Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Performance optimization of rotary dehumidifiers  

SciTech Connect

A rotary dehumidifier consists of a rotating porous matrix made of a desiccant with mechanically supporting materials. The dehumidification performance of a rotary dehumidifier wheel depends on its rotational speed, the sorption properties of the desiccant, the heat and mass transfer characteristics of the matrix, and the size of the dehumidifier. The effect of the rotational speed on the dehumidification performance of a rotary dehumidifier has been investigated by Zheng, Worek, and Novosel (1993). this paper extends that previous work and investigates the effects of desiccant sorption properties, the heat and mass transfer characteristics, and the size of the rotary dehumidifier on the dehumidification performance. The results show that the using desiccant materials in a rotary dehumidifier with different adsorption characteristics results in a wide variation in dehumidification performance. However, the maximum performance of a rotary dehumidifier occurs for a desiccant material having an isotherm shape that can be characterized to have a separation factor of 0.07. Also, as the desiccant moisture uptake increases, the dehumidifier performance also increases. However, the performance improvement for a desiccant matrix having a maximum moisture uptake of larger than 0.25 by weight is not significant. The heat and mass transfer properties and the size of rotary dehumidifier are characterized by the number of transfer units NTU. Generally, the larger the NTU, the better dehumidification performance. However, similar to the maximum moisture uptake, when the NTU is larger than 12, the performance will not improve significantly. Also, the dehumidifier with the most favorable adsorption characteristic has a slower rotational speed, which results in lower power requirements to rotate the desiccant wheel and smaller carry-over losses.

Zheng, W.; Worek, W.M. [Univ. of Chicago, IL (United States). Dept. of Mechanical Engineering; Novosel, D. [Gas Research Inst., Chicago, IL (United States)

1995-02-01T23:59:59.000Z

2

Rim for rotary inertial energy storage device and method  

DOE Patents (OSTI)

The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

Knight, Jr., Charles E. (Knoxville, TN); Pollard, Roy E. (Powell, TN)

1980-01-01T23:59:59.000Z

3

Generation of Optimal Unit Distance Codes for Rotary Encoders through Simulated Evolution  

Science Conference Proceedings (OSTI)

An evolutionary algorithm is used to generate unit distance codes for absolute rotary encoders. The target is to obtain a code suitable for disk size reduction, or for resolution increase, thus overcoming the limitations of conventional Gray codes. Obtained ...

Stefano Gregori; Roberto Rossi; Guido Torelli; Valentino Liberali

2001-04-01T23:59:59.000Z

4

Optimization Online - Energy Security: a robust optimization ...  

E-Print Network (OSTI)

Sep 9, 2010 ... Energy Security: a robust optimization approach to design a robust European energy supply via TIAM. F Babonneau(fbabonneau ***at***...

5

Rotary Burner Demonstration  

Science Conference Proceedings (OSTI)

The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

Paul Flanagan

2003-04-30T23:59:59.000Z

6

Analysis of the Energy-Saving Potential of a Three-Rotary Wheel Fresh Air-Handling Unit  

E-Print Network (OSTI)

To evaluate the energy-saving potential of a proposed three-rotary wheel fresh air-handling unit (TRWFAHU), it is numerically simulated with weather data of Changsha by using a mathematical model. Compared with a conventional fresh air-handling unit, TRWFAHU can save 10.2% of primary energy and greatly decrease the energy consumption of chiller. If waste heat is available for regenerating the desiccant, the system can achieve greater energy savings. It is feasible to improve indoor air quality (IAQ) by increasing ventilation while without increasing energy consumption.

Hao, X.; Zhang, G.; Zou, S.; Liu, H.

2006-01-01T23:59:59.000Z

7

Solar heated rotary kiln  

SciTech Connect

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, Pamela K. (Tracy, CA)

1984-01-01T23:59:59.000Z

8

NREL-Renewable Energy Optimization Presentation | Open Energy...  

Open Energy Info (EERE)

Renewable Energy Optimization Presentation Jump to: navigation, search Logo: Renewable Energy Optimization Presentation Name Renewable Energy Optimization Presentation Agency...

9

Energy Optimization Standard | Open Energy Information  

Open Energy Info (EERE)

Last modified on October 10, 2012. Rules Regulations Policies Program Place Michigan Name Energy Optimization Savings Standard Incentive Type Energy Efficiency Resource Standard...

10

Optimal Coupling of Energy Infrastructures  

E-Print Network (OSTI)

This paper presents a framework for integrated modeling and optimization of energy systems with multiple energy carriers. Based on the concept of energy hubs, a generic steadystate model for describing conversion and storage of multiple energy carriers, such as electricity, natural gas, hydrogen, or district heating, is developed and used for system optimization. Besides operational optimization of energy flows, the optimal structure of the system is investigated. Mathematically, the problems are stated as (mixed-integer) nonlinear programming problems. An example demonstrates the use and potential applications of the proposed method and highlights its features.

M. Geidl; G. Andersson

2007-01-01T23:59:59.000Z

11

Energy optimization system  

DOE Patents (OSTI)

A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

2013-01-22T23:59:59.000Z

12

Building Distributed Energy Performance Optimization for China...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization...

13

Rotary kilns - transport phenomena and transport processes  

Science Conference Proceedings (OSTI)

Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

Boateng, A.

2008-01-15T23:59:59.000Z

14

Building Energy Optimization Software | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy Optimization Software Building Energy Optimization Software BEopt 2.1 Now Available! BEopt Version 2.1 is now available and includes major features such as: mini-split heat pumps and room air conditioners (E+); new modeling inputs; component-based air leakage estimate for existing buildings; and more. Read about the new features and visit the BEopt website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable Energy Laboratory (NREL) developed the Building Energy Optimization (BEopt) software tool. This specialized computer program is designed to identify optimally efficient designs for new and existing homes at the lowest possible cost. BEopt produces detailed simulation-based analysis and design optimization

15

Pump Systems Optimization: Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. Topics covered include:* * Why Efficient Pump Systems Are Important

16

Solar-heated rotary kiln  

DOE Patents (OSTI)

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate is disclosed. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, P.K.

1982-04-14T23:59:59.000Z

17

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

18

Modulation Optimization under Energy Constraints  

E-Print Network (OSTI)

We consider radio applications where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements. In this context, we analyze the best modulation strategy to minimize the total energy consumption required to send a given number of bits. The total energy consumption includes both the transmission energy and the circuit energy consumption. We show that for both MQAM and MFSK the transmission energy decreases with the product while the circuit energy consumption increases with , where is the modulation bandwidth and the transmission time. Thus, in short-range applications where the circuit energy consumption is nonnegligible compared with the transmission energy, the total energy consumption is minimized by using the maximum system bandwidth along with an optimized transmission time . We derive this optimal for MQAM and MFSK modulation in both AWGN channels and Rayleigh fading channels. Our optimization considers both delay and peak-power constraints. Numerical examples are given, where we exhibit up to 2 energy savings over modulation strategies that minimize the transmission energy alone.

Shuguang Cui Andrea; Andrea J. Goldsmith; Ahmad Bahai

2003-01-01T23:59:59.000Z

19

NREL-Renewable Energy Optimization Presentation | Open Energy Information  

Open Energy Info (EERE)

NREL-Renewable Energy Optimization Presentation NREL-Renewable Energy Optimization Presentation (Redirected from Renewable Energy Optimization Presentation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Optimization Presentation Agency/Company /Organization: National Renewable Energy Laboratory Resource Type: Presentation, Training materials Website: www1.eere.energy.gov/femp/pdfs/rewg051909_walker.pdf References: Renewable Energy Optimization Presentation[1] Logo: Renewable Energy Optimization Presentation Presentation References ↑ "Renewable Energy Optimization Presentation" Retrieved from "http://en.openei.org/w/index.php?title=NREL-Renewable_Energy_Optimization_Presentation&oldid=382818" Category: Tools What links here Related changes Special pages

20

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, E.W.

1991-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Rotary drive mechanism  

Science Conference Proceedings (OSTI)

A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

Kenderdine, Eugene W. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

22

DOE Hydrogen Analysis Repository: Building Energy Optimization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Optimization (BEopt) Software Project ID: 105 Principal Investigator: Craig Christensen Brief Description: BEopt is a computer program designed to find optimal...

23

EM Rotary Filter Program  

Electrical Junction Box Motors for Rotary Microfilters Motor Operated Valves Electrical ... savings SMPs Clarified Salt Solution Pumping System Sr-90 and actinides

24

Optimal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Optimal Energy Systems Optimal Energy Systems Jump to: navigation, search Name Optimal Energy Systems Place Torrance, California Zip 90505 Product Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates 40.417285°, -79.223959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.417285,"lon":-79.223959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Experimental Results on Advanced Rotary Desiccant Dehumidifiers  

E-Print Network (OSTI)

The Solar Energy Research Institute (SERI) has developed the Cyclic Test Facility (CTF) to develop and validate analytical methods for evaluating and predicting the performance of advanced rotary dehumidifiers. This paper describes the CTF, the dehumidifiers tested at the CTF, and the analytical methods used. The results reported provide an engineering data base and a design tool for evaluating rotary dehumidifiers for desiccant cooling applications.

Barathan, D.; Parsons, J. M.; MaClaine-Cross, I.

1986-01-01T23:59:59.000Z

26

Experimental results on advanced rotary desiccant dehumidifiers  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI) has developed the Cyclic Test Facility (CTF) to develop and validate analytical methods for evaluating and predicting the performance of advanced rotary dehumidifiers. This paper describes the CTF, the dehumidifiers tested at the CTF, and the analytical methods used. The results reported provide an engineering data base and a design tool for evaluating rotary dehumidifiers for desiccant cooling applications.

Bharathan, D.; Parsons, J.; Maclaine-cross, I.

1986-08-01T23:59:59.000Z

27

Optimization Online - Robust Energy Cost Optimization of Water ...  

E-Print Network (OSTI)

Feb 21, 2011 ... Robust Energy Cost Optimization of Water Distribution System with Uncertain Demand. Alexander Goryashko(ale_gory ***at*** rambler.ru)

28

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Conductor Optimized Rotary Energy Mega-Watt Scale Direct Wind Generator CX(s) Applied: A9, B5.1 Date: 09292010 Location(s): Ronan, Montana...

29

Energy Optimizers USA | Open Energy Information  

Open Energy Info (EERE)

Optimizers USA Optimizers USA Jump to: navigation, search Name Energy Optimizers USA Address 6 S. 3rd Street Place Tipp City, Ohio Zip 45371 Sector Biomass, Carbon, Geothermal energy, Services, Solar, Wind energy Product Business and legal services;Consulting;Energy audits/weatherization; Engineering/architectural/design;Installation;Investment/finances; Trainining and education Phone number 937-877-1919 Website http://www.energyoptimizersusa Coordinates 39.9610217°, -84.1712945° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9610217,"lon":-84.1712945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Integrated Energy System Dispatch Optimization  

DOE Green Energy (OSTI)

On-site cogeneration of heat and electricity, thermal and electrical storage, and curtailing/rescheduling demand options are often cost-effective to commercial and industrial sites. This collection of equipment and responsive consumption can be viewed as an integrated energy system(IES). The IES can best meet the sites cost or environmental objectives when controlled in a coordinated manner. However, continuously determining this optimal IES dispatch is beyond the expectations for operators of smaller systems. A new algorithm is proposed in this paper to approximately solve the real-time dispatch optimization problem for a generic IES containing an on-site cogeneration system subject to random outages, limited curtailment opportunities, an intermittent renewable electricity source, and thermal storage. An example demonstrates how this algorithm can be used in simulation to estimate the value of IES components.

Firestone, Ryan; Stadler, Michael; Marnay, Chris

2006-06-16T23:59:59.000Z

31

Strategic Energy Management Through Optimizing the Energy Performance of Buildings  

E-Print Network (OSTI)

1/12/2007 Strategic Energy Management Through Optimizing the Energy Performance of Buildings Oak ambitious federal energy goals and achieve energy independence. The energy engineers, building equipment Buildings and Industrial Energy Efficiency areas has engendered a unique, comprehensive capability

32

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

33

Optimal Energy Management Policies for Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

1 Optimal Energy Management Policies for Energy Harvesting Sensor Nodes Vinod Sharma, Senior Member the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies

Sharma, Vinod

34

Rotary mechanical latch  

Science Conference Proceedings (OSTI)

A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

2012-11-13T23:59:59.000Z

35

Rotary shaft sealing assembly  

DOE Patents (OSTI)

A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

Dietle, Lannie L. (Houston, TX); Schroeder, John E. (Richmond, TX); Kalsi, Manmohan S. (Houston, TX); Alvarez, Patricio D. (Richmond, TX)

2010-09-21T23:59:59.000Z

36

Rotary shaft sealing assembly  

DOE Patents (OSTI)

A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

2013-08-13T23:59:59.000Z

37

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

38

Rotary pneumatic valve  

DOE Patents (OSTI)

A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle. 4 figs.

Hardee, H.C.

1989-08-02T23:59:59.000Z

39

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

40

Integrated Energy System Dispatch Optimization  

E-Print Network (OSTI)

savings. R EFERENCES Distributed Energy Resources Researchand A. Davis, Distributed Energy Neural Network Integrationand C. Marnay, Distributed Energy Resources At Naval Base

Firestone, Ryan; Stadler, Michael; Marnay, Chris

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Utility optimal scheduling in energy harvesting networks  

Science Conference Proceedings (OSTI)

In this paper, we show how to achieve close-to-optimal utility performance in energy harvesting networks with only finite capacity energy storage devices. In these networks, nodes are capable of harvesting energy from the environment. The amount ... Keywords: Lyapunov analysis, energy harvesting, queueing, stochastic network

Longbo Huang; Michael J. Neely

2011-05-01T23:59:59.000Z

42

Optimizing sensor movement planning for energy efficiency  

Science Conference Proceedings (OSTI)

Conserving the energy for motion is an important yet not-well-addressed problem in mobile sensor networks. In this article, we study the problem of optimizing sensor movement for energy efficiency. We adopt a complete energy model to characterize the ... Keywords: Mobile sensor, energy efficiency

Guiling Wang; Mary Jane Irwin; Haoying Fu; Piotr Berman; Wensheng Zhang; Tom La Porta

2011-02-01T23:59:59.000Z

43

Energy Optimization (Electric) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program Energy Optimization (Electric) - Residential Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Ceiling Fans: 4 Smart Power Strip: 2 Pipe Wrap: 10 ln. ft. CFL Bulbs: 12 Refrigerator Recycling: 2 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Bulbs: Varies by retailer Ceiling Fan: $15 CFL Fixture: $15 LED Fixture/Downlight Kit: $20 LED Light Bulbs: $10 Smart Power Strip: $20 Room Air Conditioners: $20

44

Energy Optimization (Electric) - Commercial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate General: See program web site Custom: 50% of project cost Program Info Expiration Date 12/31/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Custom: $0.06/kWh/yr saved CFL Bulbs: $1 - $5 CFL Fixtures: $22/fixture High Performance T8 Lighting Retrofit: $4-$20/fixture retrofit

45

Optimization Online - Survivable Energy Markets  

E-Print Network (OSTI)

Mar 9, 2006... at the same time, the dayahead energy market and the reserve market in order to price through the market, beside energy, the overall cost of...

46

Optimizing Manufactured Housing Energy Use  

E-Print Network (OSTI)

In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built to the basic HUD code standard and the other was constructed with features expected to produce a home that was 50% more energy efficient. FSEC and NCATSU began monitoring energy performance in both homes. In addition, the performance of each unit was evaluated using a DOE2 based computer energy analysis program developed by FSEC. A comparison of the performance of the units shows a measured energy savings in the more energy efficient unit of 52% for the Heating, cooling, and DHW energy use. This compares well with the energy savings predicted by the FSEC Energy Gauge program of 57%, even when accounting for the warmer than usual winter experienced during the testing period.

McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

2004-01-01T23:59:59.000Z

47

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

48

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

49

Distributed Energy Resource Optimization Using a Software as...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Title Distributed Energy Resource Optimization...

50

An Optimization of Electrode Energy and Power Density through...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Optimization of Electrode Energy and Power Density through of Variations in Inactive Material and Electrode Porosity Title An Optimization of Electrode Energy and Power Density...

51

Process and Energy Optimization Revitalizes Energy Management at Eastman  

E-Print Network (OSTI)

In 2005, the Eastman-Texas Operations Energy Management Team (EMT), in response to rapidly increasing energy prices, initiated a new energy optimization program to optimize the sites energy intensity. This new program utilized a process and energy optimization (PEO) approach for identifying energy improvement projects. The EMT worked with an energy consulting company to develop and administer the program across the site during 2005 and 2006. The PEO program consisted of a short-term, high-intensity assessment of each production areas process and energy systems together to identify potential process improvement projects. The projects identified and documented during these assessments ranged from energy savings projects to production improvement projects where energy usage was optimized to improve production. In all areas assessed, there were both non-capital (behavioral) projects, as well as capital projects, with paybacks that were normally less than two years. In 2005, projects implemented saved millions of dollars and reduced natural gas usage by 173 k MMBTU and subsequently, CO2 emissions were reduced by approximately 10Klb. In addition to tangible benefits, there have been numerous intangible site benefits, including a better understanding of site energy/process integration, increased focus regarding site-wide energy optimization, improved communication and cooperation between the site utilities department and all operating areas, and development of a multi-year energy management program supported by hundreds of specific, process and energy optimization project opportunities.

Greenwaldt, W. C.

2007-01-01T23:59:59.000Z

52

Energy Harvesting Communication Networks: Optimization and Demonstration  

E-Print Network (OSTI)

of energy. E-CROPS will combine theoret- ical modelling and performance analysis with experimen- tal1 Energy Harvesting Communication Networks: Optimization and Demonstration (The E-CROPS Project of Electrical Engineering, Imperial College London, London, UK 2 Mobile Communications Department, Institut

Uysal-Biyikoglu, Elif

53

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

54

Optimizing New Dark Energy Experiments  

SciTech Connect

Next generation Stage IV dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors. Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.

Tyson, J. Anthony [University of California, Davis

2013-08-26T23:59:59.000Z

55

Renewable Energy Planning: Multiparametric Cost Optimization; Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Renewable Energy Planning: Multiparametric Cost Optimization Preprint Andy Walker National Renewable Energy Laboratory Presented at SOLAR 2008 - American Solar Energy Society (ASES) San Diego, California May 3-8, 2008 Conference Paper NREL/CP-670-42921 May 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of

56

Optimal Energy Management Policies for Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue.We also compare performance of several easily implementable sub-optimal energy management policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay.

Sharma, Vinod; Joseph, Vinay; Gupta, Shrey

2008-01-01T23:59:59.000Z

57

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

58

Utility Optimal Scheduling in Energy Harvesting Networks  

E-Print Network (OSTI)

In this paper, we show how to achieve close-to-optimal utility performance in energy harvesting networks with only finite capacity energy storage devices. In these networks, nodes are capable of harvesting energy from the environment. The amount of energy that can be harvested is time varying and evolves according to some probability law. We develop an \\emph{online} algorithm, called the Energy-limited Scheduling Algorithm (ESA), which jointly manages the energy and makes power allocation decisions for packet transmissions. ESA only has to keep track of the amount of energy left at the network nodes and \\emph{does not require any knowledge} of the harvestable energy process. We show that ESA achieves a utility that is within $O(\\epsilon)$ of the optimal, for any $\\epsilon>0$, while ensuring that the network congestion and the required capacity of the energy storage devices are \\emph{deterministically} upper bounded by bounds of size $O(1/\\epsilon)$. We then also develop the Modified-ESA algorithm (MESA) to ac...

Huang, Longbo

2010-01-01T23:59:59.000Z

59

Compact fast analyzer of rotary cuvette type  

DOE Patents (OSTI)

A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

Thacker, Louis H. (Knoxville, TN)

1976-01-01T23:59:59.000Z

60

Optimal Power Allocation for Renewable Energy Source  

E-Print Network (OSTI)

Battery powered transmitters face energy constraint, replenishing their energy by a renewable energy source (like solar or wind power) can lead to longer lifetime. We consider here the problem of finding the optimal power allocation under random channel conditions for a wireless transmitter, such that rate of information transfer is maximized. Here a rechargeable battery, which is periodically charged by renewable source, is used to power the transmitter. All of above is formulated as a Markov Decision Process. Structural properties like the monotonicity of the optimal value and policy derived in this paper will be of vital importance in understanding the kind of algorithms and approximations needed in real-life scenarios. The effect of curse of dimensionality which is prevalent in Dynamic programming problems can thus be reduced. We show our results under the most general of assumptions.

Sinha, Abhinav

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low Power/Energy Compiler Optimizations  

E-Print Network (OSTI)

Introduction 35.2 Why compilers? 35.3 Power vs. Energy vs. Performance Power vs. Energy, Power/Energy vs. Performance, Summary 35.4 List of Optimizations Dynamic Voltage and Frequency Scaling, Resource Hibernation, Remote Task Mapping 35.5 Future Compiler Research for Power/Energy Embedded processor and SoCs are used in many devices, ranging from pace makers, sensors, phones, and PDAs, to general-purpose handheld computers and laptops. Each of these devices has their own requirements for performance, power dissipation, and energy usage, and typically implements a particular tradeo# among these entities. Allowing components of these devices to be controlled by software has opened up opportunities for compilation and operating strategies to reduce power dissipation and energy usage, at the potential cost of performance degradation. Such control includes (1) hibernation, i.e., initiating transitions of a component between a high power, active states and lower power, hibernating s

Ulrich Kremer

2004-01-01T23:59:59.000Z

62

Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints  

E-Print Network (OSTI)

We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) and full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and full SI is available, we prove the optimality of a water-filling energy allocation solution w...

Ho, Chin Keong

2011-01-01T23:59:59.000Z

63

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

64

Optimal energy management and recovery for FEV  

Science Conference Proceedings (OSTI)

This paper briefly describes the latest achievements of a new functional vehicle system to overcome the range anxiety problem of Fully Electric Vehicles (FEV). This is primarily achieved by integrated control and operation strategies to optimize the ... Keywords: FEV range anxiety, GPS, all electric range, car-to-car, car-to-infrastructure, control, energy manager, environmental sensors, hybrid electric vehicles (HEV), network architecture, operation strategies, radar, regenerative vacuum free braking, safety, satellite navigation, vehicle simulation, video

Kosmas Knoedler; Jochen Steinmann; Sylvain Laversanne; Stephen Jones; Arno Huss; Emre Kural; David Sanchez; Oliver Bringmann; Jochen Zimmermann

2012-03-01T23:59:59.000Z

65

Optimization of energy and throughput for pipelined VLSI interconnect  

E-Print Network (OSTI)

given a wire length, optimized pipeline energy decreases asFigure 7 shows pipeline energy per bit versus wire length asOptimal pipeline depth is proportional to wire length, and

Hamilton, Kevin Clark

2010-01-01T23:59:59.000Z

66

Rotary kiln seal  

SciTech Connect

A rotary seal used to prevent the escape of contaminates from a rotating kiln incinerator. The rotating seal combines a rotating disc plate which is attached to the rotating kiln shell and four sets of non-rotating carbon seal bars housed in a primary and secondary housing and which rub on the sides of the disc. A seal air system is used to create a positive pressure in a chamber between the primary and secondary seals to create a positive air flow into the contaminated gas chamber. The seal air system also employs an air inlet located between the secondary and tertiary seals to further insure that no contaminates pass the seal and enter the external environment and to provide makeup air for the air which flows into the contaminated gas chamber. The pressure exerted by the seal bars on the rotating disc is controlled by means of a preload spring. The seal is capable of operating in a thermally changing environment where the both radial expansion and axial movement of the rotating kiln do not result in the failure of the seal.

Drexler, Robert L. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

67

Rotary kiln seal  

DOE Patents (OSTI)

A rotary seal used to prevent the escape of contaminants from a rotating kiln incinerator. The rotating seal combines a rotating disc plate which is attached to the rotating kiln shell and four sets of non-rotating carbon seal bars housed in a primary and secondary housing and which rub on the sides of the disc. A seal air system is used to create a positive pressure in a chamber between the primary and secondary seals to create a positive air flow into the contaminated gas chamber. The seal air system also employs an air inlet located between the secondary and tertiary seals to further insure that no contaminants pass the seal and enter the external environment and to provide makeup air for the air which flows into the contaminated gas chamber. The pressure exerted by the seal bars on the rotating disc is controlled by means of a preload spring. The seal is capable of operating in a thermally changing environment where the both radial expansion and axial movement of the rotating kiln do not result in the failure of the seal.

Drexler, R.L.

1990-10-17T23:59:59.000Z

68

Adaptive Real-Time Methodology for Optimizing Energy-Efficient...  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Adaptive Real-Time Methodology for Optimizing Energy-Efficient Computing Dynamic voltage and frequency scaling (DVFS) is an effective way to reduce energy and power...

69

Study on optimal train movement for minimum energy consumption.  

E-Print Network (OSTI)

?? The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is (more)

Gkortzas, Panagiotis

2013-01-01T23:59:59.000Z

70

A Framework for the Optimization of Integrated Energy Systems...  

Open Energy Info (EERE)

A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15...

71

Energy Optimization of Biomass Pyrolysis and Liquefaction System in CFB  

Science Conference Proceedings (OSTI)

Biomass pyrolysis and liquefaction technology needs inert carrier gas and high energy consumption. On the basis of analyzing its energy consumption and the using way of char and off-gas, energy in the pyrolysis and liquefaction system in CFB is optimized ... Keywords: FB biomass pyrolysis energy consumption optimize

Zhang Jun; Teng Wenrui; Wei Xinli

2011-02-01T23:59:59.000Z

72

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks  

E-Print Network (OSTI)

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

Paris-Sud XI, Université de

73

Optimization and homotopy methods for the Gibbs free energy of ...  

E-Print Network (OSTI)

May 31, 2011 ... Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures ... Category 3: Applications -- Science and Engineering. Citation: Download: ... Give us feedback Optimization Journals, Sites, Societies.

74

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1 Energy Flows in a Building Microgrid DER-CAM solves a grid's investment optimization problem given its end-use energy loads, energy tariff structures and fuel...

75

Rotary actuator utilizing a shape memory alloy  

SciTech Connect

An apparatus is described comprising; (a) rotary accumulator means for accumulating a length of a shape memory alloy wire; (b) the shape memory alloy wire attached at one end to a point fixed with respect to the rotary accumulator means and attached at a second end to the rotary accumulator means; (c) biasing means for biasing the rotary accumulator means to a first position; and (d) means for heating the shape memory alloy wire to cause the shape memory alloy wire to contract, thereby rotating the rotary accumulator means from the first position to a second position.

Bloch, J.T.

1988-08-09T23:59:59.000Z

76

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

77

Renewable Energy Planning: Multiparametric Cost Optimization; Preprint  

DOE Green Energy (OSTI)

This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

Walker, A.

