National Library of Energy BETA

Sample records for optimal power flow

  1. Resistive Network Optimal Power Flow: Uniqueness and Algorithms

    SciTech Connect (OSTI)

    Tan, CW; Cai, DWH; Lou, X

    2015-01-01

    The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.

  2. Exact Convex Relaxation of Optimal Power Flow in Radial Networks

    SciTech Connect (OSTI)

    Gan, LW; Li, N; Topcu, U; Low, SH

    2015-01-01

    The optimal power flow (OPF) problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. It is nonconvex. We prove that a global optimum of OPF can be obtained by solving a second-order cone program, under a mild condition after shrinking the OPF feasible set slightly, for radial power networks. The condition can be checked a priori, and holds for the IEEE 13, 34, 37, 123-bus networks and two real-world networks.

  3. OPF incorporating load models maximizing net revenue. [Optimal Power Flow

    SciTech Connect (OSTI)

    Dias, L.G.; El-Hawary, M.E. . Dept. of Electrical Engineering)

    1993-02-01

    Studies of effects of load modeling in optimal power flow studies using minimum cost and minimum loss objective reveal that a main disadvantage of cost minimization is the reduction of the objective via a reduction in the power demand. This inevitably results in lowering the total revenue and in most cases, reducing net revenue as well. An alternative approach for incorporating load models in security-constrained OPF (SCOPF) studies apparently avoids reducing the total power demand for the intact system, but reduces the voltages. A study of the behavior of conventional OPF solutions in the presence of loads not controlled by ULTC's shows that this result in a reducing the total power demand for the intact system. In this paper, the authors propose an objective that avoids the tendency to lower the total power demand, total revenue and net revenue, for OPF neglecting contingencies (normal OPF), as well as for security-constrained OPF. The minimum cost objective is modified by subtracting the total power demand from the total fuel cost. This is equivalent to maximizing the net revenue.

  4. Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson...

    Open Energy Info (EERE)

    topics related to ESI Posted: 15 Nov 2012 - 13:55 by Qinsun Qinsun Prospects for Nuclear Power(Davis 2012) Posted: 15 Nov 2012 - 13:36 by Qinsun 1 of 4 Groups Menu You...

  5. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  6. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  7. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization and Reliability Protect the Power Grid Click to email this to a friend (Opens ... Optimization and Reliability Protect the Power Grid Using the power of software, machine ...

  8. Optimization and Control of Electric Power Systems

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.; Molzahn, Daniel K.

    2014-10-17

    The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.

  9. Power Flow Controller for Renewables: Transformer-less Unified Power Flow Controller for Wind and Solar Power Transmission

    SciTech Connect (OSTI)

    2012-02-08

    GENI Project: MSU is developing a power flow controller to improve the routing of electricity from renewable sources through existing power lines. The fast, innovative, and lightweight circuitry that MSU is incorporating into its controller will eliminate the need for a separate heavy and expensive transformer, as well as the construction of new transmission lines. MSU’s controller is better suited to control power flows from distributed and intermittent wind and solar power systems than traditional transformer-based controllers are, so it will help to integrate more renewable energy into the grid. MSU‘s power flow controller can be installed anywhere in the existing grid to optimize energy transmission and help reduce transmission congestion.

  10. Free Flow Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Power Corporation Jump to: navigation, search Name: Free Flow Power Corporation Address: 239 Causeway St Suite 300 Place: Gloucester, Massachusetts Zip: 1930 Sector: Marine and...

  11. gtp_flow_power_estimator.xlsx

    Broader source: Energy.gov [DOE]

    This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

  12. EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine Performance and Cost | Department of Energy Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost April 9, 2013 - 12:00am Addthis During 2011, EERE worked with Free Flow Power to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. Free Flow

  13. Keeping the Power Flowing | Department of Energy

    Energy Savers [EERE]

    Keeping the Power Flowing Keeping the Power Flowing February 12, 2014 - 3:56pm Addthis A supercomputer at the Energy Department's Pacific Northwest National Lab (PNNL) | Photo courtesy of PNNL A supercomputer at the Energy Department's Pacific Northwest National Lab (PNNL) | Photo courtesy of PNNL Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What are the key facts? The Department of Energy is working closely with our

  14. Magnetic Amplifier for Power Flow Control

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  15. Solving the power flow equations: a monotone operator approach...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Solving the power flow equations: a monotone operator approach Citation Details In-Document Search Title: Solving the power flow equations: a monotone operator ...

  16. Integrated Layout and Optimization Tool for Solar Power Towers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Integrated Layout and Optimization Tool for Solar Power Towers The Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) generates and characterizes power tower (central receiver) systems. This software was developed by the National Renewable Energy Laboratory (NREL). SolarPILOT consists of a graphical user interface (GUI) and an application programming interface (API) through which external programs can access SolarPILOT's functionality.

  17. Solving the power flow equations: a monotone operator approach...

    Office of Scientific and Technical Information (OSTI)

    The AC power flow equations underlie all operational aspects of power systems. They are solved routinely in operational practice using the Newton-Raphson method and its variants. ...

  18. Optimized boundary driven flows for dynamos in a sphere

    SciTech Connect (OSTI)

    Khalzov, I. V.; Brown, B. P.; Cooper, C. M.; Weisberg, D. B.; Forest, C. B. [Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2012-11-15

    We perform numerical optimization of the axisymmetric flows in a sphere to minimize the critical magnetic Reynolds number Rm{sub cr} required for dynamo onset. The optimization is done for the class of laminar incompressible flows of von Karman type satisfying the steady-state Navier-Stokes equation. Such flows are determined by equatorially antisymmetric profiles of driving azimuthal (toroidal) velocity specified at the spherical boundary. The model is relevant to the Madison plasma dynamo experiment, whose spherical boundary is capable of differential driving of plasma in the azimuthal direction. We show that the dynamo onset in this system depends strongly on details of the driving velocity profile and the fluid Reynolds number Re. It is found that the overall lowest Rm{sub cr} Almost-Equal-To 200 is achieved at Re Almost-Equal-To 240 for the flow, which is hydrodynamically marginally stable. We also show that the optimized flows can sustain dynamos only in the range Rm{sub cr}optimized flows and the corresponding dynamo fields are presented.

  19. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect (OSTI)

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  20. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  1. Fe/V Redox Flow Battery Electrolyte Investigation and Optimization

    SciTech Connect (OSTI)

    Li, Bin; Li, Liyu; Wang, Wei; Nie, Zimin; Chen, Baowei; Wei, Xiaoliang; Luo, Qingtao; Yang, Zhenguo; Sprenkle, Vincent L.

    2013-05-01

    Recently invented Fe/V redox flow battery (IVBs) system has attracted more and more attentions due to its long-term cycling stability. In this paper, the factors (such as compositions, state of charge (SOC) and temperatures) influencing the stability of electrolytes in both positive and negative half-cells were investigated by an extensive matrix study. Thus an optimized electrolyte, which can be operated in the temperature ranges from -5oC to 50oC without any precipitations, was identified. The Fe/V flow cells using the optimized electrolytes and low-cost membranes exhibited satisfactory cycling performances at different temperatures. The efficiencies, capacities and energy densities of flow batteries with varying temperatures were discussed in detail.

  2. Optimality and Conductivity for Water Flow: From Landscapes, to Unsaturated Soils, to Plant Leaves

    SciTech Connect (OSTI)

    Liu, H.H.

    2012-02-23

    Optimality principles have been widely used in many areas. Based on an optimality principle that any flow field will tend toward a minimum in the energy dissipation rate, this work shows that there exists a unified form of conductivity relationship for three different flow systems: landscapes, unsaturated soils and plant leaves. The conductivity, the ratio of water flux to energy gradient, is a power function of water flux although the power value is system dependent. This relationship indicates that to minimize energy dissipation rate for a whole system, water flow has a small resistance (or a large conductivity) at a location of large water flux. Empirical evidence supports validity of the relationship for landscape and unsaturated soils (under gravity dominated conditions). Numerical simulation results also show that the relationship can capture the key features of hydraulic structure for a plant leaf, although more studies are needed to further confirm its validity. Especially, it is of interest that according to this relationship, hydraulic conductivity for gravity-dominated unsaturated flow, unlike that defined in the classic theories, depends on not only capillary pressure (or saturation), but also the water flux. Use of the optimality principle allows for determining useful results that are applicable to a broad range of areas involving highly non-linear processes and may not be possible to obtain from classic theories describing water flow processes.

  3. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  4. Primus Power's Flow Battery Powered by $11 Million in Private Investment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Primus Power's Flow Battery Powered by $11 Million in Private Investment Primus Power's Flow Battery Powered by $11 Million in Private Investment June 14, 2011 - 10:00am Addthis Primus Power's energy cell stack. | Photo Courtesy of Primus Power Primus Power's energy cell stack. | Photo Courtesy of Primus Power Kristina Pflanz Writer & Contractor, Advanced Research Projects Agency - Energy What does this mean for me? Will make renewable energy sources, such as solar

  5. Power, Optimization, Waste Estimating, Resourcing Tool

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    Planning, Optimization, Waste Estimating, Resourcing tool (POWERtool) is a comprehensive relational database software tool that can be used to develop and organize a detailed project scope, plan work tasks, develop bottoms-up field cost and waste estimates for facility Deactivation and Decommissioning (D&D), equipment, and environmental restoration (ER) projects and produces resource-loaded schedules.

  6. Stochastic Robust Mathematical Programming Model for Power System Optimization

    SciTech Connect (OSTI)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  7. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this simulation process that leads directly to system efficiency power maps defining potentially available optimal system operating conditions and regimes. This coupled simulation approach enables pathways for integrated use of high-performance combustor components, high performance TE devices, and microtechnologies to produce a compact, lightweight, combustion driven TE power system prototype that operates on common fuels.

  8. Modeling Microinverters and DC Power Optimizers in PVWatts

    SciTech Connect (OSTI)

    MacAlpine, S.; Deline, C.

    2015-02-01

    Module-level distributed power electronics including microinverters and DC power optimizers are increasingly popular in residential and commercial PV systems. Consumers are realizing their potential to increase design flexibility, monitor system performance, and improve energy capture. It is becoming increasingly important to accurately model PV systems employing these devices. This document summarizes existing published documents to provide uniform, impartial recommendations for how the performance of distributed power electronics can be reflected in NREL's PVWatts calculator (http://pvwatts.nrel.gov/).

  9. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat; Liu, Yan; Bose, Sumit; de Bedout, Juan Manuel

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  10. RECOVERY ACT - Robust Optimization for Connectivity and Flows in Dynamic Complex Networks

    SciTech Connect (OSTI)

    Balasundaram, Balabhaskar; Butenko, Sergiy; Boginski, Vladimir; Uryasev, Stan

    2013-12-25

    The goal of this project was to study robust connectivity and flow patterns of complex multi-scale systems modeled as networks. Networks provide effective ways to study global, system level properties, as well as local, multi-scale interactions at a component level. Numerous applications from power systems, telecommunication, transportation, biology, social science, and other areas have benefited from novel network-based models and their analysis. Modeling and optimization techniques that employ appropriate measures of risk for identifying robust clusters and resilient network designs in networks subject to uncertain failures were investigated in this collaborative multi-university project. In many practical situations one has to deal with uncertainties associated with possible failures of network components, thereby affecting the overall efficiency and performance of the system (e.g., every node/connection has a probability of partial or complete failure). Some extreme examples include power grid component failures, airline hub failures due to weather, or freeway closures due to emergencies. These are also situations in which people, materials, or other resources need to be managed efficiently. Important practical examples include rerouting flow through power grids, adjusting flight plans, and identifying routes for emergency services and supplies, in the event network elements fail unexpectedly. Solutions that are robust under uncertainty, in addition to being economically efficient, are needed. This project has led to the development of novel models and methodologies that can tackle the optimization problems arising in such situations. A number of new concepts, which have not been previously applied in this setting, were investigated in the framework of the project. The results can potentially help decision-makers to better control and identify robust or risk-averse decisions in such situations. Formulations and optimal solutions of the considered problems need to capture uncertainty and risk using appropriate probabilistic, statistical and optimization concepts. The main difficulty arising in addressing these issues is the dramatic increase in the computational complexity of the resulting optimization problems. This project studied novel models and methodologies for risk-averse network optimization- specifically, network design, network flows and cluster detection problems under uncertainty. The approach taken was to incorporate a quantitative risk measure known as conditional value-at-risk that is widely used in financial applications. This approach presents a viable alternate modeling and optimization framework to chance-constrained optimization and mean-variance optimization, one that also facilitates the detection of risk-averse solutions.

  11. Solar Power Tower Integrated Layout and Optimization Tool Background |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Solar Power Tower Integrated Layout and Optimization Tool Background SolarPILOT(tm) offers several unique capabilities compared to other software tools. Unlike exclusively ray-tracing tools, SolarPILOT runs the analytical simulation engine that uses a modified Gaussian series expansion to characterize the image generated by each heliostat. Rather than construct the model of the image using a large number of rays that eventually approach a Gaussian-form image

  12. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect (OSTI)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  13. Optimal design of a pilot OTEC power plant in Taiwan

    SciTech Connect (OSTI)

    Tseng, C.H.; Kao, K.Y. ); Yang, J.C. )

    1991-12-01

    In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. THe OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these sub-systems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected.

