Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

L3 Milestone Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L3 Milestone L3 Milestone Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding June 2012 Wei Zhang and Zhili Feng, ORNL Eric Willis, EPRI Background and Objectives Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be further developed to meet new challenges associated with the aging of the plants, such as control and mitigation of the detrimental effects of weld residual stresses and repair of highly irradiated materials. To meet this goal, fundamental understanding of the "welding" effect is necessary for development of new and improved welding technologies.

2

Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding  

Energy.gov (U.S. Department of Energy (DOE))

Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld...

3

Alloy 740 Weld Strength Optimization  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, Alloy 740 Weld ...

4

Novel Optimization Methodology for Welding Process/Consumable Integration  

Science Conference Proceedings (OSTI)

Advanced materials are being developed to improve the energy efficiency of many industries of future including steel, mining, and chemical, as well as, US infrastructures including bridges, pipelines and buildings. Effective deployment of these materials is highly dependent upon the development of arc welding technology. Traditional welding technology development is slow and often involves expensive and time-consuming trial and error experimentation. The reason for this is the lack of useful predictive tools that enable welding technology development to keep pace with the deployment of new materials in various industrial sectors. Literature reviews showed two kinds of modeling activities. Academic and national laboratory efforts focus on developing integrated weld process models by employing the detailed scientific methodologies. However, these models are cumbersome and not easy to use. Therefore, these scientific models have limited application in real-world industrial conditions. On the other hand, industrial users have relied on simple predictive models based on analytical and empirical equations to drive their product development. The scopes of these simple models are limited. In this research, attempts were made to bridge this gap and provide the industry with a computational tool that combines the advantages of both approaches. This research resulted in the development of predictive tools which facilitate the development of optimized welding processes and consumables. The work demonstrated that it is possible to develop hybrid integrated models for relating the weld metal composition and process parameters to the performance of welds. In addition, these tools can be deployed for industrial users through user friendly graphical interface. In principle, the welding industry users can use these modular tools to guide their welding process parameter and consumable composition selection. It is hypothesized that by expanding these tools throughout welding industry, substantial energy savings can be made. Savings are expected to be even greater in the case of new steels, which will require extensive mapping over large experimental ranges of parameters such as voltage, current, speed, heat input and pre-heat.

Quintana, Marie A; DebRoy, Tarasankar; Vitek, John; Babu, Suresh

2006-01-15T23:59:59.000Z

5

Optimization of different welding processes using statistical and numerical approaches - A reference guide  

Science Conference Proceedings (OSTI)

Welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld-bead geometry, mechanical properties, and distortion. Generally, all welding processes ... Keywords: Ann, Optimization, Quality of weld, RSM, Taguchi, Welding

K. Y. Benyounis; A. G. Olabi

2008-06-01T23:59:59.000Z

6

An integrated model for optimizing weld quality  

SciTech Connect

Welding has evolved in the last few decades from almost an empirical art to an activity embodying the most advanced tools of, various basic and applied sciences. Significant progress has been made in understanding the welding process and welded materials. The improved knowledge base has been useful in automation and process control. In view of the large number of variables involved, creating an adequately large database to understand and control the welding process is expensive and time consuming, if not impractical. A recourse is to simulate welding processes through a set of mathematical equations representing the essential physical processes of welding. Results obtained from the phenomenological models depend crucially on the quality of the physical relations in the models and the trustworthiness of input data. In this paper, recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State of the art mathematical models, advances in computational techniques, emerging high performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. Current status and scientific issues in heat and fluid flow in welds, heat source metal interaction, and solidification microstructure are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

Zacharia, T.; Radhakrishnan, B. [Oak Ridge National Lab., TN (United States); Paul, A.J.; Cheng, C. [Concurrent Technologies Corp., Johnstown, PA (United States)

1995-06-01T23:59:59.000Z

7

Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization  

Science Conference Proceedings (OSTI)

Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

2012-07-15T23:59:59.000Z

8

Multi-mode ultrasonic welding control and optimization  

DOE Patents (OSTI)

A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

Tang, Jason C.H.; Cai, Wayne W

2013-05-28T23:59:59.000Z

9

Welding  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Return to RoboCrane Home. RoboCrane. Welding Application. (click on the photo to enlarge the image). ...

2011-08-10T23:59:59.000Z

10

Optimization of Air Conditioning Cycling.  

E-Print Network (OSTI)

??Systems based on the vapor compression cycle are the most widely used in a variety of air conditioning applications. Despite the vast growth of modern… (more)

Seshadri, Swarooph

2012-01-01T23:59:59.000Z

11

Improvement of Mechanical Property in Weld Metal Formed with F ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

12

The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process  

Science Conference Proceedings (OSTI)

The objective of this paper is to present an integrated approach using the Taguchi method (TM), grey relational analysis (GRA) and a neural network (NN) to optimize the weld bead geometry in a novel gas metal arc (GMA) welding process. The TM is first ... Keywords: Gas metal arc welding, Grey relational analysis, Neural networks, Taguchi method

Hsuan-Liang Lin

2012-10-01T23:59:59.000Z

13

Necessary optimality condition for Nonsmooth Switching Control ...  

E-Print Network (OSTI)

Jun 7, 2007 ... Abstract: This paper is concerned with a class optimal switching nonsmoth optimal control problem is considered. Both the switching instants ...

14

Optimality Conditions for Bilevel Programming Problem in Asplund Spaces  

E-Print Network (OSTI)

Here, necessary optimal condition for Optimistic Bilevel programming problem is obtained in Asplund spaces. Also we have got necessary optimal conditions in finite dimensional spaces, by assuming differentiability on the given functions.

Pattanaik, Suvendu

2011-01-01T23:59:59.000Z

15

Derivation of Forces Acting on the Liquid Weld Metal Based on Arc ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

16

Parametric Optimization of Unequal Thickness Stainless Steel ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

17

First and second order optimality conditions for optimal control ...  

E-Print Network (OSTI)

May 16, 2012 ... Abstract: This paper deals with optimal control problems of integral equations, with initial-final and running state constraints. The order of a ...

18

Distributed rate allocation for inelastic flows: Optimization frameworks, optimality conditions, and optimal algorithms  

E-Print Network (OSTI)

Abstract—A common assumption behind the recent surge in research activities on network utility maximization is that the traffic flows are elastic, which implies that the utility functions are concave and there are no hard limits on the rate allocated to each flow. These critical assumptions lead to the tractability of the analytic models of utility maximization, but also limits the applicability of the resulting rate allocation protocols. This paper focuses on inelastic flows and removes these restrictive and often invalid assumptions. We present several optimization frameworks, optimality conditions, and optimal algorithms. First we consider nonconcave utility functions, which turn utility maximization into nonconvex, constrained optimization problems that are well-known to be extremely difficult. We first show a surprising result that under certain conditions, the standard pricing algorithm for rate allocation will still converge to the globally optimal rate allocation. When the existing distributed algorithm fails, we present a new algorithm that produces the globally optimal rate allocation, with the worst case complexity being polynomial time in the number of users but exponential time in the number of links. In the second part of the paper, we provide a general problem formulation of rate allocation among time-sensitive flows from real-time and streaming applications, as well as a decomposition into subproblems coordinated by pricing. After simplifying the subproblems by leveraging the optimization structures, we highlight the difficult issues of causality and time-scale, and propose an effective pricing-based heuristics for admission control and an optimal algorithm for a special case formulation.

Mung Chiang; Shengyu Zhang; Prashanth H

2005-01-01T23:59:59.000Z

19

Determination and Optimization Best Condition for Bioleaching of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination and Optimization Best Condition for Bioleaching of Sulfide Low Grade Copper Ore by Using DOE(Design of Experimental) ...

20

Neural network modeling of pulsed-laser weld pool shapes in aluminum alloy welds  

SciTech Connect

A model was developed to predict the weld pool shape in pulsed Nd:YAG laser welds of aluminum alloy 5754. The model utilized neural network analysis to relate the weld process conditions to four pool shape parameters: penetration, width, width at half-penetration, and cross-sectional area. The model development involved the identification of the input (process) variables, the desired output (shape) variables, and the optimal neural network architecture. The latter was influenced by the number of defined inputs and outputs as well as the amount of data that was available for training the network. After appropriate training, the best network was identified and was used to predict the weld shape. A routine to convert the shape parameters into predicted weld profiles was also developed. This routine was based on the actual experimental weld profiles and did not impose an artificial analytical function to describe the weld profile. The neural network model was tested on experimental welds. The model predictions were excellent. It was found that the predicted shapes were within the experimental variations that were found along the length of the welds (due to the pulsed nature of the weld power) and the reproducibility of welds made under nominally identical conditions.

Vitek, J.M.; Iskander, Y.S.; Oblow, E.M.; Babu, S.S.; David, S.A. [Oak Ridge National Lab., TN (United States); Fuerschbach, P.W. [Sandia National Labs., Albuquerque, NM (United States); Smartt, H.B.; Pace, D.P. Tolle, C.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Variables optimization of building air conditioning system  

Science Conference Proceedings (OSTI)

A heating and climatizer system based on selective absorption of solar energy by a selective collector. The experimental study shows that the performance of this system depends on several variables: the nature of the colporteur fluid, the flow of the ... Keywords: heating and climatisation, modelation and optimization, solar energy

Marius-Constantin Popescu; Cornelia Aida Bulucea; Gheorghe Manolea; Cristian Vladu

2009-10-01T23:59:59.000Z

22

Necessary and Sufficient Conditions for Optimal Offers in Electricity Markets  

Science Conference Proceedings (OSTI)

In this paper, we consider the optimal policy for a generator offering power into a wholesale electricity market operating under a pool arrangement. Anderson and Philpott [Math. Oper. Res., 27 (2002), pp. 82--100] recently discussed necessary ... Keywords: electricity markets, necessary conditions, optimal offer, sufficient conditions

Edward J. Anderson; Huifu Xu

2002-04-01T23:59:59.000Z

23

Elementary optimality conditions for nonlinear SDPs  

E-Print Network (OSTI)

Dec 6, 2010 ... Below, we will work with Lagrange multipliers being symmetric as well, thus .... The last two lines of (15) coincide with Slater's condition for (3). The modified ..... order conditions makes it difficult to live up to this goal. We have ...

24

On the Microstructural Optimization of a New Polycrystalline ...  

Science Conference Proceedings (OSTI)

... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

25

Energy Capture with Optimized Photovoltaic Cells under Low Lighting Conditions  

Science Conference Proceedings (OSTI)

The optimization of photovoltaic devices for versatile conditions is necessary to improve the energy capture for indoor applications, such as self sufficient sensors. However, the design rules of standard outdoor solar cells are not applicable for cells ... Keywords: energy harvesting, indoor photovoltaics, low lighting conditions, photovoltaic cells

Karola Ruhle, Leonhard M. Reindl, Martin Kasemann

2012-11-01T23:59:59.000Z

26

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

DOE Green Energy (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

27

Nondestructive Evaluation Improvement Focus Group Extent of Condition Actions in Response to North Anna Dissimilar Metal Weld Operating Experience  

Science Conference Proceedings (OSTI)

The Nondestructive Evaluation (NDE) Improvement Focus Group (NIFG) was formed to address NDE improvement and extent of condition actions in response to North Anna dissimilar metal weld operating experience. The operating experience occurred early in 2012 and involved the missed detection of significant flaws during ultrasonic examinations performed according to the ASME Boiler and Pressure Vessel Code, Section XI, Appendix VIII, Supplement 10. As appropriate, the NIFG products are to be ...

2013-02-15T23:59:59.000Z

28

Simulation and Optimization of Wind Farm Operations under Stochastic Conditions  

E-Print Network (OSTI)

This dissertation develops a new methodology and associated solution tools to achieve optimal operations and maintenance strategies for wind turbines, helping reduce operational costs and enhance the marketability of wind generation. The integrated framework proposed includes two optimization models for enabling decision support capability, and one discrete event-based simulation model that characterizes the dynamic operations of wind power systems. The problems in the optimization models are formulated as a partially observed Markov decision process to determine an optimal action based on a wind turbine's health status and the stochastic weather conditions. The rst optimization model uses homogeneous parameters with an assumption of stationary weather characteristics over the decision horizon. We derive a set of closed-form expressions for the optimal policy and explore the policy's monotonicity. The second model allows time-varying weather conditions and other practical aspects. Consequently, the resulting strategy are season-dependent. The model is solved using a backward dynamic programming method. The bene ts of the optimal policy are highlighted via a case study that is based upon eld data from the literature and industry. We nd that the optimal policy provides options for cost-e ective actions, because it can be adapted to a variety of operating conditions. Our discrete event-based simulation model incorporates critical components, such as a wind turbine degradation model, power generation model, wind speed model, and maintenance model. We provide practical insights gained by examining di erent maintenance strategies. To the best of our knowledge, our simulation model is the rst discrete-event simulation model for wind farm operations. Last, we present the integration framework, which incorporates the optimization results in the simulation model. Preliminary results reveal that the integrated model has the potential to provide practical guidelines that can reduce the operation costs as well as enhance the marketability of wind energy.

Byon, Eunshin

2010-05-01T23:59:59.000Z

29

J18: Optimization and Characterization of Cu-Mn-Ni-P Alloys ...  

Science Conference Proceedings (OSTI)

... and Welding Conditions of Monopile and Transition for Offshore Wind Plant ... Optimization of a New Polycrystalline Superalloy for Industrial Gas Turbines.

30

Vehicle Transient Air Conditioning Analysis: Model Development& System Optimization Investigations  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed a transient air conditioning (A/C) system model using SINDA/FLUINT analysis software. It captures all the relevant physics of transient A/C system performance, including two-phase flow effects in the evaporator and condenser, system mass effects, air side heat transfer on the condenser/evaporator, vehicle speed effects, temperature-dependent properties, and integration with a simplified cabin thermal model. It has demonstrated robust and powerful system design optimization capabilities. Single-variable and multiple variable design optimizations have been performed and are presented. Various system performance parameters can be optimized, including system COP, cabin cool-down time, and system heat load capacity. This work presents this new transient A/C system analysis and optimization tool and shows some high-level system design conclusions reached to date. The work focuses on R-134a A/C systems, but future efforts will modify the model to investigate the transient performance of alternative refrigerant systems such as carbon dioxide systems. NREL is integrating its transient air conditioning model into NRELs ADVISOR vehicle system analysis software, with the objective of simultaneously optimizing A/C system designs within the overall vehicle design optimization.

Hendricks, T. J.

2001-06-01T23:59:59.000Z

31

Optimal Control of a Parabolic Equation with Dynamic Boundary Condition  

SciTech Connect

We investigate a control problem for the heat equation. The goal is to find an optimal heat transfer coefficient in the dynamic boundary condition such that a desired temperature distribution at the boundary is adhered. To this end we consider a function space setting in which the heat flux across the boundary is forced to be an L{sup p} function with respect to the surface measure, which in turn implies higher regularity for the time derivative of temperature. We show that the corresponding elliptic operator generates a strongly continuous semigroup of contractions and apply the concept of maximal parabolic regularity. This allows to show the existence of an optimal control and the derivation of necessary and sufficient optimality conditions.

Hoemberg, D., E-mail: hoemberg@wias-berlin.de; Krumbiegel, K., E-mail: krumbieg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Nonlinear Optimization and Inverse Problems (Germany); Rehberg, J., E-mail: rehberg@wias-berlin.de [Weierstrass Institute for Applied Mathematics and Stochastics, Partial Differential Equations (Germany)

2013-02-15T23:59:59.000Z

32

Ultrasonic Welding  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Ultrasonic Welding II: Ultrasonic Welding: Metallic and Non-metallic ... Comparison of Ultrasonic Spot and Torsion Welding for Al/Ti-joints by ...

33

SIGMA PLUG WELDING OF SPUN-OVER FUEL CANS  

SciTech Connect

Efforts made to employ the sigma welding process for plug welding Closures in spun-over fuel cans were unsuccessful. No combination of welding conditions was found which would produce satisfactory, leak-tight, plug welds in aluminum. (auth)

Winsor, F.J.

1952-12-01T23:59:59.000Z

34

Investigation of electromagnetic welding  

E-Print Network (OSTI)

We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

Pressl, Daniel G. (Daniel Gerd)

2009-01-01T23:59:59.000Z

35

Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach  

Science Conference Proceedings (OSTI)

The present study highlights application of Taguchi's robust design coupled with fuzzy based desirability function approach for optimizing multiple bead geometry parameters of submerged arc weldment. Fuzzy inference system has been adapted to avoid uncertainly, ... Keywords: Desirability function, Fuzzy logic, SAW, Taguchi's robust design

Ankita Singh; Saurav Datta; Siba Sankar Mahapatra; Tapan Singha; Gautam Majumdar

2013-02-01T23:59:59.000Z

36

WELDABILITY AND WELDING TECHNOLOGY OF MAGNESIUM ALLOYS  

SciTech Connect

The peculiarities of welding of Mg alloys, protection of Mg during the welding, reduction of the metal weld seam, difficulties during welding, general characteristic of the weldability of alloys of various systems (Mg-Mn, Mg-AlZn, Mg- Zn- Zr, Mn- Zr-rare earth metals), the tendency of the alloys for crack formation during welding, mechanical properties and structure of weld joints, the effect of some technological factors on the strength of the weld joint of deformable alloys, fluxes and coatings for welding, the welding technology for deformable Mg alloys, and casts in removal of defects (protective gases used and sources of current supply, preparation of the details for the welding, selection of the addition material and welding conditions, technique and technology of welding parts and casts, control, and correction of defects) are discussed. (Referativnyy zhurnal, Metallurgiya, No. 6, 1962)

Shpagin. B.V.

1961-01-01T23:59:59.000Z

37

PDC IC WELD FAILURE EVALUATION AND RESOLUTION  

Science Conference Proceedings (OSTI)

During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements for the actual can welding process, however, did not result in an improved weld geometry. Several possibilities for the lack of positive response exist, some of which are that (1) an insufficient number of test articles were welded under prototypic conditions, (2) the process was not optimized so that significant improvements were observable over the 'noise', and (3) the in-situ arc anneal closed the gap down too much so the can was unable to exhaust pressure ahead of the weld. Several operational and mechanical improvements were identified. The weld clamps were changed to a design consistent with those used in the legacy operations. A helium puff operation was eliminated; it is believed that this operation was the cause of the original weld defect. Also, timing of plug mast movement was found to correspond with weld irregularities. The timing of the movement was changed to occur during weld head travel between tacks. In the end a three sequential tack weld process followed by a pulse weld at the same current and travel speed as was used for the legacy processes was suggested for use during the IC qualification effort. Relative to legacy welds, the PDC IC weld demonstrates greater fluctuation in the region of the weld located between tack welds. However, canister weld response (canister to canister) is consistent and with the aid of the optical mapping system (for targeting the cut position) is considered adequate. DR measurements and METs show the PDC IC welds to have sufficient ligament length to ensure adequate canister pressure/impact capacity and to ensure adequate stub function. The PDC welding process has not been optimized as a result of this effort. Differences remain between the legacy BTC welds and the PDC IC weld, but these differences are not sufficient to prevent resumption of the current PDC IC qualification effort. During the PDC IC qualification effort, a total of 17 cans will be welded and a variety of tests/inspections will be performed. The extensive data collected during that qualification effort should be of a sufficient population to determ

Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

2012-04-16T23:59:59.000Z

38

Optimization Online - Sufficient Conditions for Low-rank Matrix ...  

E-Print Network (OSTI)

Jun 15, 2011 ... This class of optimization problems is $NP$-hard and a popular approach replaces the rank function with the nuclear norm of the matrix ...

39

Fusion Welding of AerMet 100 Alloy  

SciTech Connect

A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

1999-08-01T23:59:59.000Z

40

Efficient Global Optimization Under Conditions of Noise and  

E-Print Network (OSTI)

Incomplete convergence in numerical simulation such as computational physics simulations and/or Monte Carlo simulations can enter into the calculation of the objective function in an optimization problem, producing noise, bias, and topographical inaccuracy in the objective function. These affect accuracy and convergence rate in the optimization problem. This paper is concerned with global searching of a diverse parameter space, graduating to accelerated local convergence to a (hopefully) global optimum, in a framework that acknowledges convergence uncertainty and manages model resolution to efficiently reduce uncertainty in the final optimum. In its own right, the global-to-local optimization engine employed here (devised for noise tolerance) performs better than other classical and contemporary optimization approaches tried individually and in combination on the "industrial" test problem to be presented.

Uncertainty Multi-Model Multi-Grid; Vicente J. Romero

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimization Approach to the Treatment of Open Boundary Conditions  

Science Conference Proceedings (OSTI)

A solution to an optimization problem is developed that deals with minimizing a measure of difference between the values of observed and predicted variables at an open ocean boundary. Minimization is based on the change of the flux of energy ...

I. Shulman; James K. Lewis

1995-05-01T23:59:59.000Z

42

Weld penetration and defect control  

SciTech Connect

Highly engineered designs increasingly require the use of improved materials and sophisticated manufacturing techniques. To obtain optimal performance from these engineered products, improved weld properties and joint reliability are a necessarily. This requirement for improved weld performance and reliability has led to the development of high-performance welding systems in which pre-programmed parameters are specified before any welding takes place. These automated systems however lack the ability to compensate for perturbations which arise during the welding process. Hence the need for systems which monitor and control the in-process status of the welding process. This report discusses work carried out on weld penetration indicators and the feasibility of using these indicators for on-line penetration control.

Chin, B.A.

1992-05-15T23:59:59.000Z

43

Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.  

SciTech Connect

Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

Xu, Z. (Nuclear Engineering Division)

2012-04-03T23:59:59.000Z

44

Optimized Maximum Power Point Tracker for Fast Changing Environmental Conditions  

E-Print Network (OSTI)

working point to the optimum, following the weather (i.e. solar irradiance and temperature) conditions Tracking, Photovoltaic, Solar I. INTRODUCTION The worldwide installed PV power capacity today shows topologies, which provide high performance tracking during 'nice' weather conditions, i.e. at strong

Sera, Dezso

45

An optimality condition for the assembly distribution in a nuclear reactor Laurent Thevenot  

E-Print Network (OSTI)

We give here an optimality condition for the optimization problem of the assembly distribution in a nuclear reactor, by using the homogenization method. In this paper the reactivity of the reactor core is measured by the critical eigenvalue for both continuous and multigroup neutron transport modelings. In particular, we extend the spectral theory of the critical eigenvalue and prove the dierentiability of this latter with respect to the design parameter, the con guration of the fuels. MS Classi cation: 49K20, 49J50, 35P05, 35F15. Key words: Neutron Transport, Nuclear Reactor, Optimization, Optimality Condition, Homogenization, Critical Eigenvalue, Eigenvalue Derivative.

Departement Of Applied; Laurent Thevenot

2003-01-01T23:59:59.000Z

46

Analysis of microbial diversity and optimal conditions for enhanced biogas production from swine waste anaerobic digestion  

Science Conference Proceedings (OSTI)

Swine wastewater pretreated by solid–liquid separation was optimized for biogas production and water purification. Dynamic diversity of the bacterial community in the anaerobic plug flow reactor was investigated under various temperatures and hydraulic retention times (HRT). Results of batch experiments indicated that under optimal operating conditions

Hsiao-Hsien Lin

2013-01-01T23:59:59.000Z

47

Conditional Nonlinear Optimal Perturbations: Adjoint-Free Calculation Method and Preliminary Test  

Science Conference Proceedings (OSTI)

An ensemble-based approach is proposed to obtain conditional nonlinear optimal perturbation (CNOP), which is a natural extension of linear singular vector to a nonlinear regime. The new approach avoids the use of adjoint technique during ...

Bin Wang; Xiaowei Tan

2010-04-01T23:59:59.000Z

48

Model-Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Sensor Network Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant Background The U.S. Department of Energy's National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced sensor and control technologies that can function under the extreme operating conditions often found in advanced power systems,

49

Weld Monitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring of Laser Beam Welding Monitoring of Laser Beam Welding Using Infrared Weld Emissions P. G. Sanders, J. S. Keske, G. Kornecki, and K. H. Leong Technology Development Division Argonne National Laboratory Argonne, IL 60439 USA The submitted manuscript has been authorized by a contractor of the U. S. Government under contract No. W-31-109-ENG-38. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. Abstract A non-obtrusive, pre-aligned, solid-state device has been developed to monitor the primary infrared emissions during laser welding. The weld monitor output is a 100-1000 mV signal that depends on the beam power and weld characteristics. The DC level of this signal is related to weld

50

Controlling Residual Stresses by Heat Sink Welding  

Science Conference Proceedings (OSTI)

Results are described of a combined finite element and pipe welding study in which the welding and heat sink parameters required to optimize fast pass heat sink welding (LPHSW) were identified and evaluated in analytic and experimental tasks. Also discussed is the application of an elastic-plastic finite element computer code model to evaluate and optimize the LPHSW process and to verify the results through residual stress measurements on LPHSW pipes.

1981-12-01T23:59:59.000Z

51

Elements of arc welding  

SciTech Connect

This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

1993-07-01T23:59:59.000Z

52

WELDING TORCH  

DOE Patents (OSTI)

A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

Correy, T.B.

