed at: Thomas Jefferson National Laboratory...

439

Physics Out Loud - Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Previous Video (Neutron) Physics Out Loud Main Index Next Video (Nucleus) Nucleus Niobium The element niobium is often used as a superconductor. Watch as Jefferson Lab...

440

Educational Games for General Science  

NLE Websites -- All DOE Office Websites (Extended Search)

site that provides educational science games. Play games about animals, plants, the solar system, weather, and much more. Jefferson Labs - Games and Puzzles Play science and...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

442

Current Projects | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Thomas Jefferson Site Office (TJSO) TJSO Home About TJSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas...

443

June 13, 2008 Technology License/CRADA Opportunity  

several that has either been identified as having an interest in Jefferson Science ... please contact Dr. James R. Boyce ... process results in increased time in ...

444

Former Worker Medical Screening Program - Battelle Laboratories...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Jefferson Former Construction Workers Former Worker Medical Screening Program (FWP) Project Name: Building Trades National Medical Screening Program Covered DOE Site: Battelle...

445

JLab Security Banner  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Center | Jefferson Lab Home | Experiments | The Lab | News Privacy and Security Notice Security Notice This is a Federal computer system and is the property of the United...

446

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL Jefferson Park CNG Refueling Station, Chicago The objective of this project is the construction of a compressed natural gas (CNG) fueling station to support the deployment of...

447

Physics Out Loud - Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Previous Video (Laser) Physics Out Loud Main Index Next Video (Neutron) Neutron Matter David Lawrence, a Jefferson Lab physicist, discusses matter...

448

ZAP User's Manual  

E-Print Network (OSTI)

AC03-76SF00098. Now at CEBAF, 12070 Jefferson Ave. , NewportLaboratory J oseph J. Bisognano CEBAF IL DESCRIPTION In this

Bisognano, J.J.

2010-01-01T23:59:59.000Z

449

Categorical Exclusion Determinations: Strategic Petroleum Reserve...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B1.3 Date: 06202011 Location(s): Jefferson County, Texas Office(s): Strategic Petroleum Reserve Field Office June 13, 2011 CX-006247: Categorical Exclusion Determination...

450

ESnet Site List  

NLE Websites -- All DOE Office Websites (Extended Search)

CA) JLAB Thomas Jefferson National Accelerator Facility (Newport News, VA) KCP Kansas City Plant (Kansas City, MO) KCP-ALBQ Kansas City Plant (Albuquerque, NM) LANL Los Alamos...

451

Workplace Violence at DOE Sites: An Update Through 2004 (ORISE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office 52605 Jefferson Lab, Southeastern Universities Research Assoc. 61605 Kansas City Plant, Honeywell FM&T 53105 Knolls Atomic Power Laboratory No response Lawrence...

452

Physics Out Loud - Electron Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

(Electromagnetic Force) Physics Out Loud Main Index Next Video (Electrons) Electrons Electron Scattering Jefferson Lab's Hall A Leader, Cynthia Keppel, explains how nuclear...

453

Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of light? At Jefferson Laboratory, construction is underway to upgrade the Continuous Electron Beam Accelerator Facility (CEBAF) and the CEABF Large Acceptance Spectrometer...

454

EA-1747: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Finding of No Significant Impact EA-1747: Finding of No Significant Impact Rocky Flats Surface Water Configuration, Jefferson County, Colorado Surface Water Configuration...

455

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

http:energy.govemdownloadsintegrated-waste-treatment-facility-fact-sheet Article Lasers, Electron Beams and New Years Resolutions The electron beam that powers Jefferson...

456

hot and cold_2000  

NLE Websites -- All DOE Office Websites (Extended Search)

Question: Bonus Question: Bonus Question: Bonus Question: Bonus Question: How are superconductors used in the cryomodules at Jefferson Lab? Reading About Superconductivity...

457

High School | ScienceLab, Education Resources from the U.S. Department...  

Office of Scientific and Technical Information (OSTI)

GLOBE Steps to a Successful Student Research Paper Jefferson Lab Student Zone National Energy Research Scientific Computing Center National Science Bowl High School...

458

Elementary School | ScienceLab, Education Resources from the...  

Office of Scientific and Technical Information (OSTI)

of Environmental Health Sciences Fermilab Classes, Activities and Resources Fossil Energy Activities Jefferson Lab Games and Puzzles Developed by the Office of Scientific and...

459

DOE Announces $375,000 Grant to Lincoln University and the University...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

engineering program. The partnership between Lincoln University, a minority-serving higher education institution in Jefferson City, and the University of Missouri-Rolla...

