National Library of Energy BETA

Sample records for optimized fuel economy

  1. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel The Use of Exhaust Gas Recirculation to Optimize Fuel Economy ...

  2. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the ...

  3. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. ... use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. ...

  4. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  5. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  6. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  7. Predicting Individual Fuel Economy

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  8. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

    SciTech Connect (OSTI)

    West, Brian H; Lopez Vega, Alberto; Theiss, Timothy J; Graves, Ronald L; Storey, John Morse; Lewis Sr, Samuel Arthur

    2007-01-01

    Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

  9. 2011 Fuel Economy Guide Now Available

    Broader source: Energy.gov [DOE]

    This annual Fuel Economy Guide provides consumers with information about estimated mileage and fuel costs

  10. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions ...

  11. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  12. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  13. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  14. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  15. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  16. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  17. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  18. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  5. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  6. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Energy Savers [EERE]

    09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30

  7. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For more detailed information, see supporting information below. Final MY 2011-2016 Light Truck Fuel Economy Targets Line graph showing the fuel economy targets for light trucks ...

  8. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  9. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The ...

  10. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact 589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On ...

  11. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  12. Technological trends for improving automobile fuel economy

    SciTech Connect (OSTI)

    Katoh, K.

    1984-01-01

    Since the first oil embargo in 1973, energy conservation has been receiving greater attention. In the field of automobiles, the last decade has seen significant improvement in vehicle fuel economy attained by inter-industries comprehensive efforts. Today the theme of ''Age of Unlimited Fuel Economy Competition'' or ''Age of Unlimited MPG Competition'' is often heard and the development of super fuel economy vehicles is being pursued actively. For example, it should be noted that the VW experimental vehicle with a direct-injection diesel engine has already exceeded 80 mpg in the U.S. test cycle. This paper will discuss the recent technological approach, especially from the standpoint of engine design, to achieve further improvements in vehicle fuel economy and its impacts on the properties of fuel and lubricants.

  13. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings

    Broader source: Energy.gov [DOE]

    An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save...

  14. Global Fuel Economy Initiative: 50by50 Prospects and Progress...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates...

  15. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel ...

  16. Fuel Economy.gov - Mobile | Open Energy Information

    Open Energy Info (EERE)

    Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile AgencyCompany Organization: United States Department of Energy Sector:...

  17. Fuel Economy Valentines | Department of Energy

    Energy Savers [EERE]

    Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model

  18. 2010 Annual Fuel Economy Guide Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their

  19. Fact #692: September 12, 2011 Fuel Economy Distribution for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Fact 692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Nearly 64% of ...

  20. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American ...

  1. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  2. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  3. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  4. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...

    Energy Savers [EERE]

    The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - ...

  5. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  6. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  7. Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds

    Broader source: Energy.gov [DOE]

    Each vehicle reaches an optimal fuel economy at a different speed or range of speeds. A recent study by Oak Ridge National Laboratory illustrates that point with a wide range of data collected on...

  8. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 ...

  9. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  10. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact 813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy ...

  11. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary

  12. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient

    Energy Savers [EERE]

    Vehicle | Department of Energy The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason

  13. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  14. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  15. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  16. Biomass Fueling America’s Growing Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  17. The Road to Improved Heavy Duty Fuel Economy

    Broader source: Energy.gov [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

  18. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  19. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  20. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  1. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  2. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new

  3. Fueling South Carolina's Clean Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of <a href="http://www.flickr.com/photos/clatiek/47587765/">Flickr user ClatieK</a>. Pure Power, LLC makes products that allow truck engines to reduce emissions and

  4. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  5. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  6. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes

    Broader source: Energy.gov [DOE]

    The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model...

  7. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  8. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  9. Global Fuel Economy Initiative | Open Energy Information

    Open Energy Info (EERE)

    & North America, Europe, Latin America & Caribbean, Africa & Middle East Related Tools Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Turn Down the...

  10. Fuel Economy Fact and Fiction | Department of Energy

    Energy Savers [EERE]

    Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from

  11. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  12. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  13. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities Sensors & Optical Diagnostics Optimizing...

  14. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  15. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  16. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy

    Broader source: Energy.gov [DOE]

    The Fuel Economy Guide Web site, sponsored by the U. S. Department of Energy and the U.S. Environmental Protection Agency, displays a list of misconceptions about fuel economy. Knowing the facts on...

  17. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  18. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  19. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis ...

  20. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Broader source: Energy.gov (indexed) [DOE]

    track your own fuel economy and compare it to that of other users and to the test ratings. ... How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, ...

  1. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG ...

  2. Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy

    Broader source: Energy.gov [DOE]

    Winter driving conditions and cold temperatures can have a significant effect on a vehicle’s fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than...

  3. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle Fact 680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle A June 2011 survey asked the ...

  4. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

  5. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  6. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight...

  7. 2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Fuel Economy of New Vehicles Sets Record High: EPA 2012 Fuel Economy of New Vehicles Sets Record High: EPA December 18, 2013 - 12:00am Addthis The U.S. Environmental...

  8. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer’s fleet of new cars or light trucks in a certain model year (MY). First enacted by...

  9. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed

    Broader source: Energy.gov [DOE]

    Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

  10. DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency

  11. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  12. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

  13. Co-Optimization of Fuels and Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of Fuels and Vehicles Jim Anderson, Ford Motor Company Bioenergy 2015 June ... LDV Pathways Source: DOE Hydrogen and Fuel Cells Program Record 14006, http:...

  14. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  15. Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content

    Broader source: Energy.gov [DOE]

    The fuel economy of a vehicle is dependent on many things, one of which is the fuel used in the vehicle. Two National Laboratories recently studied the effects that ethanol blends have on the fuel...

  16. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  17. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  18. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  19. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?

    Energy Savers [EERE]

    | Department of Energy Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors

  20. What Steps Do You Take to Improve Your Fuel Economy? | Department of Energy

    Energy Savers [EERE]

    Improve Your Fuel Economy? What Steps Do You Take to Improve Your Fuel Economy? April 7, 2011 - 7:30am Addthis On Monday, Shannon told you some facts about fuel economy and how you can use less gas and save money at the pump. What steps do you take to improve your fuel economy? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov.

  1. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  2. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  3. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  4. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance

    Broader source: Energy.gov [DOE]

    From 1980 to 2009, there have been significant gains made in automotive technology, but those advancements have been applied toward improved performance and safety rather than fuel economy....

  5. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Broader source: Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  6. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Broader source: Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  7. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  8. Fuel-Engine Co-Optimization

    Broader source: Energy.gov [DOE]

    The Fuel-Engine Co-Optimization initiative aims to simultaneously transform both transportation fuels and vehicles in order to maximize performance and energy efficiency, minimize environmental impact, and accelerate widespread adoption of innovative combustion strategies.