1961-10-01T23:59:59.000Z

53

WELDING STANDARDS  

SciTech Connect

Hanford Atomic Production Operation specification guides and standards for welding and brazing are presented. Details of this manual are given in TID- 4100 (Suppl.). (N.W.R.)

1963-01-01T23:59:59.000Z

54

Welding Consumables  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Emerging Materials Joining Challenges and Technology Needs: An Industry Perspective: Henry J. Cialone1; 1Edison Welding Institute

55

Roll Welding  

Science Conference Proceedings (OSTI)

Table 1   Typical properties of common roll-welded clad laminates...31(a) 40(a) Typically used for commutators in electric

56

WELDING METHOD  

DOE Patents (OSTI)

A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

1959-09-29T23:59:59.000Z

57

A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions  

SciTech Connect

Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

Liu, H. H.

2010-09-15T23:59:59.000Z

58

Evolution of microstructure and mechanical properties in linear friction welded waspaloy.  

E-Print Network (OSTI)

??The Ni-base superalloy, Waspaloy, was linear friction welded (LFWed) under various processing conditions. Specifically, axial shortening, in which all linear friction welding (LFW) parameters such… (more)

Chamanfar, Ahmad

2013-01-01T23:59:59.000Z

59

Necessary and Sufficient Conditions for Pareto Optimal Solutions of Cooperative Differential Games  

Science Conference Proceedings (OSTI)

In this paper we present necessary as well as sufficient conditions for the existence of a Pareto optimum for cooperative differential games. The obtained results are used to analyze the regular indefinite linear quadratic differential game. For the ... Keywords: LQ theory, Pareto efficiency, cooperative differential games, dynamic optimization

Jacob Engwerda

2010-03-01T23:59:59.000Z

60

Optimizing the operating conditions in a high precision industrial process using soft computing techniques  

Science Conference Proceedings (OSTI)

This interdisciplinary research is based on the application of unsupervized connectionist architectures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new high precision industrial process known ... Keywords: exploratory projection pursuit, industrial applications, modelling systems, unsupervized learning

Emilio Corchado; Javier Sedano; Leticia Curiel; José R. Villar

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Welding and Repair Technology Center: Evaluation of Magnetic Stir Welding for Improved Weldability of 52M  

Science Conference Proceedings (OSTI)

Nickel-base weld metals with high chromium content, such as 52M, provide optimum resistance to stress corrosion cracking in nuclear power primary water systems. Unfortunately, these nickel-base weld metals present many challenges such as less than ideal weldability and susceptibility to hot cracking or solid-state cracking depending on welding conditions and dilution effects with dissimilar metals. Moreover, the presence of large solidification grains, typical of nickel-base weld metal, makes ...

2012-10-30T23:59:59.000Z

62

WELDING THIN-WALLED URANIUM CYLINDERS  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The development of a satisfactory process for the fusion welding of thin-walled uranium cylinders is discussed. Optimum results were obtained using the inert-gas shielded-arc method without the use of filler metal. The ductility of the welded joints, however, was lower than that of cast metal. Surface conditions and and the purity of the inert gas used affected the weld soundness. Straight polarity direct current was used for welding to achieve maximum penetration and to provide are stability. Welding must be done in the flat position. (auth)

Brundige, E.L.; Taub, J.M.; Hanks, G.S.; Doll, D.T.

1957-01-01T23:59:59.000Z

63

Optimization of the Fin Heat Pipe for Ventilating and Air Conditioning with a Genetic Algorithm  

E-Print Network (OSTI)

This paper illustrates that use of a heat pipe as a heat-reclaiming device can significantly influence the air-conditioning system. It analyzes the heat transfer model of the uniform annular fin heat pipe under the condition of air conditioning. It establishes functions of the fin structure parameters such as height,spacing and thickness of the fin when the volume of fin is the smallest under unit temperature difference and unit quantity of heat. It uses a genetic algorithm to optimize the model of the uniform annular fin heat pipe. The calculation result shows that the method of genetic algorithm is effective.

Qian, J.; Sun, D.; Li, G.

2006-01-01T23:59:59.000Z

64

WELDING UNUSUAL METALS  

SciTech Connect

Methods of welding including electron beam welding, diffusion bonding, motor-arc welding, and combination methods are discussed. The successful welding and soldering of uranium in different shapes are discussed. (C.J.G.)

Grobecker, D.W.

1959-07-01T23:59:59.000Z

65

Introduction to Projection Welding  

Science Conference Proceedings (OSTI)

...W. Peterson, Projection Welding, Welding Fundamentals and Processes, Vol 6A, ASM Handbook, ASM International, 2011, p 423â??437...

66

Fatique Resistant, Energy Efficient Welding Program, Final Technical Report  

SciTech Connect

The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

Egland, Keith; Ludewig, Howard

2006-05-25T23:59:59.000Z

67

Effect of welding conditions on transformation and properties of heat-affected zones in LWR (light-water reactor) vessel steels  

DOE Green Energy (OSTI)

The continuous cooling transformation behavior (CCT) and isothermal transformation (IT) behavior were determined for SA-508 and SA-533 materials for conditions pertaining to standard heat treatment and for the coarse-grained region of the heat-affected zone (HAZ). The resulting diagrams help to select welding conditions that produce the most favorable microconstituent for the development of optimum postweld heat treatment (PWHT) toughness levels. In the case of SA-508 and SA-533, martensite responds more favorably to PWHT than does bainite. Bainite is to be avoided for the optimum toughness characteristics of the HAZ. The reheat cracking tendency for both steels was evaluated by metallographic studies of simulated HAZ structures subjected to PWHT cycles and simultaneous restraint. Both SA-533, Grade B, Class 1, and SA-508, Class 2, cracked intergranularly. The stress rupture parameter (the product of the stress for a rupture life of 10 min and the corresponding reduction of area) calculated for both steels showed that SA-508, Class 2, was more susceptible to reheat cracking than SA-533, Grade B, Class 1. Cold cracking tests (Battelle Test and University of Tennessee modified hydrogen susceptibility test) indicated that a higher preheat temperature is required for SA-508, Class 2, to avoid cracking than is required for SA-533, Grade B, Class 1. Further, the Hydrogen Susceptibility Test showed that SA-508, Class 2, is more susceptible to hydrogen embrittlement than is SA-533, Grade B, Class 1.

Lundin, C.D.; Mohammed, S. (Tennessee Univ., Knoxville, TN (USA). Welding Research and Engineering)

1990-11-01T23:59:59.000Z

68

Welding method combining laser welding and MIG welding  

SciTech Connect

Welding of deep penetration is obtained in a sustrate by a method which comprises first melting the joint portion of the substrates by MIG welding and then focusing a laser beam in the bottom surface of a crater formed in consequence of the MIG welding thereby effecting laser welding of the crater.

Hamasaki, M.

1985-03-26T23:59:59.000Z

69

Optimal RF Conditioning of Advanced Photon Source (APS) Fundamental Power Coupler  

E-Print Network (OSTI)

Experience at many laboratories regarding conditioning of RF Fundamental Power Couplers (FPC) has shown that it is a very apprehensive and laborious process. While the principle should remain unchanged, which is to gradually increase the rf power applied to the coupler while monitoring the vacuum level, the methodology is sometime different. With coupler lifetime being finite, some RF conditioning methods may be more conservative than others. The basic principle of coupler conditioning is to avoid the phenomena of metallisation, violent electrical discharges or other possible destructive phenomena. This document summarizes an optimized method which has demonstrated its effectiveness and for which the fundamental principles are: • Regulate RF power as a function of vacuum pressure around the coupler as fast as possible. • Apply a longer repetition period than the vacuum reading delay. • Follow the bare principle: low energy for low risk, by delivering pulses to the not yet conditioned coupler, initially...

Montesinos, E

2013-01-01T23:59:59.000Z

70

Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff; Data report: Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear.

Wibowo, J.; Amadei, B.; Sture, S.; Robertson, A.B. [Colorado Univ., Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

1993-09-01T23:59:59.000Z

71

TUNGSTEN-ARC WELDING OF THE TANTALUM IS FOUND TO BE THE MOST VERSATILE WELDING METHOD FOR JOINING THIS MATERIAL: BUT GREATER PREPARATION IS REQUIRED TO PROVIDE GOOD PROTECTION AND QUICK CHILLING  

SciTech Connect

The mechanical and welding properties of tantalum are given and welding processes are reviewed. Various types of shielding, machine welding equipment, and closed chambers for welding in an inert gas are compared. A variety of operating conditions under which tantalum can be welded is discussed. (C.J.G.)

Haslip, L.R.; Payne, B.S.

1959-12-01T23:59:59.000Z

72

Narrow gap laser welding  

SciTech Connect

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

Milewski, John O. (Santa Fe, NM); Sklar, Edward (Santa Fe, NM)

1998-01-01T23:59:59.000Z

73

Narrow gap laser welding  

DOE Patents (OSTI)

A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

Milewski, J.O.; Sklar, E.

1998-06-02T23:59:59.000Z

74

ELECTRON WELDING OF METALS  

SciTech Connect

The advantages and disadvantages of the electron welding of metals are briefly reviewed. Typical apparatuses used for electron welding are described. (J.S.R)

Stohr, J.-A.

1958-03-01T23:59:59.000Z

75

VRML2 Car Welding  

Science Conference Proceedings (OSTI)

VRML2 Car Welding. by Qiming Wang. Click on the base of the robot to start spot welding the car. This file follows VRML97 conventions. ...

76

weld data handbook  

Science Conference Proceedings (OSTI)

... steel structures), has collected critical data on the welding of high-alloy steels for the 2009 American Welding Society Handbook: Materials and ...

2012-10-01T23:59:59.000Z

77

WELDING PROCESS  

DOE Patents (OSTI)

A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

Zambrow, J.; Hausner, H.

1957-09-24T23:59:59.000Z

78

WELDING APPARATUS  

DOE Patents (OSTI)

This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

1963-04-23T23:59:59.000Z

79

Exploring High-Dimensional Data Space: Identifying Optimal Process Conditions in Photovoltaics: Preprint  

SciTech Connect

We demonstrate how advanced exploratory data analysis coupled to data-mining techniques can be used to scrutinize the high-dimensional data space of photovoltaics in the context of thin films of Al-doped ZnO (AZO), which are essential materials as a transparent conducting oxide (TCO) layer in CuInxGa1-xSe2 (CIGS) solar cells. AZO data space, wherein each sample is synthesized from a different process history and assessed with various characterizations, is transformed, reorganized, and visualized in order to extract optimal process conditions. The data-analysis methods used include parallel coordinates, diffusion maps, and hierarchical agglomerative clustering algorithms combined with diffusion map embedding.

Suh, C.; Glynn, S.; Scharf, J.; Contreras, M. A.; Noufi, R.; Jones, W. B.; Biagioni, D.

2011-07-01T23:59:59.000Z

80

A Glove Box Enclosed Gas-Tungsten Arc Welding System  

SciTech Connect

This report describes an inert atmosphere enclosed gas-tungsten arc welding system which has been assembled in support of the MC2730, MC2730A and MC 3500 Radioisotope Thermoelectric Generator (RTG) Enhanced Surveillance Program. One goal of this program is to fabricate welds with microstructures and impurity levels which are similar to production heat source welds previously produced at Los Alamos National Laboratory and the Mound Facility. These welds will subsequently be used for high temperature creep testing as part of the overall component lifetime assessment. In order to maximize the utility of the welding system, means for local control of the arc atmosphere have been incorporated and a wide range of welding environments can easily be evaluated. The gas-tungsten arc welding system used in the assembly is computer controlled, includes two-axis and rotary motion, and can be operated in either continuous or pulsed modes. The system can therefore be used for detailed research studies of welding impurity effects, development of prototype weld schedules, or to mimic a significant range of production-like welding conditions. Fixturing for fabrication of high temperature creep test samples have been designed and constructed, and weld schedules for grip-tab and test welds have been developed. The microstructure of these welds have been evaluated and are consistent with those used during RTG production.

Reevr, E, M; Robino, C.V.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization  

DOE Green Energy (OSTI)

Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

Murray, Nathan E.

2012-03-12T23:59:59.000Z

82

Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies  

Science Conference Proceedings (OSTI)

The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce compressive residual stress at weld toe for weld fatigue resistance.

Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

2005-04-15T23:59:59.000Z

83

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

84

Automated Spot Weld Inspection using Infrared Thermography  

Science Conference Proceedings (OSTI)

An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

2012-01-01T23:59:59.000Z

85

Laser weld jig  

SciTech Connect

A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

Van Blarigan, Peter (Livermore, CA); Haupt, David L. (Livermore, CA)

1982-01-01T23:59:59.000Z

86

Electron and laser beam welding  

SciTech Connect

This book contains 22 selections. Some of the titles are: Laser welding of chandelles to the plates of the sommier employed in the nuclear power plant core; Electron beam welding of hobbing cutters; Sealing welds in electron beam welding of thick metals; Development and application of high power electron beam welding; Electron beam welding of dissimilar metals (niobium, molybdenum, porous tungsten-molybdenum); Status of electron beam welding in the United States of America; and Electron and laser beam welding in Japan.

1986-01-01T23:59:59.000Z

87

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

88

Intelligent Control of Modular Robotic Welding Cell  

SciTech Connect

Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

2002-04-01T23:59:59.000Z

89

PRESSURE WELDING--BIBLIOGRAPHY  

SciTech Connect

A bibliography containing 117 references from the years 1944 to 1961 on pressure welding is presented. (N.W.R.)

1960-01-01T23:59:59.000Z

90

Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions  

SciTech Connect

In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

Al-Alili, A.; Hwang, Y.; Radermacher, R. [Department of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kubo, I. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi (United Arab Emirates)

2010-12-15T23:59:59.000Z

91

Virtual Training for Welding  

Science Conference Proceedings (OSTI)

A mixed reality system has been created for simulating gas metal arc welding (GMAW) welding. This simulation system is intended for use in training human welders. The system is comprised of a real welding torch attached to a force feedback device, a ...

Kenneth Fast; Timothy Gifford; Robert Yancey

2004-11-01T23:59:59.000Z

92

Welding of cast A359/SiC/10p metal matrix composites  

E-Print Network (OSTI)

Welding of metal matrix composites (MMCs) is an alternative to their mechanical joining, since they are difficult to machine. Published literature in fusion welding of similar composites shows metallurgical problems. This study investigates the weldability of A359/SiC/10p aluminum SiC MMC. Statistical experiments were performed to identify the significant variables and their effects on the hardness, tensile and bending strengths, ductility, and microstructure of the weld. Finite Element Analysis (FEA) was used to predict the preheat temperature field across the weld and the weld pool temperature. Welding current, welding speed, and the preheat temperature (300-350??C) affected the weld quality significantly. It was seen that the fracture of the welded specimens was either in the base MMC or in the weld indicating a stronger interface between the weld and the base MMC. Oxides formation was controlled along the weld joint. Low heat inputs provided higher weld strengths and better weld integrity. It was found that the weld strengths were approximately 85% of the parent material strength. The weld region had higher extent of uniform mixing of base and filler metal when welded at low currents and high welding speeds. These adequate thermal conditions helped the SiC particles to stay in the central weld region. The interface reaction between the matrix and SiC particles was hindered due to controlled heat inputs and formation of harmful Al4C3 flakes was suppressed. The hardness values were found to be slightly higher in the base metal rich region. There was no significant loss in the hardness of the heat affected zone. The ductility of the weld was considerably increased to 6.0-7.0% due to the addition of Al-Si filler metal.

Kothari, Mitul Arvind

2005-08-01T23:59:59.000Z

93

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

Dixon, Raymond D. (Los Alamos, NM); Smith, Frank M. (Espanola, NM); O' Leary, Richard F. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

94

Optimal approximations for risk measures of sums of lognormals based on conditional expectations  

Science Conference Proceedings (OSTI)

In this paper we investigate the approximations for the distribution function of a sum S of lognormal random variables. These approximations are obtained by considering the conditional expectation E[S|@L] of S with respect to a conditioning random variable ... Keywords: Comonotonicity, Conditional expectation, Jensen's inequality, Lognormal, Maximal variance

S. Vanduffel; X. Chen; J. Dhaene; M. Goovaerts; L. Henrard; R. Kaas

2008-11-01T23:59:59.000Z

95

Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program  

Science Conference Proceedings (OSTI)

This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is linked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from t...

2005-12-20T23:59:59.000Z

96

BWRVIP-228: BWR Vessel and Internals Project, A Computational Modeling Tool for Welding Repair of Irradiated Materials  

Science Conference Proceedings (OSTI)

Repair welding on highly irradiated stainless steel BWR internals can lead to cracking in the heat-affected zone (HAZ) of the weld region. EPRI and participating Boiling Water Reactor Vessel and Internals Project (BWRVIP) members have sponsored development of a computational modeling tool to assist in determining appropriate welding process conditions (heat input and process selection) to produce crack-free welds on irradiated materials. This tool integrates a finite-element-based welding temperature and...

2009-11-30T23:59:59.000Z

97

Discontinuities Associated With Specialized Welding Processes  

Science Conference Proceedings (OSTI)

...R. Gordon, Overview of Weld Discontinuities, Welding, Brazing, and Soldering, Vol 6, ASM Handbook,

98

Laser welding of electrical interconnections  

SciTech Connect

Processes and equipment have been developed for welding thin aluminum and copper foils using a Nd : YAG laser. Laser welding provides an alternate technique with improved quality for welding these types of electrical terminations.

Bauer, F.R.

1978-12-01T23:59:59.000Z

99

WELDED JACKETED URANIUM BODY  

DOE Patents (OSTI)

A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

Gurinsky, D.H.

1958-08-26T23:59:59.000Z

100

Simulation and optimization of hot dry rock geothermal energy conversion systems: process conditions and economics  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently engaged in a field program aimed at designing and testing man-made geothermal reservoirs in hot granitic formations of low permeability created by hydraulic fracturing. A very important segment of the program is concerned with defining and optimizing several parameters related to the performance of the reservoir and their impact on the potential commercial feasibility of the hot dry rock technique. These include effective heat transfer area, permeation water loss, depth to the reservoir, geothermal temperature gradient, reservoir temperature, mass flow rate, and geochemistry. In addition, the optimization of the energy end use system (process or district heating, electricity or cogeneration) is directly linked to reservoir performance and associated costs. This problem has been studied using several computer modeling approaches to identify the sensitivity of the cost of power to reservoir and generation plant parameters. Also examined were a variety of important economic elements including rate of return on invested capital, discount or interest rates, taxes, cash flow, energy selling price, plant and reservoir lifetime, drilling and surface plant costs, and royalties.

Tester, J.W.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WEB RESOURCE: Gas Welding Magnesium  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This webpage offers advice on gas welding of magnesium. Launch Site SOURCE: "Gas Welding Magnesium". Weldwell Corporate Website.

102

Dual wire welding torch and method  

SciTech Connect

A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

Diez, Fernando Martinez (Peoria, IL); Stump, Kevin S. (Sherman, IL); Ludewig, Howard W. (Groveland, IL); Kilty, Alan L. (Peoria, IL); Robinson, Matthew M. (Peoria, IL); Egland, Keith M. (Peoria, IL)

2009-04-28T23:59:59.000Z

103

Welding Technologies and Applications  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... Joining of Advanced and Specialty Materials (JASM XIII): Welding Technologies and Applications Sponsored by: MS&T Organization Program ...

104

Electric arc welding gun  

DOE Patents (OSTI)

This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

Luttrell, Edward (Clinton, TN); Turner, Paul W. (Idaho Falls, ID)

1978-01-01T23:59:59.000Z

105

Welding - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... High Brightness Nd:YAG Laser Welding of Aluminum 5754: Jyotirmoy Mazumder 1; Leslie Pipe1; Yi Liu1; David Roessler1; 1University of ...

106

Materials and Welding  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants: Joung Soo ...

107

Laser Welding of Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

welding is particularly suited to the high-production rate requirements in the automobile industry. Some automotive exhaust components use 409 stainless steel and are currently arc...

108

What is the Appropriate Reference Condition for Optimizing Concentrator Cells? Preprint  

DOE Green Energy (OSTI)

This conference paper describes Consensus standards for determining the efficiency of a concentrator cell or module that have not been developed. NREL, Sandia National Laboratory, the Fraunhofer Institute for Solar Energy in Germany, and the Progress in Photovoltaics Efficiency Table authors have informally agreed upon concentrator-cell reference conditions. These conditions are 25C cell temperature, 1-sun=1000 W/m2 total irradiance, and the ASTM E891-87 direct-normal reference spectrum. Deficiencies in the direct reference spectrum are discussed, and a more representative reference spectrum for evaluating concentrator cells is proposed. The spectrum was generated by the SMARTS model, and the atmospheric parameters are as close as possible to the existing direct spectrum, with the exception that the aerosol optical depth at 500 nm is reduced from 0.27 to 0.085.

Emery, K.; Myers, D.; Kurtz, S.

2002-05-01T23:59:59.000Z

109

Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design  

DOE Green Energy (OSTI)

EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

D.E. Fisher

2006-01-07T23:59:59.000Z

110

Explosion metal welding  

SciTech Connect

Process parameters pertaining to welding similar and dissimilar metals using explosives are reviewed. The discussion centers on the interrelationship of physical parameters which play a part in achieving desirable metallurgical results. Present activities in explosion metal welding at LASL are presented and shown how they related to the interests of the ERDA community.

Popoff, A.A.

1976-01-01T23:59:59.000Z

111

Welding electric terminals ultrasonically  

SciTech Connect

Ultrasonic welding has been investigated for use on foil conductor terminations. Equipment and tooling have been improved; material considerations and combinations have been evaluated to determine their effects on the process; and special configurations and techniques have been studied to extend the applicability of the ultrasonic welding process.

Darner, G.S.

1976-09-01T23:59:59.000Z

112

Dc arc weld starter  

DOE Patents (OSTI)

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, R.H.; Hopwood, J.E.

1989-02-17T23:59:59.000Z

113

DC arc weld starter  

SciTech Connect

A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

Campiotti, Richard H. (Tracy, CA); Hopwood, James E. (Oakley, CA)

1990-01-01T23:59:59.000Z

114

Weld Metal Metallurgical Handbook  

Science Conference Proceedings (OSTI)

This report is part of an ongoing series of metallurgical handbooks that are being developed for utility engineers to use in assessing metallurgical characteristics of any given alloy. This report focuses specifically on the weld metal metallurgical characteristics of carbon, low-alloy martensitic, and austenitic stainless steel welds.

2009-03-31T23:59:59.000Z

115

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

1997-04-01T23:59:59.000Z

116

Method for welding beryllium  

DOE Patents (OSTI)

A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

1995-12-31T23:59:59.000Z

117

Ultrasonic seam welding. Final report  

SciTech Connect

Ultrasonic seam welding has been evaluated for making continuous seam welds on aluminum and copper-foil conductors. A seam welding system has been designed and fabricated, weldable material combinations have been identified, and the process parameters for welding materials applicable to flat cable production have been established.

Darner, G.S.

1980-06-01T23:59:59.000Z

118

Welding Methods for Tailored Blanks  

Science Conference Proceedings (OSTI)

...methods both with and without filler wire by Toyota since 1986. Filler wire is used for applications that have an exposed weld in the finished product, such as body side frames. Filler wire welds are ground flush to improve surface appearance after welding. Welds that do not require a flush surface...

119

Power Supply Design for Resistance Spot Welding  

Science Conference Proceedings (OSTI)

According to a study of Edison Welding Institute, 20% of the welding quality issues are the weld schedule or power supply related. Therefore, the study of ...

120

Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)  

SciTech Connect

A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Moore, K.L. (Idaho State Univ., Pocatello, ID (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor  

Science Conference Proceedings (OSTI)

The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

Lahodova, Z.; Viererbl, L.; Klupak, V. [Research Centre Rez Ltd., Husinec-130, Rez 250 67 (Czech Republic); Srank, J. [Nuclear Physics Inst. of the Academy of Sciences, Husinec-130, Rez 250 67 (Czech Republic)

2012-07-01T23:59:59.000Z

122

Investigation of the effect of welding parameters on weld quality of plasma arc keyhole welding of structural steels  

SciTech Connect

In the present investigation, the individual and interactive effects of the main welding parameters on weld quality of plasma arc keyhole welding of conventional structural steel, high strength microalloyed steel and strong formable microalloyed steel have been examined using welding of butt joints with a square groove in various welding positions, and welding of joint roots with a single-V-groove and the root face in the flat position. The most important welding parameters are welding current, welding speed and welding gases, especially plasma gas flow rate. Welding parameter combinations producing the best quality welds are presented. It is shown that it is possible to achieve defect-free high-quality welds with good strength and toughness properties, but the allowable range of variation of welding parameters, especially for the highest weld quality, is narrow. An argonhydrogen mixture for the plasma gas together with argon as shielding and backing gases give the best results with respect to weld quality.

Martikainen, J.K.; Moisio, T.J.I. (Lappeenranta Univ. of Technology, Lappeenranta (Finland). Welding Technology Lab.)