  14. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  15. Computing an operating parameter of a unified power flow controller

    DOE Patents [OSTI]

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  16. Power flow control using distributed saturable reactors

    DOE Patents [OSTI]

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  17. TAS: 89 0227: TAS Recovery Act - Optimization and Control of Electric Power Systems: ARRA

    SciTech Connect (OSTI)

    Chiang, Hsiao-Dong

    2014-02-01

    The name SuperOPF is used to refer several projects, problem formulations and soft-ware tools intended to extend, improve and re-define some of the standard methods of optimizing electric power systems. Our work included applying primal-dual interior point methods to standard AC optimal power flow problems of large size, as well as extensions of this problem to include co-optimization of multiple scenarios. The original SuperOPF problem formulation was based on co-optimizing a base scenario along with multiple post-contingency scenarios, where all AC power flow models and constraints are enforced for each, to find optimal energy contracts, endogenously determined locational reserves and appropriate nodal energy prices for a single period optimal power flow problem with uncertainty. This led to example non-linear programming problems on the order of 1 million constraints and half a million variables. The second generation SuperOPF formulation extends this by adding multiple periods and multiple base scenarios per period. It also incorporates additional variables and constraints to model load following reserves, ramping costs, and storage resources. A third generation of the multi-period SuperOPF, adds both integer variables and a receding horizon framework in which the problem type is more challenging (mixed integer), the size is even larger, and it must be solved more frequently, pushing the limits of currently available algorithms and solvers. The consideration of transient stability constraints in optimal power flow (OPF) problems has become increasingly important in modern power systems. Transient stability constrained OPF (TSCOPF) is a nonlinear optimization problem subject to a set of algebraic and differential equations. Solving a TSCOPF problem can be challenging due to (i) the differential-equation constraints in an optimization problem, (ii) the lack of a true analytical expression for transient stability in OPF. To handle the dynamics in TSCOPF, the set of differential equations can be approximated or converted into equivalent algebraic equations before they are included in an OPF formulation. In Chapter 4, a rigorous evaluation of using a predefined and fixed threshold for rotor angles as a mean to determine transient stability of the system is developed. TSCOPF can be modeled as a large-scale nonlinear programming problem including the constraints of differential-algebraic equations (DAE). Solving a TSCOPF problem can be challenging due to (i) the differential-equation constraints in an optimization problem, (ii) the lack of a true analytical expression for transient stability constraint in OPF. Unfortunately, even the current best TSCOPF solvers still suffer from the curse of dimensionality and unacceptable computational time, especially for large-scale power systems with multiple contingencies. In chapter 5, thse issues will be addressed and a new method to incorporate the transient stability constraints will be presented.

  18. Optimization of a Virtual Power Plant to Provide Frequency Support.

    SciTech Connect (OSTI)

    Neely, Jason C.; Johnson, Jay; Gonzalez, Sigifredo; Lave, Matthew Samuel; Delhotal, Jarod James

    2015-12-01

    Increasing the penetration of distributed renewable sources, including photovoltaic (PV) sources, poses technical challenges for grid management. The grid has been optimized over decades to rely upon large centralized power plants with well-established feedback controls, but now non-dispatchable, renewable sources are displacing these controllable generators. This one-year study was funded by the Department of Energy (DOE) SunShot program and is intended to better utilize those variable resources by providing electric utilities with the tools to implement frequency regulation and primary frequency reserves using aggregated renewable resources, known as a virtual power plant. The goal is to eventually enable the integration of 100s of Gigawatts into US power systems.

  19. Research on stochastic power-flow study methods. Final report

    SciTech Connect (OSTI)

    Heydt, G. T.

    1981-01-01

    A general algorithm to determine the effects of uncertainty in bus load and generation on the output of conventional power flow analysis is presented. The use of statistical moments is presented and developed as a means for representing the stochastic process. Statistical moments are used to describe the uncertainties, and facilitate the calculations of single and multivarlate probability density functions of input and output variables. The transformation of the uncertainty through the power flow equations is made by the expansion of the node equations in a multivariate Taylor series about an expected operating point. The series is truncated after the second order terms. Since the power flow equations are nonlinear, the expected values of output quantities is in general not the solution to the conventional load flow problem using expected values of input quantities. The second order transformation offers a correction vector and allows the consideration of larger uncertainties which have caused significant error in the current linear transformation algorithms. Voltage controlled busses are included with consideration of upper and lower limits. The finite reactive power available at generation sites, and fixed ranges of transformer tap movement may have a significant effect on voltage and line power flow statistics. A method is given which considers limitation constraints in the evaluation of all output quantities. The bus voltages, line power flows, transformer taps, and generator reactive power requirements are described by their statistical moments. Their values are expressed in terms of the probability that they are above or below specified limits, and their expected values given that they do fall outside the limits. Thus the algorithm supplies information about severity of overload as well as probability of occurrence. An example is given for an eleven bus system, evaluating each quantity separately. The results are compared with Monte Carlo simulation.

  20. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect (OSTI)

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  1. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect (OSTI)

    Al-Alili, A.; Hwang, Y.; Radermacher, R.; Kubo, I.

    2010-12-15

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  2. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect (OSTI)

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  3. Optimal subinterval selection approach for power system transient stability simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less

  4. Optimal subinterval selection approach for power system transient stability simulation

    SciTech Connect (OSTI)

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.

  5. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect (OSTI)

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  6. Primary Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Miller, John M; Onar, Omer C; Chinthavali, Madhu Sudhan

    2015-01-01

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblance to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.

  7. Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants

    SciTech Connect (OSTI)

    Rabas, T.J.; Panchal, C.B.; Stevens, H.C. )

    1990-02-01

    A preliminary design of the noncondensible gas removal system for a 10 mWe, land-based hybrid-cycle OTEC power plant has been developed and is presented herein. This gas removal system is very different from that used for conventional power plants because of the substantially larger and continuous noncondensible gas flow rates and lower condenser pressure levels which predicate the need for higher-efficiency components. Previous OTEC studies discussed the need for multiple high-efficiency compressors with intercoolers; however, no previous design effort was devoted to the details of the intercoolers, integration and optimization of the intercoolers with the compressors, and the practical design constraints and feasibility issues of these components. The resulting gas removal system design uses centrifugal (radial) compressors with matrix-type crossflow aluminum heat exchangers as intercoolers. Once-through boiling of ammonia is used as the heat sink for the cooling and condensing of the steam-gas mixture. A computerized calculation method was developed for the performance analysis and subsystem optimization. For a specific number of compressor units and the stream arrangement, the method is used to calculate the dimensions, speeds, power requirements, and costs of all the components.

  8. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    SciTech Connect (OSTI)

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limited number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.

  9. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  10. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance and Cost

    Broader source: Energy.gov [DOE]

    Free Flow Power is working to enable American utilities to generate power from river sites not suited to conventional hydropower generation.

  11. Flow reversal power limit for the HFBR (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Flow reversal power limit for the HFBR Citation Details In-Document Search Title: Flow reversal power limit for the HFBR You are accessing a document from the Department of ...

  12. 220 kV SSSC device for power flow control (Smart Grid Project...

    Open Energy Info (EERE)

    20 kV SSSC device for power flow control (Smart Grid Project) Jump to: navigation, search Project Name 220 kV SSSC device for power flow control Country Spain Headquarters Location...

  13. Design and optimization of a back-flow limiter for the high performance light water reactor

    SciTech Connect (OSTI)

    Fischer, Kai; Laurien, Eckart; Claas, Andreas G.; Schulenberg, Thomas

    2007-07-01

    Design and Analysis of a back-flow limiter are presented, which is implemented as a safety device in the four inlet lines of the Reactor Pressure Vessel (RPV) of the High Performance Light Water Reactor (HPLWR). As a passive component, the back-flow limiter has no moving parts and belongs to the group of fluid diodes. It has low flow resistance for regular operation condition and a high flow resistance when the flow direction is reversed which is the case if a break of the feedwater line occurs. The increased flow resistance is due to a substantially increased swirl for reverse flow condition. The design is optimized employing 1D flow analyses in combination with 3D CFD analyses with respect to geometrical modifications, like the nozzle shape and swirler angles. (authors)

  14. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron

    SciTech Connect (OSTI)

    Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Saito, Teruo; Ikeda, Ryosuke; Mudiganti, Jagadish C.; Ogawa, Isamu; Idehara, Toshitaka [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan)

    2012-11-15

    This paper describes the design of a triode magnetron injection gun for use in a 200 kW, 300 GHz gyrotron. As power and frequency increase, the performance of the gyrotron becomes quite sensitive to the quality of the electron beam. Formation of a laminar electron flow is essential for the realization of a high quality beam with a small velocity spread. In this study, a new method is developed for a quantitative evaluation of the laminarity and is applied to optimize the electrode design. The laminarity depends not only on conventional design parameters such as the cathode slant angle but also on the spatial distribution of the electric field along the beam trajectory. In the optimized design, the velocity pitch factors, {alpha}, larger than 1.2 are obtained at 65 kV, 10 A with spreads, {Delta}{alpha}, less than 5%.

  15. Solar Power Ramp Events Detection Using an Optimized Swinging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Boston, Massachusetts, USA DETC2015-46849 SOLAR POWER RAMP EVENTS DETECTION USING AN ... yzsun@mail.tsinghua.edu.cn ABSTRACT Solar power ramp events (SPREs) significantly ...

  16. Primary Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, John M; Onar, Omer C; Chinthavali, Madhu Sudhan

    2015-01-01

    Various noncontacting methods of plug-in electric vehicle charging are either under development or now deployed as aftermarket options in the light-duty automotive market. Wireless power transfer (WPT) is now the accepted term for wireless charging and is used synonymously for inductive power transfer and magnetic resonance coupling. WPT technology is in its infancy; standardization is lacking, especially on interoperability, center frequency selection, magnetic fringe field suppression, and the methods employed for power flow regulation. This paper proposes a new analysis concept for power flow in WPT in which the primary provides frequency selection and the tuned secondary, with its resemblancemore » to a power transmission network having a reactive power voltage control, is analyzed as a transmission network. Analysis is supported with experimental data taken from Oak Ridge National Laboratory s WPT apparatus. This paper also provides an experimental evidence for frequency selection, fringe field assessment, and the need for low-latency communications in the feedback path.« less

  17. Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony R.; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-06

    Significant wind power ramp events (WPREs) are those that influence the integration of wind power, and they are a concern to the continued reliable operation of the power grid. As wind power penetration has increased in recent years, so has the importance of wind power ramps. In this paper, an optimized swinging door algorithm (SDA) is developed to improve ramp detection performance. Wind power time series data are segmented by the original SDA, and then all significant ramps are detected and merged through a dynamic programming algorithm. An application of the optimized SDA is provided to ascertain the optimal parameter of the original SDA. Measured wind power data from the Electric Reliability Council of Texas (ERCOT) are used to evaluate the proposed optimized SDA.

  18. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

  19. Flow reversal power limit for the HFBR (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flow reversal power limit for the HFBR Citation Details In-Document Search Title: Flow reversal power limit for the HFBR The High Flux Beam Reactor (HFBR) undergoes a buoyancy-driven reversal of flow in the reactor core following certain postulated accidents. Uncertainties about the afterheat removal capability during the flow reversal has limited the reactor operating power to 30 MW. An experimental and analytical program to address these uncertainties is described in this

  20. Complex Polynomial Optimization and its Application to Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as electric power systems, signal processing, imaging science, automatic control, and quantum mechanics. Complex numbers are typically used to model oscillatory phenomena which...

  1. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  2. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  3. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOE Patents [OSTI]

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  4. Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free programmable thermostat and free installation to qualifying customers to manage energy usage. Only residential and small commercial customers...

  5. Power flow controller with a fractionally rated back-to-back converter

    DOE Patents [OSTI]

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  6. Communications and control for electric power systems: Power flow classification for static security assessment

    SciTech Connect (OSTI)

    Niebur, D.; Germond, A.

    1993-02-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in the paper, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  7. Communications and control for electric power systems: Power flow classification for static security assessment

    SciTech Connect (OSTI)

    Niebur, D.; Germond, A.

    1993-02-01

    This report investigates the classification of power system states using an artificial neural network model, Kohonen`s self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen`s self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in the paper, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.

  8. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  9. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  10. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  11. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect (OSTI)

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  12. Optimization Studies for ISOL Type High-Powered Targets

    SciTech Connect (OSTI)

    Remec, Igor; Ronningen, Reginald Martin

    2013-09-24

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  13. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    SciTech Connect (OSTI)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  14. Wind Plant Power Optimization through Yaw Control using a Parametric Model for Wake Effects -- A CFD Simulation Study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gebraad, P. M. O.; Teeuwisse, F. W.; van Wingerden, J. W.; Fleming, Paul A.; Ruben, S. D.; Marden, J. R.; Pao, L. Y.