2008-05-01T23:59:59.000Z

78

Renewable Energy Planning: Multiparametric Cost Optimization  

Science Conference Proceedings (OSTI)

This paper describes a method for determining the combination of renewable energy technologies that minimize life-cycle cost at a facility, often with a specified goal regarding percent of energy use from renewable sources. Technologies include: photovoltaics (PV); wind; solar thermal heat and electric; solar ventilation air preheating; solar water heating; biomass heat and electric (combustion, gasification, pyrolysis, anaerobic digestion); and daylighting. The method rests upon the National Renewable Energy Laboratory's (NREL's) capabilities in characterization of technology cost and performance, geographic information systems (GIS) resource assessment, and life-cycle cost analysis. The paper discusses how to account for the way candidate technologies interact with each other, and the solver routine used to determine the combination that minimizes life-cycle cost. Results include optimal sizes of each technology, initial cost, operating cost, and life-cycle cost, including incentives from utilities or governments. Results inform early planning to identify and prioritize projects at a site for subsequent engineering and economic feasibility study.

Walker, A.

2008-01-01T23:59:59.000Z

79

Optimal Energy Storage Control Policies for the Smart Power Grid  

E-Print Network (OSTI)

Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki is to devise an energy storage control policy that minimizes long-term average grid operational cost. The cost the stored energy. We prove that the policy is asymptotically optimal as the storage capacity becomes large

Koutsopoulos, Iordanis

80

On Optimal Policies for Energy-Aware Servers Vincent Maccio  

E-Print Network (OSTI)

On Optimal Policies for Energy-Aware Servers Vincent Maccio McMaster University Hamilton, Ontario exhibit. Even for single server systems, when energy is a factor, optimal policies remain unknown[Sw]). The typical approach to developing energy-aware policies focuses on a particular metric. In [1

Smith, Spencer

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Application Level Optimizations for Energy Efficiency and Thermal Stability  

E-Print Network (OSTI)

whether application-level software optimization can improve energy efficiency and thermal behavior. We use-life multicore system to explore two issues: (i) software tun- ing to improve scalability and energyApplication Level Optimizations for Energy Efficiency and Thermal Stability Md. Ashfaquzzaman Khan

Coskun, Ayse

82

Performance investigation on a novel two-stage solar driven rotary desiccant cooling system using composite desiccant materials  

Science Conference Proceedings (OSTI)

In this study, a two-stage solar driven rotary desiccant cooling (TSRDC) system with novel configuration and newly developed silica gel-haloid composite desiccant is proposed aiming to reduce regeneration temperature and to achieve high energy performance. Simulated results show that there also exists an optimal rotation speed for TSRDC system. Compared with one-stage system, it is found that for the similar supply air state, the required regeneration temperature of TSRDC system is lower and for the same regeneration temperature, the cooling capacity of TSRDC is bigger. (author)

Ge, T.S.; Li, Y.; Dai, Y.J.; Wang, R.Z. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240 (China)

2010-02-15T23:59:59.000Z

83

The global optimization of Morse clusters by potential energy ...  

E-Print Network (OSTI)

Jul 15, 2003 ... The global optimization of Morse clusters by potential energy ... increase the efficiency in locating the known global minima and also to discover...

84

Optimizing New Dark Energy Experiments - Final Scientific Report  

Science Conference Proceedings (OSTI)

This is the final scientific report for the University of Pittsburgh portion of the collaborative grant, 'Optimizing New Dark Energy Experiments'

Jeffrey A. Newman

2012-06-08T23:59:59.000Z

85

Optimization of Energy Saving Materials and Compressed Insulating ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Optimization of Energy Saving Materials and Compressed Insulating Layers in the Automotive Chemical Converters by E. Litovsky, V. Issoupov,...

86

Biotrans: Cost Optimization Model | Open Energy Information  

Open Energy Info (EERE)

Biotrans: Cost Optimization Model Biotrans: Cost Optimization Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biotrans: Cost Optimization Model Focus Area: Ethanol Topics: Market Analysis Website: www.ecn.nl/units/ps/models-and-tools/biotrans/ Equivalent URI: cleanenergysolutions.org/content/biotrans-cost-optimization-model,http Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation BIOTRANS optimizes the biofuel supply chain allocation by finding the least-cost configuration of resources and trade to meet a specified biofuel demand in the European transportation sector. The user can constrain the optimization by inputting a number of economic and technological assumptions for a specific target year. References Retrieved from

87

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

and HVAC operations. A real-time optimization program suchHVAC IES ISO-NE LBNL MILP NOx NP NRC NREL OLS P&DC PJM PUCT PURPA PV RETScreen RReDC Hybrid OptimizationHVAC equipment and other building energy equipment. This research is similar to the IES dispatch optimization

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

88

Optimization Online - Optimal management and sizing of energy ...  

E-Print Network (OSTI)

Jul 30, 2012 ... Assuming the renewable energy, demand and prices evolve as ... the ratio of the amortized cost of storage to the price of electricity should be...

89

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network (OSTI)

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam and electricity. It further discusses the methods of providing this energy for refineries, petrochemical plants, and other processing plants - chemical, paper, and metal. A typical system flow diagram is used to highlight the energy system network and describe areas where steady-state models are used. The types of models used are discussed, and a scheme for putting the models together to provide total process plant energy optimization is summarized. The types of optimization which can be implemented in a process plant is thus presented. The paper points out what steady-state modeling is needed to do online optimization of an energy network in a processing plant. Finally, a discussion of the economics on online energy optimization is presented."

Alexander, J.

1988-09-01T23:59:59.000Z

90

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

Not Available

2012-03-01T23:59:59.000Z

91

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)  

SciTech Connect

Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

2012-03-01T23:59:59.000Z

92

Development of an Hourly Optimization Tool for Renewable Energy Systems  

SciTech Connect

An hourly optimization tool is developed to select and size renewable energy (RE) systems to meet the energy needs for various federal facilities. The optimization is based on life cost analysis of various RE technologies including wind and PV systems. The developed hourly optimization tool is used to evaluate the cost-effectiveness of RE technologies using complex energy and demand charges such time-of-use (TOU) rates. The paper compares results obtained using hourly analysis instead of annual based calculations to optimize the sizing of RE systems for residential, commercial, and industrial facilities in three representative US climates.

Lee, C.; Walker, A.; Krarti, M.

2010-01-01T23:59:59.000Z

93

Continuously Optimized Reliable Energy (CORE) Microgrid: Models & Tools (Fact Sheet)  

SciTech Connect

This brochure describes Continuously Optimized Reliable Energy (CORE), a trademarked process NREL employs to produce conceptual microgrid designs. This systems-based process enables designs to be optimized for economic value, energy surety, and sustainability. Capabilities NREL offers in support of microgrid design are explained.

Not Available

2013-07-01T23:59:59.000Z

94

High bandwidth rotary fast tool servos and a hybrid rotary/linear electromagnetic actuator  

E-Print Network (OSTI)

This thesis describes the development of two high bandwidth short-stroke rotary fast tool servos and the hybrid rotary/linear electromagnetic actuator developed for one of them. Design insights, trade-off methodologies, ...

Montesanti, Richard Clement

2005-01-01T23:59:59.000Z

95

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

96

Optimized Alumina Coagulants for Water Purification - Energy ...  

Emergency usage; Patents and Patent Applications. ID Number. Title and Abstract. Primary Lab. Date. Patent 8,119,011: Optimized alumina coagulants for ...

97

Green Computing: Energy Consumption Optimized Service Hosting  

Science Conference Proceedings (OSTI)

Green Computing is a recent trend towards designing, building, and operating computer systems to be energy efficient. While programs such as Energy Star have been around since the early 1990s, recent concerns regarding global climate change and the energy ... Keywords: Green computing, data centers, energy conservation, energy efficiency, service dispatch, service hosting, service-level agreements

Walter Binder; Niranjan Suri

2009-01-01T23:59:59.000Z

98

Optimizing Organic Waste to Energy Operations  

Science Conference Proceedings (OSTI)

A waste-to-energy firm that recycles organic waste with energy recovery performs two environmentally beneficial functions: it diverts waste from landfills and it produces renewable energy. At the same time, the waste-to-energy firm serves and collects ... Keywords: environment, operating strategy, organic waste to energy, regulation, sustainability

Bar?? Ata; Deishin Lee; Mustafa H. Tongarlak

2012-04-01T23:59:59.000Z

99

Optimization of energy parameters in buildings  

E-Print Network (OSTI)

When designing buildings, energy analysis is typically done after construction has been completed, but making the design decisions while keeping energy efficiency in mind, is one way to make energy-efficient buildings. The ...

Jain, Ruchi V

2007-01-01T23:59:59.000Z

100

Optimal Transmission Policies for Energy Harvesting Two-hop Networks  

E-Print Network (OSTI)

In this paper, a two-hop communication system with energy harvesting nodes is considered. Unlike battery powered wireless nodes, both the source and the relay are able to harvest energy from environment during communication, therefore, both data and energy causality over the two hops need to be considered. Assuming both nodes know the harvested energies in advance, properties of optimal transmission policies to maximize the delivered data by a given deadline are identified. Using these properties, optimal power allocation and transmission schedule for the case in which both nodes harvest two energy packets is developed.

Orhan, Oner

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scalable Stochastic Optimization of Complex Energy Systems  

E-Print Network (OSTI)

Argonne, IL 60439, USA. {mlubin ... Illinois power grid and real-time energy market. Strong scal- ...... ported by the U.S. Department of Energy under Contract.

102

Integratedenergy storage system for optimal energy production.  

E-Print Network (OSTI)

?? This project served to analyze the effects that energy storage can have on energy production. The study was aimed at Johannes CHP bio fuel. (more)

Stevens, Kristoffer

2013-01-01T23:59:59.000Z

103

Energy Accounting and Optimization for Mobile Systems.  

E-Print Network (OSTI)

??Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been (more)

Dong, Mian

2013-01-01T23:59:59.000Z

104

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

~Iilora and J. W. Tester, Geothermal Energy as a Source ofpresented at the Susanville Geothermal Energy Converence,of Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

105

Efficiency United and Energy Optimization (Electric) - Residential...  

Open Energy Info (EERE)

Recycling: 30 Pipe Wrap: 4 Heat Pump Water Heater: 100 Programmable Thermostat: 20 Energy Savings Kit: Free with free online energy audit Equipment Requirements Clothes...

106

Energy Optimization (Electric) - Residential Efficiency Program...  

Open Energy Info (EERE)

ft Heat Pump Water Heater: 100 Programmable Thermostat: 20 Low Flow Aerator Kit: 10 Energy Savings Kit: Free with free online energy audit Equipment Requirements Appliances:...

107

National Renewable Energy Laboratory (NREL) researchers enhanced this building energy optimization tool to analyze  

E-Print Network (OSTI)

data, and standard occupants. BEopt has been used extensively in the U.S. Department of Energy Energy Optimization Software. U.S. Department of Energy Building America website. www.buildings.energy.gov/building_america/building_energy of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

108

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Hotel Rio de Janeiro, Brazil Optimal Control of Distributed EnergyHotel Rio de Janeiro, Brazil Optimal Control of Distributed EnergyHotel Rio de Janeiro, Brazil Optimal Control of Distributed Energy

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

109

A Model to Optimize Green Energy Supply Chain  

Science Conference Proceedings (OSTI)

Bioenergy is renewable energy derived from biological sources, to be used for production of heat, electricity and transportation fuels. The collection of biomass is a logistic process from different source locations to energy plants. The biomass-to-energy ... Keywords: supply chain, green, optimize, model

Na Liu

2012-10-01T23:59:59.000Z

110

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION  

E-Print Network (OSTI)

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION USING THE UNIFAC, WILSON equilibrium involves two important problems: (i) the minimization of the Gibbs free energy, and (ii of the Gibbs free energy. However, a drawback of all previous approaches is that they could not provide

Neumaier, Arnold

111

A Smart Energy System: Distributed Resource Management, Control and Optimization  

E-Print Network (OSTI)

A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded and energy data can be acquired and processed in a distributed manner in real time. In order to improve

Beigl, Michael

112

Energy Distribution Control in Wireless Sensor Networks Through Range Optimization  

E-Print Network (OSTI)

Energy Distribution Control in Wireless Sensor Networks Through Range Optimization M.Sarper Gokturk a location-based routing framework to control the energy distribution in a network where transmission ranges--A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient

Yanikoglu, Berrin

113

Energy-efficient distributed spectrum sensing with convex optimization  

E-Print Network (OSTI)

Energy-efficient distributed spectrum sensing with convex optimization Sina Maleki, Ashish paid to schemes that are energy-efficient. It is known that although distributed detection schemes with the number of cognitive radios. An energy-efficient distributed sensing scheme was pro- posed in [7], based

Leus, Geert

114

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks  

E-Print Network (OSTI)

Optimal Routing and Scheduling in Multihop Wireless Renewable Energy Networks MHR. Khouzani-constrained wireless ad-hoc networks where nodes are powered by renewable energy sources. We take into account the fact that renewable energy harvesting processes are unpredictable and stochastic in nature ­ typically depending

Sarkar, Saswati

115

Residential Energy Management system for optimization of on-site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the...

116

Optimization of time-based rates in forward energy markets  

E-Print Network (OSTI)

This paper presents a new two-step design approach of Time-Based Rate (TBR) programs for markets with a high penetration of variable energy sources such as wind power. First, an optimal market time horizon must be determined ...

Wang, J.

117

Cooperative Energy Network Optimization for Distributed Microgrids: Game Theoretic Approach  

E-Print Network (OSTI)

Cooperative Energy Network Optimization for Distributed Microgrids: Game Theoretic Approach Y. Wasa. 1 5) 6, 7) 8) 6, 9) 10) 7) Receding Horizon Fig. 1: Distributed Microgrids4) 2 2.1 n V := {1

118

Plant Optimization Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Crosscutting Research » Science & Innovation » Clean Coal » Crosscutting Research » Plant Optimization Technologies Plant Optimization Technologies The Plant Optimization Technologies Program is a diverse, scientifically oriented research and development program that addresses issues affecting the way coal is used. The program's primary emphasis is to support the development of advanced technologies that use coal with near-zero emissions. To provide this support, the program identifies scientific and technological needs and develops a basic understanding of the underlying chemical and physical processes that, unless resolved, could create a technological barrier to these new coal-based concepts. The program serves as a bridge between basic science and the fabrication and testing of new technologies. Currently researchers supported by this

119

Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage  

E-Print Network (OSTI)

1 Optimal Power Policy for Energy Harvesting Transmitters with Inefficient Energy Storage Kaya energy is lost in the process. An optimal transmission policy maximizing the average rate within a finite; the harvested energy is variable and may be scarce, requiring tailored transmission policies to achieve

Yener, Aylin

120

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency  

E-Print Network (OSTI)

HypoEnergy: Hybrid supercapacitor-battery power-supply optimization for Energy efficiency Azalia the hybrid battery-supercapacitor power supply life- time. HypoEnergy combines high energy density of recharge cycles of supercapacitors. The lifetime optimizations consider nonlinear battery characteristics

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

122

Definition: Customer Electricity Use Optimization | Open Energy Information  

Open Energy Info (EERE)

Customer Electricity Use Optimization Customer Electricity Use Optimization Jump to: navigation, search Dictionary.png Customer Electricity Use Optimization Customer electricity use optimization is possible if customers are provided with information to make educated decisions about their electricity use. Customers could be able to optimize toward multiple goals such as cost, reliability, convenience, and environmental impact.[1] Also Known As Energy conservation Related Terms electricity generation References ↑ SmartGrid.gov 'Description of Functions' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Customer_Electricity_Use_Optimization&oldid=480282" Categories: Definitions

123

Optimal Siting and Sizing of Distributed Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Siting and Sizing of Distributed Energy Resources Optimal Siting and Sizing of Distributed Energy Resources Speaker(s): Johan Driesen Date: February 15, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Ongoing changes in the operation of distribution grids call for a new way to plan grid modifications. This presentation gives an overview of possible methods of long-term planning for the deployment of Distributed Energy Resources (distributed generation, storage and controllable loads) in a given grid. The placement and sizing of the units have to be considered, making this a complex optimization problem with discrete and continuous variables. In the optimization problem, multiple objectives are often conflicting, e.g. minimal grid losses, maximal use of the resources and voltage stability. An evolutionary algorithm (genetic algorithms) is used

124

Floating seal system for rotary devices  

DOE Patents (OSTI)

This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10.degree. to about 30.degree. in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device.

Banasiuk, Hubert A. (Chicago, IL)

1983-01-01T23:59:59.000Z

125

Floating seal system for rotary devices  

DOE Patents (OSTI)

This invention relates to a floating seal system for rotary devices to reduce gas leakage around the rotary device in a duct and across the face of the rotary device to an adjacent duct. The peripheral seal bodies are made of resilient material having a generally U-shaped cross section wherein one of the legs is secured to a support member and the other of the legs forms a contacting seal against the rotary device. The legs of the peripheral seal form an extended angle of intersection of about 10[degree] to about 30[degree] in the unloaded condition to provide even sealing forces around the periphery of the rotary device. The peripheral seal extends around the periphery of the support member except where intersected by radial seals which reduce gas leakage across the face of the rotary device and between adjacent duct portions. The radial seal assembly is fabricated from channel bars, the smaller channel bar being secured to the divider of the support member and a larger inverted rigid floating channel bar having its legs freely movable over the legs of the smaller channel bar forming therewith a tubular channel. A resilient flexible tube is positioned within the tubular channel for substantially its full length to reduce gas leakage across the tubular channel. A spacer extends beyond the face of the floating channel near each end of the floating channel a distance to provide desired clearance between the floating channel and the face of the rotary device. 5 figs.

Banasiuk, H.A.

1983-08-23T23:59:59.000Z

126

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

127

Energy Optimization (Electric) - Commercial Efficiency Program...  

Open Energy Info (EERE)

conditioners, Chillers, Compressed air, CustomOthers pending approval, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat pumps, Lighting,...

128

NREL: Technology Deployment - Renewable Energy Optimization Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL worked with the U.S. Navy to prioritize their 70 worldwide installations for renewable energy projects opportunities. At high priority sites, the NREL team continues...

129

Optimal investment and scheduling of distributed energy resources with  

NLE Websites -- All DOE Office Websites (Extended Search)

investment and scheduling of distributed energy resources with investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Title Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Publication Type Journal Article LBNL Report Number LBNL-6471E Year of Publication 2013 Authors Cardoso, Gonçalo, Michael Stadler, Mohammad Bozchalui, Ratnesh Sharma, Chris Marnay, Ana Barbosa-Póvoa, and Paulo Ferrão Journal Energy Date Published 10/2013 Abstract The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

130

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network (OSTI)

Predictive control and thermal energy storage for optimizing a multi- energy district boiler Julien of the OptiEnR research project, the present paper deals with optimizing the multi-energy district boiler to the complexity of the district boiler as a whole and the strong interactions between the sub-systems, previous

Paris-Sud XI, Université de

131

Enclosed rotary disc air pulser  

DOE Patents (OSTI)

An enclosed rotary disc air pulser for use with a solvent extraction pulse olumn includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber therebetween, the chamber being in communication with the pulse leg port, the first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and the chamber.

Olson, A. L. (Idaho Falls, ID); Batcheller, Tom A. (Idaho Falls, ID); Rindfleisch, J. A. (Arco, ID); Morgan, John M. (Arco, ID)

1989-01-01T23:59:59.000Z

132

Enclosed rotary disc air pulser  

DOE Patents (OSTI)

This invention is comprised of an enclosed rotary disc air pulser for use with a solvent extraction pulse column includes a housing having inlet, exhaust and pulse leg ports, a shaft mounted in the housing and adapted for axial rotation therein, first and second disc members secured to the shaft within the housing in spaced relation to each other to define a chamber there between, the chamber being in communication with the pulse leg port, and first disc member located adjacent the inlet port, the second disc member being located adjacent the exhaust port, each disc member having a milled out portion, the disc members positioned on the shaft so that as the shaft rotates, the milled out portions permit alternative cyclical communication between the inlet port and the chamber and the exhaust port and chamber. 5 figs.

Olson, A.L.; Batcheller, T.A.; Rindfleisch, J.A.; Morgan, J.M.

1988-08-12T23:59:59.000Z

133

Energy optimization in IP-over-WDM networks  

Science Conference Proceedings (OSTI)

The energy crisis and environmental protection are gaining increasing concern in recent years. ICT (Information and Communication Technology) has a significant impact on the total electricity consumption all over the world. Telecom networks, being an ... Keywords: Energy, IP-over-WDM, Networks, Optimization, Traffic grooming

Yi Zhang; Massimo Tornatore; Pulak Chowdhury; Biswanath Mukherjee

2011-07-01T23:59:59.000Z

134

Energy Capture with Optimized Photovoltaic Cells under Low Lighting Conditions  

Science Conference Proceedings (OSTI)

The optimization of photovoltaic devices for versatile conditions is necessary to improve the energy capture for indoor applications, such as self sufficient sensors. However, the design rules of standard outdoor solar cells are not applicable for cells ... Keywords: energy harvesting, indoor photovoltaics, low lighting conditions, photovoltaic cells

Karola Ruhle, Leonhard M. Reindl, Martin Kasemann

2012-11-01T23:59:59.000Z

135

Sensor Placement + Optimization Software (SPOT) | Open Energy Information  

Open Energy Info (EERE)

Sensor Placement + Optimization Software (SPOT) Sensor Placement + Optimization Software (SPOT) Jump to: navigation, search Tool Summary Name: SPOT Agency/Company /Organization: Architectural Energy Corporation Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Technology characterizations Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.archenergy.com/SPOT/ Cost: Free Language: English References: http://www.archenergy.com/SPOT/ SPOT(tm) is intended to assist a designer in quantifying the existing or intended electric lighting and annual daylighting characteristics of a given space and to help establish the optimal photosensor placement for the space relative to annual performance and annual energy savings. The software was developed with classroom daylighting in mind, but can be used

136

Monitoring of energy flows and optimization of energy efficiency in a production facility  

Science Conference Proceedings (OSTI)

The present paper reports the findings of an assessment of the energy flows of a building equipped with machine tools and discusses options to optimize its energy efficiency. The energy flows in the buildings are recorded based on collected data and ... Keywords: building simulation, energy consumption, energy efficiency in production, energy flow analysis

I. Leobner; K. Ponweiser; C. Dorn; F. Bleicher

2011-07-01T23:59:59.000Z

137

Optimal Model of Distributed Energy System by Using GAMS and Case Study  

E-Print Network (OSTI)

Optimal Model of Distributed Energy System by Using GAMS andEnergy Reliability, Distributed Energy Program of the U.S.Optimal Model of Distributed Energy System by Using GAMS and

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

2005-01-01T23:59:59.000Z

138

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

Optimal Combination of Distributed Energy System in an Eco-and Renewable Energy, Distributed Energy Program of the U.S.OPTIMAL COMBINATION OF DISTRIBUTED ENERGY SYSTEM IN AN ECO-

Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

2006-01-01T23:59:59.000Z

139

HVAC Optimized Heat Exchangers Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Optimized Heat Exchangers Research Optimized Heat Exchangers Research Project HVAC Optimized Heat Exchangers Research Project The U.S. Department of Energy is currently conducting research into heating, ventilation, and air conditioning (HVAC) optimized heat exchangers. The information generated in this study will demonstrate performance improvements that can be achieved through optimization of refrigerant circuitry for non-uniform inlet air distribution. The tubing circuitry on fin-tube heat exchangers used in residential space-conditioning systems is typically designed assuming uniform airflow through the finned passageways. However, the air flow in installed systems is highly non-uniform, resulting in mismatched refrigerant-air heat transfer that reduces the capacity of the heat exchanger and efficiency of

140

Optimal dynamic management of energy systems: implementations ...  

Science Conference Proceedings (OSTI)

Abstract Management of multiple systems to generate energy is important with regard to the costs to incur, the effects on the environment and the flexibility of the ...... The average values of the coefficients were obtained from the dated values of ...

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network (OSTI)

Optimum dispatch of energy supply systems can result in large savings in industrial facilities. Identifying the configuration of available equipment, and its loading to minimize total energy consumption to satisfy given load demands, has very high payback potential. This paper discusses an approach to determine integrated energy supply and end use optimum equipment dispatch to simultaneously satisfy given power, process steam and additional "end energy" product needs such as compressed fluids, chemical unit production, etc. Techniques applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system optimization. An example industrial trigeneration system is discussed to illustrate the application and procedures. The methods of considering alternate energy sources, for end use optimization with export power and steam generation will be illustrated. The savings associated with operations optimization readily justify the hardware and software costs required for implementation of Optimization Energy Management Systems (OEMS). An OEMS capability for this application is briefly discussed.

Ahner, D. J.; Babson, P. E.

1995-04-01T23:59:59.000Z

142

Conserve Energy by Optimizing Air Compressor System  

E-Print Network (OSTI)

There are many opportunities to conserve energy within an Industrial Plant without adversely impacting the operation or production. Many of these represent only relatively small savings, when compared to the overall utility bill; however, one major benefit of energy conservation is that the resultant savings in dollars goes directly to the bottom line as increased profits. To generate the same amount of profit dollars as an effective energy conservation project can generate, in cost avoidance, the plant would have to substantially increase the product shipments. This is not always possible; however, conserving energy is nearly always possible. How should one begin an energy conservation program within a major Industrial Plant? The same as any other taskone step at a time. This paper addresses one of the many small projects available within many industriesthe plant air compressing systems. It outlines how one industrial plant was able to reduce the utility bill by approximately $50,000 per year just within the compressor plant alone.

Williams, V. A.

1985-05-01T23:59:59.000Z

143

Central Networks Low Carbon Hub Optimizing renewable energy resources in  

Open Energy Info (EERE)

Networks Low Carbon Hub Optimizing renewable energy resources in Networks Low Carbon Hub Optimizing renewable energy resources in Lincolnshire (Smart Grid Project) Jump to: navigation, search Project Name Central Networks Low Carbon Hub Optimizing renewable energy resources in Lincolnshire Country United Kingdom Headquarters Location Lincolnshire, United Kingdom Coordinates 53.21788°, -0.19997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.21788,"lon":-0.19997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Optimal Packet Scheduling in an Energy Harvesting Communication System  

E-Print Network (OSTI)

We consider the optimal packet scheduling problem in a single-user energy harvesting wireless communication system. In this system, both the data packets and the harvested energy are modeled to arrive at the source node randomly. Our goal is to adaptively change the transmission rate according to the traffic load and available energy, such that the time by which all packets are delivered is minimized. Under a deterministic system setting, we assume that the energy harvesting times and harvested energy amounts are known before the transmission starts. For the data traffic arrivals, we consider two different scenarios. In the first scenario, we assume that all bits have arrived and are ready at the transmitter before the transmission starts. In the second scenario, we consider the case where packets arrive during the transmissions, with known arrival times and sizes. We develop optimal off-line scheduling policies which minimize the time by which all packets are delivered to the destination, under causality con...