1993-07-01T23:59:59.000Z

123

APPARATUS FOR ARC WELDING  

DOE Patents (OSTI)

An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.

Lingafelter, J.W.

1960-04-01T23:59:59.000Z

124

Specs add confidence in use of wet welding. [Underwater welding  

SciTech Connect

Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

1984-02-01T23:59:59.000Z

125

Laser weld jig. [Patent application  

DOE Patents (OSTI)

A system is provided for welding a workpiece along a predetermined weld line that may be of irregular shape, which includes the step of forming a lip on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members. Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reusable jig forming the lip, and with the jig constructed to detachably hold parts to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

Van Blarigan, P.; Haupt, D.L.

1980-12-05T23:59:59.000Z

126

Optimal control of a concentrated system on the class of piecewise constant functions under uncertainty in the parameters and initial conditions  

Science Conference Proceedings (OSTI)

The authors analyze optimal control problems for objects described by systems of ordinary differential equations on the class of piecewise constant control functions with uncertain initial information about the parameters of the initial conditions and ... Keywords: inaccurate information, initial conditions, interval of constancy, parameter of an object, piecewise constant control

K. R. Aida-Zade; A. B. Rahimov

2012-05-01T23:59:59.000Z

127

Resistance Spot Welding  

Science Conference Proceedings (OSTI)

...or more sheetmetal stampings that do not require gas-tight or liquid-tight joints can be more economically joined by high-speed RSW than by mechanical methods. Containers frequently are spot welded. The attachment of

128

Resistance Seam Welding  

Science Conference Proceedings (OSTI)

...a series of overlapping spot welds, is normally gas-tight or liquid-tight. Two rotating, circular electrodes (electrode wheels), or one circular and one bar-type electrode,

129

Friction stir welding tool  

DOE Patents (OSTI)

A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

Tolle; Charles R. (Idaho Falls, ID), Clark; Denis E. (Idaho Falls, ID), Barnes; Timothy A. (Ammon, ID)

2008-04-15T23:59:59.000Z

130

Weld failure detection  

DOE Patents (OSTI)

Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.

Pennell, William E. (Unity Township, Westmoreland County, PA); Sutton, Jr., Harry G. (Mt. Lebanon, PA)

1981-01-01T23:59:59.000Z

131

Concurrent ultrasonic weld evaluation system  

DOE Patents (OSTI)

A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

Hood, Donald W. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

132

Concurrent ultrasonic weld evaluation system  

DOE Patents (OSTI)

A system for concurrent, non-destructive evaluation of partially completed welds for use in conjunction with an automated welder. The system utilizes real time, automated ultrasonic inspection of a welding operation as the welds are being made by providing a transducer which follows a short distance behind the welding head. Reflected ultrasonic signals are analyzed utilizing computer based digital pattern recognition techniques to discriminate between good and flawed welds on a pass by pass basis. The system also distinguishes between types of weld flaws.

Hood, D.W.; Johnson, J.A.; Smartt, H.B.

1985-09-04T23:59:59.000Z

133

METHOD OF OBTAINING AN IMPROVED WELD IN INERT ARC WELDING  

DOE Patents (OSTI)

A method is reported for inert arc welding. An a-c welding current is applied to the workpiece and welding electrode such that the positive portion of each cycle thereof, with the electrode positive, has only sufficient energy to clean the surface of the workpiece and the negative portion of each cycle thereof, with the electrode negative, contains the energy required to weld. (AEC)

Correy, T.B.

1962-12-11T23:59:59.000Z

134

The Effect Of Neutron Irradiation On The Mechanical Properties Of Welded Zircaloy-2  

DOE Green Energy (OSTI)

Zircaloy-2 tensile specimens, subsize impact bars and representative spigot welds were subjected to three NRX cycles in the X-5 loop. Average loop temperature was 260 deg C over the three cycles. One group of tensile specimens was heat-treated in vacuum at 900 deg C for 40 minutes, another group contained welded areas in the center of the gauge length and a third group was hydrided after welding. Notches of the impact specimens were located in the fusion zone of the weld. Spigot welds were made on autoclaved and unautoclaved simulated production assemblies. Neutron irradiation had no effect on the impact properties of welded Zircaloy-2. Welding decreased the uniform and total elongation at room temperature and at 260 deg C, and increased the 260 deg C PL, YS, and UTS. Hydriding to a nominal 100 ppm hydrogen had no effect on the unirradiated tensile properties at either test temperature. The heat treatment decreased the strength properties but did not affect the ductility. Neutron irradiation increased the YS of the welded and hydrided material by 20% and the heat treated YS by 40%. Irradiation also increased the 260 deg C strength properties of the as-welded material. The unautoclaved spigot welds had a generally higher tensile strength than the autoclaved and welded specimens. For specimens welded in either condition, the outer welds of the 19-element bundle had a lower average breaking load than the inner welds. Neutron irradiation had no effect on the tensile strength of these welds. It was also demonstrated that a cup-and-cone type of fracture could be produced in a bend test. The fractures were similar to those observed in irradiated fuel bundles which was damaged during transfer operations. (auth)

Evans, D.G.

1962-07-15T23:59:59.000Z

135

Certification of a weld produced by friction stir welding  

DOE Patents (OSTI)

Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

Obaditch, Chris; Grant, Glenn J

2013-10-01T23:59:59.000Z

136

Assessment of the feasibility of developing a Hanford Site weld modeling program  

Science Conference Proceedings (OSTI)

Welding on the Hanford Site is an everyday occurrence, and most of the weldments made on site are relatively straightforward. Groove geometries, fillers, and wleding techniques and parameters are normally decided by experience or handbook advice. However, there are other weldments that might employ new materials, as well as one-of-a-kind welding situations. Implementation of a verified analytical weld assessment method would allow optimization of weld metal and heat-affected zone microstructure, and of variables that affect structural deformation and residual stresses. Realistic prediction of weldment thermal and strain history will require the use of a finite element model. Microstructure and resultant properties can be predicted using complex computer-based microstructure evolution models, literature-based empirical equations, or experimentally established behaviors. This report examines the feasibility of developing analytical methods for establishing weld parameter envelopes in new, complex welded configurations.

Atteridge, D.G.; Anderson, W.E.; Klein, R.F.

1986-11-01T23:59:59.000Z

137

Temperature distributions in electron beam welding cavities  

SciTech Connect

Surface temperatures in electron beam welding cavities in stainless steel 304 and aluminum 1100, 2024, and 6061 were measured with a narrow band infrared radiation pyrometer. A special device was designed for mounting the radiation-sensing probe next to the electron beam gun in the welding chamber. This mounting device included a mechanism for oscillating the probe so as to scan the cavity region both perpendicular and parallel to the welding direction. At the center of its movement the probe viewed almost directly down into the welding cavity. The effect of interreflections occurring in the welding cavity were accounted for by the use of an apparent spectral cavity emittance. Typical measured cavity temperature distributions for SS-304 ranged from 1950/sup 0/C at the mouth to a peak of 2350/sup 0/C at the cavity base and from 1300 to 1650/sup 0/C for A1-1100. First approximation predictions of the cavity surface temperatures were determined by assuming a quasi-steady-state condition. The surface temperature is then a function of the vapor pressure, which is required to balance the surface tension and the hydrostatic pressure both of which tend to collapse the cavity. Base temperatures thus predicted were about 5% and 10% higher than measured for SS-304 and A1-1100, respectively. It was determined that EB welding cavity base surface temperatures are relatively constant with varying penetration depth because they are more strongly dependent on the curvature at the base than on the penetration depth. Average peak temperatures for SS-304, A1-1100, A1-6061, and A1-2024 were measured to be approximately 2300, 1700, 1525, and 1475/sup 0/C, respectively. The peak temperatures were lower for A1-6061 and A1-2024 than for A1-1100 because they contained a significant amount of magnesium and zinc, both of which have comparatively high vapor pressures.

Shintaku, S.M.

1976-07-15T23:59:59.000Z

138

Final Report: A Transport Phenomena Based Approach to Probe Evolution of Weld Macro and Microstructures and A Smart Bi-directional Model of Fusion Welding  

Science Conference Proceedings (OSTI)

In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that the reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.

Dr. Tarasankar DebRoy

2009-12-11T23:59:59.000Z

139

Robotic Welding and Inspection System  

SciTech Connect

This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

2008-06-01T23:59:59.000Z

140

Friction stir welding tool and process for welding dissimilar materials  

SciTech Connect

A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

2013-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Automatic welding comes of age. [Offshore  

SciTech Connect

Automatic pipe welding systems today fall into three main categories: gas metal arc welding, gas-tungsten arc welding, and flash-butt welding. The first automatic welding devices used offshore were the CRC and H.C. Price systems. Both use gas metal arc welding with a consumable steel filler wire. The recently developed McDermott flash-butt welding system is described. (DLC)

Turner, D.L. Jr.

1981-07-01T23:59:59.000Z

142

Study of inertia welding: the sensitivity of weld configuration and strength to variations in welding parameters  

Science Conference Proceedings (OSTI)

An experiment is described which is designed to demonstrate the forgiveness of inertia welding, that is, the relative insensitivity of weld strength to variations in energy (rotational speed of parts) and axial force. Although easily observed variations in the welding parameters produced easily observed changes in weldment configuration and changes in dimension (upset), only extremes in parameters produced changes in weld strength. Consequently, process monitoring and product inspection would be sufficient for quality assurance in a production environment.

Mote, M.W.

1981-12-01T23:59:59.000Z

143

The science and practice of welding. 8th ed. Vol. 2: The practice of welding  

SciTech Connect

This book includes sections on underwater welding and cutting, cold pressure welding, the application of mixed gases to various welding processes, and robot welding. The author uses photographs, tables, figures, and illustrations to explain the text and provides examination questions.

Davies, A.C.

1984-01-01T23:59:59.000Z

144

Welding and Repair Technology Center: Evaluation of Hardness Requirements for Temper Bead Welding Applications--Preliminary Review  

Science Conference Proceedings (OSTI)

Qualification of welding procedures for structural members and pressure boundary components in accordance with American Society of Mechanical Engineers (ASME) codes frequently requires impact testing. Specifically, the Charpy V-notch test is often used to assess base material, heat-affected zone, and weld metal impact properties. Impact testing is specified in the ASME codes to ensure that materials will have adequate fracture toughness and behave in a ductile manner under service conditions. ...

2013-10-14T23:59:59.000Z

145

73rd American Welding Society annual meeting  

SciTech Connect

The volume includes the abstracts of papers presented at the 73rd American Welding Society Annual Meeting. Detailed summaries are given for 118 technical sessions papers discussing computer and control applications in welding, stainless steel, nickel and nickel alloys, weld metal microstructure, shipbuilding, consumables, structural welding, investigations in arc welding and cutting, arc welding processes, weldability testing, piping and tubing, high energy beam welding processes, welding metallurgy of structural steels, new applications, weld metal behavior, NDT certification, aluminum welding, submerged arc welding, modeling studies, resistance welding, friction welding, and safety and health. The 23rd International AWS Brazing and Soldering Conference was also held during this meeting. The topics presented in 24 papers included recent developments in soldering technology, brazing of stainless steel, brazing of ceramics and nickel material, filler metal developments for torch brazing, and developments in diffusion and induction brazing.

1992-01-01T23:59:59.000Z

146

Method and apparatus for assessing weld quality  

DOE Patents (OSTI)

Apparatus for determining a quality of a weld produced by a welding device according to the present invention includes a sensor operatively associated with the welding device. The sensor is responsive to at least one welding process parameter during a welding process and produces a welding process parameter signal that relates to the at least one welding process parameter. A computer connected to the sensor is responsive to the welding process parameter signal produced by the sensor. A user interface operatively associated with the computer allows a user to select a desired welding process. The computer processes the welding process parameter signal produced by the sensor in accordance with one of a constant voltage algorithm, a short duration weld algorithm or a pulsed current analysis module depending on the desired welding process selected by the user. The computer produces output data indicative of the quality of the weld.

Smartt, Herschel B. (Idaho Falls, ID); Kenney, Kevin L. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Carlson, Nancy M. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Taylor, Paul L. (Boise, ID); Reutzel, Edward W. (State College, PA)

2001-01-01T23:59:59.000Z

147

Method for welding chromium molybdenum steels  

SciTech Connect

Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

Sikka, Vinod K. (Clinton, TN)

1986-01-01T23:59:59.000Z

148

Method for welding chromium molybdenum steels  

DOE Patents (OSTI)

Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.

Sikka, V.K.

1985-11-06T23:59:59.000Z

149

Welding – Friction Stir  

Friction welding that uses a contact rotating tool creates frictional heating of an adjacent work piece. The process employs a mixer where the two pieces touch, an area called the plastic zone, to avoid the undesirable joining (e.g. alloying) of the ...

150

Welding and Repair Technology Center: Development of Improved Weld Heat Input and Dilution Equations for Consumable Welding Processes  

Science Conference Proceedings (OSTI)

Predicting heat input into the substrate and weld dilution for consumable welding processes is a challenge due to the number of variables associated with these processes. Proper heat input and power ratio controls are critical to control weld dilution, particularly in dissimilar metal welds where low weld dilution is necessary to prevent solidification cracking or for cladding where weld dilution is minimized to maintain corrosion resistance of the clad material. This report discusses the ...

2013-11-27T23:59:59.000Z

151

Nuclear Energy Plant Optimization (NEPO) final report on aging and condition monitoring of low-voltage cable materials.  

SciTech Connect

This report summarizes results generated on a 5-year cable-aging program that constituted part of the Nuclear Energy Plant Optimization (NEPO) program, an effort cosponsored by the U. S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The NEPO cable-aging effort concentrated on two important issues involving the development of better lifetime prediction methods as well as the development and testing of novel cable condition-monitoring (CM) techniques. To address improved life prediction methods, we first describe the use of time-temperature superposition principles, indicating how this approach improves the testing of the Arrhenius model by utilizing all of the experimentally generated data instead of a few selected and processed data points. Although reasonable superposition is often found, we show several cases where non-superposition is evident, a situation that violates the constant acceleration assumption normally used in accelerated aging studies. Long-term aging results over extended temperature ranges allow us to show that curvature in Arrhenius plots for elongation is a common occurrence. In all cases the curvature results in a lowering of the Arrhenius activation energy at lower temperatures implying that typical extrapolation of high temperature results over-estimates material lifetimes. The long-term results also allow us to test the significance of extrapolating through the crystalline melting point of semi-crystalline materials. By utilizing ultrasensitive oxygen consumption (UOC) measurements, we show that it is possible to probe the low temperature extrapolation region normally inaccessible to conventional accelerated aging studies. This allows the quantitative testing of the often-used Arrhenius extrapolation assumption. Such testing indicates that many materials again show evidence of ''downward'' curvature (E{sub a} values drop as the aging temperature is lowered) consistent with the limited elongation results and many literature results. It is also shown how the UOC approach allows the probing of temperatures that cross through the crystalline melting point region of semi-crystalline materials such as XLPO and EPR cable insulations. New results on combined environment aging of neoprene and hypalon cable jacketing materials are presented and offer additional evidence in support of our time-temperature-dose rate (t-T-DR) superposition approach that had been used successfully in the past for such situations.

Assink, Roger Alan; Gillen, Kenneth Todd; Bernstein, Robert

2005-11-01T23:59:59.000Z

152

Microsoft Word - FEAA064O_ORNL_Welding Single Cystal_Factsheet_Rev01.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding and Weld Repair of Single Crystal Gas Turbine Alloys Welding and Weld Repair of Single Crystal Gas Turbine Alloys (Oak Ridge National Laboratory) FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: Oak Ridge National Laboratory (ORNL) B. Project Partners (no project funds to these partners): General Electric Corporation Siemens-Westinghouse Corporation Electric Power Research Institute (EPRI) PCC Airfoils Honeywell Aerospace Services Pratt and Whitney Corporation South Carolina Institute for Energy Studies II. PROJECT DESCRIPTION A. Objective It is the purpose of this project to investigate the potential for weld refurbishment and repair of single crystal gas turbine engine components and to determine processes, process conditions, and alloy compositions that will make such weld processing possible.

153

Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels  

SciTech Connect

It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This involved determining the room-temperature tensile and elastic-plastic fracture-toughness properties of the bobbin-tool friction-stir welds after a post-weld solution-treatment, quenching, and aging heat-treatment. These mechanical properties were used to conduct fracture-mechanics analyses to determine critical flaw sizes. Phased-array and conventional ultrasonic non-destructive examination was used to demonstrate that no flaws that match or exceed the calculated critical flaw-sizes exist in or near the friction-stir welds.

Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

2007-06-06T23:59:59.000Z

154

Optimization and AMS Modeling for Design of an Electrostatic Vibration Energy Harvester’s Conditioning Circuit with an Auto-Adaptive Process to the External Vibration Changes  

E-Print Network (OSTI)

Abstract-This paper presents an analysis and system-level design of a capacitive harvester of vibration energy composed from a mechanical resonator, capacitive transducer and a conditioning circuit based on the BUCK DC-DC converter architecture. The goal of the study is to identify optimal power performance of the system, to understand the electromechanical coupling phenomena and to propose the optimal timing of switching between charge pump and flyback circuits. To achieve the study we provided a VHDL-AMS/ELDO mixed model based on physical equations describing the resonator and transducer operation. To test different algorithms of the switching, we developed a behavioral functional model of the switch commuting between the two operation phases. We demonstrated that to guarantee an optimal power generation, switching should be driven by the internal state of the circuit. This paper provides the keys of the underlying analysis and provides a basic algorithm of the switch “intelligent ” command. I.

Dimitri Galayko; Ayyaz Mahmood Paracha

2008-01-01T23:59:59.000Z

155

INERT GAS SHIELD FOR WELDING  

DOE Patents (OSTI)

S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

Jones, S.O.; Daly, F.V.

1958-10-14T23:59:59.000Z

156

Welding tritium aged stainless steel  

SciTech Connect

Stainless steels exposed to tritium become unweldable by conventional methods due to He buildup within the metal matrix. With longer service lives expected for new weapon systems, and service life extensions of older systems, methods for welding/repair on tritium-exposed material will become important. Results are reported that indicate that both solid-state resistance welding and low-heat gas metal arc overlay welding are promising methods for repair or modification of tritium-aged stainless steel.

Kanne, W.R. Jr.

1993-04-01T23:59:59.000Z

157

Friction Stir Welding: High Temperature Materials I  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Friction Stir Welding of Pipeline Steels: Murray Mahoney1; Samuel .... Over 135 feet of weld length was achieved with a single W-based tool ...

158

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Stories November Lienert Named American Welding Society Fellow Lienert named American Welding Society Fellow Lienert was inducted...

159

Edison Welding Institute | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Edison Welding Institute Jump to: navigation, search Name Edison Welding Institute Address 1250...

160

friction stir welding iv table of contents  

Science Conference Proceedings (OSTI)

Friction Stir Welding—After a Decade of Development [pp. 3-18] William Arbegast . Friction Stir Welding of an Aluminum Coal Hopper Railcar [pp. 19-28

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WEB RESOURCE: Magnesium Welding - Information Sources for ...  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This web-based, magnesium welding resource is a compilation of: ... SOURCE: “ Magnesium Welding – Information Sources for Magnesium ...

162

Development of Tatsumaki Friction Stir Welding  

Science Conference Proceedings (OSTI)

The main advantage of this process is the application of a wide range of weld thicknesses and high speed welding by controlling the motor power consumption .

163

Welding and PWHT of P91 Steel  

Science Conference Proceedings (OSTI)

There are various sources for base materials, welding consumables and fabrication or components. The art is such that few welding problems are encountered.

164

Lienert named American Welding Society Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1 - Lienert named American Welding Society Fellow November 29, 2012 Thomas J. Lienert of the Lab's Metallurgy group was inducted into the American Welding Society's 2012 Class of...

165

Friction Stir Welding and Processing VI  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... Friction Stir Welding and Processing of Advanced Materials for Coal and Nuclear Power Applications · Friction Stir Welding of 25 mm Thick Al ...

166

Electrospark Welding of Nanostructured Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Nanomaterials possess a microstructural length scale in at least ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

167

Friction Stir Welding and Processing  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Material flow is a key phenomenon to obtain sound joints by friction stir welding ( FSW). In this study, the material flow during FSW was ...

168

Failure Origins in Arc Welds  

Science Conference Proceedings (OSTI)

...tungsten inclusions, oxide inclusions Lack of fusion (LOF) and lack of penetration (LOP) Geometric discontinuities, such as poor weld contours, undercut,

169

Laser welding of aluminum alloys  

DOE Green Energy (OSTI)

Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

Leong, K.H.; Sabo, K.R.; Sanders, P.G. [Argonne National Lab., IL (United States). Technology Development Div.; Spawr, W.J.

1997-03-01T23:59:59.000Z

170

Optimization of annealing conditions for controlling composition of (Pb{sub 1-x}Ge{sub x}){sub 1-{delta}}Te{sub 1+{delta}} crystals  

Science Conference Proceedings (OSTI)

One common way of controlling the composition of semiconductor materials is by two- or three-zone annealing. Compared to doping during growth, such anneals ensure more uniform distribution of impurities and better reproducibility of galvanomagnetic and photoelectric properties. For (A{sub 1{minus}x}B{sub x}){sub 1{minus}{delta}}C{sub 1+{delta}} chalcogenide solid solutions, the A/B ratio can be controlled by introducing an additional source of B or A, whereas off-stoichiometry {Delta} can be varied using a source of chalcocren C. The purpose of this work was to optimize the conditions for preparing homogeneous crystals of (Pb{sub 1{minus}}x Ge{sub x}){sub 1{minus}{delta}}Te{sub 1+{delta}} (0conditions are considered optimal if a homogeneous material can be obtained within a minimum time and with minimum possible losses caused by transport of sublimed material to the cold zone. Such conditions can be chosen by modeling processes occurring in vapor and solid phases. Problems related to controlling the composition of the vapor phase and solid solutions by annealing were considered. Investigation of the Pb{sub 0.93}Sn{sub 0.07}{sub 1{minus}{delta}} solid solution showed that, under conditions commonly used for annealing IV-VI materials, mass transport to the cold zone is insignificant. This information is, however, insufficient for choosing optimal process parameters since the minimum annealing time remains to be determined. In this work, we calculated the optimal annealing parameters for preparing homogeneous crystals of Pb{sub 1{minus}x}Ge{sub x}Te (O < x <{le}0.05). In calculations we used kinetic equations describing mass transport in the solid and vapor phases and the measured temperature dependence of the diffusion coefficient for germanium in PbTe.

Yahsina, L.V.; Bobruiko, V.B.; Zlomanov, V.P. [Moscow State Univ. (Russian Federation)] [and others

1995-10-01T23:59:59.000Z

171

Weld solidification cracking in 304 to 204L stainless steel  

Science Conference Proceedings (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-09-15T23:59:59.000Z

172

Weld solidification cracking in 304 to 304L stainless steel  

Science Conference Proceedings (OSTI)

A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

173

Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break  

SciTech Connect

This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

Sullivan, Edward J.; Anderson, Michael T.

2012-08-01T23:59:59.000Z

174

Narrow groove welding gas diffuser assembly and welding torch  

DOE Patents (OSTI)

A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

Rooney, Stephen J.

2000-02-04T23:59:59.000Z

175

Narrow groove welding gas diffuser assembly and welding torch  

DOE Patents (OSTI)

A diffuser assembly is provided for narrow groove welding using an automatic gas tungsten arc welding torch. The diffuser assembly includes a manifold adapted for adjustable mounting on the welding torch which is received in a central opening in the manifold. Laterally extending manifold sections communicate with a shield gas inlet such that shield gas supplied to the inlet passes to gas passages of the manifold sections. First and second tapered diffusers are respectively connected to the manifold sections in fluid communication with the gas passages thereof. The diffusers extend downwardly along the torch electrode on opposite sides thereof so as to release shield gas along the length of the electrode and at the distal tip of the electrode. The diffusers are of a transverse width which is on the order of the thickness of the electrode so that the diffusers can, in use, be inserted into a narrow welding groove before and after the electrode in the direction of the weld operation.

Rooney, Stephen J. (East Berne, NY)

2001-01-01T23:59:59.000Z

176

Effect of multiple repairs in girth welds of pipelines on the mechanical properties  

Science Conference Proceedings (OSTI)

This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases.

Vega, O.E.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, Laboratorios Pesados de Metalurgia, UPALM, Zacatenco, C.P. 07738, Mexico D.F. (Mexico); Villagomez, A. [Construcciones Maritimas Mexicanas, CMM-PROTEXA, Av. Periferica s/n, Fracc. Lomas de Holche, C.P. 24120, Cd. del Carmen, Campeche (Mexico); Contreras, A. [Instituto Mexicano del Petroleo, Investigacion en Ductos, Corrosion y Materiales, Eje Central Lazaro Cardenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730, Mexico D.F. (Mexico)], E-mail: acontrer@imp.mx

2008-10-15T23:59:59.000Z

177

Displaced electrode process for welding  

DOE Patents (OSTI)

A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

Heichel, L.J.