    2016-01-01

    This article presents a wind plant control strategy that optimizes the yaw settings of wind turbines for improved energy production of the whole wind plant by taking into account wake effects. The optimization controller is based on a novel internal parametric model for wake effects, called the FLOw Redirection and Induction in Steady-state (FLORIS) model. The FLORIS model predicts the steady-state wake locations and the effective flow velocities at each turbine, and the resulting turbine electrical energy production levels, as a function of the axial induction and the yaw angle of the different rotors. The FLORIS model has a limitedmore » number of parameters that are estimated based on turbine electrical power production data. In high-fidelity computational fluid dynamics simulations of a small wind plant, we demonstrate that the optimization control based on the FLORIS model increases the energy production of the wind plant, with a reduction of loads on the turbines as an additional effect.« less

  15. The effect of expansion-ratio limitations on positive-displacement, total-flow geothermal power systems

    SciTech Connect (OSTI)

    DiPippo, R.

    1982-02-01

    Combined steam-turbine/positive-displacement engine (PDE) geothermal power systems are analyzed thermodynamically and compared with optimized reference flash-steam plants. Three different configurations of combined systems are considered. Treated separately are the cases of self-flowing and pumped wells. Two strategies are investigated that help overcome the inherent expansion-ratio limitation of PDE's: pre-flashing and pre-mixing. Parametrically-obtained results show the required minimum PDE efficiency for the combined system to match the reference plant for various sets of design conditions.

  16. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    SciTech Connect (OSTI)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.

  17. Online Optimal Control of Connected Vehicles for Efficient Traffic Flow at Merging Roads

    SciTech Connect (OSTI)

    Rios-Torres, Jackeline; Malikopoulos, Andreas; Pisu, Pierluigi

    2015-01-01

    This paper addresses the problem of coordinating online connected vehicles at merging roads to achieve a smooth traffic flow without stop-and-go driving. We present a framework and a closed-form solution that optimize the acceleration profile of each vehicle in terms of fuel economy while avoiding collision with other vehicles at the merging zone. The proposed solution is validated through simulation and it is shown that coordination of connected vehicles can reduce significantly fuel consumption and travel time at merging roads.

  18. Proceedings: Advances in Life Assessment and Optimization of Fossil Power Plants

    SciTech Connect (OSTI)

    2002-06-01

    Condition and remaining life assessment (CARLA) technology has assumed great importance in the context of the reliability, availability, and maintainability (RAM) of fossil power plants. These proceedings summarize a 3-day conference on CARLA technology for boiler, steam turbine, and combustion turbine components operating at elevated temperatures that included a session on maintenance planning and optimization based upon economics and risk assessment.

  19. Solar Power Ramp Events Detection Using an Optimized Swinging Door Algorithm: Preprint

    SciTech Connect (OSTI)

    Cui, Mingjian; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Ke, Deping; Sun, Yuanzhang

    2015-08-07

    Solar power ramp events (SPREs) are those that significantly influence the integration of solar power on non-clear days and threaten the reliable and economic operation of power systems. Accurately extracting solar power ramps becomes more important with increasing levels of solar power penetrations in power systems. In this paper, we develop an optimized swinging door algorithm (OpSDA) to detection. First, the swinging door algorithm (SDA) is utilized to segregate measured solar power generation into consecutive segments in a piecewise linear fashion. Then we use a dynamic programming approach to combine adjacent segments into significant ramps when the decision thresholds are met. In addition, the expected SPREs occurring in clear-sky solar power conditions are removed. Measured solar power data from Tucson Electric Power is used to assess the performance of the proposed methodology. OpSDA is compared to two other ramp detection methods: the SDA and the L1-Ramp Detect with Sliding Window (L1-SW) method. The statistical results show the validity and effectiveness of the proposed method. OpSDA can significantly improve the performance of the SDA, and it can perform as well as or better than L1-SW with substantially less computation time.

  20. Optimization of the output and efficiency of a high power cascaded arc hydrogen plasma source

    SciTech Connect (OSTI)

    Vijvers, W. A. J.; Gils, C. A. J. van; Goedheer, W. J.; Meiden, H. J. van der; Veremiyenko, V. P.; Westerhout, J.; Lopes Cardozo, N. J.; Rooij, G. J. van; Schram, D. C.

    2008-09-15

    The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I-V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that (without a magnetic field) an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. [Appl. Phys. Lett. 90, 121501 (2007)] should be possible.

  1. Results of the plant maintenance optimization (PMO) pilot-project at an ENEL Fossil Power Plant

    SciTech Connect (OSTI)

    Falco, F. de; Paratore, A.; Moscotti, L.

    1996-07-01

    ENEL S.p.A. operates about sixty fossil power plants in Italy for a total installed power of more than 37,000 MW. This paper describes the pilot-project to apply Reliability Centered Maintenance (RCM) methodology at the {open_quotes}La Casella{close_quotes} Fossil Power Plant (4 x 320 MW units, oil fired). The project was performed by an ENEL working group (Generation and R&D Divisions) with assistance from ERIN, Engineering and Research, Inc. The first phase of the project confirmed the application and validity of the streamlined RCM method called Plant Maintenance Optimization (PMO) on the Condensate and Feedwater Systems. The second phase evaluated the effectiveness of the PMO method as used to developed an optimized maintenance program for five systems - Vent & Drain and Chemical Reagents, Boiler Start-Up, Boiler Auxiliaries, Blowing Compressors, and Air & Flue Gas. The conclusions of the project are consistent with other successful streamlined RCM applications (1) The PMO method is valid and applicable to fossil power plants; (2) Streamlined RCM approaches allow significant reduction in the time spent to perform an RCM analysis, without sacrificing the quality of the results; (3) PMO is effective in defining an optimized maintenance program; (4) The maintenance program developed through the analysis can be easily updated when the criticality criteria and/or maintenance history change.

  2. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  3. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  4. An Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Optimized Swinging Door Algorithm for Wind Power Ramp Event Detection Preprint Mingjian Cui 1 Jie Zhang 2 , Anthony R. Florita 2 , Bri-Mathias Hodge 2 , Deping Ke 1 , and Yuanzhang Sun 1 1 Wuhan University 2 National Renewable Energy Laboratory Presented at the IEEE Power and Energy Society General Meeting Denver, Colorado July 26-30, 2015 Conference Paper NREL/CP-5D00-63877 August 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  5. Towards an optimal flow: Density-of-states-informed replica-exchange simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogel, Thomas; Perez, Danny

    2015-11-05

    Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less

  6. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect (OSTI)

    Moraitis, C.S. [Systelligence Consultants and Research Associates, Volos (Greece); Akritidis, C.B. [Dept. of Hydraulics and Agricultural Engineering, Thessaloniki (Greece)

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  7. Free Flow Energy (TRL 1 2 3 Component)- Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

    Broader source: Energy.gov [DOE]

    Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator Optimized for the Conditions of Current Energy Conversion

  8. Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chong M.; Sprenkle, Vincent L.; Wang, Wei

    2014-01-01

    Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRB cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.

  9. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    SciTech Connect (OSTI)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  10. Optimization strategies for the vulnerability analysis of the electric power grid.

    SciTech Connect (OSTI)

    Meza, Juan C.; Pinar, Ali; Lesieutre, Bernard; Donde, Vaibhav

    2009-03-01

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  11. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  12. Optimization of electrode characteristics for the Br-2/H-2 redox flow cell

    SciTech Connect (OSTI)

    Tucker, MC; Cho, KT; Weber, AZ; Lin, GY; Nguyen, TV

    2014-10-17

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (-) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (-) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm(-2) and a peak power density of 1.4 W cm(-2). Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (-) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  13. Optimization of electrode characteristics for the Br?/H? redox flow cell

    SciTech Connect (OSTI)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2015-01-01

    The Br?/H? redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and () electrode architecture are investigated. Increasing hydrogen pressure and depositing the () catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt () electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

  14. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; Lin, Guangyu; Van Nguyen, Trung

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm-2 and a peak power density of 1.4 W cm-2. Maximum energy efficiencymore » of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br- reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br- coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  15. Overview of BGE`s fossil power flow accelerated corrosion inspection program

    SciTech Connect (OSTI)

    Klein, P.A.; Guanti, R.J.

    1996-07-01

    An inspection program was developed for Flow Accelerated Corrosion (FAC) screening of piping components in BGE`s Fossil Power Plants. Details of the overall inspection process and rationale for identifying the most susceptible components for FAC wall thinning are presented. Inspection results are discussed and a list of component types illustrating a high susceptibility to wall thinning due to FAC is included.

  16. Analysis of oscillation characteristics and optimal conditions for high power operation of Gyrotron FU CW GIII

    SciTech Connect (OSTI)

    Tatematsu, Y. Yamaguchi, Y.; Kawase, T.; Ichioka, R.; Ogawa, I.; Saito, T.; Idehara, T.

    2014-08-15

    The oscillation characteristics of Gyrotron FU CW GIII and its wave frequency and output power dependences on the magnetic field strength, the gun coil current, and the anode voltage were investigated experimentally. The experimental results were analyzed theoretically using a self-consistent code that included the electron properties in the cavity, corresponding to the actual operating conditions in the experiments. As a result, it was found that the variation in frequency with the magnetic field strength was related to an axial profile change in the electromagnetic wave in the cavity. In addition, the optimal condition that gives the maximum output power was found to be determined by the pitch factor rather than by the electron beam radius under the given operating conditions.

  17. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect (OSTI)

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  18. Regularization of Feedwater Flow Rate Evaluation for Venturi Meter Fouling Problem in Nuclear Power Plants

    SciTech Connect (OSTI)

    Gribok, Andrei V.; Attieh, Ibrahim K.; Hines, J. Wesley; Uhrig, Robert E.

    2001-04-15

    Inferential sensing is a method that can be used to evaluate parameters of a physical system based on a set of measurements related to these parameters. The most common method of inferential sensing uses mathematical models to infer a parameter value from correlated sensor values. However, since inferential sensing is an inverse problem, it can produce inconsistent results due to minor perturbations in the data. This research shows that regularization can be used in inferential sensing to produce consistent results. Data from Florida Power Corporation's Crystal River nuclear power plant (NPP) are used to give an important example of monitoring NPP feedwater flow rate.

  19. Flow simulation of the Component Development Integration Facility magnetohydrodynamic power train system

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1997-11-01

    This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.

  20. Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm

    SciTech Connect (OSTI)

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2011-06-01

    Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

  1. An optimal control to improve transient stability of multi-machine power system

    SciTech Connect (OSTI)

    Yamashita, K.; Okano, K.; Tanoguchi, T.

    1982-03-01

    The authors proposed previously an optimal control method to stabilize the power system under large disturbance. This method is based on Lyapunov function and only those feedback signals are used which are given by the time differentiated state variables. In this paper, the discussion is extended from the earlier paper using the extended Lyapunov function and feedback signals which are represented by state variables. Mathematically speaking, the results of the earlier paper are extended by performing some additional matrix operations. The feedback signal is given by a linear combination of state variables (e.g., phase differences between machines) and time differentiated state variables (e.g., generator speed). The time derivative of the extended Lyapunov function is expressed as a quadratic form of feedback gains and the optimal gains are derived by the quadratic form minimization technique. All the nonlinearities of the analyzed system are always retained. Effectiveness of the proposed control scheme is demonstrated by digital computer simulation of three-machine system subject to a large disturbance.

  2. Transverse flowing liquid Kerr cell for high average power laser Q-switching and for direct modulation of high power laser beams.

    DOE Patents [OSTI]

    Comaskey, Brian J.

    2004-12-07

    A fluid flow concept is applied in an optical apparatus to define a high gain stand-off, fast electro-optical q-switch which is highly impervious to high average power optical loads.

  3. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  4. Study of multi-phase flow characteristics in an MHD power train

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1993-08-01

    Computer simulation was used to predict two-phase flow processes in the CDIF MHD power train system. The predictions were used to evaluate the effects of operating and design parameters on the performance of the system and a parametric evaluation provides information to enhance the performance of the system. Major components of the system under investigation are the two-stage combustor, the converging/diverging nozzle, the supersonic MHD channel, and the diffuser. Flow in each component was simulated using a computer code. Integrating the computer codes, the two-phase flow processes in the system was calculated. Recently, the computer codes were used to investigate problems of nozzle erosion and the non-uniform iron oxide coverage on the cathode wall in the channel. A limited parametric study was conducted. The results indicated that (1) among the three nozzle geometries under investigation a {number_sign}5 nozzle has the smoothest flow development in the nozzle and has the lowest droplet deposition on wall and (2) smaller particle size and lower injection velocity tend to disperse the iron oxide particles more uniformly in the nozzle.

  5. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  6. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOE Patents [OSTI]

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  7. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

  8. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; Liu, Yilu

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  9. Microsoft PowerPoint - P&RA CoP EPA optimization Biggs final 111215

    Office of Environmental Management (EM)

    Implementing Optimization in the Superfund Program __________________________________________________ For the Interagency Performance and Risk Assessment Community of Practice (P&RA CoP) November 12, 2015 Kirby Biggs National Optimization Program Coordinator Technology Integration and Information Branch Office of Superfund Remediation and Technology Integration Washington DC 20460 biggs.kirby@epa.gov . 703-823-3081 . www.cluin.org/optimization (Cleanup Horizon: 2004 - 2033) Source:

  10. Microsoft PowerPoint - P&RA CoP EPA optimization Biggs final...

    Office of Environmental Management (EM)

    ... Optimization Events...? * RIFS Reports * Decision documents * Design basis ... Army Environmental Command, http:aec.army.mil * U.S. Air Force Civil Engineer Center, ...