460

What is an accelerator operator?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator operator? First I'll explain the education one must have in order to be considered for an Accelerator Operator position. Jefferson Lab's typical Accelerator...

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Human Accelerator - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons. The cavities are arranged in two long, straight sections called Linear Accelerators. In this activity, students pass tennis balls down a line like Jefferson Lab's...

462

Baryons 2002: Outlook  

E-Print Network (OSTI)

Summary and outlook presented at the 9th International Conference on the Structure of Baryons (BARYONS 2002), Jefferson Lab, March 3-8, 2002

Wolfram Weise

2002-06-05T23:59:59.000Z

463

Hampton2012report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Jefferson National Accelerator Laboratory. The summer 2012 workshop included a tour of the CMS e-Lab, talks by Vassilis Vassilikopolous and Josh Erlich, and explorations...

464

spellingsearch_2001  

NLE Websites -- All DOE Office Websites (Extended Search)

the effects of liquid nitrogen on a flower. 4. It was interesting to tour Jefferson Lab and see the sientists at work. 5. One of my favrite...

465

WISE Home Energy Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The WISE Home Energy Program provides up to 750 in energy efficiency rebates for homeowners in Cullman, Madison, Jefferson, Shelby, Morgan, Limestone and Lawrence counties. A...

466

Abstract for David Richards  

NLE Websites -- All DOE Office Websites (Extended Search)

Richards Jefferson Laboratory, Newport News Lattice QCD: Ab Initio Computations in Hadronic Physics Lattice gauge theory allows ab initio computations of QCD in the...

467

Jurisdiction Members Contact Info Key Staffers  

E-Print Network (OSTI)

. Inhofe (R-OK), Ranking · David Vitter (R-LA) · John A. Barrasso (R-WY) · Jefferson Beauregard "Jeff

468

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Collins Rd., Jefferson, WI Biofuels Retail Availability Improvement Network - E85 Infrastructure Installation Installation of E85 10,000 gallon storage tank, one fuel dispenser...

469

Mid America Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Mid America Biofuels LLC Jump to: navigation, search Name Mid-America Biofuels LLC Place Jefferson City, Missouri Zip 65102 Sector Biofuels Product Joint Venture of Biofuels LLC,...

470

CX-003885: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-003885: Categorical Exclusion Determination Jefferson Park Compressed Natural Gas Refueling Station, Chicago CX(s) Applied: B5.1 Date: 09102010 Location(s):...

471

NP Science Network Requirements  

E-Print Network (OSTI)

national scientific user facilities. Other agencies useEnergy (DOE). As a user facility for scientists worldwide,Lab. Jefferson Lab is a user facility offering capabilities

Dart, Eli

2013-01-01T23:59:59.000Z

472

Medical Imaging for Breast Cancer - Reducing the Need for Biopsy  

Jefferson Lab is a Department of Energy national laboratory for nuclear physics research. ... Medical Imaging for Breast Cancer - Reducing the Need for Biopsy

473

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

474

Step-by-Step Instructions  

NLE Websites -- All DOE Office Websites (Extended Search)

Phelps York Dakota Hooker Pierce Dawes Howard Platte Dawson Jefferson Polk Windows Insulation Foundation Fenestration U-Factor Skylight U-Factor Glazed Fenestration SHGC Ceiling...

475

The GLUEX Experiment  

Science Conference Proceedings (OSTI)

The GLUEX experiment to be constructed in the new Hall D at Jefferson Lab as part of the 12 GeV upgrade

M. R. Shepherd; on behalf of the GLUEX Collaboration

2009-01-01T23:59:59.000Z

476

Physics Out Loud - Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Previous Video (Hybrid Meson) Physics Out Loud Main Index Next Video (Matter) Matter Laser Learn all about different types of lasers with Jefferson Lab's Michelle Shinn, a...

477

Sustainable Energy: Choosing Among Options  

E-Print Network (OSTI)

P.O. Nilore, Islamabad 45650, Pakistan. TEL: 92-51-2207381.by Umar Karim Mirza Pakistan Institute of Engineeringand Applied Sciences, Pakistan Jefferson W. Tester,

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

478

Research in Theoretical Nuclear Physics  

SciTech Connect

A theoretical study of problems relevant to the hadron physics program at Jefferson Laboratory and at other laboratories around the world.