Yang, Jing

2010-01-01T23:59:59.000Z

145

Ordinal optimization-based multi-energy system scheduling for building energy saving  

Science Conference Proceedings (OSTI)

Buildings contribute a significant part in the energy consumption and CO2 emission in many countries. Building energy saving has thus become a hot research topic recently. The technology advances in power co-generation, on-site generation, and storage ... Keywords: building energy saving, linear programming, multi-energy system, ordinal optimization, renewable energy

Zhong-Hua Su; Qing-Shan Jia; Chen Song

2011-08-01T23:59:59.000Z

146

Cooling Tower Considerations for Energy Optimizations  

E-Print Network (OSTI)

Energy conservation strategies and production economies involve more than examining the cooling tower fan consumption of horse power. Colder water provides vast potentials for savings. Ask yourself, "What is the dollar and energy utilization value if I can obtain 1F colder water off my cooling tower than I am now getting?" Therefore, let us first examine the elements of the cooling tower to determine the areas of greatest potential improvement to generate that colder water. The air flow generated by the fan should first be looked at In both counterflow or crossflow towers to determine that maximum flow is available through pitching fans up to within the motor plate amperage limitations and fan stall point calculations. If applicable, new fiberglass state of the art fans can be installed and additional motor horse power added. However, the most dramatic improvement that can be obtained in producing colder water is to retrofit modern film fill to replace the old fashioned wood splash bar slats.

Burger, R.

1986-01-01T23:59:59.000Z

147

decision support tool for energy storage optimization  

E-Print Network (OSTI)

We examine the problem faced by owners of gas storage contracts of how to manage the injection/withdrawal schedule of natural gas, given historical price behavior and a predictive model of future prices. We describe a hybrid price prediction model that combines a support vector machine technique with a stochastic model for short and long-term gas prices, respectively. We present a theoretical result regarding the complexity of the scheduling problem and propose a formulation for an integer program given capacity, injectability and deliverability constraints. We also outline how this was incorporated in a decision support tool that is used by energy traders at a gas utility company. 1

Alan Holland

2008-01-01T23:59:59.000Z

148

OpenEI:Projects/Search Engine Optimization | Open Energy Information  

Open Energy Info (EERE)

Search Engine Optimization Search Engine Optimization Jump to: navigation, search This page is used to coordinate the OpenEI project's plans to apply Search Engine Optimization (SEO) techniques to boost the site's traffic and impact. Contents 1 Tasks 2 Targeted Keywords 3 Resources 4 Participants Tasks Optimize pages' TITLE and H1 elements Include keywords (like "energy" in TITLE and H1 elements whenever possible (and appropriate) Usually accomplished via the "DISPLAYTITLE" magic word Include appropriate DESCRIPTION and KEYWORDS meta tags in HTML Usually accomplished via Template:PageMeta Include specific and descriptive ALT attributes in our image tags Make the ALT attribute as specific as possible (e.g. "NREL Logo" is better than just "Logo") Among other things, this should lead to more traffic via Google

149

Demonstration of Integrated Optimization Software at the Baldwin Energy Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Clean Coal Power Initiative (CCPI) contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov George Pukanic Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6085 george.pukanic@netl.doe.gov PaRtIcIPant NeuCo, Inc., Boston, MA aDDItIonaL tEaM MEMBERs Dynegy Midwest Generation (host) Demonstration of integrateD optimization software at the BalDwin energy Complex Project Description NeuCo, Inc., of Boston, Massachusetts, has designed and demonstrated new integrated on-line optimization systems at Dynegy Midwest Generation's Baldwin Energy

150

Source Code Optimization and Pro ling of Energy Consumption in Embedded Systems  

E-Print Network (OSTI)

Energy Model L2 Cache Memory L1 Cache Energy Model Energy Model Processor Core Model DC-DC ConverterSource Code Optimization and Pro ling of Energy Consumption in Embedded Systems Tajana Simunic in optimizing software performance and energy in embed- ded systems. Code optimizations are applied at three

Simunic, Tajana

151

Optimized Data Fusion in Bandwidth and Energy Constrained Sensor Networks  

E-Print Network (OSTI)

Optimized Data Fusion in Bandwidth and Energy Constrained Sensor Networks Xianren Wu and Zhi Tian Abstract-- This paper considers the problem of decentralized data fusion (DDF) for large wireless sensor this setting, we derive the maximum likelihood (ML) data fusion rule for decentralized parameter estimation

Tian, Zhi "Gerry"

152

Optimal Offline Broadcast Scheduling with an Energy Harvesting Transmitter  

E-Print Network (OSTI)

We consider an energy harvesting transmitter broadcasting data to two receivers. Energy and data arrivals are assumed to occur at arbitrary but known instants. The goal is to minimize the total transmission time of the packets arriving within a certain time window, using the energy that becomes available during this time. An achievable rate region with structural properties satisfied by the two-user AWGN BC capacity region is assumed. Structural properties of power and rate allocation in an optimal policy are established, as well as the uniqueness of the optimal policy under the condition that all the data of the "weaker" user are available at the beginning. An iterative algorithm, DuOpt, based on block coordinate descent that achieves the same structural properties as the optimal is described. Investigating the ways to have the optimal schedule of two consecutive epochs in terms of energy efficiency and minimum transmission duration, it has been shown that DuOpt achieves best performance under the same speci...

Erkal, Hakan; Uysal-Biyikoglu, Elif

2011-01-01T23:59:59.000Z

153

Energy Optimization with Multi Virtual Gravity for Robotic Gait  

Science Conference Proceedings (OSTI)

Although people's legs are capable of a broad range of muscle-use and gait patterns, they generally prefer just two, walking and running. A popular hypothesis regarding legged locomotion is that humans and other large animals walk and run in a manner ... Keywords: Biped Robot, Virtual Gravity, Optimization, Piecewise Torque, Energy

Lipeng Yuan; Liming Yuan; Hongying Lu

2012-07-01T23:59:59.000Z

154

System optimization and energy conservation for Los Angeles megastructure  

SciTech Connect

Broadway Plaza in Los Angeles covers 4.5 acres with shopping, office, and hotel facilities within a single structure. Emphasis was placed on system optimization, energy conservation, and life safety in the computer-aided design for the plaza. The entire structure is described with its environmental engineering in all areas. (MCW)

Ayres, J.M.; Sun, T.Y.

1974-01-01T23:59:59.000Z

155

Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

156

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

157

Energy supply network design optimization for distributed energy systems  

Science Conference Proceedings (OSTI)

Based on the fluctuations in power and heat demand of the consumers in a region, this paper presents a bi-level programming model for the regional DES (distributed energy system) network planning. The model aims to minimize the total cost of the regional ... Keywords: Bi-level programming, Distributed energy system, Energy supply network, Hybrid algorithm

Ming Dong; Fenglan He; Hairui Wei

2012-11-01T23:59:59.000Z

158

Optimal control of end-user energy storage  

E-Print Network (OSTI)

An increasing number of retail energy markets exhibit price fluctuations and provide customers such as data centers and residential users the opportunity to buy energy at lower than average prices. Such cost savings however are hard to obtain in practice because they require users to observe the price fluctuations and shift their consumption to low price periods. We propose to use energy storage to allow users to satisfy demand at times when prices are high with energy previously bought during low-price periods. We investigate how to control the battery to minimize energy costs, subject to fluctuating prices and user demand. We formulate this problem as a Markov Decision Process and show that the optimal policy has a threshold structure. We then numerically compute the thresholds using real-world traces from existing energy markets. We show that energy storage using this policy leads to significant cost savings, and study the impact of the battery size on the optimal policy and the potential savings.

van de Ven, Peter M; Massoulie, Laurent; Salonidis, Theodoros

2012-01-01T23:59:59.000Z

159

Optimal Power Cost Management Using Stored Energy in Data Centers  

E-Print Network (OSTI)

Since the electricity bill of a data center constitutes a significant portion of its overall operational costs, reducing this has become important. We investigate cost reduction opportunities that arise by the use of uninterrupted power supply (UPS) units as energy storage devices. This represents a deviation from the usual use of these devices as mere transitional fail-over mechanisms between utility and captive sources such as diesel generators. We consider the problem of opportunistically using these devices to reduce the time average electric utility bill in a data center. Using the technique of Lyapunov optimization, we develop an online control algorithm that can optimally exploit these devices to minimize the time average cost. This algorithm operates without any knowledge of the statistics of the workload or electricity cost processes, making it attractive in the presence of workload and pricing uncertainties. An interesting feature of our algorithm is that its deviation from optimality reduces as the...

Urgaonkar, Rahul; Neely, Michael J; Sivasubramaniam, Anand

2011-01-01T23:59:59.000Z

160

Optimal Control of Distributed Energy Resources using Model Predictive Control  

Science Conference Proceedings (OSTI)

In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

2012-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optimal Real-time Dispatch for Integrated Energy Systems  

DOE Green Energy (OSTI)

This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.

Firestone, Ryan Michael

2007-05-31T23:59:59.000Z

162

Realistic Industrial Scale Energy Optimization: Part I - Organizing and Executing Energy Conservation Projects  

E-Print Network (OSTI)

With increased cost and reduced availability of energy, plant managers are reviewing their options to optimize energy utilization to reduce operating costs. This paper deals with the organization and execution of an energy conservation program which will maximize savings through the most efficient utilization of energy that will meet the preponderance of constraints which are found in the process industry. The first part of this paper provides a realistic and practical approach to organizing and executing an energy conservation program. The energy audit is particularly stressed. Part II will discuss the analytic techniques which are employed during the engineering phase of the program. Included are: targeting methods, process optimization, heat exchange optimization, cost estimation and project selection by linear programming.

Jones, W. T.

1982-01-01T23:59:59.000Z

163

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Method for Determining Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

164

Optimization of Electric Energy Consumption in Marginal California Oilfields: Oilfields Energy Consumption Optimization  

Science Conference Proceedings (OSTI)

High electrical cost has always constituted a major expense item in the operation of oilfields. Such high costs are particularly critical to small oil and gas operators. There are opportunities that can substantially reduce electric cost and improve energy usage efficiency. For small operators, this could mean a difference between premature abandonment and continued recovery. Energy reduction in oil production supports the need for energy reduction across all industries brought on by recent electrical en...

2001-10-18T23:59:59.000Z

165

Renewable Energy Optimization Report for Naval Station Newport  

DOE Green Energy (OSTI)

In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

Robichaud, R.; Mosey, G.; Olis, D.

2012-02-01T23:59:59.000Z

166

Energy-Optimal Scheduling in Low Duty Cycle Sensor Networks  

E-Print Network (OSTI)

Energy consumption of a wireless sensor node mainly depends on the amount of time the node spends in each of the high power active (e.g., transmit, receive) and low power sleep modes. It has been well established that in order to prolong node's lifetime the duty-cycle of the node should be low. However, low power sleep modes usually have low current draw but high energy cost while switching to the active mode with a higher current draw. In this work, we investigate a MaxWeightlike opportunistic sleep-active scheduling algorithm that takes into account time- varying channel and traffic conditions. We show that our algorithm is energy optimal in the sense that the proposed ESS algorithm can achieve an energy consumption which is arbitrarily close to the global minimum solution. Simulation studies are provided to confirm the theoretical results.

Aydin, Nursen; Ercetin, Ozgur

2011-01-01T23:59:59.000Z

167

The Relationship between Water and Energy: Optimizing Water and Energy  

E-Print Network (OSTI)

In an effort to conserve water, drought-proof operating plants and control costs, the critical relationship of water and energy is clearly exposed. Five years of effort has transpired into countless studies, more than 100 projects and a clear understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent high probability areas for water conservation and value capture. These are not the only areas to reduce water management infrastructure and environmental footprint but they represent areas with the high potential for efforts to return bottom line value.

Finley, T.; Fennessey, K.; Light, R.

2007-01-01T23:59:59.000Z

168

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

absorption chiller and space-heating. optimal dispatch The full optimizationabsorption chiller and space-heating. optimal dispatch The full optimization

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

169

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson...  

Open Energy Info (EERE)

topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System...

170

Steam distribution and energy delivery optimization using wireless sensors  

Science Conference Proceedings (OSTI)

The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

2011-01-01T23:59:59.000Z

171

CX-004104: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-004104: Categorical Exclusion Determination State Energy Program Conductor Optimized Rotary Energy Mega-Watt Scale Direct Wind Generator CX(s) Applied: A9, B5.1 Date: 09/29/2010 Location(s): Ronan, Montana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Montana Department of Environmental Quality proposes to provide $500,000 of State Energy Program funds to Core Wind Power in Ronan, Montana to design, fabricate and test a new 3 megawatt, 8-meter wind turbine generator using existing printed circuit board manufacturing techniques and facilities. The Conductor Optimized Rotary Energy (CORE) technology uses a direct drive repeated multiplayer printed circuit board process to replace the old geared drive-train of the generator. This process will allow for

172

DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS  

Science Conference Proceedings (OSTI)

The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

Poirier, M; David Herman, D; Samuel Fink, S

2008-02-25T23:59:59.000Z

173

Electret-based cantilever energy harvester: design and optimization  

E-Print Network (OSTI)

We report in this paper the design, the optimization and the fabrication of an electret-based cantilever energy harvester. We develop the mechanical and the electrostatic equations of such a device and its implementation using Finite Elements (FEM) and Matlab in order to get an accurate model. This model is then used in an optimization process. A macroscopic prototype (3.2cm^{2}) was built with a silicon cantilever and a Teflon\\textregistered electret. Thanks to this prototype, we manage to harvest 17\\muW with ambient-type vibrations of 0.2g on a load of 210M{\\Omega}. The experimental results are consistent with simulation results.

Boisseau, S; Sylvestre, A

2011-01-01T23:59:59.000Z

174

Energy Payback Optimization of Thermoelectric Power Generator Systems  

E-Print Network (OSTI)

An analytic model for optimizing thermoelectric power generation system is developed and utilized for parametric studies. This model takes into account the external thermal resistances with hot and cold reservoirs. In addition, the spreading thermal resistance in the module substrates is considered to find the impact of designing small fraction of thermo elements per unit area. Previous studies are expanded by a full optimization of the electrical and thermal circuits. The optimum condition satisfies both electrical load resistance match with the internal resistance and the thermal resistance match with the heat source and the heat sink. Thermoelectric element aspect ratio and fill factor are found to be key parameters to optimize. The optimum leg length and the maximum output power are determined by a simple formula. The output power density per mass of the thermoelectric material has a peak when thermo elements cover a fractional area of ~1%. The role of the substrate heat spreading for thermoelectric power generation is equally significant as thermoelement. For a given heat source, the co-optimization of the heat sink and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to find the energy payback for the power generation system. The model includes both the air cooled heat sinks and the water cooled micro channels. We find that one can reduce the mass of thermoelement to around 3~10 % of that in commercial modules for the same output power, as long as the module and elements are designed properly. Also one notes that higher heat flux sources have significantly larger energy payback and reduced cost per output power.

Kazuaki Yazawa; Ali Shakouri

2010-01-01T23:59:59.000Z

175

Optimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based on  

E-Print Network (OSTI)

}@lea.uni-paderborn.de Abstract--For electric and hybrid electric cars, commonly nickel-metal hydride and lithium-ion batteries. The BMW Mini-E is an all electric powered car field-tested in the United States, United KingdomOptimal Energy Management for a Hybrid Energy Storage System for Electric Vehicles Based

Noé, Reinhold

176

Emissions and Energy: An Integral Approach Using an Online Energy Management and Optimization Model  

E-Print Network (OSTI)

With the expected legislation on the horizon in the U.S., the cost of CO2 emissions will have significant impact on industrial plant operations in the near future. Our purpose in this presentation is to show real industrial examples in which, with the existing equipment, continuous CO2 emissions reductions were achieved while, at the same time, optimizing the energy systems using an online model. We will show the importance of including the cost of CO2 emissions and how they should properly be taken into account when managing energy systems. Furthermore, we will illustrate how an optimization model is used for evaluating case studies to suggest the most cost effective energy system modifications while taking into account CO2 emissions costs. Several examples and results corresponding to the application of such systems to refineries will be discussed. In addition, the integration of CO2 emission costs and constraints into the online energy system models and their optimization is also explained.

Ruiz, D.; Ruiz, C.; Santollani, O.; Reitmeier, T.

2010-01-01T23:59:59.000Z

177

Optimization of a solar cooling system with interior energy storage  

Science Conference Proceedings (OSTI)

This paper focuses on the optimization of the performance of a solar absorption cooling system composed by four units with interior energy storage. A full dynamic simulation model that includes the solar collector field, the absorption heat pump system and the building load calculation has been developed. It has been applied to optimize the coupling of a system based on this new technology of solar powered absorption heat pump, to a bioclimatic building recently constructed in the Plataforma Solar de Almeria (PSA) in Spain. The absorption heat pump system considered is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. Each heat pump is composed of two separate barrels that can charge (store energy from the solar field) and discharge (deliver heat or cold to the building) independently. Different configurations of the four units have been analysed taking into account the storage possibilities of the system and its capacity to respond to the building loads. It has been shown how strong the influence of the control strategies in the overall performance is, and the importance of using hourly simulations models when looking for highly efficient buildings. (author)

Sanjuan, C.; Soutullo, S.; Heras, M.R. [Department of Energy, Energy Efficiency in Buildings Unit, CIEMAT, Madrid E-28040 (Spain)

2010-07-15T23:59:59.000Z

178

BACKPRESSURE TESTING OF ROTARY MICROFILTER DISKS  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL), under the Department of Energy (DOE) Office of Environmental Management (EM), is modifying and testing the SpinTek{trademark} rotary microfilter (RMF) for radioactive filtration service in the Department of Energy (DOE) complex. The RMF has been shown to improve filtration throughput when compared to other conventional methods such as cross-flow filtration. A concern with the RMF was that backpressure, or reverse flow through the disk, would damage the filter membranes. Reverse flow might happen as a result of an inadvertent valve alignment during flushing. Testing was completed in the Engineering Development Laboratory (EDL) located in SRNL to study the physical effects of backpressure as well as to determine the maximum allowable back-pressure for RMF disks. The RMF disks tested at the EDL were manufactured by SpinTek{trademark} Filtration and used a Pall Corporation PMM050 filter membrane (0.5 micron nominal pore size) made from 316L stainless steel. Early versions of the RMF disks were made from synthetic materials that were incompatible with caustic solutions and radioactive service as well as being susceptible to delaminating when subjected to backpressure. Figure 1-1 shows the essential components of the RMF; 3 rotating disks and 3 stationary turbulence promoters (or shear elements) are shown. Figure 1-2 show the assembly view of a 25 disk RMF proposed for use at the Savannah River Site (SRS) and at the Hanford Facility. The purpose of the testing discussed in this report was to determine the allowable backpressure for RMF disks as well as study the physical effects of backpressure on RMF disks made with the Pall PMM050 membrane. This was accomplished by pressurizing the disks in the reverse flow direction (backpressure) until the test limit was reached or until membrane failure occurred. Backpressure was applied to the disks with air while submerged in deionized (DI) water. This method provided a visual representation of membrane integrity via bubble flow patterns. Membrane failure was defined as the inability to filter effectively at the nominal filter pore size. Effective filtration was determined by turbidity measurements of filtrate that was produced by applying forward-pressure to the disks while submerged in a representative simulant. The representative simulant was Tank 8F simulated sludge produced for SRNL by Optima Chemical. Two disks were tested. Disk 1 was tested primarily to determine approximate levels of backpressure where membrane failure occurred. These levels were then used to define the strategy for testing the Disk 2; a strategy that would better define and quantify the mode of failure.

Fowley, M.; Herman, D.

2011-04-14T23:59:59.000Z

179

Optimal Control of Residential Energy Storage Under Price Fluctuations  

E-Print Network (OSTI)

AbstractAn increasing number of retail energy markets exhibit price fluctuations and provide home users the opportunity to buy energy at lower than average prices. However, such cost savings are hard to realize in practice because they require human users to observe the price fluctuations and shift their electricity demand to low price periods. We propose to temporarily store energy of low price periods in a home battery and use it later to satisfy user demand when energy prices are high. This enables home users to save on their electricity bill by exploiting price variability without changing their consumption habits. We formulate the problem of minimizing the cost of energy storage purchases subject to both user demands and prices as a Markov Decision Process and show that the optimal policy has a threshold structure. We also use a numerical example to show that this policy can lead to significant cost savings, and we offer various directions for future research. Index TermsBattery storage, dynamic pricing, dynamic programming, energy storage, threshold policy. I.

Nidhi Hegde; Laurent Massouli; Theodoros Salonidis

2011-01-01T23:59:59.000Z

180

Combustion Optimization at Allegheny Energy's Armstrong Power Station  

Science Conference Proceedings (OSTI)

Individual air and coal flow measurement instruments have been installed on Allegheny Energy's Armstrong Station with a goal to balance the individual burner air to fuel ratios to minimize NOx, reduce the LOI level in the ash and improve heat rate. These signals are also being incorporated into the NOx optimization package, ULTRAMAX (R). Armstrong Station is a 180 MW front wall boiler burning a low sulfur eastern bituminous coal. Twelve Foster Wheeler IFS low NOx burners are fed by two ball mills, three ...

2000-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wear compensating seal means for rotary piston coal feeder  

SciTech Connect

The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.

Gencsoy, Hasan T. (Morgantown, WV); Gardner, John F. (Morgantown, WV)

1979-01-01T23:59:59.000Z

182

An Application of Integrated Thermal and Electrical Energy Cogeneration Optimization  

E-Print Network (OSTI)

The savings associated with operations optimization of power generation and cogeneration facilities are large, and readily justify the hardware and software costs required for implementation of Energy Management Optimization Systems (EMOS). The objective of such systems is to minimize the total energy operating costs for specified power and steam load profiles, including the purchase of external power and/or steam, and the use of internal self-generation equipment. The EMOS may require online operation using current measurements (e.g. flow, powers, temperatures, etc.), and calculating optimum energy purchase and equipment dispatch within time periods consistent with changing ambients, loads and/or purchase energy price conditions. The automatic recognition of changes in equipment status and system operating configuration may be required. The EMOS may also consider the electrical distribution system to minimize losses, and to ensure that tbe optimum thermal power dispatch may be reliably delivered to the loads under tbe existing distribution configuration within electrical equipment operating limits. Automatic generation dispatch may also be required. A system which incorporates the requirements of the above specification and more, has been designed, installed and is operational at a large industrial cogeneration facility. A description of the specifics of this entire system is beyond tbe scope of this paper, however, a discussion of selected system features will be given. This application involves the simultaneous optimization of energy supply for in-plant power and process steam from many highly integrated system components. Cogeneration plants, as shown in Figure 1, are generally characterized by multiple sources of energy, various types of prime movers (e.g. boilers, waste heat recovery, steam and gas turbines, etc.), and varying requirements for process heat and electrical power, particularly if bulk power is being purchased, or dispatched to a utility grid as in the case of Independent Power Producers. In addition, the operating characteristics of tbe equipment and loads are continuously changing due to outage of equipment, changes in process steam and electrical demands, ambient conditions and performance deterioration. The ability to coordinate and optimize the simultaneous operation of the various components to meet all the energy requirements at minimum cost is a formidable task. In addition to the thermal optimization of boilers, gas turbines, and various types of condensing and autoextraction steam turbines, the system also considers the electrical distribution system, where changing bus configurations, power and voltage control impose additional constraints and limits which are solved in the optimum dispatch. The application incorporates automatic closed loop control of many process set points with a sophisticated system of permissives and automatic generation control features. Since a high on-line operating factor is essential, many design features are incorporated for signal validation and malfunction identification, and to make the system robust to instrument failure and drift. The system can be used as an on-line or off-line supervisory program. For on line implementation, closed loop response, fail safe operation and interfacing with process control systems are key closed loop implementation considerations. The system involves the interaction of several modules. The following will describe selected modules and how they interface to satisfy existing loads at minimum cost.

Ahner, D. J.; Mills, R. J.

1994-04-01T23:59:59.000Z

183

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

184

Energy optimization for the design of cornbased ethanol plants  

E-Print Network (OSTI)

In this work we address the problem of optimizing corn-based bioethanol plants through the use of heat integration and mathematical programming techniques. The goal is to reduce the operating costs of the plant. Capital cost, energy usage, and yields all contribute to prduction cost. Yield and energy use also influence the viability of cornbased ethanol as a sustainable fuel. We first propose a limited superstructure of alternative designs including the various process units and utility streams involved in ethanol production. Our objective is to determine the connections in the network and the flow in each stream in the network such that we minimize the energy requirement of the overall plant. This is accomplished through the formulation of a mixed integer nonlinear programming problem involving mass and energy balances for all the units in the system, where the model is solved through two nonlinear programming subproblems. We then perform a heat integration study on the resulting flowsheet; the modified flowsheet includes multieffect distillation columns and further reduces energy consumption. The results indicate that it is possible to reduce the current steam consumption required in the transformation of corn into fuel grade ethanol by more than 40 % compared to initial basic design.

Andreas Peschel; Mariano Martn; Ignacio E. Grossmann; Wade Martinson; Luca Zullo

2008-01-01T23:59:59.000Z

185

Rotary Mode Core Sample System availability improvement  

SciTech Connect

The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

1995-02-28T23:59:59.000Z

186

Annual Energy Consumption Analysis and Energy Optimization of a Solar-Assisted Heating Swimming Pool  

E-Print Network (OSTI)

This paper is concerned with the energy efficiency calculations and optimization for an indoor solar-assisted heating swimming pool in GuangZhou. The heating energy requirements for maintaining the pool constant temperature were investigated, which can be divided into three main parts: heat loss due to surface water evaporation, conduction and convective heat loss, and heat demand for heating fresh water. Then, an all-year solar radiation model for slope with varying orientation and incline angle is introduced, and relevant results are given based on typical year weather data in GuangZhou. Furthermore, annual energy consumption model and life cycle cost optimization model is established, and optimal results are analyzed based on an indoor solar-assisted heating swimming pool with 200m2 surface area in GuangZhou.

Zuo, Z.; Hu, W.; Meng, O.

2006-01-01T23:59:59.000Z

187

Optimizing the design and operation of aquifer thermal energy systems  

DOE Green Energy (OSTI)

The design of Aquifer Thermal Energy Storage (ATES) systems is complicated by significant uncertainties in ones ability to reliably predict the response of the aquifer to fluid and thermal fluxes. Overdesigning the system, to compensate for these uncertainties, reduces the potential economic and energy benefits of an ATES system. Underdesigning the system results in systems that fail to meet design targets. Unfortunately, standard aquifer characterization methods and hydrologic models do not provide adequate information to overcome these uncertainties. Thus, expensive full-scale tests are generally recommended to develop an adequate-understanding of the systems response. However, the standard engineering {open_quotes}design-build-operate{close_quotes} process is not. appropriate for ATES systems because an optimal design cannot be completed without some operational experience, i.e., field tests. A more adaptive engineering process is required. This engineering process should be flexible enough to allow the design to be adjusted during the operation, as monitoring data become available and as an understanding of the system response increases. Engineering approaches being developed for environmental restoration of contaminated soil and groundwater can be adapted to optimally design and operate ATES systems.