  11. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    DOE Patents [OSTI]

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  12. Experimental Study on Flow Optimization in Upper Plenum of Reactor Vessel for a Compact Sodium-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Kimura, Nobuyuki; Hayashi, Kenji; Kamide, Hideki; Itoh, Masami; Sekine, Tadashi

    2005-11-15

    An innovative sodium-cooled fast reactor has been investigated in a feasibility study of fast breeder reactor cycle systems in Japan. A compact reactor vessel and a column-type upper inner structure with a radial slit for an arm of a fuel-handling machine (FHM) are adopted. Dipped plates are set in the reactor vessel below the free surface to prevent gas entrainment. We performed a one-tenth-scaled model water experiment for the upper plenum of the reactor vessel. Gas entrainment was not observed in the experiment under the same velocity condition as the reactor. Three vortex cavitations were observed near the hot-leg inlet. A vertical rib on the reactor vessel wall was set to restrict the rotating flow near the hot leg. The vortex cavitation between the reactor vessel wall and the hot leg was suppressed by the rib under the same cavitation factor condition as in the reactor. The cylindrical plug was installed through the hole in the dipped plates for the FHM to reduce the flow toward the free surface. It was effective when the plug was submerged into the middle height in the upper plenum. This combination of two components had a possibility to optimize the flow in the compact reactor vessel.

  13. A programmatic approach to piping flow-accelerated corrosion in fossil power plants

    SciTech Connect (OSTI)

    Zysk, G.W.; McBrine, W.J.; Sinha, S.K.

    1996-12-01

    Pipe wall thinning in fossil plant piping systems has been recognized as an important industry problem which should be investigated. This is evident by an observed trend of industry failures and documented cases of high energy pipe wall thinning. Nuclear plants typically have developed extensive Flow-Accelerated Corrosion programs in recent years. However, the inherent design, operational, and regulatory differences between Fossil and Nuclear power plants warrants a programmatic approach specific to non-nuclear plants. This paper suggests a phased investigative approach for Fossil plants which allows for short term risk reduction, but also establishes a long term strategy to further reduce risk, understand the extent of the problem and appropriately consider mitigating actions.

  14. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    SciTech Connect (OSTI)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.

  15. Simulation of three-dimensional multi-phase flow characteristics in the deswirl section of the CDIF MHD power train

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1994-06-01

    A three-dimensional, two-phase, turbulent flow computer code was used to predict flow characteristics of seed particles and coal gas in the deswirl section of the CDIF MHD power train system. Seed material which has a great effect on the overall performance of the MHD system is injected in the deswirl against the swirling coal gas flow coming from the first stage combustor. While testing the MHD system, excessive seed material (70% more than theoretical value) was required to achieve design operating conditions. Calculations show that the swirling coal gas flow turns a 90 degree angle to minimize the swirl motion before entering a second stage combustor and many seed particles are too slow to react to the flow turning and deposit on the walls of the deswirl section. Some seed material deposited on the walls is covered by slag layer and removed from the gas flow. The reduction of seed material in the gas flow decreases MHD power generation significantly. A computational experiment was conducted and its results show that seed injection on the wall can be minimized by simply changing the seed injection and an optimum location was identified. If seed is injected from the location of choice, the seed deposition is reduced by a factor of 10 compared to the original case.

  16. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOE Patents [OSTI]

    Kolb, Gregory J.

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  17. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy Preprint M. Beam, B. Kline, B. Elbing, W. Straka, and A. Fontaine Pennsylvania State University M. Lawson, Y. Li, and R. Thresher National Renewable Energy Laboratory M. Previsic Re Vision Consulting, LLC To be presented at the 32 nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013) Nantes, France June 9-14, 2013 Conference Paper NREL/CP-5000-58092 February 2013 NOTICE

  18. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation.

    SciTech Connect (OSTI)

    Constantinescu, E. M; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2011-02-01

    We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/economic dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the framework and validate the model using real wind-speed data obtained from a set of meteorological stations. We build a simulated power system to demonstrate the developments.

  19. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOE Patents [OSTI]

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  20. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.

  1. Concentration solar power optimization system and method of using the same

    DOE Patents [OSTI]

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  2. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  3. EERE Success Story-Free Flow Power Partners to Improve Hydrokinetic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results were encouraging, as the device performed as expected, with no discernible harm to river-dwelling fish. Free Flow has also completed preliminary designs of utility-scale ...

  4. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  5. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    SciTech Connect (OSTI)

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-10-15

    We present a study on the magnetic properties of naked and silica-coated Fe{sub 3}O{sub 4} nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO{sub 2} shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO{sub 2} functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe{sub 3}O{sub 4} nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  6. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  7. Improving Power Production in Acetate-Fed Microbial Fuel Cells via Enrichment of Exoelectrogenic Organisms in Flow-Through Systems

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin

    2009-01-01

    An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.

  8. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect (OSTI)

    Perkins, Roy

    2013-06-21

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  9. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    DOE Patents [OSTI]

    Graves, Steven W.; Habbersett, Robert C.

    2014-07-01

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  10. System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source

    DOE Patents [OSTI]

    Graves, Steven W; Habbersett, Robert C

    2013-10-22

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  11. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power Water PowerTara Camacho-Lopez2016-04-18T19:53:50+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  12. Northwest, the Bonneville Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    voltage power lines that move large amounts of power from hydroelectric projects and power plants to urban centers hundreds of miles away. To keep the electricity flowing safely...

  13. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  14. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  15. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  16. Integrated controls design optimization

    DOE Patents [OSTI]

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  17. TWO-PHASE FLOW STUDIES IN NUCLEAR POWER PLANT PRIMARY CIRCUITS USING THE THREE-DIMENSIONAL THERMAL-HYDRAULIC CODE BAGIRA.

    SciTech Connect (OSTI)

    KOHURT, P. , KALINICHENKO, S.D.; KROSHILIN, A.E.; KROSHILIN, V.E.; SMIRNOV, A.V.

    2006-06-04

    In this paper we present recent results of the application of the thermal-hydraulic code BAGIRA to the analysis of complex two-phase flows in nuclear power plants primary loops. In particular, we performed benchmark numerical simulation of an integral LOCA experiment performed on a test facility modeling the primary circuit of VVER-1000. In addition, we have also analyzed the flow patterns in the VVER-1000 steam generator vessel for stationary and transient operation regimes. For both of these experiments we have compared the numerical results with measured data. Finally, we demonstrate the capabilities of BAGIRA by modeling a hypothetical severe accident for a VVER-1000 type nuclear reactor. The numerical analysis, which modeled all stages of the hypothetical severe accident up to the complete ablation of the reactor cavity bottom, shows the importance of multi-dimensional flow effects.

  18. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect (OSTI)

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  19. Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Mod

    SciTech Connect (OSTI)

    LaBombard, B.; Rice, J.E.; Hubbard, A.E.; Hughes, J.W.; Greenwald, M.; Granetz, R.S.; Irby, J.H.; Lin, Y.; Lipschultz, B.; Marmar, E.S.; Marr, K.; Mossessian, D.; Parker, R.; Rowan, W.; Smick, N.; Snipes, J.A.; Terry, J.L.; Wolfe, S.M.; Wukitch, S.J.

    2005-05-15

    Factor of {approx}2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when Bx{nabla}B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when Bx{nabla}B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL flows are also found similar, suggesting a connection.

  20. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    SciTech Connect (OSTI)

    Cao, Xinwu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Liang, En-Wei [Department of Physics and GXU-NAOC Center for Astrophysics and Space Sciences, Guangxi University, Nanning 530004 (China); Yuan, Ye-Fei, E-mail: cxw@shao.ac.cn, E-mail: lew@gxu.edu.cn, E-mail: yfyuan@ustc.edu.cn [Department of Astronomy, University of Sciences and Technology of China, Hefei, Anhui 230026 (China)

    2014-07-10

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number P{sub m}=?/??1. The maximal BZ jet power can be ?10{sup 53}-10{sup 54} erg s{sup 1} for an extreme Kerr black hole, if an external magnetic field with 10{sup 14} Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  1. Comparative flow measurements: Grand Coulee pumping-generating plant unit P/G9. Final report

    SciTech Connect (OSTI)

    Heigel, L.; Lewey, A.B.; Greenwood, J.B.

    1986-10-01

    In extensive testing, two acoustic flow measurement systems compared well in accuracy and repeatability with conventional methods at a power plant at Grand Coulee Dam. Acoustic flow measurement systems offer utilities an inexpensive, real-time method for optimizing hydro plant efficiency.

  2. User's guide for the BNW-III optimization code for modular dry/wet-cooled power plants

    SciTech Connect (OSTI)

    Braun, D.J.; Faletti, D.W.

    1984-09-01

    This user's guide describes BNW-III, a computer code developed by the Pacific Northwest Laboratory (PNL) as part of the Dry Cooling Enhancement Program sponsored by the US Department of Energy (DOE). The BNW-III code models a modular dry/wet cooling system for a nuclear or fossil fuel power plant. The purpose of this guide is to give the code user a brief description of what the BNW-III code is and how to use it. It describes the cooling system being modeled and the various models used. A detailed description of code input and code output is also included. The BNW-III code was developed to analyze a specific cooling system layout. However, there is a large degree of freedom in the type of cooling modules that can be selected and in the performance of those modules. The costs of the modules are input to the code, giving the user a great deal of flexibility.

  3. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to...

  4. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  5. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect (OSTI)

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  6. Electric power 2007

    SciTech Connect (OSTI)

    2007-07-01

    Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

  7. Optimized Solvent for Energy-Efficient, Environmentally-Friendly Capture of CO{sub 2} at Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Farthing, G. A.; Rimpf, L. M.

    2014-04-30

    The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. While previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.

  8. Electric Power System Asset Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 | Release Date: March 23, 2015 | Next Release Date: October 2015 | full report Previous issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 prior to 2001 Go Average revenue per kilowatthour (cents/kWh) State Residential Commerical Industrial Total Alabama 11.26 10.51 5.95 9.02 Alaska 18.12 15.58 15.83 16.49 Arizona 11.71 9.85 6.66 10.14 Arkansas 9.59 8.05 6.04 7.93 California 16.19 14.22 10.96 14.28 Colorado 11.93 9.86 7.34 9.88 Connecticut 17.55 14.63 12.61

  9. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water ... Hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns ...

  10. Control and optimization system

    DOE Patents [OSTI]

    Xinsheng, Lou

    2013-02-12

    A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  11. Identification of Severe Multiple Contingencies in Electric PowerNetworks

    SciTech Connect (OSTI)

    Donde, Vaibhav; Lopez, Vanessa; Lesieutre, Bernard; Pinar, Ali; Yang,Chao; Meza, Juan

    2005-07-01

    In this paper we propose a two-stage screening and analysis process for identifying multiple contingencies that may result in very severe disturbances and blackouts. In a screening stage we form an optimization problem to find the minimum change in the network to move the power flow feasibility boundary to the present operating point and that will cause the system to separate with a user-specified power imbalance. The lines identified by the optimization program are used in a subsequent analysis stage to find combinations that may lead to a blackout. This approach is applied to a 30-bus system with encouraging results.

  12. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect (OSTI)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  13. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolution of reactants into a desired product could be an invaluable tool for optimizing pharmaceutical-related synthetic processes that take place in flow reactors. Schematic of...

  14. Enviro Hurdles: Instream Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enviro Hurdles: Instream Flow File 76enviornlbevelhimer4.pptx More Documents & Publications Instream Flow Project Development and Demonstration of Advanced Forecasting, Power ...

  15. Instream Flow Project

    Broader source: Energy.gov [DOE]

    As a part of the Department of Energy’s Water Power Program, the Instream Flow Project was carried out by Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Argonne National Laboratory to develop tools aimed at defining environmental flow needs for hydropower operations.

  16. Debt Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IPR 2008 Capital Investment Review CIR 2012 Quarterly Business Review Focus 2028 2011 Strategic Capital Discussions Access to Capital Debt Optimization Asset Management Cost...

  17. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to the most effient use of NERSC HPSS: File sizes of about 1 GB or larger will give the best network performance (see graph below) Files sizes greater than about 500 GB can be more difficult to work with and lead to longer transfer times. Files larger than 15 TB cannot be uploaded to HPSS. Aggregate groups of small files

  18. Strategic stockpiling of power system supplies for disaster recovery

    SciTech Connect (OSTI)

    Bent, Russell W; Coffrein, Carleton; Van Hentenryck, Pascal

    2010-11-23

    This paper studies the Power System Stochastic Storage Problem (PSSSP), a novel application in power restoration which consists of deciding how to store power system components throughout a populated area to maximize the amount of power served after disaster restoration. The paper proposes an exact mixed-integer formulation for the linearized DC power flow model and a general column-generation approach. Both formulations were evaluated experimentally on benchmarks using the electrical power infrastructure of the United States and disaster scenarios generated by state-of-the-art hurricane simulation tools similar to those used by the National Hurricane Center. The results show that the column-generation algorithm produces near-optimal solutions quickly and produces orders of magnitude speedups over the exact formulation for large benchmarks. Moreover, both the exact and the column-generation formulations produce significant improvements over greedy approach and hence should yield significant benefits in practice.