  9. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  10. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  11. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  12. DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many

  13. Analysis of In-Use Fuel Economy Shortfall Based on Voluntarily Reported MPG Estimates

    SciTech Connect (OSTI)

    Greene, David L; Goeltz, Rick; Hopson, Dr Janet L; Tworek, Elzbieta

    2007-01-01

    The usefulness of the Environmental Protection Agency's (EPA) passenger car and light truck fuel economy estimates has been the subject of debate for the past three decades. For the labels on new vehicles and the fuel economy information given to the public, the EPA adjusts dynamometer test results downward by 10% for the city cycle and 22% for the highway cycle to better reflect real world driving conditions. These adjustment factors were developed in 1984 and their continued validity has repeatedly been questioned. In March of 2005 the U.S. Department of Energy (DOE) and EPA's fuel economy information website, www.fueleconomy.gov, began allowing users to voluntarily share fuel economy estimates. This paper presents an initial statistical analysis of more than 3,000 estimates submitted by website users. The analysis suggests two potentially important results: (1) adjusted, combined EPA fuel economy estimates appear to be approximately unbiased estimators of the average fuel economy consumers will experience in actual driving, and (2) the EPA estimates are highly imprecise predictors of any given individual's in-use fuel economy, an approximate 95% confidence interval being +/-7 MPG. These results imply that what is needed is not less biased adjustment factors for the EPA estimates but rather more precise methods of predicting the fuel economy individual consumers will achieve in their own driving.

  14. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  15. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  16. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  17. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  18. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings - Dataset | Department of Energy 25: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings File fotw#925_web.xlsx More Documents & Publications Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction

  19. DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013

  20. EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers November 6, 2014 - 12:07pm Addthis NEWS MEDIA CONTACT 202-586-4940 The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2015 Fuel Economy Guide, providing consumers with a valuable resource to help them choose the most fuel-efficient and low greenhouse gas emitting vehicles that meet their needs. In comparison to previous

  1. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  2. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  3. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

    Broader source: Energy.gov [DOE]

    In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so...

  4. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  5. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  6. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

  7. Fuels of the Future: Accelerating the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Plenary IV: Fuels of the...

  8. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  9. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy

  10. Co-Optimization of Fuels and Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Optimization of Fuels and Vehicles Co-Optimization of Fuels and Vehicles Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Vehicles James E. Anderson, Technical Expert, Ford Motor Company PDF icon anderson_bioenergy_2015.pdf More Documents & Publications A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Co-Optima Stakeholder Listening Day Summary Report Co-Optimization of Fuels and Vehicles Chapter 8 - Advancing

  11. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce petroleum consumption by billions of barrels a year Deliver tens of billions of dollars in cost savings annually via improved fuel economy Dramatically decrease ...

  12. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell ...

  13. Optima: Co-Optimization of Fuels and Engines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optima: Co-Optimization of Fuels and Engines Optima: Co-Optimization of Fuels and Engines doeoptimainitiativeoverview.pdf More Documents & Publications Optima Program Overview...

  14. Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency (EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA...

  15. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  16. Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department and the Environmental Protection Agency (EPA) released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984.

  17. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements

    Broader source: Energy.gov [DOE]

    Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

  18. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers

    Broader source: Energy.gov [DOE]

    Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

  19. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  20. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following ...

  1. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population...

  2. New Find-a-Car App Brings Fuel Economy Right to Your Phone

    Broader source: Energy.gov [DOE]

    With more car buyers than ever using the Internet to research their future vehicles, accessing information on fuel economy needs to be simple and convenient. To make searching easier on mobile...

  3. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity....

  4. Fact #587: September 7, 2009 Cash for Clunkers Program – Fuel Economy Improvement

    Broader source: Energy.gov [DOE]

    The Car Allowance Rebate System (CARS), also known as the Cash for Clunkers Program, provided Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18...

  5. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle

    Broader source: Energy.gov [DOE]

    A June 2011 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low...

  6. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy

    Broader source: Energy.gov [DOE]

    The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

  7. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy

    Broader source: Energy.gov [DOE]

    Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

  8. Turbocharged Spark Ignited Direct Injection- A Fuel Economy Solution for The US

    Broader source: Energy.gov [DOE]

    Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid.

  9. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models...

    Office of Environmental Management (EM)

    EPA and DOE Release Annual Fuel Economy Guide with 2014 ... and the Department of Energy (DOE) are releasing the ... like air conditioning usage and a variety of speed and ...

  10. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources, and More | Department of Energy H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch

  11. Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines John Eichberger, Vice President of Government Relations, National Association of Convenience Stores/Executive Director, The Fuels Institute PDF icon

  12. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  13. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  14. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  15. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings | Department of Energy Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings SUBSCRIBE to the Fact of the Week The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a

  16. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    SciTech Connect (OSTI)

    Thomas, John F; Hwang, Ho-Ling; West, Brian H; Huff, Shean P

    2013-01-01

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  20. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  1. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

  2. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  3. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  4. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  5. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  6. We Can't Wait: Driving Forward with New Fuel Economy Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car

  7. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  8. Annual Fuel Economy Guide with 2014 Models Released | Department...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Environmental Protection Agency (EPA) and the Energy ... including an estimated annual fuel cost for each vehicle. ... like air conditioning usage and a variety of speed and ...

  9. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using ...

  10. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  11. National Labs Work to Settle PHEV Fuel Economy Conundrum - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows promise for estimating real-world energy use September 28, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently joined forces with researchers from Idaho National Laboratory (INL) and Argonne National Laboratory (ANL) to take the lead in developing and testing a new method for predicting the real-world fuel and electricity consumption of plug-in hybrid

  12. Real-World PHEV Fuel Economy Prediction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss047_gonder_2011_o.pdf More Documents & Publications Light Duty Plug-in Hybrid Vehicle Systems Analysis Defining Real World Drive Cycles to Support APRF Technology Evaluations Analysis of maximizing the Synergy between PHEVs/EVs and PV

  13. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect (OSTI)

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  14. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Energy Savers [EERE]

    Department of Energy 3 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 24-28, 2003 Newport, Rhode Island The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Session 6: Environmentally Concerned Public Sector Organization Panel Session 1: Emerging Diesel Technologies Session 7: Combustion and HCCI Regimes Session 2: Fuels and

  15. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  16. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  17. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  18. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  19. Fuel economy and emissions reduction of HD hybrid truck over transient

    Broader source: Energy.gov (indexed) [DOE]

    driving cycles and interstate roads | Department of Energy Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks PDF icon p-12_gao.pdf More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling

  20. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

    Broader source: Energy.gov [DOE]

    Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of...

  1. Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011

    Broader source: Energy.gov [DOE]

    In addition to a 120% increase in horsepower and 35% decrease in 0-60 time from 1980 to 2011, the fuel economy of vehicles improved nearly 19%. All of these data series are sales-weighted averages...

  2. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a...

  3. Co-Optimization of Fuels and Engines (Optima)

    Broader source: Energy.gov [DOE]

    The Co-Optimization of Fuels and Engines (Optima) initiative seeks to transform the fuels and vehicles that provide mobility for our countrys people, goods, and services. This collaboration between industry stakeholders and the U.S. Department of Energy (DOE) national laboratories builds on decades of advances in both fuels and engines.

  4. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  5. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  6. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Passerini, S.; Kazimi, M. S.; Shwageraus, E.

    2012-07-01

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  7. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  9. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  10. NREL: Transportation Research - Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Co-Optima) Co-Optimization of Fuels and Engines (Co-Optima) Photo of silver sedan in front of silver fuel pump. Co-Optima is simultaneously transforming vehicle fuels and engines to maximize performance and energy efficiency. NREL is collaborating with the U.S. Department of Energy (DOE), eight other national laboratories, and industry on the Co-Optimization of Fuels & Engines (Co-Optima) initiative. This first-of-its-kind effort is focused on combining biofuels and combustion R&D,

  11. Co-Optimization of Fuels & Engines for Tomorrow's Energy-Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization of Fuels & Engines FOR TOMORROW'S ENERGY-EFFICIENT VEHICLES CO-OPTIMIZATION ... made vehicles cleaner and more fuel efficient, transportation still accounts for 70% ...