Capstick, Simon; Robson, Don

2005-03-18T23:59:59.000Z

479

Data:68338e06-fbad-49e2-a1c3-16cfad6f4bd2 | Open Energy Information  

Open Energy Info (EERE)

6-fbad-49e2-a1c3-16cfad6f4bd2 6-fbad-49e2-a1c3-16cfad6f4bd2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (1000 W Mercury Vapor) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):

480

Data:537e7901-a057-48d1-ac7a-c08908a00772 | Open Energy Information  

Open Energy Info (EERE)

-a057-48d1-ac7a-c08908a00772 -a057-48d1-ac7a-c08908a00772 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (400 W Mercury Vapor) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

Note: This page contains sample records for the topic "orange jefferson jasper" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Independent Activity Report, Nevada National Security Site - April 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April April 2011 Independent Activity Report, Nevada National Security Site - April 2011 April 2011 Nevada National Security Site Operational Readiness Review for the Joint Actinide Shock Physics Experimental Research Facility Restart Pre-visit [HIAR-NNSS-2011-04-28] In coordination with the National Nuclear Security Administration (NNSA) Service Center, the Office of Health, Safety and Security (HSS) site lead participated in a pre-visit for the NNSA Operational Readiness Review (ORR) of the Joint Actinide Shock Physics Experimental Research (JASPER) facility restart conducted April 25-28, 2011. The results of the pre-visit were the completion of required site access training, coordination with Site Office and JASPER facility counterparts regarding the breadth and scope of the ORR and obtaining applicable

482

Data:30749390-5e8a-4d3a-8632-dc9055c8eb89 | Open Energy Information  

Open Energy Info (EERE)

90-5e8a-4d3a-8632-dc9055c8eb89 90-5e8a-4d3a-8632-dc9055c8eb89 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (1000 W HPS) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

483

Data:Ec12962e-09fb-4ff6-8234-7ecbca5b0251 | Open Energy Information  

Open Energy Info (EERE)

2962e-09fb-4ff6-8234-7ecbca5b0251 2962e-09fb-4ff6-8234-7ecbca5b0251 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (150 W HPS) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

484

Data:Af7db50d-1100-4a01-b967-0623f3704942 | Open Energy Information  

Open Energy Info (EERE)

0d-1100-4a01-b967-0623f3704942 0d-1100-4a01-b967-0623f3704942 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (Traffic Signals) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

485

Data:4df6110d-4251-4b71-bd39-62d2b7169dc8 | Open Energy Information  

Open Energy Info (EERE)

10d-4251-4b71-bd39-62d2b7169dc8 10d-4251-4b71-bd39-62d2b7169dc8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (400 W HPS) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

486

Data:1464cf28-4ab5-4ee1-9f4a-c25020527130 | Open Energy Information  

Open Energy Info (EERE)

8-4ab5-4ee1-9f4a-c25020527130 8-4ab5-4ee1-9f4a-c25020527130 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Jasper, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Municipal Street Light (175 W Mercury Vapor) Sector: Lighting Description: Applicable only for street, alley and park lighting and traffic signals of the City of Jasper. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

487

Jobs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

TJSO Home » About » TJSO Home » About » Jobs Thomas Jefferson Site Office (TJSO) TJSO Home About Organization Chart .pdf file (136KB) Jobs Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Thomas Jefferson Site Office is located in Newport News, Virginia. All open federal positions listed below are posted on USAJobs.gov External link . (Thomas Jefferson Site Office Organization Chart .pdf file (136KB)) Position Details Job Number Opened Closes No positions in TJSO are currently open Important note: Please read job opportunity announcements carefully to identify the

488

D:\DOCUME~1\0086.VEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2002 8, 2002 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Jefferson City Oil Co., Inc. Case Number: VEE-0086 Date of Filing: April 18, 2002 On April 18, 2002, Jefferson City Oil Co., Inc. (Jefferson City Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). Jefferson City Oil requests that it be relieved of the requirement to prepare and file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782(b)). As explained below, we have concluded that Jefferson City Oil has not demonstrated that it is entitled to exception relief. I. Background The DOE's Energy Information Administration is authorized to collect, analyze, and disseminate energy

489

EA-1384: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1384: Final Environmental Assessment EA-1384: Final Environmental Assessment EA-1384: Final Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia In this EA, the DOE reports the results of an analysis of the potential environmental impacts from proposed improvements to the Thomas Jefferson National Accelerator Facility (TJNAF or Jefferson Lab) in Newport News, Virginia. The proposed action evaluated in this EA involves improvements to support the operation of Jefferson Lab. DOE has prepared this EA to determine the potential for adverse impacts from radiation produced with the operation of the Helios, disturbance of land from construction, effects on the offsite population, and other sources of potential impact. Environmental Assessment Proposed Improvements at the Thomas Jefferson

490

Court Release # 08-11 Visit Our Web Site: http://www.occourts.org  

E-Print Network (OSTI)

, and the San Onofre nuclear power generating station. Past Grand Jury investigations have focused on timely issues such as compensation paid by Orange County cities, the condition and management of Orange County

Loudon, Catherine

491

Creating web applications for spatial epidemiological analysis and mapping in R using Rwui  

E-Print Network (OSTI)

, pink > 5000, orange 500, yellow 0.5%, pink > 0.05%, orange > 0.005%, yellow < 0.005%). Newton et al. Source Code for Biology and Medicine 2011, 6:6 http...