Vail, L.W.; Jenne, E.A.

1994-11-01T23:59:59.000Z

188

High Pressure Rotary Shaft Sealing Mechanism  

DOE Patents (OSTI)

A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.

Dietle, Lannie (Sugar Land, TX); Gobeli, Jeffrey D. (Houston, TX)

2001-05-08T23:59:59.000Z

189

Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Optimization  

E-Print Network (OSTI)

LBNL-58634 Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Efficient Cleanrooms: Cooling tower and condenser water optimization Tengfang Xu Contents HVAC WATER SYSTEMS.............................................................................................. 2 Cooling tower and condenser water optimization

190

Optimal operation and design of solar-thermal energy storage systems  

E-Print Network (OSTI)

The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

Lizarraga-Garca, Enrique

2012-01-01T23:59:59.000Z

191

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

192

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

the optimization of cogeneration dispatch in a deregulatedcomprised of on-site cogeneration of heat and electricity,of optimal control to a cogeneration system over current,

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

193

Demontration of Integrated Optimization Software at the Baldwin Energy Complex  

SciTech Connect

This project encompassed the design, development, and demonstration of integrated online optimization systems at Dynegy Midwest Generation's Baldwin Energy Complex (BEC) located in Baldwin, Illinois. The overall project objective was to improve coal-based generation's emission profile, efficiency, maintenance requirements and plant asset life in order to enhance the long-term viability of the United States abundant coal resources. Five separate but integrated optimization products were developed, addressing combustion, sootblowing, SCR operations, overall unit thermal performance, and plant-wide availability optimization. Optimization results are inherently unit-specific and cannot be known for a particular generating unit in advance. However, NeuCo believed that the following were reasonable targets for the completed, integrated set of products: Furnace NOx reduction improvement by 5%, Heat rate improvement by 1.5%, Increase of annual Available MWh by 1.5%, Commensurate reductions in greenhouse gases, mercury, and particulates; and Commensurate increases in profitability from lower costs, improved reliability, and greater commercial availability. The goal during Phase I was to establish each system and demonstrate their integration in unified plant optimization. Efforts during Phase I focused on: (1) developing, deploying, integrating, and testing prototypes for each of the five products; (2) identifying and addressing issues required for the products to integrate with plant operations; and (3) systematically collecting and assimilating feedback to improve subsequent product releases. As described in the Phase II continuation application NeuCo successfully achieved the goal for Phase I. The goal of Phase II was to improve upon the products installed and tested in Phase I and to quantify the benefits of the integrated system. As this report documents, NeuCo has also successfully achieved the goal for Phase II. The overall results of the project, compared with the project goals, are: (1) NOx Reduction: The 5% target for NOx reduction was exceeded with average CEMS and SCR Inlet (furnace) NOx reduction of between 12% and 14%. (2) Heat Rate Improvement: The optimization systems delivered an average heat rate improvement of between 0.67% and 0.7%. This falls short of the 1.5% heat rate improvement target largely because Cyclone Stability (availability) and CEMS and SCR Inlet NOx were prioritized over heat rate in the event they needed to be traded-off with one another. A different prioritization of objectives could have driven a different balance, thereby meeting the target of 1.5% improvement. There were also several factors that could have been masking greater heat rate improvements such as the decrease in fuel density over the course of the project and the impact of actions taken as a result of advice provided by the optimizers that are difficult to quantify. (3) Increased Annual Available MWh: Although difficult to measure precisely, the target of increasing available MWh's by 1.5% was met by providing prioritized alerts and knowledge-based diagnostics for a wide array of plant equipment and process anomalies; helping the plant to move from high sulfur, high Btu Illinois coal to PRB and run that fuel at low stoichiometries without derates; and improved management of cyclone flame quality as well as improved vigilance with respect to cyclone conditions which avoided some degree of temporary de-rate due to cyclone slag build up. (4) Commensurate Reductions in Greenhouse Gases, Mercury, and Particulates: Reductions in all three of these indices can be associated directly with the optimization leverage observed in the heat rate and NOx reductions. (5) Commensurate Increases in Profitability from Lower Costs, Improved Reliability, and Greater Commercial Availability: Commensurate improvements in costs, reliability and availability resulted from the previously described benefits. Also playing a role were the sustained operation of the cyclones while using more available, less expensive but off-design fuel; more effective catal

Rob James; John McDermott; Sanjay Patnaik; Steve Piche`

2009-01-07T23:59:59.000Z

194

Optimal Packet Scheduling on an Energy Harvesting Broadcast Link  

E-Print Network (OSTI)

The minimization of transmission completion time for a given number of bits per user in an energy harvesting multi-user communication system, where the energy harvesting instants are known in an offline manner is considered. The two-user case is studied for simplicity of exposition. A two dimensional achievable rate region with structural properties satisfied by the AWGN Broadcast Channel capacity region is assumed. It is shown that even though all the bits are available at the beginning, a non-negative amount of energy from each energy harvest is deferred for later use such that the transmit power starts at its lowest value and rises as time progresses. The optimal scheduler ends the transmission to both users at exactly the same time. Exploiting the special structure in the problem, the iterative offline algorithm, FlowRight, which was proposed in earlier literature, is adapted and proved to solve this problem. The iterative solution has polynomial complexity in the number of harvests used, and is observed ...

Antepli, Mehmet Akif; Erkal, Hakan

2010-01-01T23:59:59.000Z

195

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

E-Print Network (OSTI)

B. CO 2 COMPRESSION AT THE FOSSIL ENERGY COMPLEX ..106States. Starting from todays fossil energy system, assessDesign of Optimized Fossil Energy Systems with Capture and

Ogden, Joan

2004-01-01T23:59:59.000Z

196

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on...

197

A unidirectional rotary solenoid as applied to stronglinks  

Science Conference Proceedings (OSTI)

This paper describes the design goals and results of an advanced development stronglink project with special emphasis on a new rotary solenoid concept. 10 figs.

Kenderdine, E.W.

1988-01-01T23:59:59.000Z

198

From Waste to Hydrogen: An Optimal Design of Energy Production and Distribution Network  

E-Print Network (OSTI)

1 From Waste to Hydrogen: An Optimal Design of Energy Production and Distribution Network Nathan and distribution systems for hydrogen production from agricultural residues, which is a representative green energy of producing clean energy from renewable resources. This paper focuses on the optimal design of the production

Fan, Yueyue

199

An optimization framework for the energy management of carrier ethernet networks with Multiple Spanning Trees  

Science Conference Proceedings (OSTI)

We propose an energy management framework to optimize the energy consumption of networks using the Multiple Spanning Tree Protocol such as Carrier Grade Ethernet networks. The objective is to minimize the energy consumption of nodes and links while considering ... Keywords: Carrier Grade Ethernet, Green networking, Network design, Routing optimization, Spanning Trees, Traffic engineering

Antonio Capone; Daniele Corti; Luca Gianoli; Brunilde Sans

2012-11-01T23:59:59.000Z

200

Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply Voltage Optimization  

E-Print Network (OSTI)

Energy-Delay Tradeoffs in Combinational Logic using Gate Sizing and Supply Voltage Optimization savings to the energy profile of a circuit. These savings are obtained by using gate sizing and supply of energy to delay is derived from a linear delay model extended to multiple supplies. The optimizations

Nikolic, Borivoje

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE)  

E-Print Network (OSTI)

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE) Quinn;Caltech Field Laboratory for Optimized Wind Energy (reduced visual signature) #12;Field Study Results 6 continuous hours existing wind farms Planform Kinetic Energy Flux = U (W m-2) mean power above cut

202

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

current and forecasted energy prices, energy demand, and DERarises in energy loads, energy prices and IES equipmentenergy loads, and energy prices, regulatory constraints on

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

203

Applications of Optimal Building Energy System Selection and Operation  

DOE Green Energy (OSTI)

Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated by description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.

Marnay, Chris; Stadler, Michael; Siddiqui, Afzal; DeForest, Nicholas; Donadee, Jon; Bhattacharya, Prajesh; Lai, Judy

2011-04-01T23:59:59.000Z

204

NREL-Optimizing Rooftop Space with SolOpt Presentation | Open Energy  

Open Energy Info (EERE)

NREL-Optimizing Rooftop Space with SolOpt Presentation NREL-Optimizing Rooftop Space with SolOpt Presentation Jump to: navigation, search Tool Summary Name: Optimizing Rooftop Space with SolOpt Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Buildings, Solar Topics: Implementation, Technology characterizations Resource Type: Presentation, Guide/manual, Training materials Website: www.solaramericacities.energy.gov/pdfs/2010_annual_meeting/Thu400_SWH_ Optimizing Rooftop Space with SolOpt Screenshot References: Optimizing Rooftop Space with SolOpt[1] Logo: Optimizing Rooftop Space with SolOpt This presentation answers the question: "How do you decide what type of solar system should be used for a specific facility?" References ↑ "Optimizing Rooftop Space with SolOpt"

205

Demonstration of a rotary separator for two-phase brine and steam flows. Final report  

DOE Green Energy (OSTI)

The application of a two-phase rotary separator for geothermal energy conversion was demonstrated. Laboratory tests were conducted with clean water and steam at Biphase Energy Systems, Inc., Santa Monica, California. Field tests were conducted at the Union Oil Co., Tow No. 1 wellsite near Brawley, California. The system tested consisted of the major components of a total flow rotary separator/turbine conversion system. A nozzle converted the brine wellhead enthalpy to two-phase flow kinetic by impinging the nozzle flow tangentially on the inside of the separator. The flow was therefore subjected to the high centrifugal force field in the separator. This caused the liquid phase to collect as a film on the separator drum with very little energy loss. The steam was allowed to flow radially inward to the central steam discharge. Potable water was obtained by condensing the steam exhaust. The brine collection system converted the liquid film kinetic energy to static pressure head. The system was operated for 116 hours in a high salinity environment (115,000 ppM TDS). The system operated properly with no adverse effects from solids precipitation or scale buildup. The rotary separator produced separate flows of pure liquid and steam of greater than 99.5% quality.

Cerini, D.J.

1978-01-01T23:59:59.000Z

206

Optimal Sleep-Wake Policies for an Energy Harvesting Sensor Node  

E-Print Network (OSTI)

Optimal Sleep-Wake Policies for an Energy Harvesting Sensor Node Vinay Joseph, Vinod Sharma in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue energy management policies were identified which made the system work in energy neutral operation

Sharma, Vinod

207

Optimization of the utilization of renewable energy sources in the electricity sector  

Science Conference Proceedings (OSTI)

Emission reduction targets as well as the scarcity of fossil resources make a transition of the energy system towards a carbon free electricity supply necessary. Promising energy resources are solar and wind energy. The challenging characteristics of ... Keywords: energy system model, geographic information system (GIS), linear optimization, power supply, renewable energy, simulation, supergrid

Tino Aboumahboub; Katrin Schaber; Peter Tzscheutschler; Thomas Hamacher

2010-02-01T23:59:59.000Z

208

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

xxiii Energy Pricing and Tariffper year. Energy Pricing and Tariff Structure Electricityrescheduled. Energy Pricing and Tariff Structure Electricity

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

209

Optimal numerical realization of the energy balance equation for wind wave models  

Science Conference Proceedings (OSTI)

The optimal numerical realization of the energy balance equation in wind wave models is proposed. The scheme is separated into two parts: the numerical source term integration and the energy propagation numerical realization. The first one is based on ...

Igor V. Lavrenov

2003-06-01T23:59:59.000Z

210

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

Cobb, J.T. Jr.

1991-08-29T23:59:59.000Z

211

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Conference Proceedings (OSTI)

Owing to sun's rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization by genetic algorithm and neural network was used to optimize ... Keywords: battery flywheel, genetic algorithm, neural network

Shiqiong Zhou; Longyun Kang; Miaomiao Cheng; Binggang Cao

2009-11-01T23:59:59.000Z

212

Software optimization for performance, energy, and thermal distribution: Initial case studies  

Science Conference Proceedings (OSTI)

As an initial step in our Green Software research, this paper investigates whether software optimization at the application level can help achieve higher energy efficiency and better thermal behavior. We use both direct measurements and modeling to quantify ... Keywords: system-level energy consumption, software optimization, performance-energy-thermal distribution, green software, energy efficiency, power estimator, multicore systems, regressing measurements, custom-designed suite, microbenchmarks, software tuning, scalability, parallel application

M. A. Khan; C. Hankendi; A. K. Coskun; M. C. Herbordt

2011-07-01T23:59:59.000Z

213

Rotor Design and Process Optimization for Rotary Inert Dgeasser  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Advances in Metal Casting Technologies. Presentation Title, Rotor Design and...

214

Energy consumption forecasting in process industry using support vector machines and particle swarm optimization  

Science Conference Proceedings (OSTI)

In this paper, Support Vector Machines (SVMs) are applied in predicting energy consumption in the first phase of oil refining at a particular oil refinery. During cross-validation process of the SVM training Particle Swarm Optimization (PSO) algorithm ... Keywords: energy prediction, particle swarm optimization (PSO), support vector machines (SVM)

Milena R. Petkovi?; Milan R. Rapai?; Boris B. Jakovljevi?

2009-09-01T23:59:59.000Z

215

Optimal selection and sizing of distributed energy resources for distributed power systems  

Science Conference Proceedings (OSTI)

Optimal selection and sizing of distributed energy resources is an important research problem in the development of distributed power systems. This paper presents a methodology for optimal selection and sizing of distributed energy resources in integrated microgrids using the evolutionary strategy. Integrated microgrid is an innovative architecture in distributed power systems

Thillainathan Logenthiran; Dipti Srinivasan

2012-01-01T23:59:59.000Z

216

TESTING OF THE SECOND GENERATION SPINTEK ROTARY FILTER -11357  

SciTech Connect

The SpinTek rotary microfilter has been developed under the Department of Energy (DOE) Office of Environmental Management (EM) for the purpose of deployment in radioactive service in the DOE complex. The unit that was fabricated and tested is the second generation of the filter that incorporates recommended improvements from previous testing. The completion of this test satisfied a key milestone for the EM technology development program and technology readiness for deployment by Savannah River Remediation in the Small Column Ion Exchange and Sludge Washing processes at the Savannah River Site (SRS). The Savannah River National Laboratory (SRNL) contracted SpinTek Filtration to fabricate a full scale 25 disk rotary filter and perform a 1000 hour endurance test with a simulated SRS sludge. Over 1500 hours of operation have been completed with the filter. SpinTek Filtration fabricated a prototypic 25 disk rotary filter including updates to manufacturing tolerances, an updated design to the rotary joint, improved cooling to the bottom journal, decreases in disk and filter shaft hydraulic resistances. The filter disks were fabricated with 0.5 {micro} pore size, sintered-metal filter media manufactured by Pall Corporation (M050). After fabrication was complete, the filter passed acceptance tests demonstrating rejection of solids and clean water flux with a 50% improvement over the previous filters. Once the acceptance test was complete, a 1000 hour endurance test was initiated simulating a sludge washing process. The test used a simulated SRS Sludge Batch 6 recipe. The insoluble solids started at 5 wt% and were raised to 10 and 15 wt% insoluble solids to simulate the concentration of a large volume tank. The filter system was automated and set up for 24 hour unattended operation. To facilitate this, process control logic was written to operate the filter. During the development it was demonstrated that the method of starting and stopping the filter can affect the build up of filter cake on the disks and therefore the performance of the filter. The filter performed well with the simulant. Very little drop in production was noticed between the 5 and 10 wt% insoluble solids feed. Increasing to 15 wt% had a more pronounced impact due to the rheology of the feed. Acid cleaning was used to clean the filter disks in-situ and restore filtration rate to almost 90% of the initial clean disk rate. Eighty liters of 0.2 M nitric acid in conjunction with water rinses were used to clean the filter in less than 2 hours. Filter testing was completed after 1000 hours of operation were performed on the final filter assembly configuration. The total run time for the testing was over 1500 hours. At the end of the test, the sludge washing was performed successfully from approximately 5.6 M to less than 1 M sodium.

Herman, D.; Poirier, M.; Fowley, M.; Keefer, M.; Huff, T.

2011-02-02T23:59:59.000Z

217

Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System  

Science Conference Proceedings (OSTI)

Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

Zitney, S.E.

2007-06-01T23:59:59.000Z

218

Thermal vs energy optimization for dvfs-enabled processors in embedded systems  

E-Print Network (OSTI)

Abstract In the past, dynamic voltage and frequency scaling (DVFS) has been widely used for power and energy optimization in embedded system design. As thermal issues become increasingly prominent, we propose design-time thermal optimization techniques for embedded systems. By carefully planning DVFS at design time, our techniques proactively optimize system thermal profile, prevent run-time thermal emergencies, minimize cooling costs, and optimize system performance. To the best of our knowledge, this is the first work addressing embedded system designtime thermal optimization using DVFS. We formulate minimization of application peak temperature in the presence of real-time constraints as a nonlinear programming problem. This provides a powerful framework for system designers to determine a proper thermal solution and provide a lower bound on the minimum temperature achievable by DVFS. Furthermore, we examine the differences between optimal energy solutions and optimal peak temperature solutions. Experimental results indicate that optimizing energy consumption can lead to unnecessarily high temperature. Finally, we propose a thermal-constrained energy optimization procedure to minimize system energy consumption under a constraint on peak temperature. I.

Yongpan Liu; Huazhong Yang; Robert P. Dick; Hui Wang; Li Shang

2007-01-01T23:59:59.000Z

219

Optimizing Rooftop Space with SolOpt - Home - Energy ...  

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated ... State policy maker can ...

220

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

Stadler. 2003. Distributed energy resources in practice: ARyan. 2004. Distributed Energy Resources Customer Adoption2003. Gas-Fired Distributed Energy Resource Technology

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Towards a unified cost optimal methodology for designing low energy buildings in the mediterranean sea region  

Science Conference Proceedings (OSTI)

The increasing sustainability problems our world faces because of the thoughtless energy consumption and emissions production puts an increasing pressure for immediate and drastic energy saving measures. Although the consumption of energy - through appropriate ... Keywords: cost optimal, design methodology, low energy building, mediterranean

Stratis Kanarachos; Ahmed Medhat; Georgette Kanarachou; Mona Fanny

2011-02-01T23:59:59.000Z

222

Optimization Online - Energy Savings in Wireless Mesh Networks in ...  

E-Print Network (OSTI)

Jan 24, 2011 ... Abstract: Energy consumption of communication systems is ... Keywords: Energy savings, wireless Mesh Networks, Green networking.

223

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network (OSTI)

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which include a terminal box temperature integrated minimum airflow reset. The building has been used and operated based on the design intents. This paper presents both the existing and the optimal control schedules, which include the VAV box operation schedule, AHUs optimal control, chiller and chilled water pump control, and boiler and hot water pump control. The measured hourly HVAC electricity consumption shows that annual savings of up to 40% can be achieved with an optimal control schedule.

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

224

Local energy management through mathematical modeling and optimization  

E-Print Network (OSTI)

(cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of ...

Craft David (David Loren), 1973-

2004-01-01T23:59:59.000Z

225

Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV  

E-Print Network (OSTI)

Previous work examined degree of hybridization on the fuel economy of a hybrid electric sport utility vehicle. It was observed that not only was the vehicle control strategy important, but that its definition should be coupled with the component sizing process. Both degree of hybridization and the energy management strategy have been optimized simultaneously in this study. Simple mass scaling algorithms were employed to capture the effect of component and vehicle mass variations as a function of degree of hybridization. Additionally, the benefits of regenerative braking and power buffering have been maximized using optimization methods to determine appropriate battery pack sizing. Both local and global optimization routines were applied to improve the confidence in the solution being close to the true optimum. An optimal configuration and energy management strategy that maximizes the benefit of hybridization for a hydrogen fuel cell hybrid SUV was derived. The optimal configuration was explored, and sensitivity to drive cycle in the optimization process was studied.

Keith Wipke Tony; Tony Markel; Doug Nelson

2001-01-01T23:59:59.000Z

226

BPA Wins Platts Global Energy Award for Grid Optimization | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA Wins Platts Global Energy Award for Grid Optimization BPA Wins Platts Global Energy Award for Grid Optimization BPA Wins Platts Global Energy Award for Grid Optimization December 18, 2013 - 2:25pm Addthis Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program, in which 19 utilities have partnered with the Department of Energy to provide real-time visibility of the entire western power system that covers 14 states, two Canadian provinces and a portion of the Baja Peninsula in Mexico. Through a dedicated, secure network provided by Western Interconnection Synchrophasor Program, BPA is sharing synchrophasor data with 10 other utilities,

227

A Modeling and Optimization Approach for Multiple Energy Carrier Power Flow  

E-Print Network (OSTI)

Abstract This paper presents a general power flow and optimization approach for power systems including multiple energy carriers, such as electricity, natural gas, and district heat. The model is based on a conceptual approach for the inclusion of distributed resources. Couplings between the different energy carriers are regarded explicitly, enabling investigations in power flow and marginal price interactions. Optimal demand, conversion, and transmission of multiple energy carriers within a system is formulated as a combined optimal power flow problem. A numerical example demonstrates how the method can be used for different system studies. I.

Martin Geidl; Gran Andersson

2005-01-01T23:59:59.000Z

228

Results of the 1000 Hour Rotary Microfilter Endurance Test  

Stellite on Nitronic 60. 8 SRNL-L3100-2010-00229 Rotary Microfilter 1000 Hour Test Flux Data for 1000 Hour Test 0 1 2 3 4 5 6 0 100 200 300 400 500 ...

229

High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.  

SciTech Connect

The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub-models for overall analysis of the system. It also provides control over key user input parameters and the ability to effectively consolidate vital output results for uncertainty/sensitivity analysis and optimization procedures. The preliminary analysis has shown promising advanced fuel cycle scenarios that include Pressure Water Reactors Pressurized Water Reactors (PWRs), Very High Temperature Reactors (VHTRs) and dedicated HEST waste incineration facilities. If deployed, these scenarios may substantially reduce nuclear waste inventories approaching environmentally benign nuclear energy system characteristics. Additionally, a spent fuel database of the isotopic compositions for multiple design and control parameters has been created for the VHTR-HEST input fuel streams. Computational approaches, analysis metrics, and benchmark strategies have been established for future detailed studies.

Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

2009-09-01T23:59:59.000Z

230

An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty  

Science Conference Proceedings (OSTI)

In this study, an interactive decision support system (UREM-IDSS) has been developed based on an inexact optimization model (UREM, University of Regina Energy Model) to aid decision makers in planning energy management systems. Optimization modeling, ... Keywords: Decision making, Energy management systems, Green house gas, Interactive decision support system, Optimization, Sustainable development, Uncertainty

Y. P. Cai; G. H. Huang; Q. G. Lin; X. H. Nie; Q. Tan

2009-03-01T23:59:59.000Z

231

Optimized renewable energy forecasting in local distribution networks  

Science Conference Proceedings (OSTI)

The integration of renewable energy sources (RES) into local energy distribution networks becomes increasingly important. Renewable energy highly depends on weather conditions, making it difficult to maintain stability in such networks. To still enable ...

Robert Ulbricht; Ulrike Fischer; Wolfgang Lehner; Hilko Donker

2013-03-01T23:59:59.000Z

232

Optimization of running strategies based on anaerobic energy and ...  

E-Print Network (OSTI)

Aug 13, 2013 ... We extend this analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic energy (or accumulated...

233

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Chinese cities and climate zones. To optimize each buildingare shown in the building climate zone map in Figure 1. Theon the following factors: Climate zones and building energy

Feng, Wei

2013-01-01T23:59:59.000Z

234

Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatialtemporal correlations  

E-Print Network (OSTI)

Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the FennaMatthewsOlson (FMO) ...

Wu, Jianlan

235

QoS supporting and optimal energy allocation for a cluster based wireless sensor network  

Science Conference Proceedings (OSTI)

Wireless sensor networks (WSNs) have become a very active and important area of research due to their potential in civil and military applications. A lot of research works focus on energy efficient routing protocols due to the limited energy of battery-powered ... Keywords: Clustering, Data loss rate, Optimal energy allocation, QoS, Source-to-sink delay, Wireless sensor network

Shensheng Tang; Wei Li

2006-08-01T23:59:59.000Z

236

Optimal Transmission Policies over Vector Gaussian Broadcast Channels with Energy Harvesting  

E-Print Network (OSTI)

Optimal Transmission Policies over Vector Gaussian Broadcast Channels with Energy Harvesting framework. In [2], energy management policies which stabilize the data queue This work was supported by NSF, University of Wisconsin-Madison, Madison, WI 53706 Abstract--We consider an energy harvesting transmitter

Ulukus, Sennur

237

Analysis and Optimization of the Power Cycle Based on the Cold Energy of Liquefied Natural Gas  

Science Conference Proceedings (OSTI)

Liquid natural gas (LNG) delivered by sea-ships contains considerable cryogenic energy which can be used for power generation before its evaporation and introduction into the system of pipe line. Electric power generation utilizing LNG cold energy is ... Keywords: liquefied natural gast, cold energy recovery, pinch analysis, exergy, optimization

Lu Yuanwei; Yang Hongchang; Ma Chongfang

2011-01-01T23:59:59.000Z

238

Optimal operational strategy for hybrid renewable energy system using genetic algorithms  

Science Conference Proceedings (OSTI)

Off-grid settlements require efficient, reliable and cost-effective renewable energy as alternative to the power supplied by diesel generator. Techno-economic analysis is required to find the optimum renewable energy system in the long run. This paper ... Keywords: genetic algorithm, hybrid system, operation strategy, optimization, renewable energy

Juhari Ab. Razak; Kamaruzzaman Sopian; Zulkifli Mohd Nopiah; Azami Zaharim; Yusoff Ali

2007-12-01T23:59:59.000Z

239

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies  

E-Print Network (OSTI)

Software Optimization for Performance, Energy, and Thermal Distribution: Initial Case Studies Md and modeling to quantify power, energy and temperature for a given software method. The infrastructure includes two case studies. In the first one, we use software tuning for improving the scalability and energy

Coskun, Ayse

240

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the  

E-Print Network (OSTI)

Load Electricity input to Flow Battery Figure 16: The Forecasted Energy Needs and DG Operating Schedule Electricity Only load Figure 18 Forecast Energy Demand and Energy Demand Rescheduled to Minimize Cost under PG electrical loads. Figure 1 shows an example result of the investment and planning optimization running in Web

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimal operational strategy for hybrid renewable energy system using genetic algorithms  

Science Conference Proceedings (OSTI)

Off-grid settlements require efficient, reliable and cost-effective renewable energy as alternative to the power supplied by diesel generator. Techno-economic analysis is required to find the optimum renewable energy system in the long run. This paper ... Keywords: genetic algorithms, hybrid system, operation strategy, optimization, renewable energy

Kamaruzzaman Sopian; Azami Zaharim; Yusoff Ali; Zulkifli Mohd Nopiah; Juhari Ab. Razak; Nor Salim Muhammad

2008-04-01T23:59:59.000Z

242

ADV-MAC: Analysis and optimization of energy efficiency through data advertisements for wireless sensor networks  

Science Conference Proceedings (OSTI)

Several Medium Access Control (MAC) protocols have been proposed for wireless sensor networks with the objective of minimizing energy consumption. For example, Sensor-MAC (S-MAC) was proposed to reduce energy consumption by introducing a duty cycle. ... Keywords: Advertisement-based MAC, Energy efficiency, MAC layer performance optimization, MAC protocol

Surjya Ray; Ilker Demirkol; Wendi Heinzelman

2011-07-01T23:59:59.000Z

243

Optimization of wind turbine energy and power factor with an evolutionary computation algorithm  

E-Print Network (OSTI)

Optimization of wind turbine energy and power factor with an evolutionary computation algorithm the energy capture from the wind and enhance the quality of the power produced by the wind turbine, and harmonic distortion. As the generation of wind energy on an industrial scale is relatively new, the area

Kusiak, Andrew

244

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

245

A Framework for the Optimization of Integrated Energy Systems(Jain and  

Open Energy Info (EERE)

A Framework for the Optimization of Integrated Energy Systems(Jain and A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:19 Literature Review The author proposed a generalized, control-oriented, exergy-based objective function for optimizing the ESI. It was generalized form for ESI. The metric is suitable for power and thermal systems. It provide an objective modular. The method used in the paper was exergy and feedforward control It provided optimal control and generalized the objectives Groups: Energy Systems Integration Login to post comments Latest documents Qinsun Research topics related to ESI Posted: 15 Nov 2012 - 13:55 by Qinsun Qinsun Prospects for Nuclear Power(Davis 2012)

246

Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies  

E-Print Network (OSTI)

Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. ...