1975-08-26T23:59:59.000Z

178

Ultrasonic Welding for Lightweight Components - Programmaster.org  

Science Conference Proceedings (OSTI)

welding. This concerns progress of hard- and software for ultrasonic welding ... as topics to the mechanical properties (monotonic, cyclic) of ultrasonically welded

179

Method for controlling gas metal arc welding  

DOE Patents (OSTI)

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

1987-08-10T23:59:59.000Z

180

Method for controlling gas metal arc welding  

DOE Patents (OSTI)

The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

Smartt, Herschel B. (Idaho Falls, ID); Einerson, Carolyn J. (Idaho Falls, ID); Watkins, Arthur D. (Idaho Falls, ID)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Towards the Prediction of Weld Metal Properties  

E-Print Network (OSTI)

assumed to be negligible compared to other contri- 2 Transfer of melted coating to weld pool Metal droplet covered with molten slag Parent metal Figure 1.1: Schematic diagram of the MMA welding process. (After B. Lundqvist (1977), "Sandvik Welding Handbook... ., SVENSSON, L.-E., and GRETOFT, B. (1986), "'Weld- ing and Performance of Pipe Welds", [Proc. Conj.], Welding Institute, Abington, U.K., paper 17. BHADESHIA, H. K. D. H., SVENSSON, L.-E., and GRETOFT, B. (1987), "Weld- ing Metallurgy of Structural Steels...

Sugden, Alastair Allen Brockbank

1989-01-31T23:59:59.000Z

182

Performance Optimization of a Fan System- Overcoming Impacts of Modified Design Criteria Due to Regulatory Requirements and Changed Operating Conditions  

E-Print Network (OSTI)

The Louisiana Pacific mill in Tomahawk Wisconsin manufactures oriented-strand board. Several large induced-draft fans and combustion-air blowers were operating inefficiently at this mill. This case study highlights a systems approach that was applied to address fan inefficiency. Energy savings from optimizing the system are estimated to be 338 kW, nearly half of the original measured input power of 678 kW. The project is currently being implemented and will have a payback period of less than 8 months. The opportunities here are typical of opportunities thought to exist in most industrial plants. In this case, process needs changed due to environmental regulations and change of location, but the system did not, leading to low overall system efficiency.

Wroblewski, R. G.; Preis, F.; Smith, R.

1997-04-01T23:59:59.000Z

183

Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool  

DOE Patents (OSTI)

An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

Heiple, C.R.; Burgardt, P.

1984-03-13T23:59:59.000Z

184

Organizational Epidemiology and Energy Facilities: Review of Antecedent Conditions for Human Performance Optimization and Error Prev ention  

Science Conference Proceedings (OSTI)

This report reviews background literature and prior research and experience related to causes of human error and prediction of human performance in energy facilities and other settings. Strategic research is recommended to explore the influence of organizational factors and other antecedent conditions on human performance and, thus, on outcomes such as facility productivity and safety.

2002-04-24T23:59:59.000Z

185

Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation  

Science Conference Proceedings (OSTI)

The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

2012-06-28T23:59:59.000Z

186

Robotic Welding, Intelligence and Automation, 1st edition  

Science Conference Proceedings (OSTI)

Thisresearch reportbrings together presenttrends in advanced welding robots, robotic welding, artificial intelligent and automatic welding. It includes important technical subjects on welding robots such as intelligent technologies and systems, and design ...

Tzyh-Jong Tarn; Tzyh-Jong Tarn; Shan-Ben Chen; Changjiu Zhou

2007-09-01T23:59:59.000Z

187

Welding and Repair Technology Center: Nuclear Weld Overlay Training  

Science Conference Proceedings (OSTI)

A major goal for nuclear utilities is to reduce overall operations and maintenance costs. The Nuclear Weld Overlay Training provided in this report supports this goal by informing member utilities that are preparing for a weld overlay campaign. This technical report reflects EPRI’s commitment to serving its members by developing practical tools and guidance in response to specific needs of the industry.ObjectivesThis document is intended to be used by ...

2013-11-27T23:59:59.000Z

188

Welding and Repair Technology Center: Underwater Laser Welding Studies  

Science Conference Proceedings (OSTI)

Repair of internal reactor components has been a continuing challenge for the nuclear industry. High radiation levels, underwater environment, and altered material weldability have made traditional repair methods more difficult to use for internal component repair. One of the key issues is to make seal-weld repairs on cracks that might exist due to stress corrosion or fatigue. Sealing of these cracks by welding might be necessary to maintain pressure boundary or flow requirements. During this research pr...

2009-12-21T23:59:59.000Z

189

Microstructure and Strength Characteristics of Alloy 617 Welds  

Science Conference Proceedings (OSTI)

Three types of high-temperature joints were created from alloy 617 base metal: fusion welds, braze joints, and diffusion bonds. The microstructures of all joint types and tensile properties of fusion welds and braze joints were characterized. Sound fusion welds were created by the GTAW process with alloy 617 filler wire. Cross-weld tensile strengths were equal to the parent metal at temperatures of 25, 800, and 1000°C; ductilities of the joints were only slightly lower than that of the parent metal. Failure occurred in the weld fusion zone at room temperature and in the parent metal at elevated temperatures. Incomplete wetting occurred in joints produced by vacuum brazing using AWS BNi-1 braze alloy, believed to be due to tenacious Al and Ti oxide formation. Incompletely bonded butt joints showed relatively poor tensile properties. A second set of braze joints has been created with faying surfaces electroplated with pure Ni prior to brazing; characterization of these joints is in progress. Conditions resulting in good diffusion bonds characterized by grain growth across the bondline and no porosity were determined: vacuum bonding at 1150°C for 3 hours with an initial uniaxial stress of 20 MPa (constant ram displacement). A 15 µm thick pure Ni interlayer was needed to achieve grain growth across the bondline. Tensile testing of diffusion bonds is in progress

T.C. Totemeier; H. Tian; D.E. Clark; J.A. Simpson

2005-06-01T23:59:59.000Z

190

Burst Test Qualification Analysis of DWPF Canister-Plug Weld  

SciTech Connect

The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B&PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels.

Gupta, N.K.; Gong, Chung

1995-02-01T23:59:59.000Z

191

Method for enhanced control of welding processes  

DOE Patents (OSTI)

Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

Sheaffer, Donald A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA); Tung, David M. (Livermore, CA); Schroder, Kevin (Pleasanton, CA)

2000-01-01T23:59:59.000Z

192

Welding industry. Potential for energy conservation  

SciTech Connect

An estimate is presented of the annual primary energy consumption by welding processes in the US, as 3.2 to 8.8 x 10/sup 16/J (3.0 to 8.4 x 10/sup 13/ Btu), and energy conservation opportunities are discussed. The estimate has been confined to the primary energy required to actually produce coalescence. Indirect energy consumption - such as that for joint preparation, preheat, postweld heat treatment, fume removal, or other operations required by welding - has been discussed but not included in the total. The heat content of fuels used in most US power plants is termed primary energy, and it is the amount of primary energy required for welding that is estimated in this work. Welding processes have been categorized as follows: those for which energy consumption may be related to use of consumable materials, those for which it may be related to quantity of manufactured product, those for which it may be related to the number of welding machines, and those for which only limited data are available. Methodologies have been developed to estimate the energy consumption for the first three categories. The major consumers of welding energy are oxyfuel gas welding, arc welding, and resistance welding. It is significant that arc welding accounts for over 90% of electrode and filler wire consumption, yet oxyfuel gas welding accounts for about 47% of energy consumption. Arc welding consumes about 39%, and resistance welding less than 15% of the total welding energy.

Smartt, H.B.; Hood, D.W.; Jensen, W.P.

1980-04-01T23:59:59.000Z

193

Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission  

SciTech Connect

General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a {sup 238}Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds.

Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

1998-12-31T23:59:59.000Z

194

Residual Stress Tensor in a Compact Tension Weld Specimen  

Science Conference Proceedings (OSTI)

Presentation Title, Residual Stress Tensor in a Compact Tension Weld Specimen ... austenitic stainless steel (Esshete 1250) compact tension weld specimen.

195

Welding arc gap ionization device  

SciTech Connect

An alpha emitting isotope is positioned near the tip of a TIG welding electrode so that the alpha radiation can provide an ionized path between the electrode and the workpiece.

Schweikhardt, George M. (Richland, WA)

1976-01-01T23:59:59.000Z

196

Experiments on automatic seam detection for a MIG welding robot  

Science Conference Proceedings (OSTI)

To make robotic welding more flexible, vision systems are used to detect the weld seam and plan a path for the robot to follow. In this paper an image processing technique is introduced that can automatically detect the weld seam in a "butt-weld" configuration. ... Keywords: arc welding robot, stereo vision, weld seam detection

Mitchell Dinham; Gu Fang; Jia Ju Zou

2011-09-01T23:59:59.000Z

197

Pipe weld crown removal device  

DOE Patents (OSTI)

This invention is comprised of a device that provides for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

Sword, C.K.; Sette, P.J.

1991-12-31T23:59:59.000Z

198

Comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)  

SciTech Connect

The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

Nunes, A.C. Jr.

1985-08-01T23:59:59.000Z

199

Upgraded HFIR Fuel Element Welding System  

Science Conference Proceedings (OSTI)

The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

Sease, John D [ORNL

2010-02-01T23:59:59.000Z

200

Crack growth rates of nickel alloy welds in a PWR environment.  

Science Conference Proceedings (OSTI)

In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

2006-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

202

ELEMENTS OF JOINT DESIGN FOR WELDING  

SciTech Connect

The design of joints which are to be fusion welded by any of the arc or gas processes is discussed. The designs are applicable to either manual or machine welding. (A.C.)

Koopman, K.H.

1958-06-01T23:59:59.000Z

203

Repair welding of fusion reactor components  

SciTech Connect

Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

Chin, B.A.

1993-05-15T23:59:59.000Z

204

Welding of Al- and Mg-alloys  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Joining of Advanced and Specialty Materials (JASM XIV): Welding of Al- and ... Do and Don't for Arc Welding of Aluminum: Israel Stol1; 1Alcoa

205

Resistance Welding: Fundamentals and Applications - TMS  

Science Conference Proceedings (OSTI)

Apr 5, 2006 ... If you are seeking welding basics, then this is the book for you. It covers the fundamentals of resistance spot welding (RSW) and applies them in ...

206

Advances in welding science and technology  

SciTech Connect

Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

David, S.A.; Babu, S.S.; Vitek, J.M.

1995-12-31T23:59:59.000Z

207

M-25, BUTT WELDS IN PROCESS PIPING  

SciTech Connect

Metal-arc and inert-gas shielded tungsten-arc processes were compared for circumferential butt welding of austenitic stainless steel process pipe. Inert-gas tungsten-arc welding was superior to other techniques. (C.J.G.)

Litman, A.P.

1958-07-10T23:59:59.000Z

208

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

209

Numerical simulation of linear fiction welding (LFW) processes  

Science Conference Proceedings (OSTI)

Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.

Fratini, L.; La Spisa, D. [University of Palermo-Dept. of Industrial engineering (Italy)

2011-05-04T23:59:59.000Z

210

Friction Stir Welding of Pipeline Steels  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Friction Stir Welding and Processing VII. Presentation Title, Friction Stir ...

211

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, Dennis E. (Broomfield, CO); Stompro, David A. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

212

Welding and Repair Technology Center: Overlay Handbook  

Science Conference Proceedings (OSTI)

The discovery of primary water stress corrosion cracking (PWSCC) in pressurized water reactor (PWR) vessel heads and components has led to the use of corrosion-resistant high-nickel welding alloys for repair and mitigation activities. To date, more than 30 PWR units have applied weld overlays to pressurizer welds with detected indications or have applied them as a mitigation method. Although the application of weld overlays appears to be a viable solution to managing this difficult issue, the utility ind...

2012-06-29T23:59:59.000Z

213

Pre-resistance-welding resistance check  

DOE Patents (OSTI)

A preweld resistance check for resistance welding machines uses an open circuited measurement to determine the welding machine resistance, a closed circuit measurement to determine the parallel resistance of a workpiece set and the machine, and a calculation to determine the resistance of the workpiece set. Any variation in workpiece set or machine resistance is an indication that the weld may be different from a control weld.

Destefan, D.E.; Stompro, D.A.

1989-06-08T23:59:59.000Z

214

Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates  

Science Conference Proceedings (OSTI)

The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

Mousavi, S. A. A. Akbari; Zareie, H. R. [School of Metallurgy and Materials Engineering, University College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

2011-01-17T23:59:59.000Z

215

Welding representation for training under VR environments  

Science Conference Proceedings (OSTI)

In this paper, we present a virtual training system which realistically represents the situation of real welding. First of all, we built a database about welding outputs such as the shape of bead which is the deposit outcome resulting from inputs of ... Keywords: simulation, training, virtual reality, visualization, welding

Dongsik Jo; Yongwan Kim; Ungyeon Yang; Jinsung Choi; Ki-Hong Kim; Gun A. Lee; Yeong-Do Park; Young Whan Park

2011-12-01T23:59:59.000Z

216

NEW DEVELOPMENTS IN THE WELDING INDUSTRY  

SciTech Connect

A brief review is given of some of the developments and problems in the welding industry. These developments and problems are discussed in terms of new and improved welding processes, welding processes for new materials, improved design principles, and the technical education and training programs in this field. (N.W.R.)

Burt, R.G.

1961-10-01T23:59:59.000Z

217

Mechanized welding in a glove box  

SciTech Connect

An orbital-tungsten-arc welding gun was installed in a helium glove box to automatically weld final end closures to capsules that were to contain an atmosphere of required composition and quality. A fixture, tooling, and procedures were developed to automatically position the tungsten electrode repetitively with respect to the end of the tube to be welded closed. (auth)

Pugacz, M.A.; Walker, D.E.

1975-10-01T23:59:59.000Z

218

Applications of explosion-welded transition joints  

SciTech Connect

Explosion welding is presented as an alternate process of joining dissimilar metals. The process is compared with brazing, the most appropriate process for comparison, and the bond zone obtained through explosion welding is characterized. Several applications are described where transition joints were made from explosion-bonded dissimilar-metal combinations for subsequent assembly through fusion welding.

Popoff, A.A.; Casey, H.

1977-01-01T23:59:59.000Z

219

Interstitial embrittlement in vanadium laser welds  

DOE Green Energy (OSTI)

Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at {minus}55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

Strum, M.J.; Wagner, L.M.

1992-02-24T23:59:59.000Z

220

Interstitial embrittlement in vanadium laser welds  

DOE Green Energy (OSTI)

Efficiencies of interstitial absorption during pulsed ND:YAG laser welding of vanadium were compared for nitrogen, oxygen, hydrogen, and water vapor. Influence of interstitial levels on the embrittlement of vanadium laser welds was also measured. For 1000 ppM contaminant levels in the weld atmosphere, weld hydrogen content increased 9 ppM, nitrogen content increased 190 ppM, and oxygen content increased from 500 ppM relative to baseplate levels. Welds in ultrahigh-purity argon atmospheres contained 3 ppM hydrogen, 40 ppM nitrogen, and 250 ppM oxygen. Longitudinal all-weld tensile specimens and notched-plate specimens were used to measure weld metal tensile properties at [minus]55C. All of the laser weld notch-strength ratios exceeded unity and weld metal tensile strengths all exceeded the baseplate values. For 1000 ppM atmosphere contaminant levels, the only significant decrease in ductility, as measured by reduction-in-area at fracture was for the weld atmosphere containing oxygen. Weld atmospheres containing 1% nitrogen also reduced the weld ductility, and resulted in the onset of cleavage fracture.

Strum, M.J.; Wagner, L.M.

1992-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Survey of Optimization Research at Sandia National Laboratories  

E-Print Network (OSTI)

to Provide Laser Weld Schedules R. Eisler Optimization of Commercial Nuclear Reactor Fuel Management Mark, M. Eldred, R. Hogan Optimization of CVD Reactor Design using Parallel Reacting Flow Simulation. A; Optimization of CVD Reactor Design using Parallel Reacting Flow Simulation. A. Salinger, S. Hutchinson, W. Hart

Neumaier, Arnold

222

Percussive arc welding apparatus  

DOE Patents (OSTI)

A percussive arc welding apparatus includes a generally cylindrical actuator body having front and rear end portions and defining an internal recess. The front end of the body includes an opening. A solenoid assembly is provided in the rear end portion in the internal recess of the body, and an actuator shaft assembly is provided in the front end portion in the internal recess of the actuator body. The actuator shaft assembly includes a generally cylindrical actuator block having first and second end portions, and an actuator shaft having a front end extending through the opening in the actuator body, and the rear end connected to the first end portion of the actuator block. The second end portion of the actuator block is in operational engagement with the solenoid shaft by a non-rigid connection to reduce the adverse rebound effects of the actuator shaft. A generally transversely extending pin is rigidly secured to the rear end of the shaft. One end of the pin is received in a slot in the nose housing sleeve to prevent rotation of the actuator shaft during operation of the apparatus.

Hollar, Jr., Donald L. (Overland Park, KS)

2002-01-01T23:59:59.000Z

223

Welding and Repair Technology Center: Gas Metal Arc Welding Lessons  

Science Conference Proceedings (OSTI)

Modern gas metal arc welding (GMAW) systems no longer operate with a symmetric, fixed pulse. The new systems have closed-loop feedback and are waveform-controlled systems that vary the arc characteristics hundreds of times per second to stabilize the arc. The main advantage of these systems is the ease of operation when manual applications are required or out-of-position welding is applied. The systems allow flexibility in the stand-off distance (contact tip to work distance) while maintaining an ...

2013-09-30T23:59:59.000Z

224

Manual Plasma Welding (PTAW) Evaluation with Powder Hardfacing Alloys  

Science Conference Proceedings (OSTI)

Repair practices for hardfacing alloys using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) have been evaluated in the past on hardfacing applied with various automated welding processes. Accessibility often limits the use of these welding processes in manual repair applications. Recent developments in plasma transfer arc welding (PTAW) powder welding systems have prompted evaluations of manual repair practices for hardfacing materials. The PTAW powder welding process feeds the fil...

2001-12-18T23:59:59.000Z

225

Intraluminal tissue welding for anastomosis  

DOE Patents (OSTI)

A method and device are provided for performing intraluminal tissue welding for anastomosis of a hollow organ. A retractable catheter assembly is delivered through the hollow organ and consists of a catheter connected to an optical fiber, an inflatable balloon, and a biocompatible patch mounted on the balloon. The disconnected ends of the hollow organ are brought together on the catheter assembly, and upon inflation of the balloon, the free ends are held together on the balloon to form a continuous channel while the patch is deployed against the inner wall of the hollow organ. The ends are joined or "welded" using laser radiation transmitted through the optical fiber to the patch. A thin layer of a light-absorbing dye on the patch can provide a target for welding. The patch may also contain a bonding agent to strengthen the bond. The laser radiation delivered has a pulse profile to minimize tissue damage.

Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Zimmerman, George (Lafayette, CA); Jacques, Steven (Portland, OR)

1998-10-27T23:59:59.000Z

226

Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds  

DOE Green Energy (OSTI)

Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

2001-03-18T23:59:59.000Z

227

Advances in welding science - a perspective  

SciTech Connect

The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.

David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Babu, S.S.; DebRoy, T. [Pennsylvania State Univ., University Park, PA (United States)

1995-02-01T23:59:59.000Z

228

Optical penetration sensor for pulsed laser welding  

SciTech Connect

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

229

Improvement of reliability of welding by in-process sensing and control: development of smart welding machines for girth welding of pipes. First progress report  

SciTech Connect

Progress is reported in a research program to improve the reliability of welding by developing smart welding machine which will be equipped with sensors, artificial intelligence, and actuators for reducing welding errors by one or two orders of magnitude. (FS)

Converti, J.; Dror, Y.; Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

1979-11-30T23:59:59.000Z

230

Shimmed electron beam welding process  

DOE Patents (OSTI)

A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

2002-01-01T23:59:59.000Z

231

Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel [Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals > Laser Welding of Metals > Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Laser Welding and Post Weld Treatment of Modified 9Cr-1MoVNb Steel Zhiyue Xu Nuclear Engineering Division of Argonne National Laboratory

232

Refractory Alloy Welding [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Refractory Alloy Welding Refractory Alloy Welding Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Refractory Alloy Welding Project description: Welding of refractory metals such as vanadium alloys. Category: internal R&D project Bookmark and Share Butt weld of two 4 mm thick V-4Cr-4Ti plates made by a pulsed Nd:YAG laser

233

Resistance upset welding for vessel fabrication  

SciTech Connect

Solid-state resistance upset welding has been successfully applied to fabrication of small vessels. The process has advantages compared with the fusion welding processes currently used to join the two halves of such vessels. These advantages result from the improved metallurgical properties of the weld zone and the simplicity of the welding process. Spherical and cylindrical shapes have been fabricated using the upset welding process. Nondestructive and destructive tests have shown excellent weld strength. Storage tests have demonstrated long term compatibility of the welds for cylindrical parts made from 304L stainless steel that have been in storage for eight years. Spherical vessels and reinforced desip vessels made from forged 21-6-9 stainless steel have been prepared for storage.

Kanne, W.R. Jr.

1992-01-01T23:59:59.000Z

234

Resistance upset welding for vessel fabrication  

SciTech Connect

Solid-state resistance upset welding has been successfully applied to fabrication of small vessels. The process has advantages compared with the fusion welding processes currently used to join the two halves of such vessels. These advantages result from the improved metallurgical properties of the weld zone and the simplicity of the welding process. Spherical and cylindrical shapes have been fabricated using the upset welding process. Nondestructive and destructive tests have shown excellent weld strength. Storage tests have demonstrated long term compatibility of the welds for cylindrical parts made from 304L stainless steel that have been in storage for eight years. Spherical vessels and reinforced desip vessels made from forged 21-6-9 stainless steel have been prepared for storage.

Kanne, W.R. Jr.

1992-10-01T23:59:59.000Z

235

APPARATUS AND METHOD FOR ARC WELDING  

DOE Patents (OSTI)

An apparatus and method are given for forming a welding arc which is rotated by a magnetic field very rapidly about an annular electrode so that a weld is produced simultaneously over all points of an annular or closed path. This invention inhibits outgassing from the jacket of a fuel slug which is being welded by adjusting the pressure throughout the welding cycle to establish a balance between the gas pressure within the jacket and that of the atmosphere surrounding the jacket. Furthermore, an improved control of the magnetic field producing rotation of the welding arc is disclosed whereby this rotation is prevented from splashing about the metal being welded as the welding arc makes it molten.

Noland, R.A.; Stone, C.C.

1960-05-10T23:59:59.000Z

236

The Effect of Temperature on the Breakdown and Repassivation Potentials of Welded Alloy 22 In 5 M CACI2  

Science Conference Proceedings (OSTI)

The study of the electrochemical behavior of wrought and welded Alloy 22 was carried out in 5 M CaCl{sub 2} as a function of temperatures between 45 and 120 C with Multiple Crevice Assembly (MCA) specimens. The susceptibility to corrosion was found to increase with increase in electrolyte temperature in both the wrought (in the mill annealed condition) and the welded forms of the alloy. The weld metal was found to be less susceptible to localized corrosion under the conditions tested.

G.O. IIevbare

2006-07-05T23:59:59.000Z

237

Brief summary of reactor core component welding for the Fast Flux Test Facility (FFTF)  

SciTech Connect

Included are descriptions of welding methods and joint design, welding equipment, and qualification tests. (DG)

Brown, W.F.

1974-04-15T23:59:59.000Z

238

PARALLEL OPERATION OF WELDING GENERATORS  

SciTech Connect

Eight 900-amp, 36-kw direct current welding generators driven by eight 60-hp induction motors were operated in parallel to supply up to 7200 amp to resistance loads for heat transfer studies. A description and circuit designs of this installation, which provides safety interlocks and permits sectionalized operation for separate leads, are given. (auth)

Butler, B.H.

1960-06-01T23:59:59.000Z

239

Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references  

SciTech Connect

Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

Grotke, G.E.

1980-04-01T23:59:59.000Z

240

Optimization and AMS Modeling for Design of an Electrostatic Vibration Energy Harvester's Conditioning Circuit with an Auto-Adaptive Process to the External Vibration Changes  

E-Print Network (OSTI)

Electrostatic transducers for vibration energy scavenging have been an object to numerous studies, but are still facing major issues relating to their conditioning circuit. One of the most popular ones uses a charge pump and a flyback circuit based on a Buck DC-DC converter (Fig. 1). A commutation between the energy accumulation in the charge pump and the recharge of the buffer capacitor Cres is assured by a switch which is the major bottleneck in the energy harvester circuit. The commutation timing of the switch determines the efficiency of the energy harvesting. In previous papers [1] the switch commutates periodically with some fixed duty ratio. However, this solution is not appropriate when the environment parameters, e.g. the vibration frequency, change. We found that the switching should be ordered by the internal state of the circuit, an not by some fixed timing scenario. We presents how to find the optimal operation mode of the harvester. To validate the study, the system was modeled using a mixed VHD...