  12. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories Co-Optimized Fuel-Engine Systems to ...

  13. EERE Seeks Stakeholder Input on the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories Co-Optimized Fuel-Engine Systems to ...

  14. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  15. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  16. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  17. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M.

    2013-07-01

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  18. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect (OSTI)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  19. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  20. Optimization of fossil fuel sources: An exergy approach

    SciTech Connect (OSTI)

    Camdali, U.

    2007-02-15

    We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

  1. Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle

    Broader source: Energy.gov [DOE]

    A 2012 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price,...

  2. Safeguards optimization tool for the advanced fuel cycle facility

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Dixon, Eleanor

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. Advanced safeguards will be based on new world standards for the prevention of nuclear materials proliferation. Safeguarding nuclear facilities includes inventory accountancy, process monitoring, and containment and surveillance. An effort has been undertaken to optimize selection of technology for advanced safeguards accountancy, by way of using the Standard Error in the Inventory Difference (SEID) as a basis for cost/benefit analyses. (authors)

  3. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  4. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.

  5. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  6. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "full power mode," this vehicle only used more efficient stoichiometric fueling, when the engine injects an even mixture of fuel and air during the piston's intake stroke. ...

  7. OPTIMIZATION OF WATER TO FUEL RATIOS IN CLADDED CYLINDER ARRAYS

    SciTech Connect (OSTI)

    Huffer, J

    2007-03-14

    Often in criticality safety problems, the analyst is concerned about two conditions: Loss of Mass Control and Loss of Moderation Control. Determining and modeling the maximum amount of fuel that can fit in a given container is usually trivial. Determining and modeling the maximum amount of water (or other potential moderator) is usually more difficult. Optimization of the pitch has been shown to provide an increase in system reactivity. Both MOX and LEU systems have been shown to be sensitive to moderator intrusion in varying pitched configurations. The analysis will have to determine the effect of optimizing the pitch for each array.

  8. Fuel Injector Holes | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  9. Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles Co-Optimized Fuel-Engine Systems to Transform Our Nation's Vehicles May 4, 2016 - 10:57am Addthis As part of the Co-Optimization of Fuels & Engines initiative, researchers are exploring synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories As part of the Co-Optimization of Fuels & Engines initiative, researchers

  10. Vehicle Technologies Office Merit Review 2015: Fuel Economy Guide and fueleconomy.gov Website

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel...

  11. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    SciTech Connect (OSTI)

    Rada, E.C.; Ragazzi, M.; Fedrizzi, P.

    2013-04-15

    Highlights: ? As an appropriate solution for MSW management in developed and transient countries. ? As an option to increase the efficiency of MSW selective collection. ? As an opportunity to integrate MSW management needs and services inventories. ? As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.

  12. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  13. Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel-efficient model and save money at the pump. | Photo by the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public ...

  14. Fuel from Waste Helps Power Two Tribes | Department of Energy

    Energy Savers [EERE]

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  15. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck ...

  16. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  17. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute

    Broader source: Energy.gov [DOE]

    A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel...

  18. Low cost fuel cell diffusion layer configured for optimized anode water

    Office of Scientific and Technical Information (OSTI)

    management (Patent) | SciTech Connect Patent: Low cost fuel cell diffusion layer configured for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel

  19. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  20. Hybrid Taxis Give Fuel Economy a Lift -Clean Cities Fleet Experiences -

    SciTech Connect (OSTI)

    2009-04-01

    The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids.

  1. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  2. Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

  3. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  4. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect (OSTI)

    Sparks, W.; Singer, M.

    2010-06-01

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  5. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF +

    Broader source: Energy.gov (indexed) [DOE]

    Hydrated-EGRŽ System for Retrofit of In-UseŽ Trucks | Department of Energy Reports on truck fleet emission test results obtained from retrofitting in-useŽ old class-8 trucks with IMETs GreenPower’ DPF-Hydrated-EGR system PDF icon p-24_rim.pdf More Documents & Publications GreenPower Trap Water-Muffler System GreenPowerTM Trap-Muffler System DPF -"Hydrated EGR" Fuel Saver System

  6. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

    SciTech Connect (OSTI)

    West, Brian H.; Lopez, Alberto J.; Theiss, Timothy J.; Graves, Ronald L.; Storey, John M.; Lewis, Samuel A.

    2007-01-01

    Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. This report details the results of these evaluations.

  7. Optimization to reduce fuel consumption in charge depleting mode

    SciTech Connect (OSTI)

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  8. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2014-01-01

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

  9. BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines BETO Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 17, 2015 - 9:48am Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  10. EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines EERE Seeks Stakeholder Input on the Co-Optimization of Fuels and Engines December 18, 2015 - 1:00pm Addthis The U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy's (EERE) Bioenergy Technologies Office (BETO) and Vehicle Technologies Office (VTO) have released a request for information (RFI) titled "Co-Optimization of Fuels and Engines" (Optima). BETO and VTO are

  11. Fuels of the Future: Accelerating the Co-Optimization of Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Store, 58% Store Ownership 127,588 C-stores sell fuel >74,000 are one store companies Source: Nielsen TDLinx; NACS-CSX Fuel, 39.50% Store, 60.50% 2014 Profit Fuels, 69.20% Store,...

  12. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own ...

  14. Co-Optimization of Fuels & Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Co-Optima Program Overview, John Farrell, Laboratory Program Manager, Vehicle Technologies, National Renewable Energy Laboratory Co-Optima: Low Greenhouse Gas Fuels, Blake Simmons, ...

  15. Sandia Energy - Optima: Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stakeholder and consumer value. The initiative will accelerate the widespread deployment of significantly improved fuels and vehicles (passenger to light truck to heavy-duty...

  16. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace021_zhu_2011

  17. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. Design of gasifiers to optimize fuel cell systems

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  19. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect (OSTI)

    Bunting, Bruce G; Eaton, Scott J; Crawford, Robert W

    2009-01-01

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  20. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced

    Broader source: Energy.gov (indexed) [DOE]

    Valvetrain | Department of Energy Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_moore.pdf More Documents & Publications E85 Optimized Engine through Boosting, Spray Optimized GDi, VCR and Variable Valvetrain Flex Fuel Optimized SI and HCCI Engine A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB)

  1. Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2016-04-05

    A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years (MY) 2016 through 2025 passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the needed rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the MY 2004 USmore » light-duty vehicle fleet to the MY 2014 fleet shows improved fuel economy (FE) of approximately 28% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of needed vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY 2005 and MY 2015 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle mass-glider improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with hybrids also examined due to their high potential importance for CAFE compliance. Most hybrid vehicles with significant sales in 2014 were represented in the study. Results show 10 years of progress for the studied vehicle set includes lowered tractive effort of about 5.6% and improved powertrain efficiency of about 16.5%. Further analysis shows that this high rate of past progress must increase by about 50% in order to meet the 2025 CAFE standards. Examination of where certain MY 2015 vehicle compare to CAFE regulations is offered as well as some simple conjecture on what is needed to meet regulations under reasonable assumptions.« less

  2. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy

    Broader source: Energy.gov [DOE]

    A February 2009 study conducted by Oak Ridge National Laboratory found that for modern computer-controlled, fuel-injected engines, changing a clogged air filter has no measurable affect on fuel...