  19. Microsoft PowerPoint - [9] Jack McCall Slides - HVDC Workshop April 2013

    Energy Savers [EERE]

    Tres Amigas Superstation: Opportunity, Technology, Challenges U.S. DOE Applications for High-Voltage Direct U.S. DOE Applications for High-Voltage Direct Current Transmission Technologies Workshop April 22, 2013 Arlington, VA Project Value Creation Connects the three US asynchronous power grids through a DC hub that can regulate the direction and level of power flows between the grids Provides economic incentives to further drive the growth of the nation's renewable resources 2 Optimizes the

  20. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  1. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect (OSTI)

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  2. Reducing Power Factor Cost

    Broader source: Energy.gov [DOE]

    Low power factor is expensive and inefficient. Many utility companies charge an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system’s distribution capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system’s capacity.

  3. Flowing effects in gas lasers

    SciTech Connect (OSTI)

    Zhi, G.

    1984-05-01

    Currently accepted theory states that saturation intensity and gain (or optical power density) increase without limit with the increase of the flow speed. These conclusions are not true. It is shown instead that they tend to be limiting values with the increase of flow speed. The variations of the parameters mentioned above with flow speed are presented.

  4. Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings

    SciTech Connect (OSTI)

    Horowitz, S.; Christensen, C.; Anderson, R.

    2008-01-01

    Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

  5. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromatography - Energy Innovation Portal Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention looks at method to detect targeted analytes. DescriptionThe method most often used now is Lateral Flow Chromatography (LFC) which has many drawbacks including: the need for extensive optimization, sensitivity, specificity, lack of quantitative data and extensive

  6. Power inverters

    DOE Patents [OSTI]

    Miller, David H.; Korich, Mark D.; Smith, Gregory S.

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  7. Flow Coefficient

    Office of Scientific and Technical Information (OSTI)

    this type of flow in porous and fractured rocks, including flow in geothermal reservoirs. ... and Renewable Energy, Office of Geothermal and Wind Technologies of the U.S. ...

  8. Effect of electron flow on the ordinary-extraordinary mode conversion

    SciTech Connect (OSTI)

    Jia Guozhang; Gao Zhe

    2011-10-15

    Ordinary-extraordinary mode conversion in the electron cyclotron frequency range is revisited in the presence of a flowing electron component. The analytical expressions of optimal parallel refraction index and conversion efficiency are obtained from a one-dimensional cold plasma model. The presence of flowing electrons leads to an outward shift of the conversion layer and therefore increases the optimal value of parallel refraction index. If this effect is not considered, the efficiency of mode conversion degenerates. In typical tokamak plasmas, this degeneration is about a few percentages, which may induce the reflection of several tens of kilowatts of power from the cutoff layer when injecting megawatts of ECRF power into fusion plasma.

  9. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  10. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  11. Verdant Power | Open Energy Information

    Open Energy Info (EERE)

    10044 Sector: Marine and Hydrokinetic Product: A systems integrator and a developer of free-flow turbine systems that generates utility and village scale electric power from...

  12. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03...

  13. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03

  14. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  15. US energy flow, 1991

    SciTech Connect (OSTI)

    Borg, I.Y.; Briggs, C.K.

    1992-06-01

    Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

  16. Fuel-cell based power generating system having power conditioning apparatus

    DOE Patents [OSTI]

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  17. STRONG C{sup +} EMISSION IN GALAXIES AT z? 1-2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE

    SciTech Connect (OSTI)

    Brisbin, Drew; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen; Spoon, Henrik; Stacey, Gordon J.; Hailey-Dunsheath, Steven; Verma, Aprajita

    2015-01-20

    We have recently detected the [C II] 157.7 ?m line in eight star-forming galaxies at redshifts 1 to 2 using the redshift (z) Early Universe Spectrometer (ZEUS). Our sample targets star formation dominant sources detected in PAH emission. This represents a significant addition to [C II] observations during the epoch of peak star formation. We have augmented this survey with observations of the [O I] 63 ?m line and far infrared photometry from the PACS and SPIRE Herschel instruments as well as Spitzer IRS spectra from the literature showing PAH features. Our sources exhibit above average gas heating efficiency, many with both [O I]/FIR and [C II]/FIR of ?1% or more. The relatively strong [C II] emission is consistent with our sources being dominated by star formation powered photo-dissociation regions, extending to kiloparsec scales. We suggest that the star formation mode in these systems follows a Schmidt-Kennicutt law similar to local systems, but at a much higher rate due to molecular gas surface densities 10-100times that of local star-forming systems. The source of the high molecular gas surface densities may be the infall of neutral gas from the cosmic web. In addition to the high [C II]/FIR values, we also find high [C II]/PAH ratios and, in at least one source, a cool dust temperature. This source, SWIRE 4-5, bears a resemblance in these diagnostics to shocked regions of Stephan's Quintet, suggesting that another mode of [C II] excitation in addition to normal photoelectric heating may be contributing to the observed [C II] line.

  18. HOMER: The Micropower Optimization Model

    SciTech Connect (OSTI)

    Not Available

    2004-03-01

    HOMER, the micropower optimization model, helps users to design micropower systems for off-grid and grid-connected power applications. HOMER models micropower systems with one or more power sources including wind turbines, photovoltaics, biomass power, hydropower, cogeneration, diesel engines, cogeneration, batteries, fuel cells, and electrolyzers. Users can explore a range of design questions such as which technologies are most effective, what size should components be, how project economics are affected by changes in loads or costs, and is the renewable resource adequate.

  19. Optimal Technologies International Inc | Open Energy Information

    Open Energy Info (EERE)

    offers supply-side and demand-side management solutions targeted at the end-to-end optimization of power networks. Coordinates: 38.05241, -122.152539 Show Map Loading map......

  20. [SIAM conference on optimization

    SciTech Connect (OSTI)

    Not Available

    1992-05-10

    Abstracts are presented of 63 papers on the following topics: large-scale optimization, interior-point methods, algorithms for optimization, problems in control, network optimization methods, and parallel algorithms for optimization problems.

  1. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  2. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar will provide an overview of the powerful but easy-to-use BEopt (Building Energy Optimization) tool. Scott Horowitz and Craig Christensen will focus on opportunities ...

  3. Optimizing Geographic Allotment of Photovoltaic Capacity in a...

    Office of Scientific and Technical Information (OSTI)

    ... Program Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION DISTRIBUTED GENERATION; OPTIMIZATION; GEOGRAPHIC ...

  4. Transport Studies Enabling Efficiency Optimization of Cost-Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport ... More Documents & Publications Durability of Low Pt Fuel Cells Operating at High Power ...

  5. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  6. ThermoElectric Power System Simulator (TEPSS)

    Broader source: Energy.gov [DOE]

    It describes the tool ThermoElectric Power System Simulator (TEPSS) which enables feasibility evaluation for thermoelectrics with various heat resources and optimizing design for specific uses.

  7. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  8. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  9. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect (OSTI)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  10. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  11. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  12. Fuzzy logic control and optimization system

    DOE Patents [OSTI]

    Lou, Xinsheng

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  13. A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

    SciTech Connect (OSTI)

    Simms, D.A.; Robinson, M.C.; Hand, M.M.; Fingersh, L.J.

    1995-01-01

    NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

  14. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.

    SciTech Connect (OSTI)

    Tentner, A.; Nuclear Engineering Division

    2009-10-13

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  15. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  16. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Infrared Mapping Helps Optimize Catalytic Reactions Print Wednesday, 20 August 2014 07:59 A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ

  17. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  18. HELM(tm) Flow - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Find More Like This Return to Search HELM(tm) Flow Holomorphic Embedded Load flow Method Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication HELM(tm) Flow Brochure (1,017 KB) PDF Document Publication US Patent 7519506B2 (159 KB) PDF Document Publication US Patent 7979239B (172 KB) Technology Marketing Summary HELM(tm) Flow is a simulation and analysis tool for transmission and distribution power systems. It provides

  19. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  20. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  1. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  2. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  3. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  4. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  5. Infrared Mapping Helps Optimize Catalytic Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Mapping Helps Optimize Catalytic Reactions Print A pathway to more effective and efficient synthesis of pharmaceuticals and other flow-reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start to finish. The formation of different chemical products during the reactions was analyzed in situ using infrared microspectroscopy, while the state of the catalyst along the flow

  6. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance and Optimization Performance and Optimization Benchmarking Software on Hopper and Carver PURPOSE Test the performance impact of multithreading with representative...

  7. Piezoelectric axial flow microvalve

    DOE Patents [OSTI]

    Gemmen, Randall; Thornton, Jimmy; Vipperman, Jeffrey S.; Clark, William W.

    2007-01-09

    This invention is directed to a fuel cell operable with a quantity of fuel and a quantity of an oxidizer to produce electrical power, the fuel cell including a fuel cell body including a labyrinth system structured to permit the fuel and the oxidizer to flow therethrough; at least a first catalyst in fluid communication with the labyrinth; and at least a first microvalve operably disposed within at least a portion of the labyrinth. The microvalve utilizes a deflectable member operable upon the application of a voltage from a voltage source. The microvalve includes an elongated flow channel formed therein and extending substantially longitudinally between the first and second ends to permit substantially longitudinal flow of the fluid therethrough and between the first and second ends; and the deflectable member disposed on the valve body, the deflectable member including at least a first piezoelectric portion that is piezoelectrically operable to deflect the deflectable member between an open position and a closed position upon the application of a voltage, the deflectable member in the closed position being operable to resist the flow of the fluid through the flow channel.

  8. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  9. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  10. Electric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electric Power From incandescent bulbs to fluorescents to LEDs, <a href="/node/772396">learn more</a> about the long history of the light bulb. From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. Electricity -- the flow of electrical power -- is a secondary energy source, generated by the conversion of primary sources of energy, like fossil, nuclear, wind or solar. Keeping the power flowing to American homes and

  11. Efficiency combined cycle power plant

    SciTech Connect (OSTI)

    Pavel, J.; Meyers, G.A.; Baldwin, T.S.

    1990-06-12

    This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

  12. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a candidate site - Specific resource temp and flows - Regional lithography for detailed cost analysis of well drillingstimulation * Work with plant for optimal hybridization...

  13. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  14. Flow cytometer

    DOE Patents [OSTI]

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  15. Flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  16. TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION

    SciTech Connect (OSTI)

    Yang, L.

    2011-03-28

    Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

  17. Direct cooled power electronics substrate

    DOE Patents [OSTI]

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. Aristos Optimization Package

    Energy Science and Technology Software Center (OSTI)

    2007-03-01

    Aristos is a Trilinos package for nonlinear continuous optimization, based on full-space sequential quadratic programming (SQP) methods. Aristos is specifically designed for the solution of large-scale constrained optimization problems in which the linearized constraint equations require iterative (i.e. inexact) linear solver techniques. Aristos' unique feature is an efficient handling of inexactness in linear system solves. Aristos currently supports the solution of equality-constrained convex and nonconvex optimization problems. It has been used successfully in the areamore » of PDE-constrained optimization, for the solution of nonlinear optimal control, optimal design, and inverse problems.« less

  19. Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWhsq meter power production potential As the ...

  20. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  1. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  2. Self-regulating flow control device

    DOE Patents [OSTI]

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  3. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  4. Perovskite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perovskite Power 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Perovskite Power A breakthrough in the production of...

  5. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  6. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect (OSTI)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  7. Trajectory Analysis and Optimization System

    Energy Science and Technology Software Center (OSTI)

    1996-06-04

    TAOS is a general-purpose software tool capable of analyzing nearly any type of three degree-of-freedom point-mass, high-speed trajectory. Input files contain aerodynamic coefficients, propulsion data, and a trajectory description. The trajectory description divides the trajectory into segments, and within each segment, guidance rules provided by the user describe how the trajectory is computed. Output files contain tabulated trajectory information such as position, velocity, and acceleration. Parametric optimization provides a powerful method for satisfying mission-planning constraints,more » and trajectories involving more than one vehicle can be computed within a single problem.« less

  8. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Energy Savers [EERE]

    They reduce power consumption, helping your electric utility meet peak power demands. And they improve overall power quality. Also, by converting more AC power into DC power, less ...

  9. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  10. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  11. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  12. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  13. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system.

    SciTech Connect (OSTI)

    Miron, A.

    1998-04-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal.

  14. EV Everywhere Workshop: Power Electronics and Thermal Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ion Breakout Session Report EV Everywhere Batteries Workshop - Pack Design and Optimization Breakout Session Report Power Electronics and Thermal Management Breakout Session

  15. Microsoft PowerPoint - WV SGIP 101810 rev1.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and storage options * Enable new products, services and markets * Provide power quality for the digital economy * Optimize asset utilization and operate efficiently * ...

  16. Sandia Energy - Current Energy Converter Array Optimization Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The CEC array optimization framework was applied to Cobscook Bay, Maine, the first deployment site of the Ocean Renewable Power Company's (ORPC) TidGen(tm) CEC device. The...