Galayko, Dimitri; Paracha, Ayyaz Mahmood

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Automated welding of nuclear piping systems  

SciTech Connect

Automated welding, or more broadly, automatic and mechanized welding processes, has found a role in nuclear power plant fabrication. This role has expanded from a rare or isolated application to relatively frequent usage in the last five years. More importantly, it is envisioned that use of automated welding will be increasing at an accelerated rate as broader exposure to this technology is achieved. Among the various pipe welding processes, the only one which has been developed for mechanized and automated nuclear piping welding is the gas tungsten arc welding (GTAW) process. This development has occurred in the past 10 to 15 years through the steady improvement and commmercialization of orbiting welding heads. Improvements in GTAW power supplies, control systems, etc., have aided this commercialization but the main element and pacing item has been the welding head itself. In order to review the status of mechanized and automated nuclear pipe welding, the topics of basic process equipment, joint design, fit-up requirements, welding parameters, and producibility will be addressed. In addition, anticipated future developments in automated systems will be discussed.

Hood, D.W.

1979-01-01T23:59:59.000Z

242

The science and practice of welding. Volume 2: The practice of welding, 10th edition  

SciTech Connect

The book is comprised of 8 chapters that treat the various welding practices, and 11 appendices. Chapter 1 is a good introduction to basic welding (shielded metal arc), and US readers will be able to use this section as a rough guide to British and EN terms. The next three chapters cover MIG, TIG, and resistance welding, while Chapter 5 is titled ''Additional Processes of Welding.'' In that chapter, submerged arc welding is given the most extensive treatment. Chapter 6 and 7 deal with oxyacetylene welding and cutting processes, respectively, and Chapter 8 contains a wonderful introductory treatise on the welding of plastics. Among the 11 appendices, some appear to be little more than advertising. In general, this book is not a college level text for a welding engineer. At best it is a good occasional reference manual for shop owners so that they can appear knowledgeable to the engineers in the employ.

Davies, A.C.

1993-01-01T23:59:59.000Z

243

HIGH-VACUUM ELECTRON-BEAM FUSION WELDING  

SciTech Connect

A newly developed welding process is described for welding in a high vacuum without introducing contaminating material into the system as a part of the welding operation. (J.E.D.)

Wyman, W.L.

1958-02-01T23:59:59.000Z

244

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds  

SciTech Connect

The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

DebRoy, T.

2000-11-17T23:59:59.000Z

245

Exploiting welding in production technology. International conference held at London, 22--24 April, 1975. Volume 1. Papers  

SciTech Connect

Twenty-eight papers are included, grouped into sessions dealing with arc welding, inspection, weld preparation, positional welding, measurement and removal of welding fume, electron-beam welding, vacuum brazing, arc plasma process, and resistance and microfriction welding. (DLC)

1975-01-01T23:59:59.000Z

246

Unique applications of personal computers in the welding environment  

SciTech Connect

The personal computer was found to be useful in supporting a variety of welding applications: 3-D representation of crack propagation using CADD software, storage and retrieval of photographic data using an image capture board, automated positioning of the welding electrode for GTA welding, interactive computer based voice communication for welding operations, surface temperature measurements of welded structures, and inventory control of weld material through use of bar codes.

Glickstein, S.S.

1990-12-31T23:59:59.000Z

247

GTAW Flux-Cored Wires for Open Root SS Welding  

Science Conference Proceedings (OSTI)

Gas tungsten arc welding (GTAW) procedures for stainless steel open root welding applications typically require purging or shielding with an inert gas (i.e. argon), during the root and subsequent hot passes, to assist with wetting and to prevent atmospheric contamination of the exposed surface. Lack of adequate purging, or welding without a purge, typically results in weld defects both on the surface and within the weld deposit, such as porosity and poor bead profile. Poor root weld profile such as lack-...

2004-06-11T23:59:59.000Z

248

Method and device for frictional welding  

SciTech Connect

A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

Peacock, Harold B. (867 N. Belair Rd., Evans, GA 30809)

1992-01-01T23:59:59.000Z

249

Method and device for frictional welding  

DOE Patents (OSTI)

A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

Peacock, H.B.

1992-10-13T23:59:59.000Z

250

Infrared sensing techniques for adaptive robotic welding  

SciTech Connect

The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process.

Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

1986-01-01T23:59:59.000Z

251

Passively damped vibration welding system and method  

DOE Patents (OSTI)

A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

2013-04-02T23:59:59.000Z

252

Method and device for frictional welding  

DOE Patents (OSTI)

A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

Peacock, H.B.

1991-01-01T23:59:59.000Z

253

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-01-01T23:59:59.000Z

254

Automated Fuel Element Closure Welding System  

SciTech Connect

The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

Wahlquist, D.R.

1993-03-01T23:59:59.000Z

255

Welding and Repair Technology Center: Repair Welding Handbook  

Science Conference Proceedings (OSTI)

During the life of a power plant, it often becomes necessary to perform weld repairs of various materials in order to continue safe operation. Much work has been completed in this area to assist utilities with choosing appropriate repair techniques based on the materials involved and the damage mechanism that makes the repair necessary. This report captures in one resource a variety of repair methods that have been proven to be effective.

2012-05-14T23:59:59.000Z

256

Transient Model for Keyhole During Laser Welding  

SciTech Connect

A novel approach to simulating the dominant dynamic processes present during concentrated energy beam welding of metals is presented. A model for transient behavior of the front keyhole wall is developed. It is assumed that keyhole propagation is dominated by evaporation recoil-driven melt expulsion from the beam interaction zone. Results from the model show keyhole instabilities consistent with experimental observations of metal welding, metal cutting and ice welding.

Bragg, W.D.; Damkroger, B.; Kempka, S.; Semak, V.V.

1999-03-05T23:59:59.000Z

257

Pages that link to "Apparent Welding Textures In Altered Pumice...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Apparent Welding Textures In Altered Pumice-Rich Rocks" Apparent Welding Textures In Altered...

258

Friction Stir Welding and Processing III TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

Friction Stir Welding of Dissimilar Aluminum Alloys [pp. 35] R. Cook ... Fatigue of Pre-Corroded 2024-T3 Friction Stir Welds: Experiment and Prediction [pp. 43

259

Experimental and Numerical Investigations on Laser welding of ...  

Science Conference Proceedings (OSTI)

Through the numerical simulation, the weld penetration, the geometry of the ... A high-speed CCD camera is used to real-time monitor the laser welding process.

260

SOME EXPERIENCES IN THE WELD FABRICATION OF REFRACTORY METALS  

SciTech Connect

Discussion is given on the welding fabrication of tungsten, molybdenum, niobium, and tantalum. Properties which make the four refractory metals important are tabulatcd along with titanium which is given for comparison. Extensive evaluation was conducted using the gas, tungsten arc welding process employing both manual and machine welding. Design data were obtained exclusively from machine welded sheet materials. Flash welding, resistance spot welding and brazing, electron beam welding, and high frequency resistance welding processes were also applied to molybdenum alloys. The oxidation of molybdenum, tantalum, and niobium in flowing air at 2000 deg F is also given. (P.C.H.)

Thompson, E.G.

1961-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Argonne Transportation - Weld Monitor at DaimlerChrysler  

NLE Websites -- All DOE Office Websites (Extended Search)

Evanecky, area technical manager at ITP. Throughout the automotive industry, laser welding has been rapidly overtaking traditional arc welding technology as the state of the...

262

Changes related to "Apparent Welding Textures In Altered Pumice...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Apparent Welding Textures In Altered Pumice-Rich Rocks" Apparent Welding Textures In Altered...

263

Computational Weld Mechanics of Hot Crack Nucleation in Nickel ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Computational weld mechanics (CWM) is used to estimate the likelihood of hot crack nucleation in a welded joint. A hot crack nucleates when ...

264

Prediction of ? Phase Embrittlement in 316FR Stainless Steel Welds ...  

Science Conference Proceedings (OSTI)

... fast breeder reactors was examined for 316FR stainless steel welds with different ... Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at Low ...

265

SELECTED RESOURCES: Fusion Welding of Superalloys - TMS  

Science Conference Proceedings (OSTI)

May 31, 2007 ... This listing provides links to resources on fusion welding of superalloys. Two formats of the information are presented for your convenience: pdf ...

266

Friction Stir Welding: High Temperature Materials II  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Enhanced Friction Stir Welding of Titanium Using Elemental Foils: Richard Fonda 1; Keith Knipling1; 1Naval Research Laboratory

267

Welding the AT-400A Containment Vessel  

SciTech Connect

Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

Brandon, E.

1998-11-01T23:59:59.000Z

268

Ultrasonic Welding II - Programmaster.org  

Science Conference Proceedings (OSTI)

This concerns progress of hard- and software for ultrasonic welding systems, new joints and especially their mechanical and physical properties. Apart from ...

269

Laser Welding for Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants · Evaluation of Nanofeature ...

270

Welding the AT-400A Containment Vessel  

SciTech Connect

Early in 1994, the Department of Energy assigned Sandia National Laboratories the responsibility for designing and providing the welding system for the girth weld for the AT-400A containment vessel. (The AT-400A container is employed for the shipment and long-term storage of the nuclear weapon pits being returned from the nation's nuclear arsenal.) Mason Hanger Corporation's Pantex Plant was chosen to be the production facility. The project was successfully completed by providing and implementing a turnkey welding system and qualified welding procedure at the Pantex Plant. The welding system was transferred to Pantex and a pilot lot of 20 AT-400A containers with W48 pits was welded in August 1997. This document is intended to bring together the AT-400A welding system and product (girth weld) requirements and the activities conducted to meet those requirements. This document alone is not a complete compilation of the welding development activities but is meant to be a summary to be used with the applicable references.

Brandon, E.

1998-11-01T23:59:59.000Z

271

Across Inertia Friction Welded Alloy 720Li  

Science Conference Proceedings (OSTI)

kinetic energy stored in the rotating flywheel is dissipated as heat through friction/ shearing at the weld interface. In this way, it is possible to join advanced ...

272

Improvement of reliability of welding by in-process sensing and control (development of smart welding machines for girth welding of pipes). Final report  

SciTech Connect

Closed-loop control of the welding variables represents a promising, cost-effective approach to improving weld quality and therefore reducing the total cost of producing welded structures. The ultimate goal is to place all significant weld variables under direct closed-loop control; this contrasts with preprogrammed machines which place the welding equipment under control. As the first step, an overall strategy has been formulated and an investigation of weld pool geometry control for gas tungsten arc process has been completed. The research activities were divided into the areas of arc phenomena, weld pool phenomena, sensing techniques and control activities.

Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

1983-04-01T23:59:59.000Z

273

Welding shield for coupling heaters  

DOE Patents (OSTI)

Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

Menotti, James Louis (Dickinson, TX)

2010-03-09T23:59:59.000Z

274

FUSION WELDING METHOD AND APPARATUS  

DOE Patents (OSTI)

An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

Wyman, W.L.; Steinkamp, W.I.

1961-01-17T23:59:59.000Z

275

Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers  

DOE Green Energy (OSTI)

The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

2011-12-01T23:59:59.000Z

276

Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel  

Science Conference Proceedings (OSTI)

Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu [Mechanical Engineering Department, Jadavpur University, Kolkata-700032 (India)

2011-01-17T23:59:59.000Z

277

Influence of Thermal Aging on the Mechanical and Corrosion Properties of C-22 Alloy Welds  

DOE Green Energy (OSTI)

The phase stability of C-22 alloy (UNS No. N06022) gas tungsten arc welds was studied by aging samples at 427, 482, 538, 593, 649, 704, and 760 C for times up to 40,000 hours. The tensile properties and the Charpy impact toughness of these samples were measured in the as-welded condition as well as after aging. The corrosion resistance was measured using standard immersion tests in acidic ferric sulfate (ASTM G 28 A) and 2.5% hydrochloric acid solutions at the boiling point. The microstructures of weld samples were examined using scanning electron microscopy (SEM). One weld sample (aged 40,000 hours at 427 C) was examined using transmission electron microscopy (TEM). The structure of the unaged welds was dendritic with tetrahedrally close-packed (TCP) phase particles in the interdendritic regions. Long-range order was seen in the weld aged at 427 C for 40,000 hours and was assumed to also occur in other welds aged below approximately 600 C. At temperatures above about 600 C, TCP phase nucleation and growth of existing particles occurred. This precipitation occurred near the original particles presumably in regions of the highest molybdenum (Mo) segregation. Lower temperatures had little or no effect on the morphology of TCP phases. The C-22 weld samples were approximately 25% stronger but 30-40% less ductile than the base metal. Strengthening of the weld during aging occurred significantly only at 593 C for the aging times investigated. Because strengthening was not seen at higher temperatures, it was assumed to be due to ordering which has been seen in C-22 base metal at this temperature. A small amount of strengthening was seen at 427 C after 40,000 hours where ordering was just beginning. The Charpy impact toughness was reduced dramatically with aging. The time at which this reduction occurred decreased as aging temperature increased suggesting that the reduced ductility is due to the presence and growth of the brittle TCP phases. The corrosion rate of weld samples tested in the standard ASTM G 28 A solution and in a 2.5% HCl solution was higher than was seen with C-22 base metal. After aging, however, the corrosion rate of weld and base metal samples became comparable.

Edgecumbe Summers, T.S.; Rebak, R.B.; Seeley, R.R.

2000-06-15T23:59:59.000Z

278

Estimate of the allowable dimensions of diagnosed defects in category III and IV welded pipeline joints{sup 1}  

SciTech Connect

An approach for estimating the permissible dimensions of technological defects in butt welded joints in category III and IV pipelines is described. The allowable size of a welding defect is determined from the condition of compliance with the specifications on strength for a reference cross section (damaged joint) of the pipeline taking into account its weakening by a given defect.With regard to the fairly widespread discovery of technological defects in butt welded joints during diagnostics of auxiliary pipelines for thermal electric power plants, the proposed approach can be used in practice by repair and consulting organizations.

Grin', E. A.; Bochkarev, V. I. [JSC 'All-Russia Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)] [JSC 'All-Russia Thermal Engineering Institute' (JSC 'VTI') (Russian Federation)

2013-01-15T23:59:59.000Z

279

SmartWeld working session for the GTS4  

SciTech Connect

Results from SmartWeld`s first working session involving in-progress designs is presented. The Welding Advisor component of SmartWeld was thoroughly exercised, evaluated all eleven welds of the selected part. The Welding Advisor is an expert system implemented with object-oriented techniques for knowledge representation. With two welding engineers in attendance, the recommendations of the Welding Advisor were thoroughly examined and critiqued for accuracy and for areas of improvement throughout the working session. The Weld Schedule Database component of SmartWeld was also exercised. It is a historical archive of proven, successful weld schedules that can be intelligently searched using the current context of SmartWeld`s problem solving state. On all eleven welds, the experts agreed that Welding Advisor recommended the most risk free options. As a result of the Advisor`s recommendation, six welds agreed completely with the experts, two welds had their joint geometry modified for production, and three welds were not modified but extra care was exercised during welding. 25 figs., 3 tabs.

Kleban, S. [Sandia National Labs., Albuquerque, NM (United States); Hicken, K.; Ng, R. [Sandia National Labs., Livermore, CA (United States); Fricke, B. [Allied Signal Kansas City Division, MO (United States)

1997-08-01T23:59:59.000Z

280

Manual tube-to-tubesheet welding torch  

DOE Patents (OSTI)

A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.

Kiefer, Joseph H. (Tampa, FL); Smith, Danny J. (Tampa, FL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Seal welded cast iron nuclear waste container  

SciTech Connect

This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

1987-01-01T23:59:59.000Z

282

Temperbead Qualification: Joint P3 Weld Qualification  

Science Conference Proceedings (OSTI)

This report outlines the procedure qualification for a new temperbead weld repair. After an initial failed qualification, the EPRI Repair and Replacement Applications Center (RRAC) teamed with Calvert Cliffs Nuclear Power Plant to perform a joint procedure qualification and, in doing so, assisted the industry by enabling general use of the new weld procedure.

2002-12-29T23:59:59.000Z

283

What makes an electric welding arc perform its required function  

SciTech Connect

The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

Correy, T.B.

1982-09-01T23:59:59.000Z

284

Adaptive feed-forward digital control of GTA welding  

SciTech Connect

Three control functions are performed - seam tracking, weld pattern selection, and pattern scaling. The controller uses a computer program specifically written for welding. Its use with a welding unit is sufficiently simple that it may be mastered by a person having conventional welding skills. 27 refs.

Scott, J.J.; Brandt, H.

1982-03-01T23:59:59.000Z

285

Numerical simulation of the electron beam welding process  

Science Conference Proceedings (OSTI)

Electron beam welding is a highly efficient and precise welding method that is being increasingly used in industrial manufacturing and is of growing importance in industry. Compared to other welding processes it offers the advantage of very low heat ... Keywords: 3D conical heat source, Electron beam welding (EBW), Heat-affected zone, Numerical simulation, Thermomechanical coupling analysis

Piotr Lacki; Konrad Adamus

2011-06-01T23:59:59.000Z

286

ELECTRON BEAM WELDING OF NUCLEAR FUEL CLADDING COMPONENTS  

SciTech Connect

The rapid technological development of the nuclear and space industries has placed a great demand on metal joining processes. One of the most promising processes is electron beam welding. Welding with the electron beam ofiers high integrity in addition to the ability to fabricate unusual configurations. Advanced nuclear fuels require both reliability and unusual designs for satisfactory operation under extreme conditions of temperature and stress. To investigate the problems and techniques involved in fabricating large, advanced nuclear fuel components from Zircaloy-2 material, several cladding pieces were designed and built using the electron beam process. These designs included five basic joint types for assembling the cladding. Destructive and nondestructive examinations were employed including corrosion testing and extensive metallographic examination. Weldment size, fit-up'' of the parts to be joined, fixturing and work carriage mechanisms, as they pertain to electron beam welding, are also discussed. The electron beam process has been demonstrated as a very satisfactory method for fabricating unusual fuel cladding. Fuel cladding components with lengths up to 8 ft have been fabricated for in-reactor irradiation. (auth)

Klein, R.F.

1963-10-01T23:59:59.000Z

287

Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology  

Science Conference Proceedings (OSTI)

Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

2005-06-30T23:59:59.000Z

288

Optimization Online  

E-Print Network (OSTI)

NEOS Optimization Server · NEOS Optimization Guide · Linear Programming FAQ · Nonlinear Programming FAQ · Mathematical Programming Glossary ...

289

Laser assisted non-consumable arc welding process development  

SciTech Connect

The employment of Laser Beam Welding (LBW) for many traditional arc welding applications is often limited by the inability of LBW to compensate for variations in the weld joint gap. This limitation is associated with fluctuations in the energy transfer efficiency along the weld joint. Since coupling of the laser beam to the workpiece is dependent on the maintenance of a stable absorption keyhole, perturbations to the weld pool can lead to decreased energy transfer and resultant weld defects. Because energy transfer in arc welding does not similarly depend on weld pool geometry, it is expected that combining these two processes together will lead to an enhanced fusion welding process that exhibits the advantages of both arc welding and LBW. Laser assisted non-consumable arc welds have been made on thin section aluminum. The welds combine the advantages of arc welding and laser welding, with enhanced penetration and fusion zone size. The use of a pulsed Nd:YAG laser with the combined process appears to be advantageous since this laser is effective in removing the aluminum oxide and thereby allowing operation with the tungsten electrode negative. The arc appears to increase the size of the weld and also to mitigate hot cracking tendencies that are common with the pulsed Nd:YAG laser.

Fuerschach, P.W.; Hooper, F.M.

1997-09-01T23:59:59.000Z

290

Materials Reliability Program: Validation of Welding Residual Stress Models for PWR Piping Dissimilar Metal Welds (MRP-271)  

Science Conference Proceedings (OSTI)

The residual stresses imparted by the welding process are a principal factor in primary water stress corrosion cracking (PWSCC) of Dissimilar Metal (DM) piping butt welds in PWRs. Analytical models are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations have demonstrated a high sensitivity to the welding residual stress distribution inputs. As part of the ...

2009-12-22T23:59:59.000Z

291

Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal  

Science Conference Proceedings (OSTI)

Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium conditions. However, the effect of heating and cooling rates on the phase transformation path due to non-equilibrium partitioning of alloying elements cannot be predicted by equilibrium phase diagrams. Also, it is unclear if there is retention of delta ferrite to room temperature due to compositional or thermal effects. This would dramatically affect the austenite to ferrite transformation due to carbon and nitrogen enrichment in the austenite.

Narayana, B [Ohio State University, The, Columbus; Mills, Michael J. [Ohio State University, The, Columbus; Specht, Eliot D [ORNL; Santella, Michael L [ORNL; Babu, Sudarsanam Suresh [Ohio State University, The, Columbus

2010-12-01T23:59:59.000Z

292

Modeling of fundamental phenomena in welds  

Science Conference Proceedings (OSTI)

Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

Zacharia, T.; Vitek, J.M. [Oak Ridge National Lab., TN (United States); Goldak, J.A. [Carleton Univ., Ottawa, Ontario (Canada); DebRoy, T.A. [Pennsylvania State Univ., University Park, PA (United States); Rappaz, M. [Ecole Polytechnique Federale de Lausanne (Switzerland); Bhadeshia, H.K.D.H. [Cambridge Univ. (United Kingdom)

1993-12-31T23:59:59.000Z

293

J10: Mechanical Properties and Welding Conditions of Monopile ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Recently, offshore wind energy market has grown rapidly due to exhaustion of satisfactory location on shore and needs of new energy source for  ...

294

CO/sub 2/ welding used to attach inspection manway to NASA hydrogen pressure vessel  

SciTech Connect

Welding of inspection manway for internal survey of a gaseous hydrogen storage vessel is described. Pre-welding activities are reviewed, along with welding operations, and in-process welding control. (JRD)

Palmer, G.; Conklin, D.

1976-09-01T23:59:59.000Z

295

Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs  

SciTech Connect

This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

1995-05-01T23:59:59.000Z

296

Welding and weldability of directionally solidified single crystal nickel-base super-alloys  

DOE Green Energy (OSTI)

The objective of this CRADA project was to investigate the weldability of polycrystalline, directionally-solidified, and single-crystal, nickel-base super-alloys. These materials are used extensively in turbine engine components. The ability to weld these materials is highly desirable in that it would greatly facilitate component fabrication. Welding of these materials would also have the potential benefit of allowing for the repair of cracked or worn components. Specifically, the program had four objectives: (1) to evaluate the weldability of nickel-base super-alloys; (2) to characterize the solidification microstructure of the welds; (3) to evaluate the phase stability of the weldments during exposure to service conditions; and (4) to determine the mechanical properties of the welds. Westinghouse Electric Corporation was to supply material for the program, in both as-case and heat-treated form. This was to include commercially available as well as experimental alloys developed at Westinghouse. ORNL was to perform weldability tests on the materials using a variety of welding procedures.

vitek, j.m.

1996-09-01T23:59:59.000Z

297

High Strength Stainless Steel Properties that Affect Resistance Welding  

Science Conference Proceedings (OSTI)

This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

Kanne, W.R.

2001-08-01T23:59:59.000Z

298

Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750  

Science Conference Proceedings (OSTI)

The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H{sub 2}SO{sub 4} media.

Tavares, S.S.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)]. E-mail: ssmtavares@terra.com.br; Pardal, J.M. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Lima, L.D. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil); Bastos, I.N. [Universidade do Estado do Rio de Janeiro (UERJ), Instituto Politecnico (IPRJ), Nova Friburgo/RJ (Brazil); Nascimento, A.M. [Universidade Estadual de Campinas (UNICAMP), Departamento de Engenharia Mecanica, Campinas/SP (Brazil); Souza, J.A. de [Universidade Federal Fluminense, Departamento de Engenharia Mecanica/PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi/RJ (Brazil)

2007-07-15T23:59:59.000Z

299

double-sided arc welding of az31b magnesium alloy sheet  

Science Conference Proceedings (OSTI)

Jul 20, 2012... tailor-welded blanks for forming automotive structural components. ... initial investigations suggest that visually acceptable symmetrical welds ...

300

Metallurgical Characteristics and Field Performances of Weld ...  

Science Conference Proceedings (OSTI)

Current talk highlights the weld overlays of a number of corrosion-resistant alloys that have been used successfully in waste-to-energy boilers, coal-fired boilers, ...

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

WeldingFabr&MetalForm  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Welding, Fabrication, and Metal Forming Manufacturing Technologies The department consists of three trades: weld- ing; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles proto- type hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified weld- ing, and assembly. The staff has experience managing a variety of activities: design modifi- cation assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

302

Friction Stir Welding and Processing II  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... Friction Stir Welding and Processing II by K.V. Jata, M.W. Mahoney, R.S. Mishra, S.L. Semiatin, and T. Lienert, editors ...

303

Friction Stir Welding: Light Materials II  

Science Conference Proceedings (OSTI)

Mar 6, 2013... interests to automotive industry due to fuel economy and emission regulation. .... a mixture solution of ice and water to freeze the microstructure. ... for the friction stir weld tool, have produced joints of adequate performance, ...