  3. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii...

  5. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    SciTech Connect (OSTI)

    Soewono, C. N.; Takaki, N.

    2012-07-01

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  6. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages

    SciTech Connect (OSTI)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-08-01

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  7. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    SciTech Connect (OSTI)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  8. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect (OSTI)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  9. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Broader source: Energy.gov (indexed) [DOE]

    using Model-Based Transient Calibration | Department of Energy atkinson.pdf More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Next Generation Diesel Engine Control

  10. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  11. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  12. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  13. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  14. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2004 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for

  15. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  16. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect (OSTI)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  17. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  18. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  19. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    SciTech Connect (OSTI)

    Turinsky, Paul; Hays, Ross

    2011-09-02

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

  20. Network design optimization of fuel cell systems and distributed energy devices.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-07-01

    This research explores the thermodynamics, economics, and environmental impacts of innovative, stationary, polygenerative fuel cell systems (FCSs). Each main report section is split into four subsections. The first subsection, 'Potential Greenhouse Gas (GHG) Impact of Stationary FCSs,' quantifies the degree to which GHG emissions can be reduced at a U.S. regional level with the implementation of different FCS designs. The second subsection, 'Optimizing the Design of Combined Heat and Power (CHP) FCSs,' discusses energy network optimization models that evaluate novel strategies for operating CHP FCSs so as to minimize (1) electricity and heating costs for building owners and (2) emissions of the primary GHG - carbon dioxide (CO{sub 2}). The third subsection, 'Optimizing the Design of Combined Cooling, Heating, and Electric Power (CCHP) FCSs,' is similar to the second subsection but is expanded to include capturing FCS heat with absorptive cooling cycles to produce cooling energy. The fourth subsection, - Thermodynamic and Chemical Engineering Models of CCHP FCSs,' discusses the physics and thermodynamic limits of CCHP FCSs.

  1. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    SciTech Connect (OSTI)

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  2. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact 591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by ...

  3. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2009 Cash for Clunkers Program - Fuel Economy Improvement Fact 587: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement The Car Allowance Rebate System ...

  4. International Partnership for Hydrogen and Fuel Cells in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the International Partnership for Hydrogen ...

  5. Energy Economy

    U.S. Energy Information Administration (EIA) Indexed Site

    Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202

  6. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. PDF icon Northeast States' Hydrogen Economy Webinar Slides More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  7. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii Hydrogen Economy" held on July 29, 2014. PDF icon Supporting a Hawaii Hydrogen Economy Webinar Slides More Documents & Publications 2010 Smart Grid Peer Review Day One Morning Presentations 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update Hawaii Hydrogen Energy Park

  8. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport in PEM fuel cells, was given by CFDRC's J. Vernon Cole at a DOE fuel cell meeting in February 2007.

  9. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  10. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

  12. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect (OSTI)

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  14. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  15. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  16. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  17. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and ...

  18. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  19. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... operating and maintenance (O&M) costs, and fuel costs. ... off operation while the wind is calm. Since the objective of the RCRE program is to reduce energy costs along with ...

  20. Optimization of a CNG series hybrid concept vehicle

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

    1995-09-22

    Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

  1. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    vehicle could cut your fuel costs and help the environment. See FuelEconomy.gov's Find a Car tool for more information on buying a new fuel-efficient car or truck. Learn more about...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental Protection Agency estimated average city fuel economy of at least 40 miles per ...

  3. Fuel FX International Inc | Open Energy Information

    Open Energy Info (EERE)

    on development and distribution of proprietary products focused on improving fuel economy and reducing environmental emissions in diesel and gasoline engines. References: Fuel...

  4. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  5. DoE Optimally Controlled Flexible Fuel Powertrain System | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_11_kilmurray.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain Next-generation Ultra-Lean Burn Powertrain E85 Optimized Engine through Boosting, Spray Optimized GDi, VCR and Variable Valvetrain

  6. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  7. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  8. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  9. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  10. Optimization of burners for firing solid fuel and natural gas for boilers with impact pulverizers

    SciTech Connect (OSTI)

    G.T. Levit; V.Ya. Itskovich; A.K. Solov'ev (and others) [ORGRES Company (Russian Federation)

    2003-01-15

    The design of a burner with preliminary mixing of fuel and air for alternate or joint firing of coal and natural gas on a boiler is described. The burner provides steady ignition and economical combustion of coal, low emission of NOx in both operating modes, and possesses an ejecting effect sufficient for operation of pulverizing systems with a shaft mill under pressure. The downward inclination of the burners makes it possible to control the position of the flame in the furnace and the temperature of the superheated steam.

  11. Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System

    SciTech Connect (OSTI)

    James F. McElroy; Darren B. Hickey; Fred Mitlitsky

    2006-09-30

    Single cell solid oxide regenerative fuel cells (SORFCs) have been demonstrated for over 1000 hours of operation at degradation rates as low as 0.5% per thousand hours for current densities as high as 300mA/cm{sup 2}. Efficiency levels (fuel cell power out vs. electrolysis power in) have been demonstrated in excess of 80% at 100mA/cm{sup 2}. All testing has been performed with metallic based interconnects and non-noble metal electrodes in order to limit fabrication costs for commercial considerations. The SORFC cell technology will be scaled up to a 1kW sized stack which will be demonstrated in Year 2 of the program. A self contained SORFC system requires efficient thermal management in order to maintain operating temperatures during exothermic and endothermic operational modes. The use of LiF as a phase change material (PCM) was selected as the optimum thermal storage medium by virtue of its superior thermal energy density by volume. Thermal storage experiments were performed using LiF and a simulated SORFC stack. The thermal storage concept was deemed to be technically viable for larger well insulated systems, although it would not enable a high efficiency thermally self-sufficient SORFC system at the 1 kW level.

  12. Webinar December 1: Northeast States’ Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. EST. The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles in the Northeast United States.

  13. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.  Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application.  Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm).  CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching.  CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer.  Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts.  Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

  14. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect (OSTI)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  15. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  16. Hydrogen & Fuel Cells - Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29% Share of Energy Consumed by Major Sectors of the Economy, 2010 Fuel Cells can apply to diverse sectors 3 Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  18. Fuel Economy Coach | Open Energy Information

    Open Energy Info (EERE)

    driving performance - green means you are doing well, yellow means you are average and red means you are being inefficient. An audible tone will be played by the app when you are...

  19. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Asphalt and road oil consumption, price, and expenditure estimates, 2014 State Asphalt and road oil a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million dollars Alabama 2,484 16.5 15.69 258.6 Alaska 1,859 12.3 16.33 201.4 Arizona 2,454 16.3 14.69 239.1 Arkansas 1,884 12.5 15.29 191.2 California 8,646 57.4 15.97 916.3 Colorado 2,398 15.9 15.57 247.8 Connecticut 1,580 10.5 15.69 164.6 Delaware 424 2.8 15.89 44.7 Dist. of Col. 636 4.2 15.93 67.2 Florida

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions program set standards for passenger cars, light-duty trucks, and medium-duty passenger vehicles. ...