Newton, Richard; Deonarine, Andrew; Wernisch, Lorenz

2011-04-01T23:59:59.000Z

492

Retail Unbundling - U.S. Summary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... modeled after Orange and Rockland Companys successful Power Switch ... the Department of Telecommunications and ... marketer access to consumption ...

493

2011 Jobs and Innovation Accelerator Challenge Projects  

Science Conference Proceedings (OSTI)

... Identified Region: Aitkin County, Carlton County, Cook County, Crow Wing ... Grantee Name: The Solar Energy Consortium (EDA) Orange County ...

2012-05-21T23:59:59.000Z

494

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Water Heating Orange and Rockland Utilities, Inc. NYSEG (Electric) - Small Business Lighting Retrofit Program New York Commercial Appliances & Electronics...

495

Validation of a 16-Locus Fluorescent Multiplex System*  

Science Conference Proceedings (OSTI)

... Orange County Sheriff's Of- fice, Pennsylvania State Police,7 Promega Corporation, San Diego Sheriff's Office, South Dakota Forensic Laboratory, ...

2005-05-10T23:59:59.000Z

496

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 14730 of 26,764 results. 21 - 14730 of 26,764 results. Page Battelle Laboratories-West Jefferson, Former Construction Worker Screening Project Battelle Laboratories-West Jefferson, Former Construction Worker Screening Project http://energy.gov/hss/battelle-laboratories-west-jefferson-former-construction-worker-screening-project Page Fernald, Former Construction Worker Screening Projects Fernald, Former Construction Worker Screening Projects http://energy.gov/hss/fernald-former-construction-worker-screening-projects Page Mound, Former Construction Worker Screening Projects Mound, Former Construction Worker Screening Projects http://energy.gov/hss/mound-former-construction-worker-screening-projects Page Portsmouth Gaseous Diffusion Plant Former Workers, Construction Worker Screening Projects

497

Audit Report: IG-0629 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Audit Report: IG-0629 December 8, 2003 Central Office Expenses for the Thomas Jefferson National Accelerator Facility The Southeastern Universities Research Association is the Department of Energy's (Department) contractor for the operation of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The Jefferson Lab contract provided for reimbursement of central office expenses that are allowed by the cost principles contained in Office of Management and Budget Circular A-122, Cost Principles for Non-Profit Organizations. In general, central office expenses are general and administrative expenses incurred by a contractor. Among other things, for a cost to be allowable it must be reasonable, allocable, conform to limitations and exclusions set forth in

498

Physics Fest Schedule and Current Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Fest Physics Fest In order to accommodate as many classes as possible, at least one day each month during the school year is set aside for groups of students to attend a presentation in Jefferson Lab's auditorium, located in CEBAF Center [Download a Map] [Locate Jefferson Lab on Google Maps] [Display a QR Code for Scanning]. This two-hour presentation (10:00 - 12:00) includes a brief interactive summary of the science and technology at Jefferson Lab followed by the Deep Freeze (cryogenics) and Hot Stuff (plasmas) presentations. Seating is limited. If your class is attending a Physics Fest presentation, you may wish to download a Physics Fest Classroom Activity Pack. This file contains general information about Jefferson Lab and atoms, a vocabulary list with related

499

CX-004697: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

697: Categorical Exclusion Determination 697: Categorical Exclusion Determination CX-004697: Categorical Exclusion Determination Jefferson County Alabama New Activites - Statement of Work CX(s) Applied: A9, A11, B5.1 Date: 12/14/2010 Location(s): Jefferson County, Alabama Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Jefferson County, Alabama proposes to use $798,783 of Energy Efficiency and Conservation Block Grant (EECBG) funds for the following 6 recently added project activities which are bounded by the signed statement of work (SOW) and are therefore categorically excluded. Money is available for these additional 6 projects from saving realized after performing the original 9 Activities proposed under this SOW. Activity 10 and Activity 11: Lighting and boiler replacement at Jefferson County Courthouse Secure Parking

500

NREL: News - NREL's Economic Benefit to Colorado totals $814...  

NLE Websites -- All DOE Office Websites (Extended Search)

413 NREL's Economic Benefit to Colorado totals 814.8 Million in FY 2012 Energy laboratory is one of Jefferson County's largest employers February 22, 2013 The net economic benefit...