  17. NEUTRONIC REACTOR POWER PLANT

    DOE Patents [OSTI]

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  18. Energy optimization system

    DOE Patents [OSTI]

    Zhou, Zhi; de Bedout, Juan Manuel; Kern, John Michael; Biyik, Emrah; Chandra, Ramu Sharat

    2013-01-22

    A system for optimizing customer utility usage in a utility network of customer sites, each having one or more utility devices, where customer site is communicated between each of the customer sites and an optimization server having software for optimizing customer utility usage over one or more networks, including private and public networks. A customer site model for each of the customer sites is generated based upon the customer site information, and the customer utility usage is optimized based upon the customer site information and the customer site model. The optimization server can be hosted by an external source or within the customer site. In addition, the optimization processing can be partitioned between the customer site and an external source.

  19. Recovery Act - Refinement of Cross Flow Turbine Airfoils

    SciTech Connect (OSTI)

    McEntee, Jarlath

    2013-08-30

    Ocean Renewable Power Company, LLC (ORPC) is a global leader in hydrokinetic technology and project development. ORPC develops hydrokinetic power systems and eco-conscious projects that harness the power of oceans and rivers to create clean, predictable renewable energy. ORPC’s technology consists of a family of modular hydrokinetic power systems: the TidGen® Power System, for use at shallow to medium-depth tidal sites; the RivGen™ Power System, for use at river and estuary sites; and the OCGen® Power System, presently under development, for use at deep tidal and offshore ocean current sites. These power systems convert kinetic energy in moving water into clean, renewable, grid-compatible electric power. The core technology component for all ORPC power systems is its patented turbine generator unit (TGU). The TGU uses proprietary advanced design cross flow (ADCF) turbines to drive an underwater permanent magnet generator mounted at the TGU’s center. It is a gearless, direct-drive system that has the potential for high reliability, requires no lubricants and releases no toxins that could contaminate the surrounding water. The hydrokinetic industry shows tremendous promise as a means of helping reduce the U.S.’s use of fossil fuels and dependence on foreign oil. To exploit this market opportunity, cross-flow hydrokinetic devices need to advance beyond the pre-commercial state and more systematic data about the structure and function of cross-flow hydrokinetic devices is required. This DOE STTR project, “Recovery Act - Refinement of Cross Flow Turbine Airfoils,” refined the cross-flow turbine design process to improve efficiency and performance and developed turbine manufacturing processes appropriate for volume production. The project proposed (1) to overcome the lack of data by extensively studying the properties of cross flow turbines, a particularly competitive design approach for extracting hydrokinetic energy and (2) to help ORPC mature its pre-commercial hydrokinetic technology into a commercially viable product over a three-year period by means of a design-for-manufacture process to be applied to the turbines which would result in a detail turbine design suitable for volume manufacture. In Phase I of the Project, ORPC systematically investigated performance of cross flow turbines by varying design parameters including solidity, foil profile, number of foils and foil toe angle using scale models of ORPC’s turbine design in a tow tank at the University of Maine (UMaine). Data collected provided information on interactions between design variables and helped ORPC improve turbine efficiency from 21% to greater than 35%. Analytical models were developed to better understand the physical phenomena at play in cross-flow turbines. In Phase II of the Project, ORPC expanded on data collected in Phase I to continue improving turbine efficiency, with a goal to optimally approach the Betz limit of 59.3%. Further tow tank testing and development of the analytical models and techniques was completed at UMaine and led to a deeper understanding of the flow phenomena involved. In addition, ORPC evaluated various designs, materials and manufacturing methods for full-scale turbine foils, and identified those most conducive to volume manufacture. Selected components of the turbine were structurally tested in a laboratory environment at UMaine. Performance and structural testing of the full scale turbine design was conducted as part of the field testing. The work funded by this project enabled the development of design tools for the rapid and efficient development of high performance cross-flow hydrokinetic turbine foils. The analytical tools are accurate and properly capture the underlying physical flow phenomena present in hydrokinetic cross-flow turbines. The ability to efficiently examine the design space provides substantial economic benefit to ORPC in that it allows for rapid design iteration at a low computational cost. The design-for-manufacture work enabled the delivery of a turbine design suitable for manufacture in intermediate to large quantity, lowering the unit cost of turbines and the levelized cost of electricity from ORPC hydrokinetic turbine. ORPC fielded the turbine design in a full scale application – the Cobscook Bay Tidal Energy Project which began operation off the coast of Eastport, Maine in September 2012. This is the first commercial, grid-connected tidal energy project in North America and the only ocean energy project not involving a dam which delivers power to a utility grid anywhere in the Americas. ORPC received a Federal Energy Regulatory Commission pilot project license to install and operate this project in February 2012. Construction of the TidGen® Power System began in March 2012, and the system was grid-connected on September 13, 2012. A 20-year commercial power purchase agreement to sell the power generated by the project was completed with Bangor Hydro Electric Company and is the first and only power purchase agreement for tidal energy. This is the first project in the U.S. to receive Renewable Energy Certificates for tidal energy production. The STTR project is a benefit to the public through its creation of jobs. ORPC’s recent deployment of the TidGen™ Power System is part of their larger project, the Maine Tidal Energy Project. According to ORPC’s report to the Maine Public Utilities Commission and the 20-year power purchase agreement, the Maine Tidal Energy Project will create and/or retain at least 80 direct full-time equivalent jobs in Maine during the development, construction and installation phase (2011 through 2016). In addition, the Maine Tidal Energy Project will create and/or retain at least 12 direct full-time equivalent jobs in Maine during the operating and maintenance phase (2016 through 2020). The STTR project has facilitated new and expanded services in manufacturing, fabrication and assembly, including major business growth for the composite technologies sector; creation of deepwater deployment, maintenance and retrieval services; and the expansion and formation of technical support services such as site assessment and design services, geotechnical services, underwater transmission services, and environmental monitoring services. The Maine Tidal Energy Project’s impact on workforce will enable other ocean energy projects – be they offshore wind, wave or additional tidal opportunities – to succeed in Maine. ORPC received a 2013 Tibbetts Award by the U.S. Small Business Administration.

  20. Microsoft PowerPoint - Bryan Hydro Conf 11 Jun 09.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include flood control, water supply, hydroelectric power, regulation of Red River flows, ... are: flood control, water supply, hydroelectric power, navigation, fish and wildlife ...

  1. DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Building Energy Optimization Tool (BEopt) Training DOE ZERH Webinar: Building Energy Optimization Tool (BEopt) Training The National Renewable Energy Laboratory (NREL) is DOE's primary lab for renewable energy and efficiency R&D. Through the Building America Program, NREL has developed free software to help design and sell cost-effective high-efficiency homes. This webinar will provide an overview of the powerful but easy-to-use BEopt (Building Energy Optimization)

  2. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    2006-08-01

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  3. Hopper Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance and Optimization Compiler Comparisons Comparison of different compilers with different options on several benchmarks. Read More Using OpenMP Effectively...

  4. Stencil Computation Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... To evaluate the effectiveness of our optimization strate- ... We also show that the more aggressive software-controlled ... a combination of explicit search for global max- ima with ...

  5. Lattice Boltzmann Simulation Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... bypassing the cache, and software prefetching. ... tuning overhead the search space is pruned to eliminate optimization param- eters ... and the cell broad- band engine. ...

  6. first power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  7. NREL: Energy Systems Integration - Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Engineering Power systems engineering at NREL means working with the electricity industry to optimize strategies for effectively interconnecting renewable resources and emerging energy efficiency technologies with the electric power system. Power systems engineering focuses on resolving grid integration barriers to sustainable, economic, secure, and reliable electricity based on a paradigm of high penetration of renewable energy, coordinated and intelligent cyber-control, and

  8. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Hamilton, Pamela Jane; Brubaker, Michael Allen

    2007-12-04

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  9. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  10. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  11. DECORRELATION TIMES OF PHOTOSPHERIC FIELDS AND FLOWS

    SciTech Connect (OSTI)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-03-10

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier local correlation tracking (FLCT) to a sequence of high-resolution (0.''3), high-cadence ({approx_equal} 2 minute) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the narrowband filter imager of the Solar Optical Telescope aboard the Hinode satellite over 2006 December 12 and 13. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval {Delta}t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter {sigma} used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, {tau}. For {Delta}t > {tau}, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and {Delta}t.

  12. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Running Jobs Efficiently This page defines job efficiency and how to measure the efficiency of your jobs. Read More » PDSF IO Monitoring Plots of continuous IO monitoring for the eliza file systems and project. Read More » Last edited: 2016-04-29 11:35:20

  13. Mechanical Analysis of High Power Internally Cooled Annular Fuel (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Mechanical Analysis of High Power Internally Cooled Annular Fuel Citation Details In-Document Search Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The structural behavior issues arising from the higher flow rate required to cool the fuel are assessed here, including buckling, vibrations, and potential wear problems. Five flow-induced

  14. Centralized Stochastic Optimal Control of Complex Systems

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2015-01-01

    In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.

  15. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  16. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Power Energy 101: Hydroelectric Power Addthis Description Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Topic Water Text Version Below is the text version for the Energy 101: Hydroelectric Power video: The video opens with the words "Energy 101: Hydroelectric Power." This is followed by a montage of rivers and streams, then a shot of an older water wheel. People have been capturing the energy

  17. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  18. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  1. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  2. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  3. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  4. High speed flow cytometer droplet formation system and method

    DOE Patents [OSTI]

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  5. Rapid Optimization Library

    Energy Science and Technology Software Center (OSTI)

    2014-05-13

    ROL provides interfaces to and implementations of algorithms for gradient-based unconstrained and constrained optimization. ROL can be used to optimize the response of any client simulation code that evaluates scalar-valued response functions. If the client code can provide gradient information for the response function, ROL will take advantage of it, resulting in faster runtimes. ROL's interfaces are matrix-free, in other words ROL only uses evaluations of scalar-valued and vector-valued functions. ROL can be used tomore » solve optimal design problems and inverse problems based on a variety of simulation software.« less

  6. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.more » Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.« less

  7. A Multiobjective Optimization Framework for Online Stochastic Optimal Control in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2015-01-01

    The increasing urgency to extract additional efficiency from hybrid propulsion systems has led to the development of advanced power management control algorithms. In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain and we show that the control policy yielding the Pareto optimal solution minimizes online the long-run expected average cost per unit time criterion. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion. Both solutions achieved the same cumulative fuel consumption demonstrating that the online Pareto control policy is an optimal control policy.

  8. Radiation beam calorimetric power measurement system

    DOE Patents [OSTI]

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  9. Thaw flow control for liquid heat transport systems

    DOE Patents [OSTI]

    Kirpich, Aaron S.

    1989-01-01

    In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

  10. Library for Nonlinear Optimization

    Energy Science and Technology Software Center (OSTI)

    2001-10-09

    OPT++ is a C++ object-oriented library for nonlinear optimization. This incorporates an improved implementation of an existing capability and two new algorithmic capabilities based on existing journal articles and freely available software.

  11. TOOLKIT FOR ADVANCED OPTIMIZATION

    Energy Science and Technology Software Center (OSTI)

    2000-10-13

    The TAO project focuses on the development of software for large scale optimization problems. TAO uses an object-oriented design to create a flexible toolkit with strong emphasis on the reuse of external tools where appropriate. Our design enables bi-directional connection to lower level linear algebra support (for example, parallel sparse matrix data structures) as well as higher level application frameworks. The Toolkist for Advanced Optimization (TAO) is aimed at teh solution of large-scale optimization problemsmore » on high-performance architectures. Our main goals are portability, performance, scalable parallelism, and an interface independent of the architecture. TAO is suitable for both single-processor and massively-parallel architectures. The current version of TAO has algorithms for unconstrained and bound-constrained optimization.« less

  12. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  13. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  14. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  15. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Compiler Comparisons Comparison of different compilers with different options on several benchmarks. Read More » Using OpenMP Effectively Performance implications and case studies of codes combining MPI and OpenMP Read More » Reordering MPI Ranks Reordering MPI ranks can result in improved application performance depending on the communication patterns of the application. Read More » Application Performance Variability on Hopper How an application is

  16. MSET modeling of Crystal River-3 venturi flow meters.

    SciTech Connect (OSTI)

    Bockhorst, F. K.; Gross, K. C.; Herzog, J. P.; Wegerich, S. W.

    1998-01-05

    The analysis of archived Crystal River-3 feedwater flow data reveals a slow and steady degradation of the flow meter measurements during the 1992/1993 operating cycle. MSET can reliably estimate the true flow rate and quantify the degree of departure between the indicated signal and the true flow rate with high accuracy. The MSET computed flow rate could, in principle, be used to provide an improved estimate of the reactor power and hence avoid the revenue loss associated with derating the reactor based on a faulty feedwater flow rate indication.