304

Friction stir welding of Kanthal APMT  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

305

Weld Simulation in X100 Pipeline Steel  

Science Conference Proceedings (OSTI)

Abstract Scope, The effect of gas metal arc weld (GMAW) parameters on the coarse-grain heat-affect zone (CGHAZ) of X100 pipeline steel has been studied by ...

306

The 'world's largest' Inconel waterwall weld overlay  

SciTech Connect

An 11,000 square foot Inconel 655 weld repaired severe wastage caused by low NOx firing with coal/petcoke at the Belledune generating station in New Brunswick, Canada. 1 ref., 1 fig., 3 photos.

MacLean, K.; Fournier, E.; Gomez-Grande, J.; Scandroli, T. [New Brunswick Power Generation (United States)

2009-11-15T23:59:59.000Z

307

WELDED SEAL-RING VACUUM CLOSURES  

SciTech Connect

The development of bakeable high-vacuum flanges for the ORNL PIG Facility is reported. The general design approach for this type flange is to obtain a bakeable vacuum seal by first welding thin metal rings to a set of heavy metal flanges, and then edge-welding the rings together. This design sllows the option of O-ring sealing for nonbaked operation. A number of flange designs are discussed together with fabrication inspection, testing, and installation and maintenance information. (auth)

Michelson, C.

1959-08-21T23:59:59.000Z

308

Laser Welding of Metals [Laser Applications Laboratory] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Welding of Metals Laser Welding of Metals Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Laser Welding of Metals Project description: High-speed laser welding of metals. Category: Project with industrial partner (Delphi Energy and Engine Management Systems) Bookmark and Share

309

Friction Stir Spot Welding of Advanced High Strength Steels  

Science Conference Proceedings (OSTI)

Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

2009-11-13T23:59:59.000Z

310

Welding  

Science Conference Proceedings (OSTI)

...due to required skills and labor intensity Possible high cost for capital equipment, especially for some

311

Welding of NOREM Iron-Base Hardfacing Alloy Wire Products: Procedures for Gas Tungsten Arc Welding  

Science Conference Proceedings (OSTI)

New wire products have been successfully fabricated and procedures developed for automatic gas tungsten arc welding of wear-resistant NOREM iron-base alloys. Research demonstrated that sound multi-layer welds on carbon and stainless steel substrates can be obtained without the use of preheating. These developments point to the advantages of NOREM alloys for field applications, such as valve refurbishing.

1992-09-01T23:59:59.000Z

312

Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics  

Science Conference Proceedings (OSTI)

The present work establishes a correlation between the laser transmission welding parameters and output variables though a nonlinear model, developed by applying artificial neural network (ANN). The process parameters of the model include laser power, ... Keywords: Artificial neural networks, Laser transmission welding, Regression analysis, Sensitivity analysis, Thermoplastics

Bappa Acherjee; Subrata Mondal; Bipan Tudu; Dipten Misra

2011-03-01T23:59:59.000Z

313

Completely Positive Reformulations for Polynomial Optimization  

E-Print Network (OSTI)

Condition (i) in Remark 1 ensures that the feasible set of (18) does not change ..... Optimization Handbook on Semidefinite, Conic and Polynomial Optimization,

314

Apparatus for maintaining aligment of a shrinking weld joint in an electron-beam welding operation  

DOE Patents (OSTI)

The invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignement with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a bias means for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base in indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

Trent, J.B.; Murphy, J.L.

1980-01-03T23:59:59.000Z

315

Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation  

SciTech Connect

The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

Trent, Jett B. (Knoxville, TN); Murphy, Jimmy L. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

316

Training Program EHS ~ 244: Resistance Spot Welding Safety Training  

NLE Websites -- All DOE Office Websites (Extended Search)

4: Resistance Spot Welding Safety Training 4: Resistance Spot Welding Safety Training Course Syllabus Subject Category: Resistance Spot Welding Course Prerequisite: None Course Length: 25 minutes Medical Approval: No Delivery Mode: Web-Based Course Goal: Participants will be introduced to resistance spot welding processes, hazards, and safe work practices. Course Objectives: By the end of this course, you will be able to: * Identify resistance spot welding processes * Identify hazards, safe work practices, and personal protective equipment associated with resistance spot welding * Recognize the purpose of resistance spot welding schedules * Locate resistance spot welding schedule Subject Matter Expert: Joe Dionne x 7586 Training Compliance: 29 CFR 1910 Subparts O & Z, 29 CFR 1926 Subparts J & Z

317

Repair welding of fusion reactor components. Second year technical report  

SciTech Connect

Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials.

Chin, B.A.

1993-05-15T23:59:59.000Z

318

Computer Simulation for Laser Welding of Thermoplastic Polymers  

Science Conference Proceedings (OSTI)

This paper presents an analytical approach to thermal behaviors of laser welding of polymers. Laser polymers processing leads to various thermal, photophysical, and photochemical processes within the bulk and on the material surface. The understanding ... Keywords: polymer, thermal analysis, welding

Ching-Yen Ho; Moa-Yu Wen; Chung Ma

2010-03-01T23:59:59.000Z

319

Report of the fourth BES Welding Research Program meeting  

SciTech Connect

Developments in DOE welding R and D programs, compiled and edited by Materials Technology Division, EG and G Idaho, Inc., were distributed to DOE Basic Energy Sciences and its welding program contractors for information and comment.

1981-12-01T23:59:59.000Z

320

Technology for the Examination of Boiler Tubing Dissimilar Metal Welds  

Science Conference Proceedings (OSTI)

In an effort to determine the optimum method for examination of fossil power plant dissimilar metal boiler tube welds, researchers obtained several samples removed from service, and applied various ultrasonic examination technology to these samples. The welds in these samples were made with either austenitic stainless steel weld metal or by the induction pressure method. The welds were then subjected to conventional and advanced ultrasonic examination in the laboratory. For all examination methods, there...

2011-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Friction Stir Welding and Processing of Nickel Based Superalloys  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Joining and Sustaining of Superalloys. Presentation Title, Friction Stir Welding ...

322

Effect of Welding Speed and Defocusing Distance on  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Laser Applications in Materials Processing. Presentation Title, Effect of Welding ...

323

Repair and Replacement Applications Center Joint Welding Procedure Qualification Program  

Science Conference Proceedings (OSTI)

At the request of the EPRI Repair and Replacement Applications Center subscribers, a Joint Welding Procedure Qualification Program was developed to provide a medium whereby multiple utilities can share in the qualification of specific welding procedures. The program was developed in such a manner that it will supplement existing utility welding qualification programs. Specifically the program incorporates the more stringent attributes of each utility's internal welding program while meeting the individua...

1997-11-12T23:59:59.000Z

324

Fundamentals of Friction Stir Welding and Processing Short Course  

Science Conference Proceedings (OSTI)

Meeting Home · Meeting Registration · Curriculum · About the Presenters · Housing · Sponsor · Download Flyer. Fundamentals of Friction Stir Welding and ...

325

Girth Weld Cracking at Ethanol Terminal Facilities - Programmaster ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Girth Weld Cracking at ...

326

Robotic laser welding: seam sensor and laser focal frame registration  

Science Conference Proceedings (OSTI)

Robotic laser welding places extreme demands on the spatial accuracy with which the robot must position the focal point of the laser with respect to the joint to be welded. The required level of accuracy is difficult to achieve in a production environment ... Keywords: Calibration, Laser welding, Robots, Seam tracking

J. P. Huissoon

2002-05-01T23:59:59.000Z

327

Welding austenitic steel clads for fast reactor fuel pins  

SciTech Connect

ABS>From symposium on fuel and elements for fast reactors; Brussels. Belgium (2 Jul 1973). Developmental programs aimed at fabrication of stainless steelclad PuO/sub 2/ fuel pins are described. Information and data are included on welding fast reactor fuel cans, methods of reducing the incidence of weld cracking, effects of weld stresses, and fuel plug design. (JRD)

Papeleux, P.; Flipot, A.J.; Lafontaine, I.

1973-01-01T23:59:59.000Z

328

Apparatus for the concurrent inspection of partially completed welds  

DOE Patents (OSTI)

An apparatus for the concurrent inspection of partially completed welds is described in which is utilized in combination with a moveable welder for forming a partially completed weld, and an ultrasonic generator mounted on a moveable welder in which is reciprocally moveable along a path of travel which is laterally disposed relative to the partially completed weld.

Smartt, Herschel B. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Larsen, Eric D. (Idaho Falls, ID); Bitsoi, Rodney J. (Ririe, ID); Perrenoud, Ben C. (Rigby, ID); Miller, Karen S. (Idaho Falls, ID); Pace, David P. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

329

Plasma heating effects during laser welding  

SciTech Connect

Laser welding is a relatively low heat input process used in joining precisely machined components with minimum distortion and heat affects to surrounding material. The CO/sub 2/ (10.6 ..mu..m) and Nd-YAG (1.06 ..mu..m) lasers are the primary lasers used for welding in industry today. Average powers range up to 20 kW for CO/sub 2/ and 400 W for Nd-YAG with pulse lengths of milliseconds to continuous wave. Control of the process depends on an understanding of the laser-plasma-material interaction and characterization of the laser beam being used. Inherent plasma formation above the material surface and subsequent modulation of the incident laser radiation directly affect the energy transfer to the target material. The temporal and spatial characteristics of the laser beam affect the available power density incident on the target, which is important in achieving repeatability in the process. Other factors such as surface texture, surface contaminants, surface chemistry, and welding environment affect plasma formation which determines the weld penetration. This work involves studies of the laser-plasma-material interaction process and particularly the effect of the plasma on the coupling of laser energy to a material during welding. A pulsed Nd-YAG laser was used with maximum average power of 400 W.

Lewis, G.K.; Dixon, R.D.

1985-01-01T23:59:59.000Z

330

Materials Reliability Program: Welding Residual Stress Dissimilar Metal Butt-Weld Finite Element Modeling Handbook (MRP-317)  

Science Conference Proceedings (OSTI)

The residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy (i.e., dissimilar metal) piping butt welds in pressurized water reactors (PWRs). Numerical methods by finite element analyses are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in ...

2011-12-22T23:59:59.000Z

331

The Use of Weld Overlays to Extend the Useful Life of Seam Welded High Energy Piping in Fossil Power Plants  

Science Conference Proceedings (OSTI)

Replacement of longitudinally welded reheat and main steam lines is very expensive and can result in extended outages. Inspection and re-inspection of such systems every few years is also expensive and time-consuming. An alternative to continued inspection or system replacement is weld overlay. This report provides the basis for weld overlay of one component, clamshell elbows. Weld overlay of other piping system components will build upon the technology developed in this program.

2001-02-28T23:59:59.000Z

332

Alloy Optimization for Metallic Inert Matrix Nuclear Fuels  

Science Conference Proceedings (OSTI)

Conference Tools for 2011 TMS Annual Meeting & Exhibition ... Computational optimization based on coupling between thermodynamic software and a global constrained search ... Prepared by LLNL under Contract DE-AC52-07NA27344. ... of TIG Welded and Laser-surface Melted SUS 304 for Nuclear Power Plants.

333

INVESTIGATIONS ON THE WELDING OF 1-INCH N.B. 18/13/1 STAINLESS STEEL PIPE BY THE HOT PRESSURE WELDING METHOD  

SciTech Connect

An investigation was made on hot pressure welding of 1-in. stainless steel pipe. The application of welding variables and their effect on welding are discussed. (J. E. D.)

O' Grady, G.; Richardson, E.K.

1952-06-30T23:59:59.000Z

334

Actively controlled vibration welding system and method  

DOE Patents (OSTI)

A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

2013-04-02T23:59:59.000Z

335

Automated Weld Characterization Using The Thermoelectric Method  

E-Print Network (OSTI)

this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis[1-6]. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research. INTRODUCTION TO THERMOELECTRICITY The thermoelectric technique is based on an effect first discovered by Seebeck in 1822. Seebeck found that when two dissimilar conductors A and B make a circuit a current will flow when the junctions of the two conductors are at different temperatures (Fig. 1). The Seebeck effect occurs because at the hot end, electrons are excited ...

J. P. Fulton; B. Wincheski; M. Namkung

1993-01-01T23:59:59.000Z

336

Welding and Repair Technology Center: Alternative Rules for Temperbead Qualification  

Science Conference Proceedings (OSTI)

Temperbead welding is common practice in the nuclear power industry for in situ repair of quenched and tempered low-alloy steels when post-weld heat treatment is impractical. The temperbead process controls the heat input so that the weld heat-affected zone in the low-alloy steel is tempered by the welding heat of subsequent layers. The tempering achieved in this way eliminates the need for post-weld heat treatment. Unfortunately, repair organizations in the nuclear power industry are ...

2012-09-28T23:59:59.000Z

337

Method and apparatus for welding precipitation hardenable materials  

DOE Patents (OSTI)

A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

Murray, Jr., Holt (Hopewell, NJ); Harris, Ian D. (Dublin, OH); Ratka, John O. (Cleveland Heights, OH); Spiegelberg, William D. (Parma, OH)

1994-01-01T23:59:59.000Z

338

Method and apparatus for welding precipitation hardenable materials  

DOE Patents (OSTI)

A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

1994-06-28T23:59:59.000Z

339

Phase transformations in welded supermartensitic stainless steels  

E-Print Network (OSTI)

the project. ii Abstract Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding... T the temperature Tp and T0 peak and preheat temperatures of a weld thermal cycle Tq quenching temperature t time V? and V?? volume fraction of austenite and martensite v arc velocity wij weight attributed to the input i in a model of j hidden units y general...

Carrouge, Dominique

340

Fluor Hanford Nuclear Material Stabilization Project Welding Manual  

SciTech Connect

The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE.

BERKEY, J.R.

2000-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Structure/property relationships in multipass GMA welding of beryllium.  

SciTech Connect

Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

2001-01-01T23:59:59.000Z

342

Intermetallic alloy welding wires and method for fabricating the same  

DOE Patents (OSTI)

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

Santella, M.L.; Sikka, V.K.

1996-06-11T23:59:59.000Z

343

Friction Stir Spot Welding of DP780 Carbon Steel  

Science Conference Proceedings (OSTI)

Friction stir spot welds were made in uncoated and galvannneled DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1-10 s. Increasing tool rotation speed from 800 to 1600 rpm increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap-shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

Santella, M. L.; Hovanski, Yuri; Frederick, Alan; Grant, Glenn J.; Dahl, Michael E.

2009-09-15T23:59:59.000Z

344

Intermetallic alloy welding wires and method for fabricating the same  

SciTech Connect

Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined.

Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

345

Modeling of Heat and Mass Transfer in Fusion Welding  

Science Conference Proceedings (OSTI)

In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

Zhang, Wei [ORNL

2011-01-01T23:59:59.000Z

346

Welding and Weldability of Thorium-Doped Iridium Alloys  

SciTech Connect

Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

David, S.A.; Ohriner, E.K.; King, J.F.

2000-03-12T23:59:59.000Z

347

Method for the concurrent ultrasonic inspection of partially completed welds  

DOE Patents (OSTI)

A method for the concurrent ultrasonic inspection of partially completed welds is disclosed and which includes providing a pair of transducers which are individually positioned on the opposite sides of a partially completed weld to be inspected; moving the transducers along the length of and laterally inwardly and outwardly relative to the partially completed weld; pulsing the respective transducers to produce an ultrasonic signal which passes through or is reflected from the partially completed weld; receiving from the respective transducers ultrasonic signals which pass through or are reflected from the partially completed welds; and analyzing the ultrasonic signal which has passed through or is reflected from the partially completed weld to determine the presence of any weld defects.

Johnson, John A. (Idaho Falls, ID); Larsen, Eric D. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

348

Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys  

Science Conference Proceedings (OSTI)

ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

2013-01-01T23:59:59.000Z

349

Welding and Repair Technology Center: Welding and Repair Technical Issues in ASME Section XI  

Science Conference Proceedings (OSTI)

The EPRI Welding and Repair Technology Center (WRTC) supports and is involved in numerous ASME Code changes and new initiatives associated with welding, repair, and replacement activities in the nuclear power generation industry. Due to the complicated nature and numerous topics often associated with code and regulatory issues it can be difficult to keep abreast of the current status and progress of changes and new initiatives. This document is intended to be a single reference for WRTC members to ...

2012-12-20T23:59:59.000Z

350

Welding and Repair Technology Center: Welding and Repair Technical Issues in ASME Section XI  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Welding and Repair Technology Center (WRTC) was involved in numerous ASME Code changes and new initiatives associated with welding, repair, and replacement activities in the nuclear power generation industry during the year 2013. Due to the complicated nature of code and regulatory issues and its variety of topics, it can be difficult to keep abreast of the current status, progress, and new initiatives. This report is intended to be a single reference for ...

2013-12-16T23:59:59.000Z

351

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

DOE Green Energy (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

352

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Conference Proceedings (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

353

Capacitor discharge process for welding braided cable  

SciTech Connect

A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

Wilson, Rick D. (Corvallis, OR)

1995-01-01T23:59:59.000Z

354

Initiation of PWSCC of Weld Alloys 182  

Science Conference Proceedings (OSTI)

The effect of partial periodic loading increased when the temperature decreased ... Detailed Root Cause Analysis of SG Tube ODSCC Indications within the Tube Sheets of NPP Biblis Unit A .... Radiation Damage in Fe-C-Met Model Alloys ... Stress Corrosion Cracking Behavior near the Fusion Boundary of Dissimilar Weld

355

Life Management of Creep Strength Enhanced Grade 91 Steels - Atlas of Microstructures and Welds  

Science Conference Proceedings (OSTI)

Understanding the way in which creep damage forms is critical to developing methods to monitor in-service condition and to mitigate the driving force for damage in future power plants. This report describes the controlled manufacture, metallographic characterization, and creep testing of welds fabricated from Grade 91 steel. It has been established that in-service components fabricated from this grade of creep strength enhanced ferritic (CSEF) steel will be prone to weldment cracking. The research ...

2013-07-02T23:59:59.000Z

356

Optimization Online - Calculating optimal conditions for alloy and ...  

E-Print Network (OSTI)

Citation: CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 36, 135-143, 2012. Download: Entry Submitted: 12/21/2010. Entry Accepted: ...

357

New optimality conditions for the semivectorial bilevel optimization ...  

E-Print Network (OSTI)

Nov 3, 2011 ... The set-valued mapping ?wef represents the weak efficient ..... The link between problems (1.1) and (3.4) will be formalized in the next result.

358

First and second order optimality conditions for optimal control ...  

E-Print Network (OSTI)

but not qualified because (i) does not hold, then there exists a singular. Langrange multiplier of the form (0, ?E, 0). One can see that second-. order necessary ...

359

Fabrication Flaw Density and Distribution In Repairs to Reactor Pressure Vessel and Piping Welds  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory is developing a generalized fabrication flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in U.S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This report describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs. These results show that repair flaws are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. The relevance of construction records is established for describing fabrication processes and product forms. An analysis of these records shows there was a significant change in repair frequency over the years when these components were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance. Fabrication flaws in repairs are characterized using optimized-access, high-sensitivity nondestructive ultrasonic testing. Flaw characterizations are then validated by other nondestructive evaluation techniques and complemented by destructive testing.

GJ Schuster, FA Simonen, SR Doctor

2008-04-01T23:59:59.000Z

360

Effect of Pulsed Nd: YAG Laser Powers On 304 Stainless Steel Welding  

Science Conference Proceedings (OSTI)

In this study, optimum welding parameters are obtained for 1mm thickness type 304 stainless steel welding using the Lumonics JK760TR pulsed Nd:YAG laser. The influences of laser welding parameters such as pulse duration, focal position, frequency, laser power, welding speed, and shielding gas (N2) pressure on penetration defining welding quality are investigated. Also comparisons of overlap ratios are presented between theory and experiment for pulse duration, frequency and welding speed.

Candan, L.; Demir, A.; Akman, E. [University of Kocaeli, Laser Technologies Research and Application Center, Kocaeli (Turkey)

2007-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Develop baseline computational model for proactive welding stress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop baseline computational model for proactive welding stress Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair There are over 100 nuclear power plants operating in the U.S., which generate approximately 20% of the nation's electricity. These plants range from 15 to 40 years old. Extending the service lives of the current fleet of nuclear power plants beyond 60 years is imperative to allow for the environmentally-sustainable energy infrastructure being developed and matured. Welding repair of irradiated nuclear reactor materials (such as austenitic stainless steels) is especially challenging because of the

362

Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)  

SciTech Connect

This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

Brian Girvin; Warren Peterson; Jerry Gould

2004-09-17T23:59:59.000Z

363

Relaxing the Optimality Conditions of Box QP  

E-Print Network (OSTI)

Oct 23, 2007... study semidefinite programming (SDP) relaxations for the fundamental ...... denberghe, and H. Wolkowicz, editors, Handbook of Semidefinite ...

364

Industry standards catch up with in-service welding  

SciTech Connect

Welding onto a pipeline after it has been put into service, a practice commonly referred to as hot tap welding, is frequently required for several reasons. Repair sleeves are installed to reinforce areas of corrosion or mechanical damage, and branch connections are made for system modifications. There are often significant economic incentives to perform this welding without removing the system from service. Operations are maintained during welding and the pipe's contents are not vented into the atmosphere. Due to technological advances in in-service welding, industry needed an update to standards and recommended practices. This year, the American Petroleum Institute (API) hopes to meet that need. The 19th edition of API Standard 1104--Welding of Pipelines and Related Facilities, includes a new appendix that pertains to in-service welding. Appendix B, In-Service Welding, is intended to eventually replace API Recommended Practice 1107--Pipeline Maintenance Welding Practices. API 1107, which was introduced in 1966 and updated in 1987 and 1991, is intended to provide recommended practices for pipeline maintenance welding. The current third edition approached its mandatory five-year review in 1996 by the API-AGA Joint Committee on Oil and Gas Pipeline Field Welding Practices, which also maintains API 1104. The committee saw 11078 needed to reflect the updates that had been made to 1104 as well as the technological advances for in-service welding. To alleviate redundancy between the two documents, and to alleviate lag time between updates, the committee approved a proposal to update and incorporate requirements of API 1107 into an appendix of API 1104. In the meantime, the third edition of API 1107 was reapproved for another five-year review cycle.

Bruce, W.A.

1999-11-01T23:59:59.000Z

365

Program on Technology Innovation: Real Time NDE for Welding  

Science Conference Proceedings (OSTI)

This report describes real-time nondestructive evaluation (NDE) for welding and provides an update on the NDE methods being investigated and developed for flaw detection during welding and the corresponding technical results. It also provides a summary of the future proposed work.BackgroundIt has been recognized that efficient, high-quality welding processes are essential to the economical development and safety of new advanced and operational nuclear ...

2012-12-12T23:59:59.000Z

366

Vibration Fatigue of Small Bore Socket-Welded Pipe Joints  

Science Conference Proceedings (OSTI)

In the course of developing the screening process for the EPRI Fatigue Management Handbook, TR-104534, several areas were identified in which the industry's understanding of socket welds was somewhat lacking and current ASME Code procedures were inadequate to accurately characterize their high-cycle fatigue resistance. The research described in this report is directed at improving the understanding of socket welds and the factors and parameters that affect a socket weld's ability to resist vibration-indu...

1997-06-27T23:59:59.000Z

367

Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at ...  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Ivan Mendoza-Bravo. Abstract Scope, The fusion boundary region (FBR) in Dissimilar Metal Welds (DMW) is where base and weld

368

Creep-Fatigue and Thermo-Mechanical Fatigue of Friction-Welded ...  

Science Conference Proceedings (OSTI)

Thus, this method is an attractive welding process for the joining of new generation nickel based superalloys. In addition, friction welding also provides the ability ...

369

Establishing W-Based Friction Stir Welding Tool Life for Thick ...  

Science Conference Proceedings (OSTI)

Over 135 feet of weld length was achieved with a single W-based tool and the ultimate tensile strength throughout ... Friction Stir Welding of Pipeline Steels.

370

AUTOMATIC WELDING METHODS, IN PARTICULAR AS APPLIED TO PIPES. A Literature Survey  

SciTech Connect

Thirty-one references, most with abstracts, are presented on automatic welding. Welding methods for pipes are given particular attention. (D.L.C.)

Uhlmann, W.

1961-03-01T23:59:59.000Z

371

Microsoft Word - FEAA064O_ORNL_Welding Single Cystal_Factsheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding and Weld Repair of Single Crystal Gas Turbine Alloys (Oak Ridge National Laboratory) FACT SHEET I. PROJECT PARTICIPANTS A. Prime Participant: Oak Ridge National Laboratory...

372

Static and Fatigue Strength of Dissimilar Al/Steel Spot Welds by ...  

Science Conference Proceedings (OSTI)

Analysis of the Fusion Boundary Region in Dissimilar Metal Welds at Low Dilution · Application of Cold Metal Transfer Process for Structural Weld Overlays and ...

373

Deployment of Forming and Welding Models to Industries through ...  

Science Conference Proceedings (OSTI)

Presentation Title, Deployment of Forming and Welding Models to Industries through High Performance Computing. Author(s), Yuping Yang, Hyunok Kim, ...