  1. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  2. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  3. NREL: Hydrogen and Fuel Cells Research - Evaluation Results Show Continued

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Evaluation Results Show Continued Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Project Technology Validation: Fuel Cell Electric Vehicle Evaluation Contact Jennifer Kurtz Related Publications FCEV Composite Data Products New composite data products (CDPs) published by NREL's National Fuel Cell Technology Evaluation Center (NFCTEC) show that fuel cell durability has

  4. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  5. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. <a href="/node/385315">Learn more</a> about the growth of America's clean energy economy. | Infographic by Sarah Gerrity, Energy Department. The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. Learn more about the growth of America's clean energy economy. |

  6. Preliminary Simulations for Geometric Optimization of a High-Energy Delayed Gamma Spectrometer for Direct Assay of Pu in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Campbell, Luke W.; Rodriguez, Douglas C.

    2012-06-07

    High-energy, beta-delayed gamma-ray spectroscopy is under investigation as part of the Next Generation Safeguard Initiative effort to develop non-destructive assay instruments for plutonium mass quantification in spent nuclear fuel assemblies. Results obtained to date indicate that individual isotope-specific signatures contained in the delayed gamma-ray spectra can potentially be used to quantify the total fissile content and individual weight fractions of fissile and fertile nuclides present in spent fuel. Adequate assay precision for inventory analysis can be obtained using a neutron generator of sufficient strength and currently available detection technology. In an attempt to optimize the geometric configuration and material composition for a delayed gamma measurement on spent fuel, the current study applies MCNPX, a Monte Carlo radiation transport code, in order to obtain the best signal-to-noise ratio. Results are presented for optimizing the neutron spectrum tailoring material, geometries to maximize thermal or fast fissions from a given neutron source, and detector location to allow an acceptable delayed gamma-ray signal while achieving a reasonable detector lifetime while operating in a high-energy neutron field. This work is supported in part by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  7. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a consumer purchasing a new large car in 2008, the highest combined cityhighway fuel economy available was 25 miles per gallon (mpg); for 2013, the top fuel economy of the ...

  8. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  9. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Vehicle Acquisition Requirements When purchasing new state vehicles, the North Carolina Department of Administration must give purchase preference to vehicles with fuel economy ratings that rank among the top 15% of comparable vehicles in their class. (Reference North Carolina General Statutes 143-341(8)(i)

  11. A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE

    SciTech Connect (OSTI)

    Jorge Navarro

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Trend of transportation and residential energy expenditures from 1970-2010 Last update ... between fuel economy and lifetime fuel consumption for LDVs from 8mpg to 120mpg Last ...

  13. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles have a 27 percent lower fuel economy running on E85. Fortunately, designing flexible fuel vehicles to run specifically on E85 rather than gasoline can help close that gap. ...

  14. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) is establishing a Green Fleets Policy (Policy) outlining a procedure for procuring state vehicles based on criteria that includes fuel economy and life cycle costing. State fleet managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for procuring fuel-efficient vehicles. These plans must reflect a 4% annual increase in

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  18. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  19. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    SciTech Connect (OSTI)

    Rios-Torres, Jackeline; Malikopoulos, Andreas; Pisu, Pierluigi

    2015-01-01

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  20. EERE Success Story-California and Connecticut: National Fuel Cell Bus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs Drive Fuel Economy Higher | Department of Energy Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this

  1. EERE Success Story-Michigan: General Motors Optimizes Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The award allowed General Motors to create the Intake Valve Lift Control technology that enables optimum airflow on demand to maximize fuel economy. When the technology operates in ...

  2. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  3. A DOE EFRC Center 'title' was established at Princeton University and will focus on the science underlying the development of non-petroleum-based fuels, including carbon-neutral biofuels, and their optimal use in transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Education Opportunities at the Combustion Energy Frontier Research Center The Combustion Energy Frontier Research Center (CEFRC) has been established at Princeton University by the U.S. Department of Energy (DOE). This Center focuses on the science underlying the development of non-petroleum-based fuels, including biofuels, and their optimal use in transportation. Fundamental insights in combustion and fuel chemistry ranging from quantum chemistry to turbulence-chemistry

  4. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  5. The Effect of Airborne Contaminants on Fuel Cell Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on PEMFC ...

  6. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Office of Environmental Management (EM)

    ... on light-duty vehicles 21st Century Truck Partnership, an industry partnership to dramatically increase heavy-duty vehicle fuel economy while continuing emissions reduction. ...

  7. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Navistar-Driving efficiency with integrated technology High Fuel Economy Heavy-Duty Truck ...

  8. High Octane Fuels Can Make Better use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with future high compression, downspeeded engine achieves 28.5 mpg. 12 Managed by ... Fuel Economy and GHG * Increased Ethanolbiofuel Utilization * High Performance Vehicles ...

  9. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  10. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by <a href="/node/379579">Sarah Gerrity</a>. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. |

  11. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award ...

  12. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Motor Vehicle Tax Credit NOTE: This incentive originally expired on December 31, 2014, but was retroactively extended through December 31, 2016, by H.R. 2029. A tax credit of up to $8,000 is available for the purchase of qualified light-duty fuel cell vehicles, depending on the vehicle's fuel economy. Tax credits are also available for medium- and heavy-duty fuel cell vehicles; credit amounts are based on vehicle weight. Vehicle manufacturers must follow the procedures as published in

  14. The Non-Petroleum Based Fuel Initiative - NPBF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... can aid the transition to hydrogen & fuel cells Conduct research to aid immediate use ... Impact of fuel properties on combustion and engine optimization. Impact of fuel properties ...

  15. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an ...

  16. Green Economy Toolbox | Open Energy Information

    Open Energy Info (EERE)

    Economy Toolbox Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Economy Toolbox AgencyCompany Organization: United Nations Economic Commission for Europe Sector:...

  17. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  18. Where's the Hydrogen Economy? | Open Energy Information

    Open Energy Info (EERE)

    Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? AgencyCompany Organization: Canada Library of Parliament...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations Box-type trailers that are at least 53 feet long and the heavy-duty tractors that pull these trailers must be equipped with fuel-efficient tires and aerodynamic trailer devices that improve fuel economy and lower greenhouse gas emissions. Tractors and trailers subject to the regulation must either use U.S. Environmental Protection Agency SmartWay certified tractors and trailers or retrofit existing equipment with SmartWay verified

  20. Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report

    Broader source: Energy.gov [DOE]

    The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  1. Webinar: Northeast States’ Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST).

  2. Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Blocks for a Hydrogen Economy 1. Policies & Plans 2. Resources 3. Political Will ... Need to make a compelling case Political Will This is a key for early demonstration ...

  3. Impact of Policy on Fuels RD&D (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-12-01

    This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

  4. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create ...

  5. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  6. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    In Electric Vehicle (PEV) Annual Fee PEV owners are required to pay an annual license fee of $200 for non-commercial PEVs and $300 for commercial PEVs. The Georgia Department of Revenue may adjust fees annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. (Reference Georgia Code 40-2-15

  8. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Blanc, Pauline; Tobin, Stephen J; Croft, Stephen; Menlove, Howard O; Swinhoe, M; Lee, T

    2010-12-02

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to {sup 235}U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a {approx}14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of {sup 3}He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in {sup 238}U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of a single practical instrument. Both DN and PN detections are active techniques using the signal from the most prominent fissile isotopes of spent nuclear fuel that respond the best to a slow neutron interrogation, {sup 235}U, {sup 239}U and {sup 241}PU. The performance is characterized against a library of 64 assemblies and 40 diversion scenarios at different burnup (BU), cooling-time (CT) and initial enrichment (IE) in fresh water.