Ozel, Omur; Yang, Jing; Ulukus, Sennur; Yener, Aylin

2011-01-01T23:59:59.000Z

247

OPTIMAL POWER DISPATCH AND CONVERSION IN SYSTEMS WITH MULTIPLE ENERGY CARRIERS  

E-Print Network (OSTI)

This paper introduces a general optimization approach for power dispatch and conversion in power systems that include multiple energy carriers such as electricity, natural gas, and district heating. The classical Economic Dispatch method is modified in order to account for certain system properties, such as the possibility of conversion between the different energy carriers, or local overproduction and power feedback to the grid. In this work both a system model as well as an optimization approach are developed which are suitable for the integration of an arbitrary number of energy carriers. Analytical results show how the optimal conversion of power affects the marginal prices related to the different energy carriers. Finally the proposed optimization procedure is demonstrated in numerical examples.

Martin Geidl; Gran Andersson

2005-01-01T23:59:59.000Z

248

Optimizing Energy Savings from Direct-DC in U.S. Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

249

Real-Time Loop Scheduling with Energy Optimization Via DVS and ...  

Science Conference Proceedings (OSTI)

Real-Time Loop Scheduling with Energy. Optimization Via DVS and ABB for Multi -core. Embedded System. Guochen Hua1, Meng Wang1, Zili Shao1, Hui Liu2,...

250

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) |  

Open Energy Info (EERE)

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:04 Literature Review The author proposed a linear static state model for multiple energy carriers. The optimal power flow and economic dispatch was determined. The method is a simple method of integrated system planning The methods used in the paper are linear deterministic system without control signal, optimal power flow and economic dispatch The proposed method stabilized the power grid, reduced the marginal cost of electricity, and increased the marginal cost of natural gas. The strength of the proposed method is following: 1. it is integrated; 2. it secures to converge;

251

TESTING OF THE DUAL ROTARY FILTER SYSTEM  

SciTech Connect

The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be an issue in deployment where the desired flow rate will be within the normal operating range of the meter. Testing demonstrated that the use of a flexible line for the filtrate discharge is highly desired at the outlet of the rotary union to transition to the system piping. Isolating the vibration from the rotary union will significantly improve the lifetime of the seals. Methods to monitor and isolate individual filters should be considered during deployment. The ability to diagnose issues and isolate individual filters would allow isolation prior to failure. Thus, filters may be cleaned or repaired instead of requiring complete replacement if the condition were to continue unnoticed. Isolating the filtrate line of each filter during startup will minimize the premature buildup of solids on the filter disks. Several tests have shown that the method of filter startup can improve performance lifetime of the filters. The installation must factor in an air inlet for the draining of a filter that does not involve a reverse flow through the filter disks. The reverse flow may cause deformation of the disks or may damage other components of the filters themselves.

Herman, D.; Fowley, M.; Stefanko, D.

2011-08-29T23:59:59.000Z

252

Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries  

E-Print Network (OSTI)

rotary) Brazil China India Mexico Energy and Carbon Dioxideenergy intensity values for Brazil, China, India, and Mexico,energy intensity values for Brazil, China, India and Mexico,

Price, Lynn; Worrell, Ernst; Phylipsen, Dian

1999-01-01T23:59:59.000Z

253

Advanced Vacuum Clean Equipment Optimizer Ltd AVACO | Open Energy  

Open Energy Info (EERE)

Vacuum Clean Equipment Optimizer Ltd AVACO Vacuum Clean Equipment Optimizer Ltd AVACO Jump to: navigation, search Name Advanced Vacuum & Clean Equipment Optimizer Ltd (AVACO) Place Daegu, Daegu, Korea (Republic) Product Korean manufacturer of flat panel display equipments; makes sputtering equipment for cell manufacturing. Coordinates 35.88871°, 128.614868° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.88871,"lon":128.614868,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Path placement optimization of manipulators based on energy consumption: application to the orthoglide 3-axis  

E-Print Network (OSTI)

This paper deals with the optimal path placement for a manipulator based on energy consumption. It proposes a methodology to determine the optimal location of a given test path within the workspace of a manipulator with minimal electric energy used by the actuators while taking into account the geometric, kinematic and dynamic constraints. The proposed methodology is applied to the Orthoglide~3-axis, a three-degree-of-freedom translational parallel kinematic machine (PKM), as an illustrative example.

Ur-Rehman, Raza; Chablat, Damien; Wenger, Philippe

2009-01-01T23:59:59.000Z

255

Optimal Design and Operation of Energy Polygeneration Systems  

E-Print Network (OSTI)

downstream sections such as the gas turbine, FT process and the methanol process. In this thesis, the optimal . . . . . . . . . . . . . . . . . . . . 48 2.5 Methanol Synthesis Process . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Gas Turbine million Btu for natural gas and oil [20]. Coal resources are also widely distributed around the world

Barton, Paul I.

256

Optimization of high-performance superscalar architectures for energy efficiency  

Science Conference Proceedings (OSTI)

In recent years reducing power has become a critical design goal for high-performance microprocessors. This work attempts to bring the power issue to the earliest phase of high-performance microprocessor development. We propose a methodology for power-optimization ...

V. Zyuban; P. Kogge

2000-08-01T23:59:59.000Z

257

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network (OSTI)

The cost of energy consumption at peak times is higher thantime constraints, variable maintenance costs, fixed-batch energytime-step of the timespan E(cost()) is the expected energy

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

258

Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass  

E-Print Network (OSTI)

biogas rich in methane that can be reused to obtain energy. Later, the water is treated in an aerated

Grossmann, Ignacio E.

259

Optimization of Power and Energy Densities in Supercapacitors  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title...

260

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings  

DOE Green Energy (OSTI)

Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimization of Dispersed Energy Supply -Stochastic Programming with Recombining  

E-Print Network (OSTI)

of the wind energy fed into the electrical network as well as the regional concentration in the north plant park can hardly be saved. In this context, electrical energy storage offers a possibility. The latter is used for the analysis of a regional energy system model, which is described in Section 1

Römisch, Werner

262

BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint  

DOE Green Energy (OSTI)

A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

2005-04-01T23:59:59.000Z

263

A General Framework for the Optimization of Energy Harvesting Communication Systems with Battery Imperfections  

E-Print Network (OSTI)

Energy harvesting has emerged as a powerful technology for complementing current battery-powered communication systems in order to extend their lifetime. In this paper a general framework is introduced for the optimization of communication systems in which the transmitter is able to harvest energy from its environment. Assuming that the energy arrival process is known non-causally at the transmitter, the structure of the optimal transmission scheme, which maximizes the amount of transmitted data by a given deadline, is identified. Our framework includes models with continuous energy arrival as well as battery constraints. A battery that suffers from energy leakage is studied further, and the optimal transmission scheme is characterized for a constant leakage rate.

Devillers, Bertrand

2011-01-01T23:59:59.000Z

264

Model Predictive Control-based Optimal Coordination of Distributed Energy Resources  

SciTech Connect

Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

2013-01-07T23:59:59.000Z

265

Transmission with energy harvesting nodes in fading wireless channels: Optimal policies  

E-Print Network (OSTI)

AbstractWireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations. Index TermsEnergy harvesting, rechargeable wireless networks, throughput maximization, transmission completion time minimization, directional water-filling, dynamic programming. I.

Omur Ozel; Student Member; Kaya Tutuncuoglu; Student Member; Jing Yang; Student Member; Sennur Ulukus; Aylin Yener

2011-01-01T23:59:59.000Z

266

Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Thermal Efficiency and Maximizing Thermal Efficiency and Optimizing Energy Management Scientists at this living laboratory develop optimal solutions for managing energy flows within buildings and transportation systems. The built environment is stressing the utility grid to a greater degree than ever before. Growing demand for electric vehicles, space conditioning, and plug loads presents a critical opportunity for more effective energy management and development of efficiency technologies. Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing this opportunity. Through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems,

267

Renewable Energy Optimization Report for Naval Station Newport...  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Robi Robichaud, Gail Mosey, and Dan...

268

dlCC Opt: Optimization Software for Renewable Energy Projects  

There are numerous options for renewable energy systems development. Location, size, type of system, and a number of other criteria need to be ...

269

Determining Optimal Locations for New Wind Energy Development in Iowa.  

E-Print Network (OSTI)

??The purpose of this research is to generate the most accurate model possible for predicting locations most suitable for new wind energy development using a (more)

Mann, David

2011-01-01T23:59:59.000Z

270

Optimization of Hierarchical Lattice Structures for Energy Absorption  

Science Conference Proceedings (OSTI)

... potential to outperform foams in many applications, including energy absorption. ... of Fe-C Alloy as a Function of Cooling Rate and Local Solidification Time.

271

Applications of Optimal Building Energy System Selection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

for several years. Given load curves for energy services requirements in a building microgrid (grid), fuel costs and other economic inputs, and a menu of available...

272

Residential Energy Management system for optimization of on-site generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the individual movements towards Net Zero Energy Homes (NZEH) and the SmartGrid converge on residential buildings, three major challenges need to be addressed: Flatten the highly peaked electric load profile of low energy homes Provide easy integration of energy efficiency into existing homes Provide builders and consumers with visibility into building operation, and ease of management. A Home Energy Management System (HEMS) owned by the consumer, capable of two way communications with Utility DR/SmartGrid/AMI is required to resolve these challenges. The HEMS will need to increase energy efficiency of building operations, provide consumers feedback and

273

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Wednesday, 28 April 2010 00:00 Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

274

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Wednesday, 28 April 2010 00:00 Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

275

Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations  

E-Print Network (OSTI)

Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken-Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. Guided by the insight, we use the generalized Bloch-Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics and find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy, and spatial-temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.

Wu, Jianlan; Shen, Young; Cao, Jianshu; Silbey, Robert J

2010-01-01T23:59:59.000Z

276

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network (OSTI)

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy for each ton of coal processed. Thus, the oxygen plants in a commercial coal conversion facility may require 150 megawatts. Design of the oxygen plants will require close attention to energy consumption. Many coal conversion processes can accept oxygen at less than the historical 99.5% purity with significant savings in energy and cost. The air separation process is reviewed with emphasis on optimum oxygen purity. An energy reduction of 8.4% can be achieved when oxygen purity is reduced from 99.5% to 95%. Oxygen is a major tonnage chemical which is also highly energy intensive. The current United States capacity of about 80 thousand tons per day places it in the top five of basic chemicals, and its energy requirement of 350 to 450 kilowatt hours per ton makes it a major energy consumer. The growing synfuels industry -- conversion of coal into hydrocarbon fuels and chemical feed-stocks -- will greatly increase the production of oxygen and presents major opportunities for energy conservation.

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

277

: Enabling Energy Optimizations in GPGPUs Jingwen Leng1  

E-Print Network (OSTI)

-level simulator GPGPU-Sim and demonstrate the energy savings by utilizing dynamic voltage and frequency scaling (DVFS) and clock gating. Traditional DVFS reduces GPU energy consumption by 14.4% by lever- aging within-efficiency problems have been difficult owing to the lack of a suit- able power modeling infrastructure. Researchers

Aamodt, Tor

278

Optimal Routing and Assignment of Consultants for Energy Education, Inc.  

Science Conference Proceedings (OSTI)

Energy Education, Inc. EEI, a US management consulting firm, specializes in implementing energy conservation programs for schools, universities, and large churches. Similar to many consulting firms, travel expenses are among its largest budget items. ... Keywords: cluster analysis, consulting, employee assignment, vehicle routing

Junfang Yu; Randy Hoff

2013-03-01T23:59:59.000Z

279

Vibration-based MEMS Piezoelectric Energy Harvester for Power Optimization  

Science Conference Proceedings (OSTI)

The simplicity associated with piezoelectric micro-generators makes them very attractive for MEMS applications in which ambient vibrations are harvested and converted into electric energy. These micro-generators can become an alternative to the battery-based ... Keywords: Piezoelectric materials, Energy conversion, shaped cantilever, MEMS

Othman Sidek, Salem Saadon

2013-04-01T23:59:59.000Z

280

Optimal Design of Remote Terminal Unit (RTU) for Wireless SCADA System for Energy Management  

Science Conference Proceedings (OSTI)

For energy deficit countries, the design of Supervisory Control and Data Acquisition (SCADA) based energy management systems for optimal distribution is of high interest. Such design involves development of Remote Terminal Unit (RTU) which is considered ... Keywords: Field Programmable Gate Array (FPGA), Programmable Logic Controller (PLC), Remote Terminal Unit (RTU), Supervisory Control and Data Acquisition (SCADA), Tele-Control Interface (TCI), Wireless Communication

Muhammad Aamir; Javier Poncela; Muhammad Aslam Uqaili; B. S. Chowdhry; Nishat Ahmad Khan

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GA based energy loss minimization approach for optimal sizing & placement of distributed generation  

Science Conference Proceedings (OSTI)

Distributed Generators (DG) provide the lowest cost solution to handle low voltage or overload problems. In conjunction with such problems, a technique of energy saving is introduced by placement of distributed generation (DG) in distribution systems. ... Keywords: Distributed generation (DG), energy saving, genetic algorithms (GA), optimal sizing and placement

Deependra Singh; Devender Singh; K. S. Verma

2008-04-01T23:59:59.000Z

282

Modeling and optimizing maintenance schedule for energy systems subject to degradation  

Science Conference Proceedings (OSTI)

In recent years, with the increasing investment on distributed energy system (DES), maintenance management has played an important role in improving the system performance. This paper aims to integrate the conception of the multiple attribute value theory ... Keywords: Distributed energy system, Imperfect maintenance, Multi-attribute model, Optimal schedule, Sequential preventive maintenance

Tangbin Xia; Lifeng Xi; Xiaojun Zhou; Shichang Du

2012-11-01T23:59:59.000Z

283

Optimizing Energy Use in the Process Industries: Volumes 1-4  

Science Conference Proceedings (OSTI)

Large process industry plants may meet shaft power requirements through use of electric motor drives, steam turbine drives, or combustion engines. Current research on optimizing energy use in process industries provides a methodology for evaluating the electric drive option and available techniques for reducing total energy consumption.

1990-01-01T23:59:59.000Z

284

Optimal control of a grid-connected hybrid electrical energy storage system for homes  

Science Conference Proceedings (OSTI)

Integrating residential photovoltaic (PV) power generation and electrical energy storage (EES) systems into the Smart Grid is an effective way of utilizing renewable power and reducing the consumption of fossil fuels. This has become a particularly interesting ... Keywords: hybrid electrical energy storage system, optimal control, smart grid

Yanzhi Wang, Xue Lin, Massoud Pedram, Sangyoung Park, Naehyuck Chang

2013-03-01T23:59:59.000Z

285

Optimizing architectural and structural aspects of buildings towards higher energy efficiency  

Science Conference Proceedings (OSTI)

In this on-going work, we aim at contributing to the issue of energy consumption by proposing tools to automatically define some aspects of the architectural and structural design of buildings. Our framework starts with a building design, and automatically ... Keywords: construction costs, energy efficiency, intelligent building design, multi-objective optimization, sustainable development

lvaro Fialho; Youssef Hamadi; Marc Schoenauer

2011-07-01T23:59:59.000Z

286

Energy-optimal SRAM supply voltage scheduling under lifetime and error constraints  

Science Conference Proceedings (OSTI)

This work addresses the energy efficiency of the memory architecture in safety-critical systems that have to guarantee a given level of service and a minimum lifetime. We specifically target SRAM structures in which decreased reliability manifests itself ... Keywords: NBTI, SRAM, aging, energy optimization, reliability

Andrea Calimera, Enrico Macii, Massimo Poncino

2013-05-01T23:59:59.000Z

287

Breakeven costs of storage in optimized solar energy systems  

DOE Green Energy (OSTI)

The results are described of an analysis of the breakeven cost, or value, of energy storage to solar energy systems. It is shown that the value of storage depends strongly both on solar fraction of the solar energy system in which the storage is employed, and on the cost of the collectors used in the system. Various strategies for dealing with this ambiguity are presented, and it is shown that for a broad class of technically and economically practical solar energy systems, storage costs need only be low enough to make a system employing very small amounts of storage practical. Reductions in cost of collectors will thereafter produce greater reductions in the total system costs or provide greater fuel displacement at constant total system cost than will reductions in the cost of storage, within limits discussed. The analysis makes use of a simple, accurate representation of solar energy system performance which may prove useful in other contexts.

Leigh, R. W.

1981-09-01T23:59:59.000Z

288

Development of a Predictive Optimal Controller for Thermal Energy Storage Systems  

E-Print Network (OSTI)

This paper describes the development and simulation of a predictive optimal controller for thermal energy storage systems. The `optimal' strategy minimizes the cost of operating the cooling plant over the simulation horizon. The particular case of a popular ice storage system (ice-on-coil with internal melt) has been investigated in a simulation environment. Various predictor models have been analyzed with respect to their performance in forecasting cooling load data and information on ambient conditions (dry-bulb and wet-bulb temperatures). The predictor model provides load and weather information to the optimal controller in discrete time steps. An optimal storage charging and discharging strategy is planned at every time step over a fixed look-ahead time window utilizing newly available information. The first action of the optimal sequence of actions is executed over the next time step and the planning process is repeated at every following time step. The effect of the length of the...

Gregor Henze; Robert H. Dodier; Moncef Krarti

1996-01-01T23:59:59.000Z

289

An energy optimal power supply for digital circuits  

E-Print Network (OSTI)

The energy efficiency of digital circuits continues to be a major factor in determining the size and weight of battery-operated electronics. Integration of more functionality in a single system has made battery longevity ...

Ramadass, Yogesh Kumar

2006-01-01T23:59:59.000Z

290

Optimal design and operation of energy polygeneration systems  

E-Print Network (OSTI)

Polygeneration is a concept where multiple energy products are generated in a single plant by tightly integrating multiple processes into one system. Compared to conventional single-product systems, polygeneration systems ...

Chen, Yang, Ph. D. Massachusetts Institute of Technology. Department of Chemical Engineering

2013-01-01T23:59:59.000Z

291

Optimization and homotopy methods for the Gibbs free energy of ...  

E-Print Network (OSTI)

tions with quiet lava flows, low energy Strombolian explosions or Hawaiian lava .... it should be computed at least once in each mesh element for each time step ...... brought by range reductions: the computational cost of the reduction is largely.

292

Distributed Energy Resource Optimization Using a Software as...  

NLE Websites -- All DOE Office Websites (Extended Search)

also conducted with the week-ahead DER- CAM to assess the CO 2 emissions reductions and energy cost savings from rescheduling electrical loads. Figure 1 shows an example result...

293

Kansas City Power and Light- Energy Optimizer Programmable Thermostat Program  

Energy.gov (U.S. Department of Energy (DOE))

Kansas City Power and Light (KCP&L) offers a free Honeywell programmable thermostat, worth $300, and free installation to qualifying customers to manage energy usage. Only residential and small...

294

Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program  

Energy.gov (U.S. Department of Energy (DOE))

Kansas City Power and Light (KCP&L) offers a free Honeywell programmable thermostat, worth $300, and free installation to qualifying customers to manage energy usage. Only residential and small...

295

Optimization of Electric Energy Consumption in Marginal California Oilfields  

Science Conference Proceedings (OSTI)

This report documents a pilot study of electricity consumption in California oilfields that found significant potential for reducing costs through energy efficiency improvements. It offers suggestions for reducing electricity consumption that, if implemented, could result in a system-wide demand reduction and reduce the need for additional generation and power infrastructure capacity. Moreover, reducing oilfield energy costs would reduce the overall cost of oil production, helping marginal wells remain a...

2003-01-17T23:59:59.000Z

296

Microwave lamp with multi-purpose rotary motor  

DOE Patents (OSTI)

In a microwave powered electrodeless lamp, a single rotary motor is used to (a) rotate the bulb and (b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooler for providing cooling gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement. 8 figs.

Ury, M.G.; Turner, B.; Wooten, R.D.

1999-02-02T23:59:59.000Z

297

Microwave lamp with multi-purpose rotary motor  

DOE Patents (OSTI)

In a microwave powered electrodeless lamp, a single rotary motor is used to a) rotate the bulb and b) provide rotary motion to a blower or pump means for providing cooling fluid to the magnetron and/or to a forced gas cooling for providing cooler gas to the bulb. The blower may consist of only of an impeller without the usual blower housing. The motor, bulb stem and bulb, or motor, bulb stem, bulb and blower may be formed as an integral unit so as to facilitate replacement.

Ury, Michael G. (Bethesda, MD); Turner, Brian (Myersville, MD); Wooten, Robert D. (Rockville, MD)

1999-01-01T23:59:59.000Z

298

Control and Room Temperature Optimization of Energy Efficient Buildings  

SciTech Connect

The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature.

Djouadi, Seddik M [ORNL; Kuruganti, Phani Teja [ORNL

2012-01-01T23:59:59.000Z

299

High-Fidelity Nuclear Energy System Optimization towards an Environmentally Benign, Sustainable, and Secure Energy Source  

E-Print Network (OSTI)

A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of MCNPX for highfidelity fuel cycle component simulations. The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed with much focus placed on technologies for transmuting nuclear spent fuel. In this dissertation, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The reactor systems include the AP1000, VHTR, and HEST. The diversity in performance and spectral characteristics for each was used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. The High Level Waste (HLW) stream produced by typical nuclear systems was characterized according to the radionuclides that are key contributors to long-term waste management issues. The TRU component of the waste stream becomes the main radiological concern for time periods greater than 300 years. A TRU isotopic assessment was developed and implemented to produce a priority ranking system for the TRU nuclides as related to long-term waste management and their expected characteristics under irradiation in the different reactor systems of the NES. Detailed 3D whole-core models were developed for analysis of the individual reactor systems of the NES. As an inherent part of the process, the models were validated and verified by performing experiment-to-code and/or code-to-code benchmarking procedures, which provided substantiation for obtained data and results. Reactor core physics and material depletion calculations were performed and analyzed. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques. The NES has demonstrated great potential for providing safe, clean, and secure energy and doing so with foreseen advantages over the LEU once-through fuel cycle option. The main advantages exist due to better utilization of natural resources by recycling the used nuclear fuel, and by reducing the final amount and time span for which the resulting HLW must be isolated from the public and the environment due to radiological hazard. If deployed, the NES can substantially reduce the long-term radiological hazard posed by current HLW, extend uranium resources, and approach the characteristics of an environmentally benign energy system.

Ames, David E.

2010-08-01T23:59:59.000Z

300

NRELs Renewable Energy Optimization (REopt) Tool: Models & Tools (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

m o d e l s & t o o l s NREL's Renewable Energy Optimization (REopt) Tool NREL's REopt tool is an early screening tool that identifies and prioritizes renewable energy (RE) projects at a single site, or across a portfolio of geographically dispersed sites, to meet agency goals. Key Features * Optimization. REopt considers RE resources, energy rates, and utility policies to identify the most cost-effective technologies to meet energy goals. * Integration. REopt simultaneously models the complex hourly interactions of multiple thermal and electric RE technologies, along with conventional energy sources. * Low cost. REopt provides a quick and low-cost method to identify the most economically and technically viable technologies for further study.

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental investigations to optimize the utilization of energy resources  

Science Conference Proceedings (OSTI)

In world more than 65% of non-renewable fuels are consumed by thermal, gas, nuclear, diesel power plants and process industries. They emit huge amount of pollutants and skew up large quantities of ash in to environment causing pollution and lead to adverse ... Keywords: energy, environment, management, resources, safety

Gurumurthy Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

302

Analyzing utilization rates in data centers for optimizing energy management  

Science Conference Proceedings (OSTI)

In this paper, we explore academic data center utilization rates from an energy management perspective with the broader goal of providing decision support for green computing. The utilization rate is defined as the overall extent to which data center ... Keywords: Utilization Rates,Cloud,Data Centers,Forecasting,Green IT

Michael Pawlish; Aparna S. Varde; Stefan A. Robila

2012-06-01T23:59:59.000Z

303

Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management  

E-Print Network (OSTI)

The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

Koutsopoulos, Iordanis

2010-01-01T23:59:59.000Z

304

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: Design of cogeneration systems with solar and fossil systems Design and integration of solar-biofuel-fossil cogeneration systems Design of solar-assisted absorption refrigeration systems and integration with the processing facility Development of thermally-coupled dual absorption refrigeration systems, and Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

305

Optimization of an electret-based energy harvester  

E-Print Network (OSTI)

Thanks to miniaturisation, it is today possible to imagine self-powered systems that use vibrations to produce their own electrical energy. Many energy-harvesting systems already exist. Some of them are based on the use of electrets: electrically charged dielectrics that can keep charges for years. This paper presents an optimisation of an existing system and proves that electret-based electrostatic energy scavengers can be excellent solutions to power microsystems even with low-level ambient vibrations. Thereby, it is possible to harvest up to 200\\muW with vibrations lower than 1G of acceleration (typically 50\\mumpp at 50Hz) using thin SiO2 electrets with an active surface of 1 cm^{2} and a mobile mass of 1g. This paper optimises such a system (geometric, electrostatic and mechanical parameters), using FEM (Finite Element Method) software (Comsol Multiphysics) and Matlab to compute the parameters and proves the importance of such an optimisation to build efficient systems. Finally, it shows that the use of e...