374

Fracture of welded aluminum thin-walled structures  

E-Print Network (OSTI)

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

375

Weld Solidification Behavior of INCONEL™ Alloy 740H  

Science Conference Proceedings (OSTI)

Effects of Alloying Elements on Shear Deformation and Stacking Fault of FCC Ni: A First-Principles Study · Friction Stir Welding and Processing of Nickel Based ...

376

Development of Self Healing Welding Technology and Materials for ...  

Science Conference Proceedings (OSTI)

It was shown that healing of solidification cracks during welding occurred by ... of Weldability of Ni-Based Alloys: Experimental and Computational Approach.

377

Preventing Dissimilar Metal Weld Failures: Application of New ...  

Science Conference Proceedings (OSTI)

... and properties of DMWs would be extended over the component length, reducing ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

378

Experimental Study on Friction Welding of 6063 Aluminium Alloy ...  

Science Conference Proceedings (OSTI)

Friction pressure, upset pressure, burn-off length is varied and rotational speed and ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

379

Friction Stir Welding and Processing of Advanced Materials for Coal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Friction Stir Welding and Processing of Advanced Materials for Coal and Nuclear Power Applications. Author(s), Glenn J. Grant, Scott Weil, ...

380

Method of automatically welding with a non-consumable electrode  

DOE Patents (OSTI)

A method for maintaining a constant arc gap between the electrode and the weld puddle by controlling the addition of filler wire based on the arc voltage.

Kiefer, Joseph H. (Tampa, FL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A dimensionless parameter model for arc welding processes  

SciTech Connect

A dimensionless parameter model previously developed for C0{sub 2} laser beam welding has been shown to be applicable to GTAW and PAW autogenous arc welding processes. The model facilitates estimates of weld size, power, and speed based on knowledge of the material`s thermal properties. The dimensionless parameters can also be used to estimate the melting efficiency, which eases development of weld schedules with lower heat input to the weldment. The mathematical relationship between the dimensionless parameters in the model has been shown to be dependent on the heat flow geometry in the weldment.

Fuerschbach, P.W.

1994-12-31T23:59:59.000Z

382

Friction Stir Welding between Copper and 304L Stainless Steel  

Science Conference Proceedings (OSTI)

A number of FSW experiments were carried out to obtain the optimum mechanical properties by adjusting the rotational speed and welding speed in the range of ...

383

Cold Welding Discovery at the Nanoscale - Materials Technology ...  

Science Conference Proceedings (OSTI)

Feb 25, 2010 ... The discovery of these phenomena could be useful in development of high- density electronic devices, since heat-induced welds on the ...

384

Effects of Arc Welding Process on Microstructure and Morphology of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Effects of Arc Welding Process on Microstructure and Morphology of Flake Graphite in Grey Cast Iron. Author(s), Arash Elhami Khorasani, ...

385

Application of Cold Metal Transfer Process for Structural Weld ...  

Science Conference Proceedings (OSTI)

... heat treatment of closure welds in oil and gas, and petrochemical applications. ... for Extending Plant Lives in Power Generation, Refinery & Petrochemical, ...

386

Weld monitor and failure detector for nuclear reactor system  

DOE Patents (OSTI)

Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

Sutton, Jr., Harry G. (Mt. Lebanon, PA)

1987-01-01T23:59:59.000Z

387

Enhancement of Intergranular Corrosion Resistance of TIG Welded ...  

Science Conference Proceedings (OSTI)

... of TIG Welded and Laser-surface Melted SUS 304 for Nuclear Power Plants ... Statistics of Grain Boundary Crystallography in Surrogates for Oxide Nuclear ...

388

The Development of Microstructure in Duplex Stainless Steel Welds  

E-Print Network (OSTI)

--+ , Transformation in Stainless Steel Weld Metals 58 3.4 Duplex Stainless Steel \\Veld Metals 59 9.401 Weld microstructure 59 9.4.2 Cooling rate 61 9.409 Effects of nitrogen and carbon on weld microstructure 61 9.404 Properties of weld metal and the heat affected zone... -8Ni-0.08C-2Mn-1Si wt. %) is only around 215 MPa. The ultimate tensile strength at room temperature rises to a maximum at about 70 to 80 vol% 0 and then decreases as the alloy tends towards a fully ferritic structure [6]. A law of mixtures does...

Haddad, Naseem Issa Abdallah

1990-05-08T23:59:59.000Z

389

A study of the chemistry and mutagenicity of welding fume.  

E-Print Network (OSTI)

??This thesis describes physical, chemical and biological studies of fumes from six types of flux-coated welding rods, and a companion study the bacterial mutagenicity of… (more)

Tandon, Ramkishore

1985-01-01T23:59:59.000Z

390

Development of Friction Stir Welding Technology for Coal and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of Friction Stir Welding Technology for Coal and ... Abstract Scope, Most ferritic/martensitic steels used in coal and nuclear plant ...

391

Process Modelling of Electron Beam Welding of Aeroengine ...  

Science Conference Proceedings (OSTI)

PROCESS MODELLING OF THE ELECTRON BEAM WELDING OF AEROENGINE COMPONENTS. R. C. Reed, H.J. Stone, D Dye and S.M. Roberts.

392

Ductile filler metal alloys for welding nickel aluminide alloys  

DOE Patents (OSTI)

Nickel aluminum alloys are welded utilizing a nickel based alloy containing zirconium but substantially free of titanium and niobium which reduces the tendency to crack.

Santella, Michael L. (Knoxville, TN); McNabb, Jeffrey D. (Lenoir City, TN); Sikka, Vinod K. (Oak Ridge, TN)

2003-04-08T23:59:59.000Z

393

Underwater cladding with laser beam and plasma arc welding  

SciTech Connect

Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses.

White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D. [General Electric Corporate Research and Development Center, Schenectady, NY (United States); Milian-Rodriguez, R.R. [GE Nuclear Energy, San Jose, CA (United States)

1997-01-01T23:59:59.000Z

394

Welding Cutting and Brazing Assessment Plan Assessment plan ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been...

395

NRC/EPRI Welding Residual Stress Validation Program (Phase III)  

Science Conference Proceedings (OSTI)

The NRC/EPRI weld residual stress (WRS) program currently consists of four phases, with each phase increasing in complexity from lab size specimens to ...

396

Microstructural Evolution During Friction Welding of Mill-annealed Ti ...  

Science Conference Proceedings (OSTI)

... deform by slip and rotate towards orientations that are the most stable with respect to the simple ... EPRI P87, A New Filler Material for Dissimilar Metal Welds.

397

Constitution Diagram for Dissimilar Metal Welds in Alloy Steels and ...  

Science Conference Proceedings (OSTI)

Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of Dissimilar Metal Welds During High Temperature Service.

398

The Use of Weld Overlays to Extend the Life of Seam Welded High Energy Piping in Fossil Power Plants: Common PQR and Thinner Piping Evaluation  

Science Conference Proceedings (OSTI)

Replacement of longitudinally welded reheat and main steam lines is very expensive and can result in extended outages. Inspection and re-inspection of such systems every few years is also expensive and time consuming. An alternative to continued inspection or system replacement is weld overlay. Weld overlay of longitudinal seamed clamshell elbows was investigated in "The Use of Weld Overlays to Extend the Useful Life of Seam Welded High Energy Piping in Fossil Power Plants" (EPRI Report No. 1001270, Febr...

2002-02-28T23:59:59.000Z

399

Conditional SIC-POVMs  

E-Print Network (OSTI)

In this paper we examine a generalization of the symmetric informationally complete POVMs. SIC-POVMs are the optimal measurements for full quantum tomography, but if some parameters of the density matrix are known, then the optimal SIC POVM should be orthogonal to a subspace. This gives the concept of the conditional SIC-POVM. The existence is not known in general, but we give a result in the special cases when the diagonal is known of the density matrix.

D. Petz; L. Ruppert; A. Szanto

2012-02-26T23:59:59.000Z

400

Conditional SIC-POVMs  

E-Print Network (OSTI)

In this paper we examine a generalization of the symmetric informationally complete POVMs. SIC-POVMs are the optimal measurements for full quantum tomography, but if some parameters of the density matrix are known, then the optimal SIC POVM should be orthogonal to a subspace. This gives the concept of the conditional SIC-POVM. The existence is not known in general, but we give a result in the special cases when the diagonal is known of the density matrix.

Petz, D; Szanto, A

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Program on Technology Innovation: Weld Metals and Welding Processes for Fabrication of Advanced Light Water Reactor Pressure Vessels  

Science Conference Proceedings (OSTI)

Light water reactors have traditionally been constructed using roll-formed plates for the reactor pressure vessel (RPV) shells, which were assembled via horizontal and vertical seam welds. Weld filler metals often contained significant quantities of copper, other residual elements such as vanadium, and nonmetallic elements such as phosphorous and sulfur. Low-alloy steel weld filler metals of this chemical composition contributed to the degree of neutron radiation-induced embrittlement of vessel ...

2013-06-26T23:59:59.000Z

402

ROLLING AND WELDING TYPE 430M TUBES TO STAINLESS STEEL OVERLAID CARBON STEEL TUBE-SHEETS. SM-1 (APPR-1) RESEARCH AND DEVELOPMENT PROGRAM. Task No. X.  

SciTech Connect

In the fabrication of the steam generator on APPR-1A it was considered necessary to roll the Type 430M tubes into carbon steel tubesheets to ASTM Specification A350-Grade LF-1, modifled with 1.66% nickel; and weld the tube ends to the stainless steel overlay previously applied to the tubesheet. The rolled joint was a necessary precaution to prevent secondary water, that might contain chlorides, from contacting the stainless steel weld joining the tubes to the tubesheets. The welded joint provided the mechanical strength for attaching the tubes to the tubesheets. A laboratory program was conducted, therefore, to develop practicable procedures for welding the Type 430M tubes to the stainless steel overlay; as well as to assure that the tubes could satisfactorily be rolled to the tubesheets. Automatic and manual tungstenare welding procedures were developed that were capable of consistently providing an austenitic weld having a strength exceeding that of the heat affected zone or the unaffected tube itself. Type 430M tubes in the asreceived, and softened conditions were rolled into prototype test units under various conditions of rolling. It was concluded that the Type 450M tubes in the as-received condition could be satisfactorily rolled into the A360Grade LF-1 tubesheet and be tlght to a pressurized helium leak test. To translate the laboratory procedures into fabrication practice for the steam generator consisting of the same materials, detailed welding and rolling procedures were outlined and transmitted to the fabricator, as well as included in this report. (auth)

Bennett, R.W.; Meister, R.P.; Kerton, R.J.

1959-02-16T23:59:59.000Z

403

The stress corrosion cracking behavior of alloys 690 and 152 WELD in a PWR environment.  

SciTech Connect

Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The latter two alloys are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for the replacement alloys. The study involved Alloy 690 cold-rolled by 26% and a laboratory-prepared Alloy 152 double-J weld in the as-welded condition. The experimental approach involved pre-cracking in a primary water environment and monitoring the cyclic CGRs to determine the optimum conditions for transitioning from the fatigue transgranular to intergranular SCC fracture mode. The cyclic CGRs of cold-rolled Alloy 690 showed significant environmental enhancement, while those for Alloy 152 were minimal. Both materials exhibited SCC of 10{sup -11} m/s under constant loading at moderate stress intensity factors. The paper also presents tensile property data for Alloy 690TT and Alloy 152 weld in the temperature range 25--870 C.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J. (Nuclear Engineering Division); ( EVS); ( ESE)

2009-01-01T23:59:59.000Z

404

Advanced Welding Methods for Irradiated Materials  

Science Conference Proceedings (OSTI)

As the existing LWR fleet ages, the weldability of the structural material used to construct the reactor pressure vessels and reactor internals could be diminished. The decrease in the weldability is caused by the formation of helium in the base material structure. This is caused by nuclear transmutation reactions of boron and nickel, within the reactor materials, and increases as neutron fluence accumulates. Helium-induced weld cracking is a complex phenomenon that is related to the concentration ...

2013-10-29T23:59:59.000Z

405

Welding and Repair Technology Center: Overlay Handbook  

Science Conference Proceedings (OSTI)

This report reflects the commitment of the Electric Power Research Institute (EPRI) to serving its members by developing practical tools and guidance in response to specific needs of the industry.BackgroundThe discovery of primary water stress corrosion cracking (PWSCC) in pressurized water reactor (PWR) vessel heads and components has led to the use of corrosion-resistant high-nickel welding alloys for repair and mitigation activities. To date, more than 30 ...

2013-11-25T23:59:59.000Z

406

Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5  

SciTech Connect

Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could be collected the goal would be to determine the strain tensor's orientation and magnitude of strain along each principle axis direction.

Hubbard, Camden R [ORNL

2011-09-01T23:59:59.000Z

407

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Ault Substation Expansion and Equipment Additions, Weld County, CO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ault Substation Expansion and Equipment Additions, Weld County, CO Ault Substation Expansion and Equipment Additions, Weld County, CO A. Proposed Action: Western proposes to expand the existing Ault SUbstation and add electrical equipment. The expansion would be within the existing fee-owned land. B. Number and Title of Categorical Excluison Being Applied . B4.11: Construction of electric power substations (including switching stations and support facilities) with power deliver at 230-kV or below, or modification (other than voltage increases) of existing sutstations and support facilities .. .. C. Regulatory Requirements in 10 CFR 1021.410(b): (Refer to full text in regulation ). (1) The proposed action fits within a class of actions that is listed in Appendix A or B to Subpart D. For classes of actions, listed in Appendix B, the following conditions are

408

Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction  

Science Conference Proceedings (OSTI)

Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results show significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.

Woo, Wan Chuck [ORNL; Em, Vyacheslav [Korea Atomic Energy Research Institute; Hubbard, Camden R [ORNL; Lee, Ho-Jin [Korea Atomic Energy Research Institute; Park, Kwang Soo [Doosan Heavy Industries & Construction

2011-01-01T23:59:59.000Z

409

Optimization Online - Coordinators  

E-Print Network (OSTI)

... Programming); William Hart — Sandia National Laboratory; (Combinatorial Optimization / Global Optimization / Optimization Software and Modeling Systems

410

Welding and Repair Technology Center: Assessment of Friction Stir Welding for Nuclear Applications  

Science Conference Proceedings (OSTI)

This report describes a study that was conducted to determine the usability of friction stir welding (FSW) for the repair of nuclear power plant components. The first phase of the study has performinged in air and underwater welding on 304 SS, 308L SS, Alloy182, and Alloy 600 test plates. In addition, crack sealing tests were carried out using electric discharge machining notches in these test plates. A patch seal test was also added to the test matrix to determine if a flat plate could be ...

2012-12-12T23:59:59.000Z

411

Welding and Fabrication Critical Factors for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Welding and fabrication processes employed for manufacture of critical nuclear power plant components may adversely affect material performance and can potentially increase susceptibility to known degradation mechanisms. This report identifies important welding and fabrication processes for specific materials, assesses their effects on potential degradation mechanisms, and identifies process enhancements that can improve long-term asset management of new nuclear plant components.

2009-12-08T23:59:59.000Z

412

Access and Delivery of Integrated Weld Process Models  

Science Conference Proceedings (OSTI)

Table 1   Software tools for integrated weld modeling...http://www.aws.org/wj/2008/05/wj200805/wj0508-36.pdf Desktop SORPAS http://www.swantec.com/sorpas.htm Desktop E-WeldPredictor http://calculations.ewi.org/VJP/ Internet...

413

Selective Attack of Welds by Flow-Accelerated Corrosion  

Science Conference Proceedings (OSTI)

Flow-accelerated corrosion (FAC), a degradation mechanism that attacks carbon steel material, has been a significant issue for nuclear plants for some time. Until recently, though, welds were thought to be largely immune to this mechanism. This work demonstrates that significant weld attacks have been occurring at a number of nuclear plants throughout the world.

2002-07-26T23:59:59.000Z

414

CRAD, Welding, Cutting and Brazing Assessment Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Welding, Cutting and Brazing Assessment Plan Welding, Cutting and Brazing Assessment Plan CRAD, Welding, Cutting and Brazing Assessment Plan Performance Objective: This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. Criteria: Establish designated area in which routine and repetitive welding, cutting, and other spark- or flame producing operations are conducted [1910.252(a)(2)(iv),1910.252(a)(2)(vi)(A), 1910.252(a)(2)(xv), General Requirements].

415

Method for laser welding a fin and a tube  

SciTech Connect

A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

Fuerschbach, Phillip W. (Tijeras, NM); Mahoney, A. Roderick (Albuquerque, NM); Milewski, John O (Santa Fe, NM)

2001-01-01T23:59:59.000Z

416

Pressure Resistance Welding of High Temperature Metallic Materials  

SciTech Connect

Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

Larry Zirker; Craig Tyler

2010-08-01T23:59:59.000Z

417

Optimization Online - Optimal Design of Electrical Machines ...  

E-Print Network (OSTI)

Jun 8, 2011 ... Optimal Design of Electrical Machines: Mathematical Programming ... Science and Engineering (Multidisciplinary Design Optimization ).

418

METHOD OF BUTT WELDING SMALL THERMOCOUPLES 0.001 TO 0.010 INCH IN DIAMETER  

SciTech Connect

A method of butt welding thermoeouples 0.001 to 0.010 in. in diameter is described. The thermocouple wires are positioned in a micro-manipulator, and a controlled welding pulse is applied to them. This welding method provides uniform upset welds through a simple preduction technique. (auth)

Stover, C.M.

1960-06-01T23:59:59.000Z

419

Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182  

SciTech Connect

In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, ‘‘Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1,’’ with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigated butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.

Sullivan, Edmund J.; Anderson, Michael T.

2012-09-17T23:59:59.000Z

420

Initial Development in Joining of ODS Alloys Using Friction Stir Welding  

Science Conference Proceedings (OSTI)

Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

Ren, Weiju [ORNL; Feng, Zhili [ORNL

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

422

S&TR | March/April 2008: Standardizing the Art of Electron-Beam Welding  

NLE Websites -- All DOE Office Websites (Extended Search)

Standardizing the Art of Electron-Beam Welding. Standardizing the Art of Electron-Beam Welding. WELDED materials are an integral part of everyday life. Appliances, cars, and bridges are all made by welding materials together. But not all welds are created equal. Welding methods vary in complexity, time, and cost, depending on a product's requirements and purpose. In electron-beam (EBeam) welding, an electron beam generated in a vacuum creates a fusing heat source that can unite almost any metals. This method produces deep welds without adding excessive heat that can adversely affect the properties of the surrounding metal. In the nuclear energy and aerospace industries, electron-beam welding is preferred for manufacturing high-value welds-those in which defects cannot be tolerated. The Department of Energy's (DOE's) nuclear weapons

423

TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS  

DOE Green Energy (OSTI)

Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high-energy-rate forged are needed for designing and establishing longer tritium-reservoir lifetimes, ranking materials, and, potentially, for qualifying new forging vendors or processes. Measurements on the effects of tritium and decay helium on the fracture toughness properties of CF stainless steels having similar composition, grain size, and mechanical properties to previously studied HERF steels are needed and have not been conducted until now. The compatibility of stainless steel welds with tritium represents another concern for long-term reservoir performance. Weldments have not been well-characterized with respect to tritium embrittlement, although a recent study was completed on the effect of tritium and decay helium on the fracture toughness properties of Type 304L weldments. This study expands the characterization of weldments through measurements of tritium and decay helium effects on the fracture toughness properties of Type 21-6-9 stainless steel. The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for conventional forgings and weldments in the non-charged, hydrogen-charged and tritium-charged-and-aged conditions.

Morgan, M.

2009-07-30T23:59:59.000Z

424

Stress Corrosion Cracking Resistance of Weld Metals 182, 72, and 308L  

Science Conference Proceedings (OSTI)

Intergranular stress corrosion cracking (IGSCC) has occurred in alloy 182 weld metal in operating BWRs. This study compares the propagation behavior of IGSCC for nickel-base weld metal, alloy 182, with two other weld metals: type 308L stainless steel and a high-chromium nickel-base BWR candidate, alloy 72. Results indicate that weld metal 72 is more stress corrosion crack (SCC) resistant than either weld metals 182 or type 308L.

1992-08-01T23:59:59.000Z

425

Manual Plasma Welding (PTAW) Evaluation with Powder Hardfacing Alloys: Revision 1 to 1003164  

Science Conference Proceedings (OSTI)

Repair practices for hardfacing alloys using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) have been evaluated in the past on hardfacing applied with various automated welding processes. Accessibility often limits the use of these welding processes in typical manual repair applications. Recent developments in PTAW powder welding systems by Deloro-Stellite have prompted evaluations of an alternative repair technique for hardfacing materials. This document reports on the tests and f...

2002-12-13T23:59:59.000Z

426

Stress corrosion cracking of austenitic stainless steel core internal welds.  

SciTech Connect

Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

1999-04-14T23:59:59.000Z

427

Friction Stir Spot Welding of DP780 Carbon Steel  

Science Conference Proceedings (OSTI)

Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

Santella, Michael L [ORNL; Hovanski, Yuri [ORNL; Frederick, David Alan [ORNL; Grant, Glenn J [ORNL; Dahl, Michael E [ORNL

2010-01-01T23:59:59.000Z

428

Borehole stability in densely welded tuffs  

SciTech Connect

The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

Fuenkajorn, K.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

1992-07-01T23:59:59.000Z

429

Welding Metallurgy and Processing Issues for Joining of Power Sources  

Science Conference Proceedings (OSTI)

Weldability issues with the pertinent alloys have been reviewed and preliminary results of our work on Haynes 25 have been presented. Further results on the mechanical properties and metallography on the EB welds are imminent. Hot-ductility experiments will commence within a few weeks. Aging studies on the effects of heat treatment using the Gleeble are also planned. MST-6 has extensive background in the welding metallurgy of the pertinent alloys. We also have considerable experience with the various welding processes to be used.

Lienert, Thomas J. [Los Alamos National Laboratory; Reardon, Patrick T. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

430

Inspection apparatus for evaluating a partially completed weld  

SciTech Connect

An inspection apparatus for evaluating a partially completed weld is described and which is utilized in combination with an automated movable welder which moves across a supporting surface, and wherein the inspection apparatus includes a coupling member mounted on the welder; a frame member mounted on the coupling member; an ultrasonic sensor mounted on the frame member and disposed in ultrasonic sound transmitting relation relative to the partially completed weld; and a drive assembly for adjusting the position of the ultrasonic sensor relative to the partially completed weld.

Smartt, Herschel B. (Idaho Falls, ID); Larsen, Eric D. (Idaho Falls, ID); Johnson, Jonn A. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

431

Method for laser welding ultra-thin metal foils  

SciTech Connect

A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

Pernicka, John C. (Fort Collins, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1996-01-01T23:59:59.000Z

432

Welding fixture for nuclear fuel pin cladding assemblies  

DOE Patents (OSTI)

A welding fixture for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

Oakley, David J. (Richland, WA); Feld, Sam H. (West Richland, WA)

1986-01-01T23:59:59.000Z

433

Welding fixture for nuclear fuel pin cladding assemblies  

DOE Patents (OSTI)

A welding fixture is described for locating a driver sleeve about the open end of a nuclear fuel pin cladding. The welding fixture includes a holder provided with an open cavity having shoulders for properly positioning the driver sleeve, the end cap, and a soft, high temperature resistant plastic protective sleeve that surrounds a portion of the end cap stem. Ejected contaminant particles spewed forth by closure of the cladding by pulsed magnetic welding techniques are captured within a contamination trap formed in the holder for ultimate removal and disposal of contaminating particles along with the holder.

Oakley, D.J.; Feld, S.H.

1984-02-22T23:59:59.000Z

434

Clad vent set cup closure-weld-zone grinding evaluation  

DOE Green Energy (OSTI)

Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 {micro}m. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses.

Ulrich, G.B.; Woods, A.T. [Oak Ridge Y-12 Plant, TN (United States); Ohriner, E.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1996-04-01T23:59:59.000Z

435

Cost Sensitive Conditional Planning  

E-Print Network (OSTI)

While POMDPs provide a general platform for conditional planning under a wide range of quality metrics they have limited scalability. On the other hand, uniform probability conditional planners scale very well, but many lack the ability to optimize plan quality metrics. We present an innovation to planning graph based heuristics that helps uniform probability conditional planners both scale and generate high quality plans when using actions with non uniform costs. We make empirical comparisons with two state of the art planners to show the benefit of our techniques.

Daniel Bryce; Subbarao Kambhampati

2005-01-01T23:59:59.000Z

436

Weld-Windsor 115-kV Transmission Line Project, Weld County, Colorado  

Science Conference Proceedings (OSTI)

The Western Area Power Administration is proposing to rebuild a 3.0 mile segment of the existing Flatiron-Weld 115-kV transmission line in Weld County. The line would be reconductored with new conductor on new wood pole double circuit structures. The new structures would support a double circuit transmission line configuration. The first circuit would be owned by Western and the second by Public Service Company of Colorado (PSCO). Alternatives considered included no action, constructing PSCO`s circuit on new right-of-way, and reconductoring Western`s existing line on the same structures. The proposed action was selected because it provided an opportunity to share structures with PSCO and, overall, would minimize costs and environmental impacts. The environmental assessment identifies minor effects on existing natural or human resources and minor benefits for agricultural operations.