  9. NREL: Technology Deployment - Fuels, Vehicles, and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Fuels, Vehicles, and Transportation Deployment Photo of a hand holding a Blackberry phone with the Alternative Fueling Station Locator on the screen. A ChargePoint electric vehicle charging station is in the background. NREL works with vehicle fleets, fuel providers, policymakers, and other transportation stakeholders to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce U.S. reliance on petroleum-based

  10. International Partnership for a Hydrogen Economy

    Broader source: Energy.gov [DOE]

    "Presentation summarizing the vision, mission, goals and plans for DOE's International Partnership for a Hydrogen Economy "

  11. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  12. Annual Report FY2014 Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjoberg, Carl-Magnus G.

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  13. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    SciTech Connect (OSTI)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  14. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  15. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy May 6, 2016 <div class="field field-name-field-map-byline field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item odd">This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from

  16. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Fuel Cell Electric Vehicles Show Continued Improvements in Durability, Fuel Economy, Driving Range Image of chart that shows a comparison of fuel cell operation hours and durability for four time periods. The maximum fleet operation time to 10% voltage degradation, 4,130 hours, has increased 129% since 2006-2007. Read more Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Image

  17. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  19. FY2013 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  20. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    system-efficiency Go Generated_thumb20140708-12454-1nsa79k U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) Generated_thumb20140708-12454-1nsa79k Trend of per capita VMT and fuel use in U.S. light-duty vehicles from 1970-2012 Last update July 2014 View Graph Graph Download Data Generated_thumb20141209-960-hxf1gg Clean Cities Petroleum Savings by Fuel Economy and VMT Reductions Generated_thumb20141209-960-hxf1gg Trend of displacement by fuel economy improvement and VMT reduction

  1. Careers in Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications. PDF icon Careers in Fuel Cell Technologies More Documents & Publications Education and Outreach Fact Sheet Effects Of a Transition to a Hydrogen Economy on Employment in the United States: Report to Congress Hydrogen and Fuel Cell Technologies Overview

  2. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  3. Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption

    Broader source: Energy.gov [DOE]

    Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps

  4. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  5. Azerbaijan-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Azerbaijan-UNEP Green Economy Advisory Services Jump to: navigation, search Logo: Azerbaijan-UNEP Green Economy Advisory Services Name Azerbaijan-UNEP Green Economy Advisory...

  6. China-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    UNEP Green Economy Advisory Services Jump to: navigation, search Logo: China-UNEP Green Economy Advisory Services Name China-UNEP Green Economy Advisory Services AgencyCompany...

  7. Constructing a Cleaner Economy Info Graphic

    Broader source: Energy.gov [DOE]

    An overview of the impact that the clean energy economy is having on the U.S. construction industry.

  8. New Vehicle Initiative Aims to Make Fuel and Engines Work Together...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... synergies among new bio-based fuels, engines, powertrains, and fueling infrastructure. Image by Loren Stacks, Sandia National Laboratories Co-Optimized Fuel-Engine Systems to ...

  9. Transport Studies Enabling Efficiency Optimization of Cost-Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport ... More Documents & Publications Durability of Low Pt Fuel Cells Operating at High Power ...

  10. NREL: Transportation Research - Fuels Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Performance Photo of a man working with laboratory equipment. NREL fuel performance chemists evaluate a broad range of performance criteria, including storage stability. Photo by Dennis Schroeder, NREL NREL's applied fuels performance research takes a whole-vehicle-systems approach, examining not just co-optimization of low-carbon fuels and internal combustion engines, but also fuel production, infrastructure, handling, combustion, and emissions. Putting more energy-efficient vehicles on

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Technology Vehicle (ATV) Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, ATV and ATV components manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the United States used to produce qualified ATVs or ATV components. Qualified ATVs are light-duty or ultra-efficient vehicles that meet specified federal emission standards and fuel economy requirements.

  12. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    SciTech Connect (OSTI)

    Mays, Gary T; Belles, Randy; Cetiner, Sacit M; Howard, Rob L; Liu, Cheng; Mueller, Don; Omitaomu, Olufemi A; Peterson, Steven K; Scaglione, John M

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  13. EERE National Lab Transportation and Fuels Initiatives and Capabilitie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Sector - Major Initiatives and Consortia * Co-Optima - Co-Optimization of ... highly durable electrocatalysts for fuel cells- driving down the cost of fuel cell ...

  14. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. <a href="/articles/road-fuel-efficiency">Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save

  15. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  16. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  17. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guidemanual User Interface: Website Website:...

  18. Natural Gas Pathways and Fuel Economy Guide Comparison

    Broader source: Energy.gov [DOE]

    Presentation by Bob Wimmer, Toyota, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  19. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 The Energy Efficiency Potential of Global ...

  20. Fuel economy and emissions reduction of HD hybrid truck over...

    Broader source: Energy.gov (indexed) [DOE]

    Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis

  1. SEP Success Story: Fueling South Carolina's Clean Energy Economy |

    Energy Savers [EERE]

    and Energy of Sunshine | Department of Energy Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine SEP Success Story: Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine August 2, 2012 - 9:25am Addthis With new pipes and controls, the natural gas kilns Highland Craftsmen uses to produce poplar bark shingles will operate about 40 percent more efficiently, saving the company $5,000 a year in energy costs. | Photo courtesy of Highland

  2. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation SAE Standards Development Advanced Technology Vehicle Lab Benchmarking - Level 1

  3. Comparison of Different Load Road Implementation Strategies on Fuel Economy

    Broader source: Energy.gov (indexed) [DOE]

    of USPS Step Vans | Department of Energy An alternative form of measuring road loads, instead of using a chassis dynamometer and a method described in 40 CFR section 86.1229-85, was conducted on on-road coastdowns, and regression analysis was used to determine the characteristics of the two U.S. Postal Service step vans, one of which was a hybrid model PDF icon deer09_carder.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) AVTA:

  4. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to...

  5. FY 2012 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    Stork, Kevin

    2013-06-28

    Annual progress report of the Fuel & Lubricant Technologies subprogram supporting fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  6. EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy in Light-Duty Diesel Engines | Department of Energy Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February 26, 2015 - 11:47am Addthis Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a recent

  7. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  8. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  9. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  10. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  11. Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy, Prepare for Advanced Vehicles | Department of Energy Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local

  12. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on ...

  13. NREL: Learning - Advanced Vehicles and Fuels Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Vehicles and Fuels Basics We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger

  14. Engines and Fuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines and Fuels Engines and Fuels Argonne's Engines and Fuels research focuses on understanding the interactions between fuels and engines in order to maximize the benefits available through optimization as well as to enable multi-fuel capability. Argonne researchers apply their expertise in the areas of combustion chemistry, fuel spray characterization, combustion system design, controls, and in-cylinder sensing as well as emissions control. A team of experts spanning a range of disciplines

  15. Alternative Fuels Data Center: Vehicle Maintenance to Conserve...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tuning a neglected vehicle or fixing one that failed an emissions test can increase fuel economy by 4%, based on the repair type and quality. Repairing a serious problem, such as a ...

  16. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences ...

  17. EERE Success Story-California and Connecticut: National Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. ... buses is 1.8 times higher than conventional diesel buses (4 mpg) and 2.4 times ...