Boisseau, S; Sylvestre, A; 10.1088/0964-1726/19/7/075015

2011-01-01T23:59:59.000Z

306

Trimode Power Converter optimizes PV, diesel and battery energy sources  

SciTech Connect

Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

O`Sullivan, G. [Abacus Controls, Inc., Somerville, NJ (United States); Bonn, R.; Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

307

Capsule: an energy-optimized object storage system for memory-constrained sensor devices  

E-Print Network (OSTI)

Recent gains in energy-efficiency of new-generation NAND flash storage have strengthened the case for in-network storage by data-centric sensor network applications. This paper argues that a simple file system abstraction is inadequate for realizing the full benefits of high-capacity low-power NAND flash storage in data-centric applications. Instead we advocate a rich object storage abstraction to support flexible use of the storage system for a variety of application needs and one that is specifically optimized for memory and energy-constrained sensor platforms. We propose Capsule, an energy-optimized log-structured object storage system for flash memories that enables sensor applications to exploit storage resources in a multitude of ways. Capsule employs a hardware abstraction layer that hides the vagaries of flash memories for the application and supports energy-optimized implementations of commonly used storage objects such as streams, files, arrays, queues and lists. Further, Capsule supports checkpointing and rollback of object states to tolerate software faults in sensor applications running on inexpensive, unreliable hardware. Our experiments demonstrate that Capsule provides platform-independence, greater functionality, more tunability, and greater energy-efficiency than existing sensor storage solutions, while operating even within the memory constraints of the Mica2 Mote. Our experiments not only demonstrate the energy and memory-efficiency of I/O operations in Capsule but also shows that Capsule consumes less than 15% of the total energy cost in a typical sensor application.

Gaurav Mathur; Peter Desnoyers; Deepak Ganesan; Prashant Shenoy

2006-01-01T23:59:59.000Z

308

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

309

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

310

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

311

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

312

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

313

Micro rotary machine and methods for using same  

SciTech Connect

A micro rotary machine may include a micro actuator and a micro shaft coupled to the micro actuator. The micro shaft comprises a horizontal shaft and is operable to be rotated by the micro actuator. A micro tool is coupled to the micro shaft and is operable to perform work in response to motion of the micro shaft.

Stalford, Harold L. (Norman, OK)

2012-04-17T23:59:59.000Z

314

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Rotary Firing in Ring-Shaped Protein Explains Unidirectionality Print Hexameric motor proteins represent a complex class of molecular machines that variously push and pull on biological molecules using adenosine triphosphate (ATP) as chemical fuel. A specialized class of ring-shaped motor proteins, hexameric helicases, can unwind DNA strands and perform large-scale manipulations of single-stranded nucleic acids in processes such as DNA replication, DNA repair, and gene expression. To understand how certain hexameric helicases walk with directional polarity along single-stranded nucleic acids, Berkeley researchers used x-ray crystallography at the ALS to solve the structure of a hexameric helicase, the Rho transcription termination factor (from E. coli), bound to both ATP mimics and an RNA substrate. The results showed that Rho functions like a rotary engine: as the motor spins, it pulls RNA strands through its interior. Interestingly, the rotary firing order of the motor is biased so that the Rho protein can walk in only one direction along the RNA chain.

315

Overview of the principal Brookhaven energy system optimization models. [BESOM, three variants, and two applications  

Science Conference Proceedings (OSTI)

The Brookhaven Energy System Optimization Model (BESOM), three of its variants, and two examples of characteristic applications are described. BESOM is a linear-programming model that was developed for the quantitative evaluation of energy technologies and policies within a systems framework. The model is designed to examine interfuel substitutions in the context of constraints on the availability of competing resources and technologies. BESOM provides a snapshot of the national energy system configuration, while MARKAL and TESOM provide, respectively, a farsighted time dimension and a simulation capability for the examination of the evolution of a national energy system over a time horizon.

Kydes, A S

1980-11-01T23:59:59.000Z

316

Light incoherence theory revisited by Heisenberg time-energy uncertainty challenges solar cell optimization  

E-Print Network (OSTI)

Optimization of the efficiency of solar cells is a major challenge for renewable energies. Using a rigorous theoretical approach, we show that the photocurrent generated in a solar cell depends strongly on the degree of coherence of the incident light. In accordance with Heisenberg uncertainty time-energy, incoherent light at photons of carrier energy lower than the active material bandgap can be absorbed whereas coherent light at the same carrier energy cannot. We identify cases where incoherence does enhance efficiency. This result has a dramatical impact on the way solar cells must be optimized regarding sunlight. As an illustration, surface-corrugated GaAs and c-Si thin-film solar cells are considered.

Herman, Aline; Deparis, Olivier

2013-01-01T23:59:59.000Z

317

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

DOE Green Energy (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

318

Potential Energy Savings from Optimized Schedule and Economizer Cycles in the Moody Library at UTMB  

E-Print Network (OSTI)

This report presents the results of a study which was initiated in order to estimate the potential energy savings due to optimizing the HVAC operation schedule and using economizer cycles in the Moody Library Building located at the University of Texas Medical Branch at Galveston, Texas (UTMB).

Liu, M.; Athar, A.; Reddy, T. A.; Claridge, D. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

319

Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant  

Science Conference Proceedings (OSTI)

The energy efficiency of industrial plants is an important issue in any type of business but particularly in the chemical industry. Not only is it important in order to reduce costs, but also it is necessary even more as a means of reducing the amount ... Keywords: Cost optimization, Crude oil distillation, Data mining, Decision system, Expert system, Neural network, Petrochemical plant

Iigo Monedero; Flix Biscarri; Carlos Len; Juan I. Guerrero; Rocio Gonzlez; Luis Prez-Lombard

2012-08-01T23:59:59.000Z

320

Optimal control in energy conversion of small wind power systems with permanent-magnet-synchronous-generators  

Science Conference Proceedings (OSTI)

This paper presents the results of experimental investigation of a low-power wind energy conversion system (WECS), based on a permanent-magnet synchronous generator (PMSG) connected directly to the turbine. A development system was built in order to ... Keywords: hardware-in-the-loop simulation, maximum power point tracking, optimal control, permanent-magnet synchronous generator, wind system

C. Vlad; I. Munteanu; A. I. Bratcu; E. Ceanga

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimal Sleep-Wake policies for an energy harvesting sensor node  

E-Print Network (OSTI)

AbstractWe study a sensor node with an energy harvesting source. In any slot, the sensor node is in one of two modes: Wake or Sleep. The generated energy is stored in a buffer. The sensor node senses a random field and generates a packet when it is awake. These packets are stored in a queue and transmitted in the wake mode using the energy available in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue length and the mean data loss rate. Then, we obtain two easily implementable suboptimal policies and compare their performance to that of the optimal policy. Next, we extend the Throughput Optimal policy developed in our previous work to sensors with two modes. Via this policy, we can increase the throughput and stabilize the data queue by allowing the node to sleep in some slots and to drop some generated packets. This policy requires minimal statistical knowledge of the system. We also modify this policy to decrease the switching costs. Keywords: Energy harvesting sensor nodes, Sleep-Wake Policies, Throughput Optimal Policies.

Vinay Joseph; Vinod Sharma; Utpal Mukherji

2009-01-01T23:59:59.000Z

322

Multiphase Nano-Composite Coatings for Achieving Energy Optimization  

SciTech Connect

UES Inc. and ANL teamed in this work to develop novel coating systems for the protection of surfaces from thermal degradation mainly in two applications; Machining and Die casting. These coatings were specifically designed for the purpose by incorporating required material phases and the overall architecture, which led to reduce the energy usage and increase efficiency of the operations. Following the UES/ANL'?s feasibility work, the coatings were developed utilizing High power impulse magnetron sputtering (HiPMS) and Large area filtered arc deposition (LAFAD) techniques. Toughness, hardness and oxidation resistance: contrasting qualities have been mixed in the right proportion to attain the suitable material characteristic for the cause. Hafnium diboride (HfB2) based materials provided such a system and its properties were tamed to attain the right combination of toughness and hardness by working on the microstructure and architecture of coatings. An effective interfacing material (graded concentrations of topcoat) was also achieved in this work to provide the required adhesion between the substrate and the coating. Combination of an appropriate bond coat and a functional top coat provided the present thermal degradation resistant coating for cutting tools and die-casting applications. Laboratory level performance tests and industrial level application tests by partner companies (Beta Site Testing) were used for the development of these coatings.

Dr. Jose Nainaparampil

2012-03-26T23:59:59.000Z

323

BEopt(TM) Software for Building Energy Optimization: Features and Capabilities  

SciTech Connect

BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options in a linked options library spreadsheet. BEopt calls the DOE2 and TRNSYS simulation engines and uses a sequential search technique to automate the process of identifying optimal building designs along the path to ZNE. BEopt finds these optimal and near-optimal designs based on discrete building options reflecting realistic construction options. BEopt handles special situations with positive or negative interactions between options in different categories. The BEopt software includes a results browser that allows the user to navigate among different design points and retrieve detailed results regarding energy end-use and option costs in different categories. Multiple cases, based on a selected parameter such as climate, can be included in a BEopt project file for comparative purposes.

Christensen, C.; Anderson, R.; Horowitz, S.; Courtney, A.; Spencer, J.

2006-08-01T23:59:59.000Z

324

Optimal energy management of a micro-grid with renewable energy resources and demand response  

Science Conference Proceedings (OSTI)

With the introduction of smart energy grids and extensive penetration of renewable energy resources in distribution networks

2013-01-01T23:59:59.000Z

325

EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER  

SciTech Connect

SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced higher flux than the Mott filter media in bench-scale and pilot-scale testing. The Accusep and Graver filter media were not evaluated in that testing, because they are not available as flat sheets. The Accusep filter was developed at ORNL and licensed to Pall Corporation. This filter has a stainless steel support structure with a zirconium oxide ceramic membrane. The pore size is 0.1 {micro}m absolute. The Graver filter has a stainless steel support structure with a titanium dioxide ceramic membrane. The pore size is 0.07 {micro}m absolute. SRNL and ORNL are working together to develop filter media similar to the Accusep and Graver media, and to test them in a bench-scale filtration apparatus to attempt to improve the throughput of the rotary microfilter. This report describes the effort.

Poirier, M.; Herman, D.; Bhave, R.

2011-09-13T23:59:59.000Z

326

Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel  

E-Print Network (OSTI)

This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize sum throughput within a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations when possible. Next, stochastic data arrivals are addressed. Finally online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

Tutuncuoglu, Kaya

2011-01-01T23:59:59.000Z

327

Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage  

E-Print Network (OSTI)

In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperat...

Huang, Huang

2012-01-01T23:59:59.000Z

328

On-line economic optimization of energy systems using weather forecast information.  

Science Conference Proceedings (OSTI)

We establish an on-line optimization framework to exploit weather forecast information in the operation of energy systems. We argue that anticipating the weather conditions can lead to more proactive and cost-effective operations. The framework is based on the solution of a stochastic dynamic real-time optimization (D-RTO) problem incorporating forecasts generated from a state-of-the-art weather prediction model. The necessary uncertainty information is extracted from the weather model using an ensemble approach. The accuracy of the forecast trends and uncertainty bounds are validated using real meteorological data. We present a numerical simulation study in a building system to demonstrate the developments.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-01-01T23:59:59.000Z

329

Input Price Risk and Optimal Timing of Energy Investment: Choice between Fossil- and Biofuels  

E-Print Network (OSTI)

Ve consider energy investment, when a choice has to be made between fossil fuel and biomass fired production technologies. A dynamic model is presented to illustrate the effect of the different degrees of input price uncer- tainty on the choice of technolog2 and the timing of the investment. It is shown that when the choice of technology is irreversible, it may be optimal to postpone the investment even if it would otherwise be optimal to invest in one or both of the plant types. Ve provide a numerical example based on cost estimates of two different power plant types.

Pauli Murto; Gjermund Nese

2002-01-01T23:59:59.000Z

330

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network (OSTI)

A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from the building so the simulation output closely follows the measured time series energy consumption data and shows the same temperature dependence. This paper has used optimization software to show that a simple simulation program which is a coding of the ASHRAE 'Simplified Energy Analysis Procedure' can be automatically calibrated to measured data. The measured data used in this case study was simulation data to which a small amount of white noise had been added.

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

331

Distributed Energy Resource Optimization Using a Software as Service (SaaS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Title Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Publication Type Report Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Jonathan Donadee, Judy Lai, Olivier Mégel, Prajesh Bhattacharya, and Afzal S. Siddiqui Pagination 51 Date Published 02/2011 Publisher LBNL City Berkeley Keywords building optimization, distributed energy resources (der), electricity markets and policy group, energy analysis and environmental impacts department Abstract Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of value to UCD are possible using this approach. First, optimal investment choices for buildings under the two alternative objectives can be derived. Second, a week-ahead building operations forecaster has been written that executes DER-CAM to find an optimal operating schedule for buildings given their expected building energy services requirements, electricity prices, and local weather. As part of its matching contribution, OSIsoft provided a full implementation of PI and a server to install it on at Berkeley Lab. Using the PItoPI protocol, this gives Berkeley Lab researchers direct access to UCD's PI data base. However, this arrangement is in itself inadequate for performing optimizations. Additional data not included in UCD's PI database would be needed and the campus was not able to provide this information. This report details the process, results, and lessons learned of this commercialization project.

332

COMPENDIUM OF COMPLETED TESTING IN SUPPORT OF ROTARY MICROFILTRATION AT SAVANNAH RIVER SITE AND HANFORD  

SciTech Connect

This report presents a chronological summary of previous technology development efforts concerning the rotary microfiltration (RMF) unit from SpinTek{trademark}. Rotary microfiltration has been developed for high radiation application over the last decades as one of the optional filtration techniques for supplemental treatment. Supplemental treatment includes a near- or in-tank solids separation and subsequent cesium removal unit, followed by an immobilization technique; this includes options such as steam reforming, bulk vitrification or cast stone (grout). The main difference between RMF and standard cross flow filtration (CFF) is the disconnection of filtrate flux from feed velocity; i.e., filtrate flux is only dependent on transmembrane pressure, filter fouling and temperature. These efforts have been supported by the U.S. Department of Energy (DOE), Office of Cleanup Technologies since the 1990s by their Environmental Management Program (currently EM-31). In order to appropriately address future testing needs, a compilation of the relevant previous testing reports was essential. This compendium does not intend to cover all of the presentations/reports that were produced over the last decades but focuses on those of relevance for developing an RMF unit fit for deployment at the Hanford site. The report is split into three parts: (1) an introductory overview, (2) Figure 1 graphically covering the main development steps and its key players and (3) a more detailed table of the citations and brief descriptions of results and recommendations.

HUBER HJ

2011-05-24T23:59:59.000Z

333

Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy, and spatial-temporal correlations  

E-Print Network (OSTI)

Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken-Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. To avoid the infinite temperature assumption in the Haken-Strobl model and the failure of the Redfield equation in predicting the Forster rate behavior, we use the generalized Bloch-Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics and find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy, and spatial-temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.

Jianlan Wu; Fan Liu; Young Shen; Jianshu Cao; Robert J. Silbey

2010-08-13T23:59:59.000Z

334

Energy Optimization of Bioethanol Production via Gasification of Switchgrass. Revision submitted to AIChE  

E-Print Network (OSTI)

In this paper, we address the conceptual design of the bioethanol process from switchgrass via gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted with membrane-PSA or water gas shift. Membrane separation, absorption with ethanol-amines and PSA are considered for the removal of sour gases. Finally, two synthetic paths are considered, high alcohols catalytic process with two possible distillation sequences, and syngas fermentation with distillation, corn grits, molecular sieves and pervaporation as alternative deshydration processes. The optimization of the superstructure is formulated as an MINLP problem using short-cut models, and solved through a special decomposition scheme that is followed by heat integration. The optimal process consists of direct gasification followed by steam reforming, removal of the excess of hydrogen and catalytic synthesis, yielding a potential operating cost of $0.41/gal

Mariano Martn; Ignacio E. Grossmann

2000-01-01T23:59:59.000Z

335

Optimization Online Digest -- February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with...

336

Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

337

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

condenser water optimization Tengfang Xu Contents HVAC WATERHVAC Water Systems Cooling tower and condenser water optimization

Xu, Tengfang

2005-01-01T23:59:59.000Z

338

Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power  

E-Print Network (OSTI)

Characterizing the fundamental tradeoffs for maximizing energy efficiency (EE) versus spectrum efficiency (SE) is a key problem in wireless communication. In this paper, we address this problem for a point-to-point additive white Gaussian noise (AWGN) channel with the transmitter powered solely via energy harvesting from the environment. In addition, we assume a practical on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its consumed power is the sum of the transmit power and a constant circuit power. Under this setup, we study the optimal transmit power allocation to maximize the average throughput over a finite horizon, subject to the time-varying energy constraint and the non-ideal circuit power consumption. First, we consider the off-line optimization under the assumption that the energy arrival time and amount are a priori known at the transmitter. Although this problem is non-convex due to the non-ideal circuit power, we show an efficient optimal solution that in g...

Xu, Jie

2012-01-01T23:59:59.000Z

339

66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With  

E-Print Network (OSTI)

66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine, torque, tower acceleration, wind turbine vibrations. I. INTRODUCTION I NTEREST in renewable energy has to carbon taxation has become a catalyst in the quest for clean energy. Wind energy has been most

Kusiak, Andrew

340

Solids transportation model of an industrial rotary dryer  

SciTech Connect

A complete simulation model has been developed for an industrial rotary dryer to account for the heat and mass exchange between the solids and the gas. This simulator is mainly composed of three models: solids transportation model, furnace model, and gas model. The solids transportation model is the modified Cholette-Cloutier model. It consists of a series of interactive reservoirs which are subdivided into an active and dead compartments to account for the characteristic extended tail of the residence time distribution (RTD) curves observed in industrial dryers. To expand the validity of the model, experiments have been performed in an industrial rotary dryer to obtain RTD curves under different mineral concentrate and gas flow rates. This paper describes these experiments and presents the variation of the average residence time and model parameters as function of solids and gas flow rates.

Renaud, M.; Thibault, J.; Trusiak, A.

2000-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multi-objective design and optimization of district energy systems including polygeneration energy conversion technologies.  

E-Print Network (OSTI)

??In the present context of finding ways to decrease CO2 emissions linked with human activity, district energy systems including polygeneration energy conversion technologies are likely (more)

Weber, Cline Isabelle

2008-01-01T23:59:59.000Z

342

Building America Top Innovations Hall of Fame Profile … Building Energy Optimization Analysis Method (BEopt)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House geometries are among the many House geometries are among the many options users can enter in BEopt. Results shown here are rendered in SketchUp and show neighboring houses for shading analysis. To achieve Building America's ambitious energy-efficiency goals, it becomes increasingly important that researchers can identify the most cost-effective, high-performance improvements. BEopt has proven to be an invaluable analysis tool enabling Building America and its research partners to progress to zero net-energy new homes and deep energy retrofits. There are many energy analysis software tools out there-some do optimization, some do residential analysis, some do retrofit analysis, some come pre-packaged with options and costs, etc. With support from DOE's Building America program, researchers at the National Renewable Energy

343

Comparison of the performance of open cycle air conditioners utilizing rotary desiccant dehumidifiers  

DOE Green Energy (OSTI)

This paper presents the results of an investigation of open cycle cooling systems using rotary desiccant dehumidifiers. Three systems, the ventilation, recirculation, and Dunkle cycles have been modeled. The performance of these systems coupled with an air-based solar system has been determined using TRNSYS simulations of system operation in four representative US climates. The system COP, fraction of the total cooling load met by the desiccant system, and fraction of the thermal energy provided by solar energy are compared. An assessment of the effect of climate and system parameters on the relative performance of the three system configurations is made. It is shown that in order to meet residential loads of 7 to 11 kW with a COP on the order of unity, systems with high effectiveness must be employed. These systems were also found to perform well when operated solely with a solar thermal input.

Jurinak, J.J.; Beckman, W.A.

1985-01-01T23:59:59.000Z

344

Skew and twist resistant hydrodynamic rotary shaft seal  

DOE Patents (OSTI)

A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

Dietle, L.; Kalsi, M.S.

1999-02-23T23:59:59.000Z

345

Skew and twist resistant hydrodynamic rotary shaft seal  

DOE Patents (OSTI)

A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

1999-01-01T23:59:59.000Z

346

From the Optimizing Thermostat to a Smart Energy Management System: Models,  

NLE Websites -- All DOE Office Websites (Extended Search)

From the Optimizing Thermostat to a Smart Energy Management System: Models, From the Optimizing Thermostat to a Smart Energy Management System: Models, Benchmark, and Insights Speaker(s): Yong Liang Date: May 1, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Nowadays, users in the retail electricity market only need to pay a fixed rate for electricity. This strategy results in lack of coordination between demand and supply and costs significant waste. A shift from fixed rate pricing in retail markets could potentially yield many benefits. Time-varying pricing promotes the substitution of off-peak consumption for peak consumption, reducing strain on the electrical system, the need for costly and inefficient "peaker" plants, and waste in electricity delivery. However, existing research supports what common sense suggests:

347

Framework for Link-Level Energy Efficiency Optimization with Informed Transmitter  

E-Print Network (OSTI)

The dramatic increase of network infrastructure comes at the cost of rapidly increasing energy consumption, which makes optimization of energy efficiency (EE) an important topic. Since EE is often modeled as the ratio of rate to power, we present a mathematical framework called fractional programming that provides insight into this class of optimization problems, as well as algorithms for computing the solution. The main idea is that the objective function is transformed to a weighted sum of rate and power. A generic problem formulation for systems dissipating transmit-independent circuit power in addition to transmit-dependent power is presented. We show that a broad class of EE maximization problems can be solved efficiently, provided the rate is a concave function of the transmit power. We elaborate examples of various system models including time-varying parallel channels. Rate functions with an arbitrary discrete modulation scheme are also treated. The examples considered lead to water-filling solutions,...

Isheden, Christian; Jorswieck, Eduard; Fettweis, Gerhard

2011-01-01T23:59:59.000Z

348

Rotary union for use with ultrasonic thickness measuring probe  

DOE Patents (OSTI)

A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

Nachbar, H.D.

1992-09-15T23:59:59.000Z

349

Evaluation of Alternative Filter Media for the Rotary Microfilter  

SciTech Connect

The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

Poirier, M. R.; Herman, D. T.; Bhave, R.

2011-11-09T23:59:59.000Z

350

Plant Wide Assessment of Energy Usage Utilizing SitEModelling as a Tool for Optimizing Energy Consumption  

SciTech Connect

The Evonik Degussa Corporation is the global market leader in the specialty chemicals industry. Innovative products and system solutions make an indispensable contribution to our customers' success. We refer to this as "creating essentials". In fiscal 2004, Degussa's 45,000 employees worldwide generated sales of 11.2 billion euros and operating profits (EBIT) of 965 million euros. Evonik Degussa Corporation has performed a plant wide energy usage assessment at the Mapleton, Illinois facility, which consumed 1,182,330 MMBTU in 2003. The purpose of this study was to identify opportunities for improvement regarding the plants utility requirements specific to their operation. The production is based mainly on natural gas usage for steam, process heating and hydrogen production. The current high price for natural gas in the US is not very competitive compared to other countries. Therefore, all efforts must be taken to minimize the utility consumption in order to maximize market position and minimize fixed cost increases due to the rising costs of energy. The main objective of this plant wide assessment was to use a methodology called Site Energy Modelling (SitE Modelling) to identify areas of potential improvement for energy savings, either in implementing a single process change or in changing the way different processes interact with each other. The overall goal was to achieve energy savings of more than 10% compared to the 2003 energy figures of the Mapleton site. The final savings breakdown is provided below: - 4.1% savings for steam generation and delivery These savings were accomplished through better control schemes, more constant and optimized loading of the boilers and increased boiler efficiency through an advanced control schemes. - 1.6% savings for plant chemical processing These saving were accomplished through optimized processing heating efficiency and batch recipes, as well as an optimized production schedule to help equalize the boiler load (e.g. steam consumption).

Ralf Janowsky, Ph.D.; Tracey Mole, Ph.D.

2007-12-31T23:59:59.000Z

351

Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect

This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

Krstulovich, S.F.

1986-11-12T23:59:59.000Z

352

Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design  

DOE Green Energy (OSTI)

EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

D.E. Fisher

2006-01-07T23:59:59.000Z

353

Further Characterization of New NiTi Wire and Rotary Endodontic ...  

Science Conference Proceedings (OSTI)

Presentation Title, Further Characterization of New NiTi Wire and Rotary ... Higher-resolution transmission electron microscopy examination of M-Wire used to...

354

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in ...  

U.S. Energy Information Administration (EIA)

Table 4.4 Crude Oil and Natural Gas Rotary Rigs in Operation, 1949-2011 (Number of Rigs) Year: By Site : By Type: Total 1: Onshore

355

Optimal Indoor Air Temperature Considering Energy Savings and Thermal Comfort in the Shanghai Area  

E-Print Network (OSTI)

Indoor air temperature is the most important control parameter in air conditioning systems. It not only impacts the thermal comfort of occupants, but also also greatly affects the energy consumption in air conditioning systems. The lower the indoor air temperature is in summer or the higher the indoor temperature is in winter, the more energy the air conditioning system will consume. For the sake of energy conservation, the indoor air should be set as high as possible in summer and as low as possible in winter. Meanwhile, indoor thermal comfort should be considered. This paper will establish the optimal indoor air temperature for an air-conditioning system aiming at both energy savings and thermal comfort in the Shanghai area, based on the PMV equation and extensive field investigation.

Yao, Y.; Lian, Z.; Hou, Z.; Liu, W.

2006-01-01T23:59:59.000Z

356

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network (OSTI)

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

357

1742 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 55, NO. 6, JULY 2008 An Adaptive System for Optimal Solar Energy  

E-Print Network (OSTI)

An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes Cesare Alippi, Fellow, with solar energy being the most inter- esting one in outdoor deployments due to its relatively high power transferring circuit for optimally conveying solar energy into rechargeable batteries even in not optimal

Alippi, Cesare

358

Control schemes for an industrial rotary calciner with a heat shield around the combustion zone  

SciTech Connect

Soda ash (sodium carbonate) is produced by calcining natural trona ore (sodium sesquicarbonate) in rotary calciners. Shell overheating, the consequent deformation of the calciner shell, and heat loss are frequently encountered problems during this operation. Installation of a concentric, metallic heat shield around the calciner`s combustion zone can help to reduce the shell temperature and recover some of the energy that would otherwise be lost. Another problem often encountered is the deterioration of product quality when the system inputs deviate from their design rates. A mathematical model of the calciner with a heat shield is used to design different control schemes in order to maintain the product quality. Performance of the designed control schemes is demonstrated via computer simulation.