  17. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  18. SWiFT Commissioned to Study Wind Farm Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commissioned to Study Wind Farm Optimization - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  19. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  20. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  1. CASL - Lift Forces in Bubbly Flows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lift Forces in Bubbly Flows The dynamics of two-phase (gas/liquid) bubbly flows are complex: bubbles deform and disperse; large latent heats and heat capacity differentials influence local boiling; and relatively small changes in heated surface temperatures yield order of magnitude changes in boiling complexity. Because the local void volume has a direct feedback effect on reactor neutron flux and fuel rod power production, prediction of local boiling rates and bulk boiling effects in nuclear

  2. RECONFIGURING POWER SYSTEMS TO MINIMIZE CASCADING FAILURES: MODELS AND ALGORITHMS

    SciTech Connect (OSTI)

    Bienstock, Daniel

    2014-04-11

    the main goal of this project was to develop new scientific tools, based on optimization techniques, with the purpose of controlling and modeling cascading failures of electrical power transmission systems. We have developed a high-quality tool for simulating cascading failures. The problem of how to control a cascade was addressed, with the aim of stopping the cascade with a minimum of load lost. Yet another aspect of cascade is the investigation of which events would trigger a cascade, or more appropriately the computation of the most harmful initiating event given some constraint on the severity of the event. One common feature of the cascade models described (indeed, of several of the cascade models found in the literature) is that we study thermally-induced line tripping. We have produced a study that accounts for exogenous randomness (e.g. wind and ambient temperature) that could affect the thermal behavior of a line, with a focus on controlling the power flow of the line while maintaining safe probability of line overload. This was done by means of a rigorous analysis of a stochastic version of the heat equation. we incorporated a model of randomness in the behavior of wind power output; again modeling an OPF-like problem that uses chance-constraints to maintain low probability of line overloads; this work has been continued so as to account for generator dynamics as well.

  3. Combined Heat and Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Combined Heat and Power Combined Heat and Power Combined heat and power (CHP)-sometimes called cogeneration-is an integrated set of technologies for the simultaneous, on-site production of electricity and heat. R&D breakthroughs can help U.S. manufacturers introduce advanced technologies and systems to users in the United States and around the world. CHP and distributed energy systems improve energy efficiency, reduce carbon emissions, optimize fuel

  4. Generic Optimization Program

    Energy Science and Technology Software Center (OSTI)

    1998-07-01

    GenOpt is a generic optimization program for nonlinear, constrained optimization. For evaluating the objective function, any simulation program that communicates over text files can be coupled to GenOpt without code modification. No analytic properties of the objective function are used by GenOpt. ptimization algorithms and numerical methods can be implemented in a library and shared among users. Gencpt offers an interlace between the optimization algorithm and its kernel to make the implementation of new algorithmsmore » fast and easy. Different algorithms of constrained and unconstrained minimization can be added to a library. Algorithms for approximation derivatives and performing line-search will be implemented. The objective function is evaluated as a black-box function by an external simulation program. The kernel of GenOpt deals with the data I/O, result sotrage and report, interlace to the external simulation program, and error handling. An abstract optimization class offers methods to interface the GenOpt kernel and the optimization algorithm library.« less

  5. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1999-02-02

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  6. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M.

    1990-01-01

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  7. solar power

    National Nuclear Security Administration (NNSA)

    9%2A en Solar power purchase for DOE laboratories http:nnsa.energy.govmediaroompressreleasessolarpower

  8. Ionization based multi-directional flow sensor

    DOE Patents [OSTI]

    Chorpening, Benjamin T.; Casleton, Kent H.

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  9. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  10. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  11. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power DOE Wind & Waterpower Technologies Office Director, Jose Zayas, addresses crowd at Waterpower Week [photo courtesy of the National Hydro Association] Permalink Gallery Sandia Labs participates in DOE's annual Waterpower Week News, News & Events, Renewable Energy, Uncategorized, Water Power Sandia Labs participates in DOE's annual Waterpower Week During the last week of April, Sandia National Laboratories participated in the National Hydropower Association Waterpower Week in

  12. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  13. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    SciTech Connect (OSTI)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  14. Reverse Osmosis Optimization

    SciTech Connect (OSTI)

    McMordie Stoughton, Kate; Duan, Xiaoli; Wendel, Emily M.

    2013-08-26

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energys Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  15. Fuzzy logic controller optimization

    DOE Patents [OSTI]

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  16. Reverse Osmosis Optimization

    SciTech Connect (OSTI)

    2013-08-01

    This technology evaluation was prepared by Pacific Northwest National Laboratory on behalf of the U.S. Department of Energys Federal Energy Management Program (FEMP). The technology evaluation assesses techniques for optimizing reverse osmosis (RO) systems to increase RO system performance and water efficiency. This evaluation provides a general description of RO systems, the influence of RO systems on water use, and key areas where RO systems can be optimized to reduce water and energy consumption. The evaluation is intended to help facility managers at Federal sites understand the basic concepts of the RO process and system optimization options, enabling them to make informed decisions during the system design process for either new projects or recommissioning of existing equipment. This evaluation is focused on commercial-sized RO systems generally treating more than 80 gallons per hour.

  17. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  18. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  19. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  20. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  1. Application Note: Power Grid Modeling With Xyce.

    SciTech Connect (OSTI)

    Sholander, Peter E.

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  2. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  3. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  4. Modifications and Optimization of the Organic Rankine Cycle | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modifications and Optimization of the Organic Rankine Cycle Modifications and Optimization of the Organic Rankine Cycle PDF icon organic_rankine_cycle.pdf More Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines High Efficiency Engine Systems Development and Evaluation Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011

  5. Mapping Geothermal Heat Flow and Existing Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mapping Geothermal Heat Flow and Existing Plants Mapping Geothermal Heat Flow and Existing Plants October 22, 2014 - 5:36pm Addthis Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Geothermal power is a growing

  6. Final Report- Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives

    Broader source: Energy.gov [DOE]

    Awardee: Southwest Research InstituteLocation: San Antonio, TXSubprogram: Concentrating Solar PowerFunding Program: SunShot Concentrating Solar Power R&DProject: Optimizing the CSP Tower Air...

  7. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  8. FlowServe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. Star Power

    SciTech Connect (OSTI)

    2014-10-17

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  10. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  11. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Reliability: Automotive Power Module Perspective Zhenxian Liang R&D Staff Power ... Power Module Packaging * High Reliability Power Module Packaging Packaging ...

  12. Ultrasonic flow metering system

    DOE Patents [OSTI]

    Gomm, Tyler J.; Kraft, Nancy C.; Mauseth, Jason A.; Phelps, Larry D.; Taylor, Steven C.

    2002-01-01

    A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

  13. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant into one that coproduced 12,377 bpd of liquid fuel precursors in addition to 676 MW of export power. Adding the coproduction of liquid fuel precursors can enhance the profitability of an IGCC power plant when oil prices are high relative to power prices. As gasification technology matures, improvements identified in this study will lead to further cost reductions and efficiency improvements that will make IGCC power plants more competitive in the marketplace.

  14. Genetic Algorithm Based Neural Networks for Nonlinear Optimization

    Energy Science and Technology Software Center (OSTI)

    1994-09-28

    This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less

  15. Combined Heat and Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Combined Heat & Power Deployment » Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point

  16. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  17. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  18. Optimizing Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Data Transfer Nodes using Packet Pacing Nathan Hanford University of California Davis, CA 95616 nhanford@ucdavis.edu Brian Tierney Energy Sciences Network Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Dipak Ghosal University of California Davis, CA 95616 dghosal@ucdavis.edu ABSTRACT An important performance problem that we foresee with Data Transfer Nodes (DTNs) in the near future is a fast sending host over-running a slow receiving host, and packets

  19. LOCA feasibility study of Almaraz NPP 110% power up-rate

    SciTech Connect (OSTI)

    Orive, Raul; Gallego, Ines; Garcia, Pablo; Concejal, Alberto; Martinez-Murillo, Juan-Carlos

    2006-07-01

    Knowledge about accidents and fuel response in extreme conditions has progressed in parallel with the simulation tools development and consequently results are today highly satisfactory. This fact allows nuclear power plants (NPP) to carry out optimization processes of its operation and yield improvements due to the development of new methodologies and tools. Power up-rates open a demand in areas like the analyses of Loss Of Coolant Accidents (LOCA's), which impact on plant design may limit the maximum operation power in a nuclear power plant. TRAC-PF1 is a thermal-hydraulic calculation code that allows the complete treatment of two-phase flows in balance, combining a three dimensional vessel, that simulates in detail the accident phenomena, with one dimensional components. TRAC-PF1 code capacities in the reproduction of experiments, transients and accidents have been widely proved. IBERINCO has modified the original code to develop a conservative model applicable to a 3-loop Westinghouse NPP. These circumstances have allowed Almaraz NPP to get deeper in the study of the plant behaviour during a LOCA, after a hypothetical Power Up-rate. The scope of the study includes the development of the plant model and the reproduction of several accidents with loss of coolant. These accidents have been simulated with the improved option and the conservative version of the modified code (TRAC-PF1/IBER). The limiting case at the current power is analyzed in 110% Power Up-rate conditions and different sensitivity studies are performed, focused in impact of axial power distribution, discharge coefficients and emergency core cooling system availability. These studies allow to verify the effectiveness of Almaraz NPP safety systems in LOCA scenarios to guarantee the required safety margins. (authors)

  20. Multivariable optimization of fusion reactor blankets

    SciTech Connect (OSTI)

    Meier, W.R.

    1984-04-01

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% /sup 6/Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO/sub 2/ breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO/sub 2/ breeding blanket enriched to 34% /sup 6/Li.

  1. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  2. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  3. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  4. Lateral flow strip assay

    DOE Patents [OSTI]

    Miles, Robin R.; Benett, William J.; Coleman, Matthew A.; Pearson, Francesca S.; Nasarabadi, Shanavaz L.

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  5. Improving Outage Performance: Outage Optimization Process

    SciTech Connect (OSTI)

    LaPlatney, Jere J. [AREVA NP (United States)

    2006-07-01

    Planned outage performance is a key measure of how well an Nuclear Power Plant (NPP) is operated. Performance during planned outages strongly affects virtually all of a plant's performance metrics. In recognition of this fact, NPP operators worldwide have and continue to focus on improving their outage performance. The process of improving outage performance is commonly referred to as 'Outage Optimization' in the industry. This paper starts with a summary of the principles of Outage Optimization. It then provides an overview of a process in common use in the USA and elsewhere to manage the improvement of planned outages. The program described is comprehensive in that it involves managing improvement in both the Preparation and Execution phases of outage management. (author)

  6. Power supply

    DOE Patents [OSTI]

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  7. Low flow fume hood

    DOE Patents [OSTI]

    Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  8. Flow-Based Detection of Bar Coded Particles (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Flow-Based Detection of Bar Coded Particles Citation Details In-Document Search Title: Flow-Based Detection of Bar Coded Particles We have developed methods for flow control, electric field alignment, and readout of colloidal Nanobarcodes{copyright}. Our flow-based detection scheme leverages microfluidics and alternate current (AC) electric fields to align and image particles in a well-defined image plane. Using analytical models of the particle rotation in electric fields we can optimize the

  9. Air Transport Optimization Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAir Transport Optimization Model content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system

  10. Life extension system for fossil power plants

    SciTech Connect (OSTI)

    Isreb, M.

    1996-11-01

    A general, multi-disciplinary life extension system for new and existing power plants has been absent in the literature. The present paper presents a general, multi-disciplinary life extension system for new and existing fossil power plants. The paper formulates the optimization problem framework for plants` components. The paper discusses the framework of the iterative process, objective functions, plant components, life extension constraints, new life or remnant life parameters and optimization techniques. Other system attributes discussed in the paper include: design invariant parameters, relationships between plant components and objective functions and a strategy for system sizing and simulation.

  11. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect (OSTI)

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  12. Wave-operated power plant

    SciTech Connect (OSTI)

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  13. Single-Phase Active Boost Rectifier with Power Factor Correction for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan; Onar, Omer C; Miller, John M; Tang, Lixin

    2013-01-01

    Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance. To understand the power flow through the system this paper presents a novel approach to the system model and the impact of different control parameters on the load power. The implementation of an active front-end rectifier on the grid side for power factor control and voltage boost capability for load power regulation is also discussed.

  14. Jack Deslippe Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Strategies for Cori NERSC User Services Wednesday Feb 25, 2015 Introduction to Cori What is different about Cori? What is different about Cori? Edison (Ivy-Bridge): ● 12 Cores Per CPU ● 24 Virtual Cores Per CPU ● 2.4-3.2 GHz ● Can do 4 Double Precision Operations per Cycle (+ multiply/add) ● 2.5 GB of Memory Per Core ● ~100 GB/s Memory Bandwidth Cori (Knights-Landing): ● 60+ Physical Cores Per CPU ● 240+ Virtual Cores Per CPU ● Much slower GHz ● Can do 8 Double

  15. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia

    SciTech Connect (OSTI)

    Reeves, Daniel B. Weaver, John B.

    2014-03-10

    Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting microscopic energy deposition mechanisms are not well understood and optimization suffers. We describe several approximate forms for the characteristic time of Nel rotations with varying properties and external influences. We then present stochastic simulations that show agreement between the approximate expressions and the micromagnetic model. The simulations show nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency dependencies of the magnetization. This suggests that efficient heating is possible by matching fields to particles instead of resorting to maximizing the power of the applied magnetic fields.

  16. Building America Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Broader source: Energy.gov [DOE]

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  17. Technology Solutions Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect (OSTI)

    Tim Merrigan

    2015-09-01

    This guide will show how DC power optimizers and microinverters (both known as module-level power electronics) are being used in new and/or retrofit, single and multifamily homes.