  18. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy. Learn more in the 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles blog...

  19. Design Optimization of Piezoceramic Multilayer Actuators for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors Vehicle Technologies Office Merit Review 2014: ...

  20. Design Optimization of Piezoceramic Multilayer Actuators for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm001lin2011o.pdf More Documents & Publications Design Optimization of ...

  1. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?

    Broader source: Energy.gov [DOE]

    According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

  2. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  3. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  4. Fuel Cell R&D Pre-Solicitiation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Pre-Solicitiation Workshop Fuel Cell R&D Pre-Solicitiation Workshop Presentation on upcoming fuel cell solicitation presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. PDF icon pre_sol_wrkshp_valri.pdf More Documents & Publications Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy US DRIVE Fuel Cell Technical Team Roadmap PEM Fuel Cell

  5. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. PDF icon 2010_fuels_technologies.pdf More Documents & Publications Vehicle

  6. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  7. Demonstrating Fuel Consumption and Emissions Reductions with...

    Broader source: Energy.gov (indexed) [DOE]

    Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating ...

  8. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshop Manufacturing R&D for the Hydrogen Economy Roadmap Workshop Agenda for the 2005 Manufactuirng R&D for the Hydrogen Economy Roadmap Workshop PDF icon ...

  9. Hunan Yongzhou Hengli Economy Trade Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Yongzhou Hengli Economy Trade Investment Co Ltd Jump to: navigation, search Name: Hunan Yongzhou Hengli Economy&Trade Investment Co.,Ltd Place: Yongzhou, Hunan Province, China Zip:...

  10. Promoting a Green Economy through Clean Transportation Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives EV Community ...

  11. China and a Sustainable Future: Towards a Low Carbon Economy...

    Open Energy Info (EERE)

    Carbon Economy and Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China and a Sustainable Future: Towards a Low Carbon Economy and Society AgencyCompany...

  12. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  13. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  14. Ohio Business Council for a Clean Energy Economy | Open Energy...

    Open Energy Info (EERE)

    Business Council for a Clean Energy Economy Jump to: navigation, search Name: Ohio Business Council for a Clean Energy Economy Place: Ohio Website: www.ohiocleaneconomy.biz...

  15. 2016 American Council for an Energy-Efficient Economy (ACEEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency Finance Forum 2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency ...

  16. Promoting a Green Economy through Clean Transportation Alternatives...

    Broader source: Energy.gov (indexed) [DOE]

    Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy, From ...

  17. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  18. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  19. Checklist for transition to new highway fuel(s).

    SciTech Connect (OSTI)

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  20. Tribes and the New Energy Economy Conference

    Broader source: Energy.gov [DOE]

    Hosted by the COTA Holdings, this two-day conference brings tribes, government, and industry together to discuss the new energy economy. Attendees will hear speakers from the U.S. Department of...

  1. Webinar: Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption and Discount New Jersey Turnpike Authority (Authority) allows qualified hybrid electric vehicles to travel in the HOV lanes located between Interchange 11 and Interchange 14 on the New Jersey Turnpike. The Authority offers a 10% discount on off-peak New Jersey Turnpike and Garden State Parkway toll rates through NJ EZ-Pass for drivers of vehicles that have a fuel economy of 45 miles per gallon or higher and meet the California Super Ultra Low Emission

  3. E85 Optimized Engine | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2_agarwal.pdf More Documents & Publications Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine

  4. Develop Improved Materials to Support the Hydrogen Economy

    SciTech Connect (OSTI)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  5. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    SciTech Connect (OSTI)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  6. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  7. Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"

    SciTech Connect (OSTI)

    Rolf Reitz; P. Farrell; D. Foster; J. Ghandhi; C. Rutland; S. Sanders

    2009-07-31

    The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated.

  8. Series hybrid vehicles and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.; Van Blarigan, P.

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  9. Framework for the International Partnership for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy PDF icon iphe_framework_final.pdf More Documents & Publications International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet Terms of Reference for the International Partnership for the Hydrogen

  10. Durability of Low Pt Fuel Cells Operating at High Power Density...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Advanced Cathode Catalysts and Supports for PEM Fuel Cells ...

  11. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  12. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  13. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  14. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  15. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  16. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  17. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Progress Report | Department of Energy Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. PDF icon

  18. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  19. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  20. Distributed optimization system and method

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  1. The Booming App Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Booming App Economy The Booming App Economy March 30, 2012 - 11:35am Addthis Apps for Energy offers $100,000 in cash prizes to the developers with the best energy-focused apps. Design by Hantz Leger. Apps for Energy offers $100,000 in cash prizes to the developers with the best energy-focused apps. Design by Hantz Leger. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department taps into the creativity and

  2. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  3. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Except for two-seater cars, these vehicle classes all contain hybrid models which greatly extend the range of their respective classes. Consumers interested in purchasing a vehicle ...

  4. Analysis of Corporate Average Fuel Economy (CAFE) Standards for Light Trucks and Increased Alternative Fuel Use

    Reports and Publications (EIA)

    2002-01-01

    Sen. Frank Murkowski, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources requested an analysis of selected portions of Senate Bill 1766 (S. 1766, the Energy Policy Act of 2002), House Resolution 4 (the Securing America's Future Energy Act of 2001) and Senate Bill 517 (S. 517, the Energy Policy Act of 2002). In response, the Energy Information Administration (EIA) has prepared a series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  5. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  6. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  7. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  8. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  9. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  11. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  12. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  13. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  14. fuel cells | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fuel cells

  15. IPHE Hydrogen and Fuel Cell Student Symposium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Hydrogen and Fuel Cell Student Symposium IPHE Hydrogen and Fuel Cell Student Symposium May 17, 2016 1:00PM to 5:00PM PDT A Hydrogen and Fuel Cell Student Symposium for California graduate students is being held on May 17 in Berkeley, California, as part of the annual meeting of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE). Dignitaries from around the world will gather to discuss the latest advances in fuel cell and hydrogen technologies, commercialization

  16. EERE Success Story-University of Wisconsin-Madison Improves Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By combining a number of different strategies, the university team showed a potential for a 50% increase in fuel economy for cars and a 20% increase for trucks without the need for ...

  17. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  18. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  19. A National Vision of America's Transition to a Hydrogen Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary ...

  20. Smart Grid: Enabler of the New Energy Economy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Enabler of the New Energy Economy Smart Grid: Enabler of the New Energy Economy The purpose of the Report is to address barriers and opportunities to deploying Smart Grid ...

  1. Use of DRACS to Enhance HTGRs Passive Safety and Economy

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou

    2011-06-01

    This paper discusses the use of DRACS to Enhance HTGRs Passive Safety and Economy. One of the important requirements for Gen. IV High Temperature Gas Cooled Reactors (HTGR) is passive safety. Currently all the HTGR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. [1] The decay heat first is transferred to core barrel by conduction and radiation, and then to reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. Similar concepts have been widely used in sodium cooled fast reactor (SFR) designs, advanced light water reactors like AP1000. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area. RVACS tends to be less expensive. However, it limits the largest achievable power level for modular HTGRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface). When the relative decay heat removal capability is reduced, the peak fuel temperature increases, even close to the design limit. Annual designs with internal reflector can mitigate this effect therefore further increase the power. Another way to increase power is to increase power density. However, it is also limited by the decay heat removal capability. Besides safety, HTGRs also need to be economical in order to compete with other reactor designs. The limit of decay heat removal capability set by using RVACS has affected the economy of HTGRs. Forsberg [2] pointed out other disadvantages of using RVACS such as conflicting functional requirements for the reactor vessel and scaling distortion for integral effect test of the system performance. A potential alternative solution is to use a volume based passive decay removal system, call Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS has been widely used in SFR designs and in liquid salt cooled high temperature reactors. The containment cooling system in BWR is another example of volume based decay removal systems. DRACS composes of natural circulation loops with two sets of heat exchangers, one in reactor side and another is in environment side. DRACS has the benefits of increasing the power as needed (scalability) and modularity. This paper introduces the concept of using DRACS to enhance HTGRs passive safety and economy.