NONE

1996-05-01T23:59:59.000Z

437

Nondestructive Evaluation: Ultrasonic Equivalency Testing of Weld Inlaid and Weld Onlaid Components  

Science Conference Proceedings (OSTI)

This report describes Electric Power Research Institute (EPRI) investigations in which ultrasonic data were acquired using American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix VIII qualified procedures on Performance Demonstration Initiative (PDI) 600 Series nozzle mockups containing crack-like flaws. These mockups were representative of dissimilar metal weld (DMW) safe-end-to-nozzle configurations found in the U.S. pressurized water reactor (PWR) fleet. T...

2008-12-22T23:59:59.000Z

438

QUADRATIC ORDER CONDITIONS FOR BANG-SINGULAR ...  

E-Print Network (OSTI)

First, we obtain second order necessary optimality conditions. Secondly, we get a ... enters linearly, is that the corresponding second variation does not contain.

439

Materials Reliability Program: Technical Basis for Preemptive Weld Overlays for Alloy 82/182 Butt Welds in PWRs (MRP-169)  

Science Conference Proceedings (OSTI)

Dissimilar metal Alloy 82/182 bimetallic pipe-to-nozzle butt welds (DMWs) have experienced cracking in recent years due to primary water stress corrosion cracking (PWSCC). Although weld overlays have been used primarily as a repair for flawed piping, they also can be applied at locations that have not yet exhibited any cracking but are considered susceptible to PWSCC. An overlay used in this manner is termed a preemptive weld overlay (PWOL). This report provides the technical basis for PWOL overlays for ...

2005-10-25T23:59:59.000Z

440

Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma  

Science Conference Proceedings (OSTI)

During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

Ribic, B.; DebRoy, T. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Burgardt, P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effects of weld metal profile on the fatigue life of integrally reinforced weld-on fittings  

SciTech Connect

The cyclic fatigue life of fabricated tee intersections, including integrally reinforced weld-on fittings, has been a topic of discussion in the recent past. The discussion has centered around questions concerning the accuracy of the ASME B31.3 Code equations in calculating the stress intensification factors, (SIFs), for these types of intersection geometries. The SIF of an intersection is an indicator of the fatigue life of the intersection when it is subjected to bending moments caused by thermal, flow, or mechanically induced cyclical displacements. Schneider, Rodabaugh, and Woods concur that inaccuracies in the Code SIF equations do exist and that these equations should be revised. This report presents new Markl type SIF data on the B.W.Pipet (BWP), an integrally reinforced weld-on branch fitting, manufactured by WFI International, Inc., in Houston, Texas. The scope of this research project was to determine the influence of the installation weld metal profile of the Pipet to the run pipe on the SIF. The SIF data were then compared to calculated SIF values using equations from the American Society of Mechanical engineers (ASME) B31.1, ASME B31.3, and ASME Section 3, Subsection NC, for the purpose of determining which Code equation may be the most appropriate for calculating the SIF for these particular fittings.

Woods, G.E. (M.W. Kellogg Co., Houston, TX (United States)); Rodabaugh, E.C. (Rodabaugh (E.C.), Dublin, OH (United States))

1994-06-01T23:59:59.000Z

442

Examination of the 1970 National Bureau of Standards Underground Corrosion Test Welded Stainless STeel Coupons from Site D  

Science Conference Proceedings (OSTI)

A 1970 study initiated by the National Bureau of Standards (NBS), now known as the National Institute of Standards and Technology (NIST), buried over 6000 corrosion coupons or specimens of stainless steel Types 201, 202, 301, 304, 316, 409, 410, 430, and 434. The coupons were configured as sheet metal plates, coated plates, cross-welded plates, U-bend samples, sandwiched materials, and welded tubes. All coupons were of various heat-treatments and cold worked conditions and were buried at six distinctive soil-type sites throughout the United States. The NBS scientists dug five sets of two trenches at each of the six sites. In each pair of trenches, they buried duplicate sets of stainless steel coupons. The NBS study was designed to retrieve coupons after one year, two years, four years, eight years, and x years in the soil. During the first eight years of the study, four of five planned removals were completed. After the fourth retrieval, the NBS study was abandoned, and the fifth and final set of specimens remained undisturbed for over 33 years. In 2003, an interdisciplinary research team of industrial, university, and national laboratory investigators were funded under the United States Department of Energy’s Environmental Management Science Program (EMSP; Project Number 86803) to extract part of the remaining set of coupons at one of the test sites, characterize the stainless steel underground corrosion rates, and examine the fate and transport of metal ions into the soil. Extraction of one trench at one of the test sites occurred in April 2004. This report details only the characterization of corrosion found on the 14 welded coupons–two cross welded plates, six U-bends, and six welded tubes–that were retrieved from Site D, located near Wildwood, NJ. The welded coupons included Type 301, 304, 316, and 409 stainless steels. After 33 years in the soil, corrosion on the coupons varied according to alloy. This report discusses the stress corrosion cracking and crevice corrosion cracking of the U-bend coupons; the minimal corrosion found on the cross-bead plates; and the general, pitting, and crevice corrosion found on the welded tubes. In general, the austenitic Type 301, 304 and 316 samples showed little if any corrosion after 33+-years in the soil, whereas the ferritic alloys-Type 409 and 434– showed a spectrum of corrosion.

L. R. Zirker; M. K. Adler Flitton; T. S. Yoder; T. L. Trowbridge

2008-01-01T23:59:59.000Z

443

Exploiting welding in production technology. International conference held at London, 22--24 April, 1975. Volume 2. Discussions  

SciTech Connect

This volume contains the discussions which follow the papers that appear in Volume 1 (CONF-7504106-P1). Arc welding, inspection, positional welding, fumes, electron beam, vacuum brazing, arc plasma, resistance and microfriction welding are discussed. (DLC)

1975-01-01T23:59:59.000Z

444

Development of automated welding process for field fabrication of thick walled pressure vessels. (First quarterly report, FY 1981)  

SciTech Connect

The choice of sets of root welding parameters is discussed. Thick field demonstration/qualification welds will be performed. A welding procedure handbook which will be prepared is mentioned. (DLC)

Schneider, U.A.

1981-01-01T23:59:59.000Z

445

Proceedings: Seminar on Dissimilar Welds in Fossil-Fired Boilers  

Science Conference Proceedings (OSTI)

The more than 20 presentations at this international seminar identified root causes of dissimilar weld failures and suggested solutions to the problem. In addition, they documented industry in-service inspection and repair practices.

1985-07-30T23:59:59.000Z

446

THE EFFECT OF LASER WELDING PROCESS PARAMETERS ON THE MECHANICAL...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Journal of Nuclear Materials, vol. 283-287 (2000) 1206 THE EFFECT OF LASER WELDING PROCESS PARAMETERS ON THE MECHANICAL AND MICROSTRUCTURAL PROPERTIES OF V-4Cr-4Ti STRUCTURAL...

447

Effect of Pre-Weld Heat Treatment Environment on the ...  

Science Conference Proceedings (OSTI)

... vacuum levels i.e. under 1 atmospheric pressure shielding with pure argon, ... Application of Microstructure Engineering to the Heat Affected Zone of Welds ... Development of High-Performance Structural Alloys for Nuclear Energy Systems.

448

Reliability of Wedge Wire Bonds Subjected to Ultrasonic Welding ...  

Science Conference Proceedings (OSTI)

This paper presents the effect of the ultrasonic welding lid attachment process on the reliability and mechanical strength of 1.0 and 1.5 mil gold wedge wire ...

449

Friction Stir Welding of Magnesium Alloys to Steel  

Science Conference Proceedings (OSTI)

EPRI P87, A New Filler Material for Dissimilar Metal Welds · Explosive Bonding of 316L to C18150 CuCrZr Alloy for ITER Applications · Failure Mechanisms of ...

450

Onsite Plasma Welding Technology and Equipment Development: RRAC Task 88  

Science Conference Proceedings (OSTI)

Automated plasma transfer arc welding (PTAW) with powder feed capabilities is commonly used for applying hardfacing alloys for new installations and for replacement valves. With a variety of hardfacing and corrosion resistant alloys readily available in the powder form, the PTAW process is an effective and economical process for applying hardfacing materials. The process can obtain high quality deposits with a very low dilution rate and excellent material properties with a minimum number of weld layers. ...

2001-03-30T23:59:59.000Z

451

Creep Strength–Enhanced Ferritic (CSEF) Steel Welding Guide  

Science Conference Proceedings (OSTI)

Implementation of advanced alloys for construction of new nuclear units or in the retrofit of existing units has demonstrated the need to treat them differently at elevated temperatures than mainstay power generation alloys such as Grades 11, 12, or 22. This report presents recommendations for welding creep strength enhanced ferritic (CSEF) steels, with emphasis on Grades 91, 92, 23, and 24 in tubing, piping, and dissimilar metal weld applications. Subjects covered in detail include guidelines for ...

2013-08-27T23:59:59.000Z

452

Diode laser welding of aluminum to steel  

Science Conference Proceedings (OSTI)

Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica [University of Rome Tor Vergata, Department of Mechanical Engineering, Via del Politecnico 1, 00133 Rome (Italy)

2011-05-04T23:59:59.000Z

453

Pathwise Optimization for Optimal Stopping Problems  

Science Conference Proceedings (OSTI)

We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce upper and lower bounds on the optimal value (the “price”) of a high-dimensional optimal stopping problem. The PO method builds on a dual characterization ... Keywords: American options, Bermudian options, dynamic programming, optimal control, optimal stopping

Vijay V. Desai; Vivek F. Farias; Ciamac C. Moallemi

2012-12-01T23:59:59.000Z

454

DESIGN OF A ROBOTIC WELDING SYSTEM FOR CLOSURE OF WASTE STORAGE CANISTERS  

SciTech Connect

This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell.

H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D> Larsen T.R. McJunkin; C.R. Tolle

2005-04-07T23:59:59.000Z

455

Development of fully automated and integrated (''Instamatic'') welding systems for marine applications  

SciTech Connect

A two-year research program was conducted at M.I.T. to develop fully automated and integrated welding systems. These systems package many actions involved in welding so that certain prescribed welding jobs can be performed by a person with no welding skill. They have been nicknamed ''instamatic'' welding systems, since they are similar to the easy-to-operate cameras. Following a general discussion on the development of the concept of the ''instamatic'' welding system, discussions are given on two types of systems which have been built and tested: underwater stud welding systems, and those using arc welding processes.

Masubuchi, K.; Gustin, H.L.; Schloerb, D.W.

1983-05-01T23:59:59.000Z

456

Welding and Repair Technology Center: Evaluation of High-Chromium Nickel-Base Welding Alloys, Resistance to Solidification Cracking - Update  

Science Conference Proceedings (OSTI)

One of the challenges faced by nuclear power industry engineers and managers responsible for making welding and repair decisions is selection of weld metals that have adequate resistance to stress corrosion cracking (SCC) with acceptable resistance to other forms of cracking. Continued testing and evaluation of new and enhanced high-chromium nickel-base filler metals is important to understanding the influence of slight composition changes on sensitivity to known cracking mechanisms and general ...

2013-08-14T23:59:59.000Z

457

Qualification of Welding Alloy IN-52M for Alloy 600 and 690 Repairs: Welding Procedures and Process Development  

Science Conference Proceedings (OSTI)

Occurrences of primary water stress corrosion cracking (PWSCC) in pressurized water reactor (PWR) vessel heads and components have led to the use of corrosion-resistant nickel welding alloys for repair and mitigation activities. For these welds, the most common filler materials have been IN-52 and IN-152; however, during some applications of filler metal IN-52, microfissuring, lack of fusion (LOF), and lack of bond (LOB) have been observed. To address this issue, INCO Alloys (now Special Metals Incorpora...

2002-12-17T23:59:59.000Z

458

Developing and Qualifying Parameters for Closure Welding Overpacks Containing Research Reactor Spent Nuclear Fuel at Hanford  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality, and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leak-tight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leak-tight for the duration of the storage term. (author)

Cannell, G.R.; Goldmann, L.H.; McCormack, R.L. [Hanford Site, Richland, WA (United States)

2008-07-01T23:59:59.000Z

459

DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD  

SciTech Connect

Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term.

CANNELL GR

2007-11-07T23:59:59.000Z

460

Stress corrosion cracking of type 304L stainless steel core shroud welds.  

SciTech Connect

Microstructural analyses by advanced metallographic techniques were conducted on mockup welds and a cracked BWR core shroud weld fabricated from Type 304L stainless steel. heat-affected zones of the shroud weld and mockup shielded-metal-arc welds were free of grain-boundary carbide, martensite, delta ferrite, or Cr depletion near grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the welds were significantly contaminated by fluorine and oxygen which migrate to grain boundaries. Significant oxygen contamination promotes fluorine contamination and suppresses classical thermal sensitization, even in Type 304 steels. Results of slow-strain-rate tensile tests indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of Type 304L stainless steel core shroud welds.

Chung, H. M.; Park, J.-H.; Sanecki, J. E.; Zaluzec, N. J.; Yu, M. S.; Yang, T. T.

1999-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The hardening of Type 316L stainless steel welds with thermal aging  

E-Print Network (OSTI)

Welded stainless steel piping is a component of boiling water reactors (BWRs). Reirculation and other large diameter piping are fabricated from Type 304 or 316 stainless steels. Delta ferrite is present in welds, because ...

Ayers, Lauren Juliet

2012-01-01T23:59:59.000Z

462

Weld Mechanical Properties of a Ni-Base Superalloy in Various Pre ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Joining and Sustaining of Superalloys. Presentation Title, Weld Mechanical ...

463

Mound bridge-wire welding, testing and corrosion seminar, Miamisburg, OH, May 7-8, 1968  

SciTech Connect

Brief summaries are presented on the following presentations: welding for low voltage operation, welding techniques at Mound, welding/joining at Sandia, Ultrasonic`s plastic assemblies of detonator components, laser welding bridge-wires, laser safety in the Biorad industrial environment, nondestructive testing at Mound, thermal cycle data and evaluation, thermal cycle nondestructive testing, corrosion of detonator electrode and bridge-wire, and corrosion studies and fabrication of bridge-wire at Sigmund Cohn.

Richards, M.A.

1968-08-07T23:59:59.000Z

464

Guidelines for Using a Single Weld Qualification Code in Nuclear Power Plant Applications  

Science Conference Proceedings (OSTI)

This report and the appended guideline provide the justification and direction needed to use American Society of Mechanical Engineers (ASME) Section IX welding qualifications for ASME applications and American Welding Society (AWS) structural applications.BackgroundThe use of multiple welding qualification codes has long been a problem for plants with different design codes. The most frequently followed welding qualification codes are those in ASME Section ...

2013-08-21T23:59:59.000Z

465

Microstructure Characterization of Magnetic-Pulse-Welded AA 6061-T6 by Electron Backscattered Diffraction  

Science Conference Proceedings (OSTI)

The grain boundary crystallographic misorientations of magnetic-pulse-welded (MPW) aluminum alloy (AA) 6061-T6 in linear and tubular configurations were examined using the electron backscattered diffraction (EBSD) technique. A refined structure of heavily deformed grains with higher grain boundary angles was observed in linear welds. Significant spalling was observed away from the joints, in the interior of tubular welds. The results show the complex interaction of shock waves with the materials during this impact welding process.

Zhang, Yuan [Ohio State University; Babu, Suresh [Ohio State University; Zhang, P [Edison Welding Institute; Kenik, Edward A [ORNL; Daehn, Glenn [Ohio State University

2008-01-01T23:59:59.000Z

466

Materials Reliability Program: Finite-Element Model Validation for Dissimilar Metal Butt-Welds (MRP-316)  

Science Conference Proceedings (OSTI)

Residual stresses imparted by the welding process are a principal factor in the process of primary water stress corrosion cracking (PWSCC) of Alloy 82/182 nickel-alloy dissimilar metal (DM) piping butt welds in pressurized water reactors (PWRs). Analytical models are frequently used to simulate the welding process in order to predict the residual stress distribution in the weld and base material as an input to crack growth calculations. The crack growth calculations, in turn, have demonstrated a high sen...

2011-12-20T23:59:59.000Z

467

Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components (II)  

SciTech Connect

Stress corrosion cracking (SCC) is one of the major reasons to reduce the reliability of aged reactor components. Toshiba has been developing underwater laser welding onto surface of the aged components as maintenance and repair techniques. Because most of the reactor internal components to apply this underwater laser welding technique have 3-dimensional shape, effect of welding positions and welded shapes are examined and presented in this report. (authors)

Masataka Tamura; Shohei Kawano; Wataru Kouno; Yasushi Kanazawa [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

468

Development and application of an intelligent welding robot system for shipbuilding  

Science Conference Proceedings (OSTI)

Over the last few decades, there have been a large number of attempts to automate welding in the shipbuilding process. However, there are still many non-automated welding operations in the double-hulled blocks, even though it presents an extremely hazardous ... Keywords: Double-hulled block, Intelligent welding robot, Rail-runner mechanism, Shipbuilding

Donghun Lee; Namkug Ku; Tae-Wan Kim; Jongwon Kim; Kyu-Yeul Lee; Youg-Shuk Son

2011-04-01T23:59:59.000Z

469

Resistance spot welding of Ti-6A1-4V alloy  

SciTech Connect

The effects of weld power, electrode force, electrode tip radius, and elapsed time between cleaning and welding on resistance spot welds in Ti-6Al-4V alloy were evaluated. The alloy is weldable by this technique, and a wide latitude can be taken in processing variables.

Jarboe, D.M.

1980-06-01T23:59:59.000Z

470

Physical processes involved in strip electrode welding using the method of slatted splicing  

Science Conference Proceedings (OSTI)

Physical processes that take place in a strip electrode during welding using the slatted splicing technique are considered. Flowing of the welding current in the electrode is shown to be the key process which determines electrode heating and melting. Technological receipts are proposed that allow obtaining high-quality welds by the method of slatted splicing.

Bushma, V. O. [Moscow State Technological University 'Stankin' (Russian Federation)

2010-12-15T23:59:59.000Z

471

Design and Implementation of Welding with Electromagnetic Trailing Peening Control Circuit  

Science Conference Proceedings (OSTI)

In order to eliminate welding stress and improve the quality of welding.The technology of constant frequency pulse width modulation (PWM) is applied in the design of control circuit of welding with trailing peening.AT89C52 is the core of the circuit.This ...

Meijiu Lu; Yuejin Ma; Jianguo Zhao; Jianchang Li; Jianjun Hao

2009-04-01T23:59:59.000Z

472

Use of an integrated design tool for weld quality enhancement  

SciTech Connect

It has been shown previously that the use of a mathematical model to predict the inherent fluid flow, heat transfer, free surface profiles and other associated phenomena during welding leads to a better understanding and, therefore, control of the welding process. Unfortunately many of the models available today are primarily research codes and, therefore, do not serve as design tools for the production welding engineer. In the current investigation, WELDER -- a three dimensional, transient mathematical model, has been integrated with a framework based on the Rational Product & Process Design (R{center_dot}P{sup 2}{center_dot}D{sub sm}){sup +} methodology to create a true design tool aimed towards use by engineers. This highly interactive and graphic tool simulates the welding process from the start to finish, and provides the user with capabilities to view the progression of welding and the associated heating and cooling of the base plate. In addition, analysis modules analyze the temperature profiles to predict residual stresses and evolving microstructures.

Cheng, C.; Paul, A.J. [Concurrent Technologies Corp., Johnstown, PA (United States); Zacharia, T. [Oak Ridge National Lab., TN (United States)

1993-12-31T23:59:59.000Z

473

Nondestructive inspection of General Purpose Heat Source (GPHS) girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using iridium capsules, TIG welded, to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Since experience in the past had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of the capsule weld is required. A ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors that exceeded the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M.A.H.; George, T.G.; Lynch, C. [and others

1998-12-31T23:59:59.000Z

474

FILL STEM MANUFACTURING CHANGES AND PINCH WELD QUALIFICATIONS  

Science Conference Proceedings (OSTI)

In March of 2007 a document was issued, see attachment I, that defined the test protocol and required welding for the Kansas City Plant to change cutting oils from the recently approved 50:50 oil to an oil with similar characteristics but with different chemistry, additives, and possibly a different vendor due to plans by the current vendor to stop preparing the oils that are used in the KCP 50:50 mix. The KCP manufactured stems with the existing 50:50 oil blend in late FY07 and SRNL welded the stems and evaluated them in agreement with the test plan. This report provides all the data from these set-up and test welds. Set-up welds were shot and low and high voltages (currents) to ensure the window limits were applicable and then additional welds were made to validate the window. The purpose of this report is to ensure that the agreed upon path forward is still applicable.

Korinko, P; David Maxwell, D

2008-02-22T23:59:59.000Z

475

Subsea pipeline gets welded branch without halting flow  

Science Conference Proceedings (OSTI)

In October 1994, a 16 in. welded branch was installed without interruption to production onto Wintershall Noordzee BV`s 36-in. gas pipeline from the K13-A platform in the Dutch sector of the North Sea to Den helder, The Netherlands. The procedure is the first successfully to combine hyperbaric welding and subsea hot tapping without interruption to production. Developers of new fields can now consider exporting product without interrupting existing production and through existing infrastructure even if no convenient tie-in locations exist. Unocal evaluated export options and established that the most attractive alternative was to export gas into the Wintershall 36-in. K13-A to Den Helder pipeline. Various options for installing a branch included the following: flooding the pipeline and installing a conventional tee; stopping production and installing a welded branch followed by hot tapping; and continuing production and installing a welded branch followed by hot tapping. The chosen scheme was to retrofit a subsea side-tap assembly. This was achieved by installation of a welded branch followed by hot tapping into the 36-in. pipeline. The paper describes location determination, schedules, onshore preparation, and offshore work.

West, A.; Hutt, G. [Stolt Comex Seaway Ltd., Aberdeen (United Kingdom); Starsmore, R. [Wintershall Noordzee B.V., Den Helder (Netherlands)

1995-12-11T23:59:59.000Z

476

TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING  

DOE Green Energy (OSTI)

While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

Hovanski, Yuri

2009-05-06T23:59:59.000Z

477

Performance and Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

and Optimization Performance and Optimization Compiler Comparisons Using a set of benchmarks described below, different optimization options for the different compilers on...

478

Optimization Online - Stochastic Optimization Approach to Water ...  

E-Print Network (OSTI)

Mar 18, 2012 ... Optimization Online. Stochastic Optimization Approach to Water Management in Cooling-Constrained Power Plants. Juan M. Salazar(juan ...

479

Optimization Online - Global Optimization Submissions - 2011  

E-Print Network (OSTI)

Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures ... On DC. optimization algorithms for solving minmax flow problems

480

Experimental Determination of the Effect of Last Pass Heat Sink Welding on Residual Stress in a Large Stainless Steel Pipe  

Science Conference Proceedings (OSTI)

This report discusses the experimental determination of through-wall residual distribution at welds in a 24-inch diameter heavy wall pipe. The results of a conventional butt weld and a butt weld made using the last pass heat sink welding method are compared.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimize welding conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Prediction of residual stresses in high strength carbon steel pipe weld considering solid-state phase transformation effects  

Science Conference Proceedings (OSTI)

In this paper, prediction of axial and hoop residual stresses produced in high strength carbon steel pipe weld was made by employing a sequentially coupled 3-D thermal, metallurgical and mechanical FE model. Solid-state phase transformation during welding ... Keywords: 3-D FE simulation, High strength carbon steel pipe weld, Solid-state phase transformation, Welding residual stresses

Chin-Hyung Lee; Kyong-Ho Chang

2011-01-01T23:59:59.000Z

482

OXIDATION BEHAVIOR OF WELDED AND BASE METAL UNS N06025  

Science Conference Proceedings (OSTI)

The oxidation behavior of specimens containing tungsten inert gas welds of UNS N06025 (NiCrFeAlY) was investigated in air for up to 5,000h at 900 -1000 C and 1,000h at 1100 -1200 C. In general, the microstructure was very homogeneous in the weld with smaller carbides and the Al2O3 penetrations were similar or smaller compared to those formed in the base metal. Above 1000 C, significant spallation was observed and Al and Cr depletion in the metal was observed to a similar extent in the weld and base metal. The maximum internal oxidation depth of the base metal at 900 and 1100 C was lower than several other commercial Ni-base alloys.

Pint, Bruce A [ORNL; Paul, Larry D. [Thyssen-Krupp VDM

2007-01-01T23:59:59.000Z

483

Gas-tungsten arc welding of aluminum alloys  

SciTech Connect

A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, Lowell D. (Kingston, TN)

1984-01-01T23:59:59.000Z

484

Method and device for controlling plume during laser welding  

SciTech Connect

A method and apparatus for enhancing the weldment of a laser welding system is provided. The laser weld plume control device includes a cylindrical body defining an upside-down cone cavity; the upper surface of the body circumscribes the base of the cone cavity, and the vertex of the cone cavity forms an orifice concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. According to the method of the invention, gas is directed radially inward through inlets in the upper surface of the body into and through cha