Ciftci, S.; Kim, N.K. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering] [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering

1999-03-01T23:59:59.000Z

359

An Advanced Solar-Powered Rotary Solid Adsorption Refrigerator with High Performance  

E-Print Network (OSTI)

In this paper, according to practical consideration, a new solar powered rotary solid adsorption refrigerator system adopting activated carbon fibre + ethanol as its adsorption pair has been designed with higher performance. Moreover, the principle of the refrigeration cycle, different components of the machine, selection of working pairs and feasible theory analysis of the refrigeration system all have been presented in detail. In addition, it shows that the new refrigerator has many great advantages including a simple structure, fast refrigeration, higher thermodynamic coefficient, friendly to the atmospheric environment, etc. This paper explains that the refrigerating process is constant, which has a promising potential for competing the 'intermittent' cycle reported before. Through improving the refrigerant performance of heat and mass transfer in the adsorbent bed, the refrigeration cycle has been advanced from the aspect of utilization of the thermal energy from low-temperature level resources. In addition, it is shown that the commercial solar powered refrigerator will be existent in the near future.

Zheng, A.; Gu, J.

2006-01-01T23:59:59.000Z

360

Methodology, morphology, and optimization of carbon nanotube growth for improved energy storage in a double layer capacitor  

E-Print Network (OSTI)

The goal of this thesis is to optimize the growth of carbon nanotubes (CNTs) on a conducting substrate for use as an electrode to improve energy density in a double-layer capacitor. The focus has been on several areas, ...

Ku, Daniel C. (Daniel Chung-Ming), 1985-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dynamic optimization for commercialization of renewable energy: an example for solar photovoltaics  

DOE Green Energy (OSTI)

There are several studies of optimal allocation of research and development resources over the time horizon of a project. The primary result of the basic noncompetitive models in this literature is that the optimal strategy is to choose a research intensity and ending date for the project such that the marginal costs of accelerating the project equals the marginal benefits of introducing the product sooner. This literature provides useful insights for the government planner who must allocate R&D resources for renewable energy development. However, several characteristics distinguish the process from the typical R&D planning problem. Specifically, with PV development, where the goal is to maximize the net present value of activities leading to cost reduction in commercial modules, there are (1) significant lag-times between investment in laboratory research and resulting effects in the marketplace, (2) a learning curve associated with the manufacturing process that also reduces the cost s of PV modules, (3) interim benefits from technical advances, (4) no clear end point to the R&D process, but rather a tapering off of the value of advances in technical efficiency, (5) significant uncertainty in the R&D process, (6) a family of products rather than an individual technology, (7) a co-mingling of government and private resources with implications for efficient management. A dynamic model is developed to characterize the optimal intensity and timing of government and private resource allocation for basic research in improving the technical efficiency of cells and subsidies to the manufacturing process to encourage progress on the learning curve. A series of propositions regarding optimal paths for each are examined. While the research is purely analytical, the results are useful for conceptualizing the R&D planning process. They also provide a basis for a numerical study that can address whether current levels and historic patterns of funding are optimal.

Richards, Kenneth, R.; Ashton, W. Bradley; McVeigh, James

2000-04-21T23:59:59.000Z

362

Delay Constrained Scheduling over Fading Channels: Optimal Policies for Monomial Energy-Cost Functions  

E-Print Network (OSTI)

A point-to-point discrete-time scheduling problem of transmitting $B$ information bits within $T$ hard delay deadline slots is considered assuming that the underlying energy-bit cost function is a convex monomial. The scheduling objective is to minimize the expected energy expenditure while satisfying the deadline constraint based on information about the unserved bits, channel state/statistics, and the remaining time slots to the deadline. At each time slot, the scheduling decision is made without knowledge of future channel state, and thus there is a tension between serving many bits when the current channel is good versus leaving too many bits for the deadline. Under the assumption that no other packet is scheduled concurrently and no outage is allowed, we derive the optimal scheduling policy. Furthermore, we also investigate the dual problem of maximizing the number of transmitted bits over $T$ time slots when subject to an energy constraint.

Lee, Juyul

2008-01-01T23:59:59.000Z

363

Optimization Online - Global Optimization Submissions - 2011  

E-Print Network (OSTI)

Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures ... On DC. optimization algorithms for solving minmax flow problems

364

Power Production from Geothermal Brine with the Rotary Separator Turbine  

SciTech Connect

The rotary separator turbine is a new turbine device that operates with gas-liquid mixtures. This device achieves complete gas-liquid separation, generates power from the liquid and repressurizes the liquid. The use of the rotary separator turbine for geothermal power generation was investigated on this program. A pilot scale unit was designed and tested. Tests were conducted with a clean water/steam mixture and with geothermal brine/steam flows at East Mesa, California; Raft River, Idaho; and Roosevelt Hot Springs, Utah. The test results were used to calculate the performance advantage of a rotary separator turbine power system compared to a flash steam power system and a binary power system. The calculated performance advantages were then used to estimate market potential for wellhead and central station Biphase units. The measured performance in the laboratory and in the field agreed to within {+-} 10% of the predicted values. The design goal of 20 kWe was generated both in the laboratory and from brine. Separated steam quality was measured to be greater than 99.96% at all three geothermal resources and in the laboratory. Brine pressure leaving the test unit was greater than reinjection pressure requirements. Maximum brine outlet pressure of 90 psig was demonstrated. The measured performance values would result in a 34% increase in electric power production above a single stage flash steam system. Increasing the size from the pilot size unit (20kWe) to a wellhead unit (2000 kWe) gave a calculated performance advantage of 40%. Based on these favorable results, design, construction and testing of a full-size well-head unit was initiated.

Cerini, Donald J.; Hays, Lance G.

1980-12-01T23:59:59.000Z

365

A rotary-airlock valve resists abrasive mixtures  

SciTech Connect

Hill and Griffith (H and G, Cincinnati, Ohio) is a leading supplier of custom-blended additives to founderies. Thousands of tons of clay and carbon blends such as bentonite, gilsonite and pulverized coal, pass through the company's rotary-airlock feeding system each month. H and G's original rotary valves had cylinders lined with chrome, and closed-end rotors with tips made from nickel-chromium alloys. These valves remained in service for a maximum of only three months each. During that time, the abrasive mixtures passing through the valves virtually eroded them, increasing tolerances and causing significant air leakage. The leaks caused the pneumatic line to plug up, reducing the velocity of the line below the minimum level needed to carry any material. To overcome the leakage, a second blower was added to the system. This unit supplied an additional 40 brake hp to the pneumatic-conveying line. With constant maintenance of the valve and the continuous operation of both blowers, H and G was able to extend the valve's life by nine months. After 20 years of trying valves with various configuration, H and G installed a Smoot Type 6 rotary-airlock valve in September of 1985. The new valve's internals were made from abrasion-resistant grades of NiHard and Stellite. This combination of alloys prolonged the active life of the valve by improving its abrasion resistance. During its first year, the Smoot valve did not break down, leak air or require use of the secondary blower. After its first year of service no wear was found on the valve's internal surfaces. Another mechanical analysis was performed in 1991, after five additional years of valve operation. The valve, which had now handled more than 250,000 tons of product, showed minimal wear. H and G's capital costs had been reduced from 25[cents]/ton to 3[cents]/ton by the new valve.

Not Available

1993-03-01T23:59:59.000Z

366

Skew And Twist Resistant Hydrodynamic Rotary Shaft Seal  

SciTech Connect

A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. Compared to prior art, this invention provides a dramatic reduction of seal and shaft wear in abrasive environments and provides a significant increase in seal life.

Dietle, Lannie (Sugar Land, TX); Kalsi, Manmohan Singh (Houston, TX)

2000-03-14T23:59:59.000Z

367

System and method for cooling a superconducting rotary machine  

Science Conference Proceedings (OSTI)

A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.

Ackermann, Robert Adolf (Schenectady, NY); Laskaris, Evangelos Trifon (Schenectady, NY); Huang, Xianrui (Clifton Park, NY); Bray, James William (Niskayuna, NY)

2011-08-09T23:59:59.000Z

368

Research for the Crane Boom Length Coefficient Considering the Tower Head Flexibility in Rotary Plane  

Science Conference Proceedings (OSTI)

When the crane boom length in rotary plane is determined, the traditional methods only consider support condition, non-uniform, boom end lateral displacement constraint effect of amplitude dragline and hoist rope tensile forces. Ignoring tower head elastic ... Keywords: Equivalent elastic support method, Rotary plane, Tower head flexibility, Non-conservative loading, Length coefficient

Zhang Guangyun; Lan Peng; Lu Nianli

2011-01-01T23:59:59.000Z

369

Modeling Resource, Infrastructure, and Policy Cost Layers for Optimizing Renewable Energy Investment and Deployment  

SciTech Connect

This paper presents a framework for creating a common spatial canvass that can bring together considerations of resource availability, infrastructure reliability, and development costs while strategizing renewable energy investment. We describe the underlying models and methodologies that annotate an investment plan for potential sites over a time-period with costs and constraints which may be imposed on distance from infrastructure, system impact on infrastructure, and policy incentives. The framework is intended as an enabler for visualization, optimization and decision making across diverse dimensions while searching for lucrative investment-plans.

Sukumar, Sreenivas R [ORNL; Olama, Mohammed M [ORNL; Shankar, Mallikarjun [ORNL; Hadley, Stanton W [ORNL; Nutaro, James J [ORNL; Protopopescu, Vladimir A [ORNL; Malinchik, Sergey [Lockheed Martin Corporation; Ives, Barry [Lockheed Martin Corporation

2010-01-01T23:59:59.000Z

370

Preliminary Evaluation of an Energy & Reserve Co-optimization Market Design  

Science Conference Proceedings (OSTI)

This report documents the background and motivation for the revision of the reserve market design in the service area of the Independent System Operator New England (ISO-NE). Due to previous experience with initial reserve markets that exposed noticeable market design flaws, the ISO embarked on a program to revise the two market elements that are analyzed in this report. The two market elements are a Forward Reserve Market and a co-optimized energy and reserve market in real time. The project to analyze ...

2008-12-01T23:59:59.000Z

371

Monitoring and Optimization of Building Operations of a Low-Energy School Building  

E-Print Network (OSTI)

The ambitious design and energy concept of the new Gebhard-Mller-Schule (GMS) school building in Biberach/Riss, Germany proved itself during the first three school years of operation. The intended target value of 30 kWh/(m2a) overall heating energy consumption was almost met during the second year of operation in 2006 and finally achieved in 2007, due to well-working optimization measures, which were identified through monitoring of the building operation. Heating and cooling energy is mainly provided by a groundwater well plant, which serves as a heat source for two heat pumps as well as a direct cooling source for supplying the radiant heating and cooling system that is integrated in the concrete floor and ceiling slabs (thermally activated building component systems TABS). Indoor air conditioning and server room cooling are also connected to the groundwater cooling system. The main component of the groundwater well plant is a submersible pump on the bottom of the well which is located underneath the building. The pump supplies the building reliably with geothermal energy, but also consumes a significant amount of electricity. Monitoring and optimization of the buildings operation, funded by the Federal Ministry of Economics and Technology in Germany, revealed fundamental findings about the operation of the system and the possibilities to improve the buildings performance. Since 2005, the measurements show a continuous increase in efficiency, particularly in the field of auxiliary energies. This significantly increased performance clearly shows the potential of the use of groundwater for heating and cooling purposes and of thermally activated building component systems. In addition the measurements reveal the sensitivity of the system efficiency in terms of operating parameters.

Koenigsdorff, R.; Heinrich, S.; Baumann, O.; Reiser, C.

2008-10-01T23:59:59.000Z

372

ETRANS: an energy transport system optimization code for distributed networks of solar collectors  

DOE Green Energy (OSTI)

The optimization code ETRANS was developed at the Pacific Northwest Laboratory to design and estimate the costs associated with energy transport systems for distributed fields of solar collectors. The code uses frequently cited layouts for dish and trough collectors and optimizes them on a section-by-section basis. The optimal section design is that combination of pipe diameter and insulation thickness that yields the minimum annualized system-resultant cost. Among the quantities included in the costing algorithm are (1) labor and materials costs associated with initial plant construction, (2) operating expenses due to daytime and nighttime heat losses, and (3) operating expenses due to pumping power requirements. Two preliminary series of simulations were conducted to exercise the code. The results indicate that transport system costs for both dish and trough collector fields increase with field size and receiver exit temperature. Furthermore, dish collector transport systems were found to be much more expensive to build and operate than trough transport systems. ETRANS itself is stable and fast-running and shows promise of being a highly effective tool for the analysis of distributed solar thermal systems.

Barnhart, J.S.

1980-09-01T23:59:59.000Z

373

An optimization-based approach for facility energy management with uncertainties  

E-Print Network (OSTI)

Effective energy management for facilities is becoming increasingly important in view of rising energy costs, the government mandate on reduction of energy consumption, and human comfort requirements. This paper presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the facts that the system is nonlinear, time-varying, building-dependent, and uncertain and that the direct control of a large number of HVAC components is difficult. In this paper, HVAC setpoints are control variables developed on top of a direct digital control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict system dynamics and uncontrollable load and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load; is computationally efficient; and is significantly better than existing methods.

Jun Xu; Peter B. Luh; Phd William; E. Blankson; Ron Jerdonek; Khalil Shaikh

2002-01-01T23:59:59.000Z

374

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Title Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings Publication Type Report LBNL Report Number LBNL-5193E Year of Publication 2011 Authors Garbesi, Karina, Vagelis Vossos, Alan H. Sanstad, and Gabriel Burch Document Number LBNL-5193E Pagination 59 Date Published October Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the 'direct-DC house' with respect to today's typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly influenced by climate. While direct-DC for residential applications will most likely arise as a spin-off of developments in the commercial sector-because of lower barriers to market entry and larger energy benefits resulting from the higher coincidence between load and insolation-this paper demonstrates that there are substantial benefits in the residential sector as well. Among residential applications, space cooling derives the largest energy savings from being delivered by a direct-DC system. It is the largest load for the average residence on a national basis and is particularly so in high-load regions. It is also the load with highest solar coincidence.

375

Comparison of residence time models for cascading rotary dryers  

SciTech Connect

The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

Cao, W.F.; Langrish, T.A.G. [Univ. of Sydney, New South Wales (Australia). Dept. of Chemical Engineering

1999-04-01T23:59:59.000Z

376

Simulation and optimization of hot dry rock geothermal energy conversion systems: process conditions and economics  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently engaged in a field program aimed at designing and testing man-made geothermal reservoirs in hot granitic formations of low permeability created by hydraulic fracturing. A very important segment of the program is concerned with defining and optimizing several parameters related to the performance of the reservoir and their impact on the potential commercial feasibility of the hot dry rock technique. These include effective heat transfer area, permeation water loss, depth to the reservoir, geothermal temperature gradient, reservoir temperature, mass flow rate, and geochemistry. In addition, the optimization of the energy end use system (process or district heating, electricity or cogeneration) is directly linked to reservoir performance and associated costs. This problem has been studied using several computer modeling approaches to identify the sensitivity of the cost of power to reservoir and generation plant parameters. Also examined were a variety of important economic elements including rate of return on invested capital, discount or interest rates, taxes, cash flow, energy selling price, plant and reservoir lifetime, drilling and surface plant costs, and royalties.

Tester, J.W.

1978-01-01T23:59:59.000Z

377

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

378

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network (OSTI)

This paper presents a new building energy monitoring and pump speed control method. The pump speed is controlled to maintain the system resistance at an optimized value to approach the best pump efficiency and save pump power. The system resistance can be obtained by the pump head and the water flow rate calculated by the pump water-flow station (PWS), which was recently developed. The PWS measures the water flow rate using the pump head, pump speed, and pump performance curve. This method has been experimentally proved in real HVAC systems. A case study was demonstrated in this paper for application of this new method in a Continuous Commissioning (CC) practice. The case study shows that the PWS can control the pump speed to maintain the optimized system operating point. It can also measure the water flow rate and monitor energy consumption continuously with low installation and almost no maintenance cost. The results show that the new technology can save pump power and increase pump efficiency significantly.

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

379

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

380

Optimal Design of Integration of Intelligent, Adaptive Solar (PV) Power Generator with Grid for Domestic Energy Management System  

Science Conference Proceedings (OSTI)

This paper introduces a novel system based on integration of solar power generator with grid for optimal utilization of energy by minimizing the power drawn from grid. A prototype grid integrated PV system comprising of PV module (2*75Wp), battery bank ... Keywords: Solar power Generator (SPG), Domestic Energy Management, Bi-directional Inverter, Photovoltaic(PV), Total Harmonic Distortion (THD)

S. N. Singh; Pooja Singh; Swati Kumari; Swati

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design of a Power Oscillation Damper for DFIG-based Wind Energy Conversion System Using Modified Particle Swarm Optimizer  

Science Conference Proceedings (OSTI)

This paper presents a method to design a Power Oscillation Damper (POD) for Double-Fed Induction Generator (DFIG) based Wind Energy Conversion System (WECS), operating with voltage control loop. Based on eigen values information from Small Signal Stability ... Keywords: Computational Intelligence, double fed induction generator, power oscillation damper, modified particle swarm optimizer, small signal stability analysis, wind energy conversion system

Huazhang Huang; C. Y. Chung

2012-05-01T23:59:59.000Z

382

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Cleanrooms: Cooling Tower and Condenser Water OptimizationCleanrooms: Cooling tower and condenser water optimization2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

383

Optimization Online Digest -- July 2003  

E-Print Network (OSTI)

Mathematical optimization for the inverse problem of intensity modulated ... The global optimization of Morse clusters by potential energy transformations

384

Development of a Low-Cost Rotary Steerable Drilling System  

DOE Green Energy (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

385

A reverse osmosis treatment process for produced water: optimization, process control, and renewable energy application  

E-Print Network (OSTI)

Fresh water resources in many of the world's oil producing regions, such as western Texas, are scarce, while produced water from oil wells is plentiful, though unfit for most applications due to high salinity and other contamination. Disposing of this water is a great expense to oil producers. This research seeks to advance a technology developed to treat produced water by reverse osmosis and other means to render it suitable for agricultural or industrial use, while simultaneously reducing disposal costs. Pilot testing of the process thus far has demonstrated the technology's capability to produce good-quality water, but process optimization and control were yet to be fully addressed and are focuses of this work. Also, the use of renewable resources (wind and solar) are analyzed as potential power sources for the process, and an overview of reverse osmosis membrane fouling is presented. A computer model of the process was created using a dynamic simulator, Aspen Dynamics, to determine energy consumption of various process design alternatives, and to test control strategies. By preserving the mechanical energy of the concentrate stream of the reverse osmosis membrane, process energy requirements can be reduced several fold from that of the current configuration. Process control schemes utilizing basic feedback control methods with proportional-integral (PI) controllers are proposed, with the feasibility of the strategy for the most complex process design verified by successful dynamic simulation. A macro-driven spreadsheet was created to allow for quick and easy cost comparisons of renewable energy sources in a variety of locations. Using this tool, wind and solar costs were compared for cities in regions throughout Texas. The renewable energy resource showing the greatest potential was wind power, with the analysis showing that in windy regions such as the Texas Panhandle, wind-generated power costs are approximately equal to those generated with diesel fuel.

Mareth, Brett

2006-08-01T23:59:59.000Z

386

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

Science Conference Proceedings (OSTI)

In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

Nils Johnson; Joan Ogden

2010-12-31T23:59:59.000Z

387

A mixed-integer linear optimization model for local energy system planning based on simplex and branch-and-bound algorithms  

Science Conference Proceedings (OSTI)

A Mixed-integer linear optimization model is developed to support the decision making for the sustainable use of energy in the local area. It details exploitation of primary energy sources, electrical and thermal generation, enduse sectors and emissions. ... Keywords: branch-and-bound algorithm, local energy system, low-carbon society, mixed-integer linear optimization, simplex algorithm

Hongbo Ren; Weisheng Zhou; Weijun Gao; Qiong Wu

2010-09-01T23:59:59.000Z

388

High pressure rotary piston coal feeder for coal gasification applications  

DOE Patents (OSTI)

The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

Gencsoy, Hasan T. (Morgantown, WV)

1977-05-24T23:59:59.000Z

389

Optimization Online - All Areas Submissions - February 2011  

E-Print Network (OSTI)

... Optimization for Power System Configuration with Renewable Energy in Remote Areas ... Robust Energy Cost Optimization of Water Distribution System with...

390

Optimization Online - Robust Optimization Submissions - 2011  

E-Print Network (OSTI)

Sanjay Mehrotra, He Zhang. Robust Energy Cost Optimization of Water Distribution System with Uncertain Demand Alexander Goryashko, Arkadi Nemirovski.

391

Optimization Online - Optimizing Trading Decisions for Hydro ...  

E-Print Network (OSTI)

Dec 10, 2011 ... Optimizing Trading Decisions for Hydro Storage Systems using Approximate ... Keywords: OR in Energy, Approximate Dynamic Programming,...

392

Transient analysis and energy optimization of solar heating and cooling systems in various configurations  

Science Conference Proceedings (OSTI)

In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used as the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)

Calise, F.; Dentice d'Accadia, M.; Palombo, A. [DETEC - University of Naples Federico II, P.le Tecchio 80, 80125 Naples (Italy)

2010-03-15T23:59:59.000Z

393

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 99: 89: 90: 79: 72 ...

394

Modeling and simulation of two-leaf semi-rotary VAWT  

Science Conference Proceedings (OSTI)

In this paper, according to the structural characteristics of two-leaf semi-rotary VAWT (vertical axis wind turbine), the microelement method and the coordinate system rotation method are used to establish the mathematical model of wind turbine and, ...

Qian Zhang; Haifeng Chen; Binbin Wang

2010-09-01T23:59:59.000Z

395

Bias in hard disk drive rotary actuator pivot bearings: measurements and lubrication phenomena  

Science Conference Proceedings (OSTI)

Bias in disk drive rotary actuator bearings exhibits complex behavior related to the history of the actuator movement. This paper investigates the hysteresis component of bias present after seeks. Measurements of bias during full stroke actuator movements ...

Daniel Helmick; William Messner; C. Fred Higgs, III

2007-04-01T23:59:59.000Z

396

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation ...  

U.S. Energy Information Administration (EIA)

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

397

GA 200-500 (VSD): Oil-injected rotary screw compressors, 200 ...  

U.S. Energy Information Administration (EIA)

GA 200-500 (VSD): Oil-injected rotary screw compressors, 200-500 kW / 268-670 hp.,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

398

GA 30+-90 / GA 37-90 VSD: Oil-injected rotary screw ...  

U.S. Energy Information Administration (EIA)

GA 30+-90 / GA 37-90 VSD: Oil-injected rotary screw compressors, 30-90 kW / 40-125 hp,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

399

GAe11-30 / GAe 18-30 VSD: Oil-injected rotary screw ...  

U.S. Energy Information Administration (EIA)

GAe11-30 / GAe 18-30 VSD: Oil-injected rotary screw compressors, 11-30 kW / 15-40 hp,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

400

GA 11+-30/GA 15-30 VSD: Oil-injected rotary screw compressors ...  

U.S. Energy Information Administration (EIA)

GA 11+-30/GA 15-30 VSD: Oil-injected rotary screw compressors, 11-30 kW / 15-40 hp,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading air ...

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GA 90+-160+ / GA 110-160 VSD: Oil-injected rotary screw ...  

U.S. Energy Information Administration (EIA)

GA 90+-160+ / GA 110-160 VSD: Oil-injected rotary screw compressors, 90-160 kW / 125-200 hp.,Kunshan CompAirs Machinery Plant Co.,Ltd is the leading ...

402

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of ...  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1973: 1,219: 1,126: 1,049: 993 ...

403

Granular Attrition due to Rotary Valve in a Pneumatic Conveying System  

E-Print Network (OSTI)

The rotary valve is a widely used mechanical device in many solids-handling industrial processes. However, it may also be responsible for most of the attrition effects occurring in a typical process. In this study, the ...

Yao, Jun

404

Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model  

Science Conference Proceedings (OSTI)

Large-scale deployment of carbon capture and storage needs a dedicated infrastructure. Planning and designing of this infrastructure require incorporation of both temporal and spatial aspects. In this study, a toolbox has been developed that integrates ... Keywords: CCS, CHP, CO2 capture transport and storage, Energy systems model, Ft, GIS, IGCC, Linear optimization, MARKAL, NGCC, O&M&M, PC

Machteld van den Broek; Evelien Brederode; Andrea Ramrez; Leslie Kramers; Muriel van der Kuip; Ton Wildenborg; Wim Turkenburg; Andr Faaij

2010-12-01T23:59:59.000Z

405

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling  

SciTech Connect

Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

Hamrick, Todd

2011-05-25T23:59:59.000Z

406

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

China Environmental Energy Technologies Division 2012 ACEEEsuitable building energy technologies in different regionssuitable building energy technologies for different building

Feng, Wei

2013-01-01T23:59:59.000Z

407

Exploring the Optimal Thermal Mass to Investigate the Potential of a Novel Low-Energy House Concept  

E-Print Network (OSTI)

In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines the benefits of buildings with low and high thermal mass by applying hybrid adaptable thermal storage (HATS) systems and materials to a lightweight building. The HATS concept increases building performance and the robustness to changing user behavior, seasonal variations and future climate changes. In this paper the potential of the novel HATS concept is investigated by determining the sensitivity of the optimal thermal mass of a building to the change of seasons and to changing occupancy patterns. The optimal thermal mass is defined as the quantity of the thermal mass that provides the best building performance (based on a trade-off between the building performance indicators). Building performance simulation and multi-objective optimization techniques are used to define the optimal thermal mass of a case study in the Netherlands. Simulation results show that the optimal quantity of the thermal mass is sensitive to the change of seasons and occupancy patterns. This implies that the building performance will benefit from implementing HATS. Furthermore, the results show that using HATS reduces the heating energy demand of the case study with 26% and reduces weighted over- and underheating hours with 85%.

Hoes, P. J.; Trcka, M.; Hensen, J.; Bonnema, B.

2010-01-01T23:59:59.000Z

408

ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE  

SciTech Connect

In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of products dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The unit raw material cost for REML (through-hardened bearing steel) is somewhat greater than raw material cost for the conventional line (case-hardened bearing steel). However, changeover time, tooling costs, gauging costs, utilities and energy costs, and manning of REML are less than the conventional line. Since REML supports near single piece flow, work in process inventory and work flow time are much less on the REML line than on the conventional line. REML allows the reduction in inventory of source steel tube sizes from several hundred to a few dozen. As a result, the business model indicates that the costs incurred on the manufacturing line are less with the REML line than with the conventional line for low manufacturing run volumes. Environment The REML line, when processing through-hardenable steel, requires far less hydrocarbon and other process gases than the conventional line when processing case hardenable steel. The REML line produces fewer greenhouse gas emissions and less liquid and solid waste materials. Broad Applicability The REML benefits will in general be extendible to the manufacture of non-bearing, heat treated and finished machined metal parts in the United States.

Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

2007-11-05T23:59:59.000Z

409

Optimizing a low-energy electron diffraction spin-polarization analyzer for imaging of magnetic surface structures  

Science Conference Proceedings (OSTI)

A newly designed scanning electron microscope with polarization analysis (SEMPA or spin-SEM) for the acquisition of magnetic images is presented. Core component is the spin detector, based on the scattering of low-energy electrons at a W(100) surface in ultrahigh vacuum. The instrument has been optimized with respect to ease of handling and efficiency. The operation and performance of a general low-energy electron diffraction (LEED) detector for SEMPA have been modeled in order to find the optimum operating parameters and to predict the obtainable image asymmetry. Based on the energy dependence of the secondary electron polarization and intensity, the detector output is simulated. For our instrument with optimized performance we demonstrate experimentally 8.6% polarization asymmetry in the domain structure of an iron whisker. This corresponds to 17.2% image contrast, in excellent agreement with the predicted simulated value. A contrast to noise ratio of 27 is achieved at 5 ms acquisition time per pixel.

Froemter, Robert; Hankemeier, Sebastian; Oepen, Hans Peter [Institut fuer Angewandte Physik, Universitaet Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany); Kirschner, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

2011-03-15T23:59:59.000Z

410

Service- and energy-related optimization of advanced automatic train control  

DOE Green Energy (OSTI)

The Bay Area Rapid Transit (BART) system, in collaboration with Hughes Aircraft Company and Harmon Industries, is in the process of developing an Advanced Automatic Train Control (AATC) system to replace the current fixed-block automatic system. As in the current ATC system, the trains will be controlled by station computers at the wayside; however, spread-spectrum radios rather than track-circuits will be employed to determine train locations and reliably transfer control information, allowing for finer speed and acceleration control, as well as more precise train locating capabilities and moving-block control. The authors have developed a simulator of the train control and power consumption of the AATC system, and are now employing this tool to develop enhanced train control algorithms to supplement the safety-critical controller. These algorithms do not attempt to globally optimize the control system with respect to a cost function, but rather they modify the baseline vital control to smooth the train trajectories, and to reduce energy consumption and power infrastructure requirements, through coordination of multiple trains. Several control algorithms are under development, including (1) delay recovery, which smoothly and efficiently controls trains approaching and stopped behind a delayed train, (2) interference management, which controls closely-following trains to avoid oscillatory brake/acceleration cycles, and (3) low voltage avoidance, which limits power consumption by multiple trains in an area to prevent low voltage events. The authors discuss progress to date on development of these control algorithms, as well as their service- and energy-related benefits.

Gordon, S.P. [Sandia National Labs., Livermore, CA (United States); Lehrer, D.G. [Bay Area Rapid Transit District, Oakland, CA (United States)

1998-05-01T23:59:59.000Z

411

Optimization and analysis of LiH thermal energy storage device configurations for space power applications  

DOE Green Energy (OSTI)

Thermal energy storage (TES) can be used to reduce the area and mass of the heat rejection system for space-based sprint power systems. During the sprint mode power cycle, reject heat is placed into storage. The heat is then rejected to the ultimate sink over the much longer non-operational portion of the orbits, through a correspondingly smaller radiator. Preliminary analysis has shown significant weight advantage for the heat storage plus radiator concept over the radiator only concept. Thermal performance analysis and optimization of five heat sink TES configurations using LiH was completed. The configurations are: (a) LiH encapsulated spheres in the packed bed, (b) standard tube and shell arrangement with LiH on the tube side, (c) tube and shell with LiH on the shell side, (d) alternating concentric rings of LiH and heat transport fluid, and (e) parallel slabs of LiH. System performance was calculated for a wide range of parameters and included effects of prespecified internal voids, enhanced conductivity and internal fins.

Siman-Tov, M.; Williams, P.; Olszewski, M.

1987-01-01T23:59:59.000Z

412

Optimal and robust energy transport in light-harvesting complexes: (II) A quantum interplay of multichromophoric geometries and environmental interactions  

E-Print Network (OSTI)

Today, the physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are still not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to simulate ultrafast quantum dynamics of such complex excitonic systems in their non-equilibrium environment in the non-perturbative and non-Markovian regimes. We demonstrate that the natural dynamics of the FMO complex leads to optimum and stable energy transport due to a convergence of energy/time scales among important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimal and robust with respect to all the relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy \\lambda, bath frequen...

Mohseni, Masoud; Lloyd, Seth; Rabitz, Herschel

2011-01-01T23:59:59.000Z

413

Hydrodynamically Lubricated Rotary Shaft Having Twist Resistant Geometry  

SciTech Connect

A hydrodynamically lubricated squeeze packing type rotary shaft with a cross-sectional geometry suitable for pressurized lubricant retention is provided which, in the preferred embodiment, incorporates a protuberant static sealing interface that, compared to prior art, dramatically improves the exclusionary action of the dynamic sealing interface in low pressure and unpressurized applications by achieving symmetrical deformation of the seal at the static and dynamic sealing interfaces. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication; this added compression makes the seal more tolerant of compression set, abrasive wear, mechanical misalignment, dynamic runout, and manufacturing tolerances, and also makes hydrodynamic seals with smaller cross-sections more practical. In alternate embodiments, the benefits enumerated above are achieved by cooperative configurations of the seal and the gland which achieve symmetrical deformation of the seal at the static and dynamic sealing interfaces. The seal may also be configured such that predetermined radial compression deforms it to a desired operative configuration, even through symmetrical deformation is lacking.

Dietle, Lannie (Houston, TX); Gobeli, Jeffrey D. (Houston, TX)

1993-07-27T23:59:59.000Z

414

Sway control method and system for rotary cranes  

DOE Patents (OSTI)

Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

Robinett, Rush D. (Tijeras, NM); Parker, Gordon G. (Houghton, MI); Feddema, John T. (Albuquerque, NM); Dohrmann, Clark R. (Albuquerque, NM); Petterson, Ben J. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

415

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents (OSTI)

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor center lines or alternatively the channel paths coincide with the helical path of the rotor edges. 14 figs.

Fresco, A.N.

1997-08-05T23:59:59.000Z

416

Apparatus and methods for cooling and sealing rotary helical screw compressors  

DOE Patents (OSTI)

In a compression system which incorporates a rotary helical screw compressor, and for any type of gas or refrigerant, the working liquid oil is atomized through nozzles suspended in, and parallel to, the suction gas flow, or alternatively the nozzles are mounted on the suction piping. In either case, the aim is to create positively a homogeneous mixture of oil droplets to maximize the effectiveness of the working liquid oil in improving the isothermal and volumetric efficiencies. The oil stream to be atomized may first be degassed at compressor discharge pressure by heating within a pressure vessel and recovering the energy added by using the outgoing oil stream to heat the incoming oil stream. The stripped gas is typically returned to the compressor discharge flow. In the preferred case, the compressor rotors both contain a hollow cavity through which working liquid oil is injected into channels along the edges of the rotors, thereby forming a continuous and positive seal between the rotor edges and the compressor casing. In the alternative method, working liquid oil is injected either in the same direction as the rotor rotation or counter to rotor rotation through channels in the compressor casing which are tangential to the rotor edges and parallel to the rotor centerlines or alternatively the channel paths coincide with the helical path of the rotor edges.

Fresco, Anthony N. (P.O. Box 734, Upton, NY 11973)

1997-01-01T23:59:59.000Z

417

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

www.electricitystorage.org/tech/technologies_comparisons_Chandran (2008), Optimal Technology Selection and Operationand Thermal Storage Technologies, ACEEE 2008 Summer Study

Stadler, Michael

2009-01-01T23:59:59.000Z

418

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

1. However, a part of the battery capacity is replaced bycapacity close to the optimal could be acquired, e.g. battery

Stadler, Michael

2008-01-01T23:59:59.000Z

419

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

with factors such as energy tariff and incentive policies.energy services requirements, usage patterns, tariffs, andelectricity tariff structure and the buildings energy load

Feng, Wei

2013-01-01T23:59:59.000Z

420

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Firestone, R. (2004), Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,A.S. Siddiqui (2008b), Distributed Energy Resources On-Site

Stadler, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

426435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

Feng, Wei

2013-01-01T23:59:59.000Z

422

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

of Public Buildings. Energy and Buildings (41), 426435.and Renewable Energy, Building Technologies Program, of theand Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

423

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

as buildings energy load profile, citys solar radiationthe buildings energy load profiles. The annual energythe buildings energy load profiles. The Chinese residential

Feng, Wei

2013-01-01T23:59:59.000Z

424

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings: Preprint  

SciTech Connect

Zero net energy buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-08-01T23:59:59.000Z

425

Green queue : a framework for selecting energy optimal DVFS congurations in large scale MPI applications  

E-Print Network (OSTI)

settings . . . . . Green Queue Energy Savings with VariousApplication Figure 4.3: Green Queue Energy Savings withBlind Scaling Relative Energy Green Queue Relative Delay

Peraza, Joshua

2012-01-01T23:59:59.000Z

426

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,and J.L. Edwards, Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

427

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

428

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

building operations. Energy and Buildings 33, (8):783791.Laboratory Buildings. Energy and Buildings 34 Geoghegan,consumption data. Energy and Buildings 24, Hampton, Dave.

O'Donnell, James

2008-01-01T23:59:59.000Z

429

Optimal Reduction of Electrical Energy Consumption by Supply Air AC Motors.  

E-Print Network (OSTI)

??The Nebraska Center for Energy Sciences Research (NCER) at the University of Nebraska-Lincoln (UNL) strives to be energy efficient through Green Energy. Of course, in (more)

Rafiee, Keyhan

2012-01-01T23:59:59.000Z

430

Fabrication and Optimization of Nano-Structured Composites for Energy Storage  

E-Print Network (OSTI)

May 28, 2009). Hydrogen Storage. Energy Efficiency andEnergy established benchmarks for on-board hydrogen storageof Hydrogen Storage in Metal-Organic Frameworks. Energy

Carrington, Kenneth Russell

2009-01-01T23:59:59.000Z

431

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

EnergyPlus (DOE, 2011). The energy usage intensity is shownResidential Building Site Energy Usage Intensity in ChinaGas Residen>al Building Energy Usage Intensity Comparison

Feng, Wei

2013-01-01T23:59:59.000Z

432

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Torchiere Source: [6]. Energy AC-DC Savings Conv.Effand fans unchanged Energy AC-DC Savings Conv.Eff Solar WaterFigure 10. Appliances energy savings versus direct-DC energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

433

Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating  

DOE Green Energy (OSTI)

Advantages of thermionic energy conversion (TEC) have been counted and are recounted with emphasis on high-temperature service in coal-combustion products. Efficient, economical, nonpolluting utilization of coal here and now is a critically important national goal. And TEC can augment this capability not only by the often proposed topping of steam power plants but also by higher-temperature topping and process heating. For these applications, applied-research-and-technology (ART) work reveals that optimal TEC with approx. 1000-to approx. 1100 K collectors is possible using well-established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/cm/sup 2/ with approx. 1000 K collectors and 21.7% at 22.6 W/cm/sup 2/ with approx. 1100 K collectors. These performances require 1.5- and 1.7-eV collector work functions (not the 1-eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approx. 0.9-to approx. 6-torr cesium pressures with 1600-to-1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode-loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal-and to use it well.

Morris, J.F.

1980-07-01T23:59:59.000Z

434

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

on minimized costs, energy efficiency, and CO 2 emissions (energy costs vary when electrical, thermal storage, efficiency

Stadler, Michael

2009-01-01T23:59:59.000Z

435

Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios  

E-Print Network (OSTI)

states there is an increase in fossil fuel energy production over the increase in renewable energy production.

Meininger, Aaron G.

2012-01-01T23:59:59.000Z

436

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

and Storage, Journal of Energy Engineering 133(3): 181Power Adoption, Journal of Energy Engineering [6] Siddiqui,

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

437

Demand-Side and Supply-Side Load Management: Optimizing with Thermal Energy Storage (TES) for the Restructuring Energy Marketplace  

E-Print Network (OSTI)

The current and future restructuring energy marketplace represents a number of challenges and opportunities to maximize value through the management of peak power. This is true both on the demand-side regarding peak power use and on the supply-side regarding power generation. Thermal Energy Storage (TES) can provide the flexibility essential to the economical management of power. In large industrial applications, the added value of TES has been demonstrated, not only in managing operating costs, but also in delivering a net saving in capital cost versus conventional, non-storage approaches. This capital cost saving is often realized in situations where investments in chiller plant capacity, or in on-site power generating capacity, are required. On the demand-side, TES has long been used to shift air-conditioning loads and process cooling loads from on-peak to off-peak periods. In today's and tomorrow's restructuring energy markets, price spikes are increasingly likely during periods of peak power demand. TES is performing an important role, especially when coupled with a proper understanding of modern TES technology options. The inherent advantages and limitations of the available TES technology options are briefly reviewed and discussed. Examples of existing large TES installations are presented, identifying the TES technology types they utilize. The applications include industrial facilities, as well as universities, hospitals, government, and District Cooling utility systems. The power management impact and the economic benefits of TES are illustrated through a review of several TES case studies. Combustion Turbines (CTs) are a common choice for modern on-site and utility power generation facilities. Inlet air cooling of CTs enhances their hot weather performance and has been successfully accomplished for many years, using a variety of technologies. In many instances, TES can and does provide a uniquely advantageous method of optimizing the economics of CT Inlet Cooling (CTIC) systems. TES systems can achieve low inlet air temperatures, with resulting high levels of power augmentation. The TES approach also minimizes the installed capacity (and capital cost) of cooling systems, as well as limiting the parasitic loads occurring during periods of peak power demand and peak power value. Chilled water, ice, and low temperature fluid TES systems are all applicable to CTIC. The inherent pros and cons of each TES type are discussed. Sensitivity analyses are presented to explore the impact of cooling hours per day on capital cost per kW of power enhancement. Case histories illustrate the beneficial impact of TES-based CTIC on both capital cost and operating cost of CT power plants. TES-based CTIC is advantageous as an economical, peaking power enhancement for either peaking or base-load plants. It is applied to both new and existing CTs. TES is projected to have even greater value in future restructuring energy markets.

Andrepont, J. S.

2002-04-01T23:59:59.000Z

438

Charge migration efficiency optimization in hybrid electrical energy storage (HEES) systems  

Science Conference Proceedings (OSTI)

Electrical energy is high-quality form of energy, and thus it is beneficial to store the excessive electric energy in the electrical energy storage (EES) rather than converting into a different type of energy. Like memory devices, no single type of EES ... Keywords: charge management, charge migration, hybrid electrical energy storage

Yanzhi Wang; Younghyun Kim; Qing Xie; Naehyuck Chang; Massoud Pedram

2011-08-01T23:59:59.000Z

439

Rotary seal with enhanced lubrication and contaminant flushing  

DOE Patents (OSTI)

A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.

Dietle, Lannie L. (Sugar Land, TX)

2000-01-01T23:59:59.000Z

440

Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program  

Science Conference Proceedings (OSTI)

This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is linked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from t...

2005-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

be acquired. Battery storage costs are roughly consistentcosts ($/kW or $/kWh) lifetime (a) thermal storage 15 flow batterycosts, carbon emissions, or other objectives, and delivers optimal schedules. Recently, electrical (conventional lead/acid battery) and

Stadler, Michael

2009-01-01T23:59:59.000Z

442

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

443

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids, IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

Stadler, Michael

2010-01-01T23:59:59.000Z

444

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

a Microgrid, Journal of Energy Engineering 131(1): 2-25. Toand Storage, Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2010-01-01T23:59:59.000Z

445

Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios  

E-Print Network (OSTI)

out with high costs surrounding the renewable energy market.use of the now cost e?cient renewable energy sector. Commonfor renewable energy. Financial Flows and Social Costs Given

Meininger, Aaron G.

2012-01-01T23:59:59.000Z

446

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

the Second International Green Energy Conference. This workTHE SECOND INTERNATIONAL GREEN ENERGY CONFERENCE 25-29 JuneTHE SECOND INTERNATIONAL GREEN ENERGY CONFERENCE 25-29 June

Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

2006-01-01T23:59:59.000Z

447

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

a research of database of energy tariffs, D E R (Distributedresearch of database of energy tariffs, technology cost andand natural g a s tariffs, and end-use energy loads s u c h

Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

2006-01-01T23:59:59.000Z

448

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,International Journal of Distributed Energy Resources 4(4):A.S. Siddiqui (2008b), Distributed Energy Resources On-Site

Stadler, Michael

2009-01-01T23:59:59.000Z

449

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

CIBSE. 2004. CIBSE Guide F: Energy ef?ciency in buildings.methods include CIBSE Guide F, Energy Star, Dutch NEN 2916 (Energy simulated zone temperature and the actual zone tempera- ture. This table guides

O'Donnell, James

2008-01-01T23:59:59.000Z

450

Achieving real transparency : optimizing building energy ratings and disclosure in the U.S. residential sector  

E-Print Network (OSTI)

Residential energy efficiency in the U.S. has the potential to generate significant energy, carbon, and financial savings. Nonetheless, the market of home energy upgrades remains fragmented, and the number of homes being ...

Nadkarni, Nikhil S. (Nikhil Sunil)

2012-01-01T23:59:59.000Z

451

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

kWh) Ideal(kWh) Cost (e) Cooling Tower Energy Chiller EnergyLoad Condenser Loop Load Cooling Tower Energy Requirementscoil, chiller and cooling tower are con- suming excessive

O'Donnell, James

2008-01-01T23:59:59.000Z

452

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

453

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

a Microgrid, Journal of Energy Engineering 131(1): 2-25. Toand Storage, Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2009-01-01T23:59:59.000Z

454

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

Solar Market Trends 2009, 2010, Interstate Renewable EnergyMarket-Trends-Report- 2010_7-27-10_web1.pdf Solar Energy

Garbesi, Karina

2012-01-01T23:59:59.000Z

455

Optimization Online - Nonlinear Optimization Submissions - 2013  

E-Print Network (OSTI)

Optimization of running strategies based on anaerobic energy and variations of velocity. Amandine Aftalion, J. Frdric Bonnans. Convergence Analysis of DC...

456

Optimization Online - All Areas Submissions - July 2003  

E-Print Network (OSTI)

The global optimization of Morse clusters by potential energy transformations ... Mathematical optimization for the inverse problem of intensity modulated...

457

ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE  

SciTech Connect

SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back to SRNL for analysis to quantify the amount of fines that passed through the membrane. It should be noted that even though ground CST was tested, it will be transferred to the Defense Waste Processing Facility (DWPF) feed tank and is not expected to require filtration.

Herman, D.

2011-08-03T23:59:59.000Z

458

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 14, NO. 2, APRIL 2012 151 Sum-Rate Optimal Power Policies for Energy Harvesting  

E-Print Network (OSTI)

Policies for Energy Harvesting Transmitters in an Interference Channel Kaya Tutuncuoglu and Aylin Yener by harvesting from ambient sources. Optimal power policies for energy harvesting nodes have attracted recent (Invited Paper) Abstract: This paper considers a two-user Gaussian interference channel with energy

Yener, Aylin

459

Optimal Model of Distributed Energy System by Using GAMS and Case Study  

E-Print Network (OSTI)

market follows: information (gas price and electricity price, etc) and 1) The benefit of distributed energy

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

2005-01-01T23:59:59.000Z

460

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

ENERGY CONFERENCE 25-29 June 2006,Oshawa, Ontario, Canada this model, requirement, market information (

Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimized rotary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network (OSTI)

appliance converters were estimated using external power supply (EPS) data from the Energy Star database

Garbesi, Karina

2012-01-01T23:59:59.000Z

462

Generic Mechanism of Optimal Energy Transfer Efficiency: A Scaling Theory of the Mean First Passage Time in Exciton Systems  

E-Print Network (OSTI)

An asymptotic scaling theory is presented using the conceptual basis of trapping-free subspace (i.e., orthogonal subspace) to establish the generic mechanism of optimal efficiency of excitation energy transfer (EET) in light-harvesting systems. Analogous to Kramers' turnover in classical rate theory, the enhanced efficiency in the weak damping limit and the suppressed efficiency in the strong damping limit define two asymptotic scaling regimes, which are interpolated to predict the functional form of optimal efficiency of the trapping-free subspace. In the presence of static disorder, the scaling law of transfer time with respect to dephasing rate changes from linear to square root, suggesting a weaker dependence on the environment. Though formulated in the context of EET, the analysis and conclusions apply in general to open quantum processes, including electron transfer, fluorescence emission, and heat conduction.

Wu, Jianlan; Silbey, Robert J

2013-01-01T23:59:59.000Z

463

Optimal Save-Then-Transmit Protocol for Energy Harvesting Wireless Transmitters  

E-Print Network (OSTI)

In this paper, the design of a wireless communication device relying exclusively on energy harvesting is considered. Due to the inability of rechargeable energy sources to charge and discharge at the same time, a constraint we term the energy half-duplex constraint, two rechargeable energy storage devices (ESDs) are assumed so that at any given time, there is always one ESD being recharged. The energy harvesting rate is assumed to be a random variable that is constant over the time interval of interest. A save-then-transmit (ST) protocol is introduced, in which a fraction of time {\\rho} (dubbed the save-ratio) is devoted exclusively to energy harvesting, with the remaining fraction 1 - {\\rho} used for data transmission. The ratio of the energy obtainable from an ESD to the energy harvested is termed the energy storage efficiency, {\\eta}. We address the practical case of the secondary ESD being a battery with {\\eta} save-ratio that m...

Luo, Shixin; Lim, Teng Joon

2012-01-01T23:59:59.000Z

464

Optimal PI Control of a Wind Energy Conversion System Using Particles Swarm  

Science Conference Proceedings (OSTI)

In order to get the maximum power from the wind, the variable-speed turbine should run at different speed when windspeed changes.The dynamic characteristics of the control system must be properly defined and designed to achievesatisfactory generated ... Keywords: Wind turbine, particles swarm, optimal control

Santiago Sanchez; Maximiliano Bueno; Edilson Delgado; Eduardo Giraldo

2009-09-01T23:59:59.000Z

465

Energy Efficient DSL via Heterogeneous Sleeping States: Optimization Structures and Operation  

E-Print Network (OSTI)

rate and thus increases service delay. In addition, switching to and from low-power sleeping states provide a method to optimally decide which sleeping Fig. 1. Transitions between different power states (L0 length [Number of jobs] R Service rate [jobs/s] Arrival rate [jobs/s] p(i) policy for state i PSL power

466

Burning state recognition of rotary kiln using ELMs with heterogeneous features  

Science Conference Proceedings (OSTI)

Image based burning state recognition plays an important role in sintering process control of rotary kiln. Although many efforts on dealing with this problem have been made over the past years, the recognition performance cannot be satisfactory due to ... Keywords: Burning state, ELM, Eigen-flame image, Latent semantic analysis, Multivariate image analysis

Weitao Li; Dianhui Wang; Tianyou Chai

2013-02-01T23:59:59.000Z

467

Measure it, See it, Manage it: Using Real Time Data to Benchmark,Optimize, and Sustain System Energy Efficiency  

SciTech Connect

Even after years of training and awareness building at thestate and national level, industrial cross-cutting systems (motor-driven,steam, process heating) continue to offer significant opportunities forenergy savings. The US Department of Energy estimates these remainingsavings at more than 7 percent of all industrial energy use. This paperpresents a different approach to promoting industrial system energyefficiency -- providing plant personnel with ready access to data uponwhich to base energy management decisions.In 2005, a Del Monte Foodsfruit processing plant in Modesto, California worked with LawrenceBerkeley National Laboratory (LBNL)to specify and purchase permanentinstrumentation for monitoring their compressed air system. This work,completed as part of a demonstration project under a State TechnologiesAdvancement Collaborative (STAC) grant, was designed to demonstrate theeffectiveness of enterprise energy management (EEM), which is predicatedon the assumption that the energy efficiency of existing, cross-cuttingindustrial systems (motor-driven, steam) can be improved by providingmanagement and operating personnel with real-time data on energy use. Theinitial STAC grant provided for the installation and some initialanalyses, but did not address the larger issue of integrating these newdata into an ongoing energy management program for the compressed airsystem.The California Energy Commission (CEC) decided to support furtheranalysis to identify potential for air system optimization. Through theCEC's Energy in Agriculture Program, a compressed air system audit wasperformed by Tom Taranto to: Measure and document the system's baselineand CASE Index of present operation; Establish methods to sustain anongoing CASE Index measure of performance; Use AIRMaster+ to analyzesupply side performance as compared to the CASE Index; Identify demandside opportunities for efficiency and performance improvement; Assesssupply / demand balance and energy reduction opportunities; Evaluate thepresent air compressor control strategy and potential improvement, andCollect data to benchmark parameters for compressed air systems atsimilar facilities.This paper addresses the benefits and limitations ofboth continuous and targeted measurement in benchmarking, optimizing, andsustaining an efficient compressed air system. Included are methods usedin applying both of these measurements to a complex industrial system.Further, this paper will describe the results of these additionalanalyses and the plant response to them.

Taranto, Thomas; McKane, Aimee; Amon, Ricardo; Maulhardt, Michael

2007-07-02T23:59:59.000Z

468

Measure it, See it, Manage it: Using Real Time Data to Benchmark,Optimize, and Sustain System Energy Efficiency  

SciTech Connect

Even after years of training and awareness building at thestate and national level, industrial cross-cutting systems (motor-driven,steam, process heating) continue to offer significant opportunities forenergy savings. The US Department of Energy estimates these remainingsavings at more than 7 percent of all industrial energy use. This paperpresents a different approach to promoting industrial system energyefficiency -- providing plant personnel with ready access to data uponwhich to base energy management decisions.In 2005, a Del Monte Foodsfruit processing plant in Modesto, California worked with LawrenceBerkeley National Laboratory (LBNL)to specify and purchase permanentinstrumentation for monitoring their compressed air system. This work,completed as part of a demonstration project under a State TechnologiesAdvancement Collaborative (STAC) grant, was designed to demonstrate theeffectiveness of enterprise energy management (EEM), which is predicatedon the assumption that the energy efficiency of existing, cross-cuttingindustrial systems (motor-driven, steam) can be improved by providingmanagement and operating personnel with real-time data on energy use. Theinitial STAC grant provided for the installation and some initialanalyses, but did not address the larger issue of integrating these newdata into an ongoing energy management program for the compressed airsystem.The California Energy Commission (CEC) decided to support furtheranalysis to identify potential for air system optimization. Through theCEC's Energy in Agriculture Program, a compressed air system audit wasperformed by Tom Taranto to: Measure and document the system's baselineand CASE Index of present operation; Establish methods to sustain anongoing CASE Index measure of performance; Use AIRMaster+ to analyzesupply side performance as compared to the CASE Index; Identify demandside opportunities for efficiency and performance improvement; Assesssupply / demand balance and energy reduction opportunities; Evaluate thepresent air compressor control strategy and potential improvement, andCollect data to benchmark parameters for compressed air systems atsimilar facilities.This paper addresses the benefits and limitations ofboth continuous and targeted measurement in benchmarking, optimizing, andsustaining an efficient compressed air system. Included are methods usedin applying both of these measurements to a complex industrial system.Further, this paper will descri