  2. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  3. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  4. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  5. South Africa-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Peru, Philippines, Russian Federation, Rwanda, Senegal, Serbia, South Africa and Ukraine." References "UNEP Green Economy Advisory Services" Retrieved from "http:...

  6. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Distillation Curve Method | Department of Energy Supercritical transesterification processing permits efficient fuel system and combustion chamber designs to optimize fuel utilization in diesel engines., PDF icon p-01_anitescu.pdf More Documents & Publications Preparation, Injection and Combustion of Supercritical Fluids Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection Algae Biofuels Technology

  7. EERE Success Story-Tennessee: Oak Ridge National Laboratory Optimizes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further optimization of these processes has the potential to result in carbon fibers with ... and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  8. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, and Emissions Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  9. Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Further optimization of these processes has the potential to result in carbon fibers with ... and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  10. Protecting Public Health through Cleaner Fuels and Lower Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    through Cleaner Fuels and Lower Emissions." Mr. Sarkar will speak on DOE's Co-Optimization of Fuels and Engines (Optima) program; this multi-year initiative aims to reduce...

  11. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  12. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect (OSTI)

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  13. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  14. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  15. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  16. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Turbulent combustion simulations, which provide input to the design of more fuel-efficient combustion systems, have gotten their own efficiency boost, thanks to researchers from the Computational Research Division (CRD) at Lawrence Berkeley National

  17. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    SciTech Connect (OSTI)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the employment impacts of a hydrogen transformation on international competitiveness are investigated and reported.

  19. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  20. The Effect of Airborne Contaminants on Fuel Cell Performance & Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Effect of Airborne Contaminants on Fuel Cell Performance & Durability The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon rocheleau_uhawaii_kickoff.pdf More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on

  1. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page1 Hierarchy of Various Models Used for Hydrogen and Fuel Cell Analyses Analysis Models and Tools Systems Analysis of Hydrogen & Fuel Cells With a multitude of end-uses-such as distributed power for back-up, primary, and combined heat-and- power systems; automobiles, buses, forklifts and other specialty vehicles; and auxiliary power units and portable electronics-fuel cell applications hold potential to dramatically impact the 21st century clean energy economy. Fuel cells can efficiently

  2. Visualization of Fuel Cell Water Transport and Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Fundamental Issues in Subzero PEMFC Startup and Operation Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization

  3. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop

  4. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  5. Economy Through Product Diversity: Integrated Biorefineries

    Office of Environmental Management (EM)

    a range of products to optimize use of the feedstock and improve process economics. ... biobased co-products and power production can improve the economics of the facility. ...

  6. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect (OSTI)

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  7. Debt Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPR 2008 Capital Investment Review CIR 2012 Quarterly Business Review Focus 2028 2011 Strategic Capital Discussions Access to Capital Debt Optimization Asset Management Cost...

  8. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to the most effient use of NERSC HPSS: File sizes of about 1 GB or larger will give the best network performance (see graph below) Files sizes greater than about 500 GB can be more difficult to work with and lead to longer transfer times. Files larger than 15 TB cannot be uploaded to HPSS. Aggregate groups of small files

  9. Lowering On-Road Fuel Use: A Component Approach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowering On-Road Fuel Use: A Component Approach Alan Meier Lawrence Berkeley National Laboratory akmeier@lbl.gov What is the Component Approach? zAddresses two aspects: ‹"Off-test" energy use ‹Energy impacts of aftermarket and replacement products Some Aspects of a Car's Fuel Consumption are Not Captured in Tests z Dynamometer tests Fuel Consumption Not and adjustments Fully Captured in Fuel cannot simulate all Economy Test aspects of on-road performance z Actual consumption depends

  10. Balanced pressure gerotor fuel pump

    DOE Patents [OSTI]

    Raney, Michael Raymond; Maier, Eugen

    2004-08-03

    A gerotor pump for pressurizing gasoline fuel is capable of developing pressures up to 2.0 MPa with good mechanical and volumetric efficiency and satisfying the durability requirements for an automotive fuel pump. The pump has been designed with optimized clearances and by including features that promote the formation of lubricating films of pressurized fuel. Features of the improved pump include the use of a shadow port in the side plate opposite the outlet port to promote balancing of high fuel pressures on the opposite sides of the rotors. Inner and outer rotors have predetermined side clearances with the clearances of the outer rotor being greater than those of the inner rotor in order to promote fuel pressure balance on the sides of the outer rotor. Support of the inner rotor and a drive shaft on a single bushing with bearing sleeves maintains concentricity. Additional features are disclosed.

  11. OPTIMA: Low Greenhouse Gas Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OPTIMA: Low Greenhouse Gas Fuels OPTIMA: Low Greenhouse Gas Fuels Plenary IV: Fuels of the Future: Accelerating the Co-Optimization of Fuels and Engines OPTIMA: Low Greenhouse Gas Fuels Blake Simmons, Biofuels Program Lead, Sandia National Laboratories PDF icon simmons_bioenergy_2015.pdf More Documents & Publications Co-Optima Stakeholder Listening Day Summary Report Optima Stakeholder Listening Day Agenda Optima Program Overview

  12. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy A Vehicle Manufacturer's Perspective on Higher-Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company PDF icon leone_biomass_2014.pdf More Documents & Publications Co-Optimization of Fuels and Vehicles A

  13. High Efficiency Fuel Reactivity Controlled Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An optimized dual-fuel PCCI concept, RCCI, is proposed. PDF icon deer10reitz.pdf More Documents & Publications Effect of Compression Ratio and Piston Geometry on RCCI load limit ...

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  15. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  16. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  17. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    driving-behavior Go Generated_thumb20130810-31804-1jtc9qa Fuel Economy at Various Driving Speeds Generated_thumb20130810-31804-1jtc9qa Trend of fuel efficiency at different speeds, grouped by vehicle age Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-pe0nga Average Vehicle Trip Length by Purpose Generated_thumb20130810-31804-pe0nga Average trip length and distribution by trip type in U.S., 2009 Last update May 2012 View Graph Graph Download Data

  19. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    526 vehicles Search small New Search | Download | Print Spinner Filter by: Fuel/Technology: All | Class/Type: All | Manufacturer: All View: Matrix List Your search returned no results. You can modify your search using the filters on the right or start a new search. Acura RLX Hybrid (2016) 2016 acura rlx Hybrid Electric Sedan/Wagon Fuel Economy: 28 mpg city / 32 mpg hwy Emission Certification: LEV III SULEV30, Tier 2 Bin 3 Engine: 3.5L V6 Transmission: Auto Find a Dealer Audi A3 Sportback e-tron

  20. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less