  18. Solar Power for Tanzania

    SciTech Connect (OSTI)

    Chen, Christine; Gerace, Jay; Mehner, Nicole; Mohamed, Sharif; Reiss, Kelly

    1999-12-06

    Condensed list of products and activities: 8 educational posters and 1 informational brochure (all original illustrations and text); a business plan with micro-agreements; corporation created called Tanzanian Power, LLC; business feasibility study developed with the University of Albany; Hampshire College collaborated in project development; research conducted seeking similar projects in underdeveloped countries; Citibank proposal submitted (but rejected); cleaned and sent PV panels to Tanzania; community center built in Tanzania; research and list provided to Robinson for educational TV videos and product catalogs; networked with Chase Manhattan Bank for new solar panels; maintained flow of information among many people (stateside and Tanzania); wrote and sent press releases and other outreach information. Several families purchased panels.

  19. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  20. OTRA-THS MAC to reduce Power Outage Data Collection Latency in a smart meter network

    SciTech Connect (OSTI)

    Garlapati, Shravan K; Kuruganti, Phani Teja; Buehrer, Richard M; Reed, Jeffrey H

    2014-01-01

    The deployment of advanced metering infrastructure by the electric utilities poses unique communication challenges, particularly as the number of meters per aggregator increases. During a power outage, a smart meter tries to report it instantaneously to the electric utility. In a densely populated residential/industrial locality, it is possible that a large number of smart meters simultaneously try to get access to the communication network to report the power outage. If the number of smart meters is very high of the order of tens of thousands (metropolitan areas), the power outage data flooding can lead to Random Access CHannel (RACH) congestion. Several utilities are considering the use of cellular network for smart meter communications. In 3G/4G cellular networks, RACH congestion not only leads to collisions, retransmissions and increased RACH delays, but also has the potential to disrupt the dedicated traffic flow by increasing the interference levels (3G CDMA). In order to overcome this problem, in this paper we propose a Time Hierarchical Scheme (THS) that reduces the intensity of power outage data flooding and power outage reporting delay by 6/7th, and 17/18th when compared to their respective values without THS. Also, we propose an Optimum Transmission Rate Adaptive (OTRA) MAC to optimize the latency in power outage data collection. The analysis and simulation results presented in this paper show that both the OTRA and THS features of the proposed MAC results in a Power Outage Data Collection Latency (PODCL) that is 1/10th of the 4G LTE PODCL.

  1. Polyoxometalate flow battery

    DOE Patents [OSTI]

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  2. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  3. Excess flow shutoff valve

    DOE Patents [OSTI]

    Kiffer, Micah S.; Tentarelli, Stephen Clyde

    2016-02-09

    Excess flow shutoff valve comprising a valve body, a valve plug, a partition, and an activation component where the valve plug, the partition, and activation component are disposed within the valve body. A suitable flow restriction is provided to create a pressure difference between the upstream end of the valve plug and the downstream end of the valve plug when fluid flows through the valve body. The pressure difference exceeds a target pressure difference needed to activate the activation component when fluid flow through the valve body is higher than a desired rate, and thereby closes the valve.

  4. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA); Esposito, Richard J. (Seattle, WA)

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  5. Multiple sort flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  6. Photovoltaic Power for the Nanosat Project

    SciTech Connect (OSTI)

    Rose, B.H.

    1999-06-01

    This report describes the characteristics of photovoltaic arrays that maybe suitable for use with nanosatellite electronic systems. It includes a thorough literature search on power management and distribution systems for satellites as small as microsatellites. The major conclusion to be drawn is that it is the total system, including satellite electronic system, photovoltaic systems, peak power tracker and the power management and distribution systems which need to be optimized. An example of a peak power tracker is given, and a novel series connected boost unit is described which might allow the system voltage to be increased if enough photovoltaic panels to operate the systems in real time is impractical. Finally, it is recommended that the development effort be oriented and expanded to include a peak power tracker and other power management and distribution systems.

  7. Marine power - Accomplishments of the 1970s

    SciTech Connect (OSTI)

    Schmitt, W.R.

    1982-08-01

    Considerable optimism prevailed at the decade's beginning that marine energy fluxes would be utilized widely and soon. Potential resources were overestimated and technical difficulties underestimated. Then leaping fuel prices were thought to give a competitive edge to renewable, fuel-free, power technologies. But since most renewable power is of low intensity and requires large conversion systems, costs are innately high and have been very sensitive to the inflation engendered by the 1973 oil embargo, staying well ahead of those of fossil-fueled power. The necessary low-pressure technology has proved difficult to master, and power utilities have been reluctant to invest in variable, undependable supplies. Prospects for power from the oceans were thus at a low ebb near the end of the Seventies. However, persevering efforts helped by more patient expectations have turned the prospects around and up again, and demonstration facilities are under test or construction for temperature-gradient, tidal, wave, and wind power.

  8. Power optics

    SciTech Connect (OSTI)

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The theoretical estimates are compared with the experimental data. We discuss the issues related to the technology of fabrication of power optics elements based on materials with a porous structure, of lightweight highly stable large optics based on highly porous materials, multi-layer honeycomb structures and silicon carbide, as well as problems of application of physical and technical fundamentals of power optics in modern cutting-edge technology. (invited paper)

  9. Isolated and soft-switched power converter

    DOE Patents [OSTI]

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  10. POWER REACTOR

    DOE Patents [OSTI]

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  11. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  12. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  13. Desalination Plant Optimization

    Energy Science and Technology Software Center (OSTI)

    1992-10-01

    MSF21 and VTE21 perform design and costing calculations for multistage flash evaporator (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. An optimization capability is available, if desired. The MSF plant consists of a recovery section, reject section, brine heater, and associated buildings and equipment. Operating costs and direct and indirect capital costs for plant, buildings, site, and intakes are calculated. Computations are based on the first and last stages of each section and amore » typical middle recovery stage. As a result, the program runs rapidly but does not give stage by stage parameters. The VTE plant consists of vertical tube effects, multistage flash preheater, condenser, and brine heater and associated buildings and equipment. Design computations are done for each vertical tube effect, but preheater computations are based on the first and last stages and a typical middle stage.« less

  14. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  15. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect (OSTI)

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  16. Inductively coupled plasma torch with laminar flow cooling

    DOE Patents [OSTI]

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  17. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  18. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for solar power, hydropower, wind power, fuel cells, biofuels, fracking, hybrid cars, geothermal energy, and the power grid * Educator portal being added this fall * ...

  19. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  20. Elbow mass flow meter

    DOE Patents [OSTI]

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  1. Microelectromechanical flow control apparatus

    DOE Patents [OSTI]

    Okandan, Murat

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  2. High average power laser using a transverse flowing liquid host

    DOE Patents [OSTI]

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  3. EV drivetrain inverter with V/HZ optimization

    DOE Patents [OSTI]

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  4. Strategic planning for power system restorations

    SciTech Connect (OSTI)

    Bent, Russell W; Van Hententyck, Pascal; Coffrin, Carleton

    2010-10-12

    This paper considers the power system restoration planning problem (PSRPP) for disaster recovery, a fundamental problem faced by all populated areas. PSRPPs are complex stochastic optimization problems that combine resource allocation, warehouse location, and vehicle routing considerations. Furthermore, electrical power systems are complex systems whose behavior can only be determined by physics simulations. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This work is three fold: (1) it formalizes the specification of PSRPPs; (2) introduces a simple optimization-simulation hybridization necessary for solving PSRPPs; and (3) presents a complete restoration algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. This paper studied a novel problem in the field of humanitarian logistics, the Power System Restoration Problem (PSRPP). The PSRPP models the strategic planning process for post disaster power system recovery. The paper proposed a multi-stage stochastic hybrid optimization algorithm that yields high quality solutions to real-world benchmarks provided by Los Alamos National Laboratory (LANL). The algorithm uses a variety of technologies, including MIP, constraint programming, and large neighborhood search, to exploit the structure of each individual optimization subproblem. The experimental results on hurricane disaster benchmarks indicate that the algorithm is practical from a computational standpoint and produce significant improvements over existing relief delivery procedures.

  5. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  6. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  7. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities Sensors & Optical Diagnostics Optimizing...

  8. Getting Started and Optimization Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting Started and Optimization Strategy Getting Started and Optimization Strategy The purpose of this page is to get you started thinking about how to optimize your application for the Knights Landing (KNL) Architecture that will be on Cori. This page will walk you through the high level steps and give an example using a real application that runs at NERSC. How Does Cori Differ From Edison There are several important differences between the Cori (Knights-Landing) node architecture and the

  9. SMART POWER TURBINE

    SciTech Connect (OSTI)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

  10. Getting Started and Optimization Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    list of differences is summarized in the table below: Key differences are highlighted in red. Optimization Areas There are three important areas of improvement to consider for...

  11. HMX Cooling Core Optimization Software

    Energy Science and Technology Software Center (OSTI)

    2006-08-31

    The Software consists of code which is used to determine the optimal configuration of an HMX cooling core in a heat exchanger.

  12. Wind Electrolysis: Hydrogen Cost Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-AC36-08GO28308 Wind Electrolysis: Hydrogen Cost Optimization Genevieve Saur, Todd ......... 4 3.2 Wind Farm ......

  13. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  14. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  15. An approximation technique for jet impingement flow

    SciTech Connect (OSTI)

    Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.

    2015-03-10

    The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.

  16. Estimated Water Flows in 2005: United States

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

  17. MHK Technologies/FRI El Sea Power System | Open Energy Information

    Open Energy Info (EERE)

    FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Type Click here Axial Flow Turbine Technology Description The device is...

  18. Scaled Experimental Modeling of VHTR Plenum Flows

    SciTech Connect (OSTI)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (thermal striping) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  19. WINDExchange: Buying Wind Power

    Wind Powering America (EERE)

    Buying Wind Power Individuals, communities, businesses, and government entities may decide that buying wind power to supply their energy needs is the right fit. There are several ways to purchase wind power. Green Power Marketing Green power marketing refers to green power being offered by multiple suppliers in a competitive marketplace. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Learn more about green power

  20. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  1. Primus Power Corporation Wind Firming EnergyFarm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    central valley that consists of an array of 250kW EnergyPods(tm); plug-and-play zinc-flow battery modules and power electronics systems housed inside ISO shipping containers. ...

  2. Control system and method for a universal power conditioning...

    Office of Scientific and Technical Information (OSTI)

    At the initial simulation cycle, the power flow may be erratically fed back to the ... Experimental results show that the inverter is capable of both a standalone and a grid-tie ...

  3. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    SciTech Connect (OSTI)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  4. Shroud leakage flow discouragers

    DOE Patents [OSTI]

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  5. Tank depletion flow controller

    DOE Patents [OSTI]

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  6. Modeling Power System Operation with Intermittent Resources

    SciTech Connect (OSTI)

    Marinovici, Maria C.; Kirkham, Harold; Glass, Kevin A.; Carlsen, Leif C.

    2013-02-27

    Electricity generating companies and power system operators face the need to minimize total fuel cost or maximize total profit over a given time period. These issues become optimization problems subject to a large number of constraints that must be satisfied simultaneously. The grid updates due to smart-grid technologies plus the penetration of intermittent re- sources in electrical grid introduce additional complexity to the optimization problem. The Renewable Integration Model (RIM) is a computer model of interconnected power system. It is intended to provide insight and advice on complex power systems management, as well as answers to integration of renewable energy questions. This paper describes RIM basic design concept, solution method, and the initial suite of modules that it supports.

  7. Optimal linear reconstruction of dark matter from halo catalogues

    SciTech Connect (OSTI)

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple fact that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15 noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.

  8. Optimal linear reconstruction of dark matter from halo catalogues

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  9. Optimization of chemical etching process in niobium cavities

    SciTech Connect (OSTI)

    Tajima, T. (Tsuyoshi); Trabia, M.; Culbreth, W.; Subramanian, S.

    2004-01-01

    Superconducting niobium cavities are important components of linear accelerators. Buffered chemical polishing (BCP) on the inner surface of the cavity is a standard procedure to improve its performance. The quality of BCP, however, has not been optimized well in terms of the uniformity of surface smoothness. A finite element computational fluid dynamics (CFD) model was developed to simulate the chemical etching process inside the cavity. The analysis confirmed the observation of other researchers that the iris section of the cavity received more etching than the equator regions due to higher flow rate. The baffle, which directs flow towards the walls of the cavity, was redesigned using optimization techniques. The redesigned baffle significantly improves the performance of the etching process. To verify these results an experimental setup for flow visualization was created. The setup consists of a high speed, high resolution CCD camera. The camera is positioned by a computer-controlled traversing mechanism. A dye injecting arrangement is used for tracking the fluid path. Experimental results are in general agreement with CFD and optimization results.

  10. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors.

    Broader source: Energy.gov [DOE]

    Learn about energy-efficient power supplies that can help you reduce energy consumption and lower your energy costs.

  11. Flow Battery Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through a cell that converts chemical energy to electricity. ... variability of windsolar power generation (load leveling), ... Sandia has created a family of liquid salt electrolytes, ...

  12. Optimized design for PIGMI

    SciTech Connect (OSTI)

    Hansborough, L.; Hamm, R.; Stovall, J.; Swenson, D.

    1980-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator design, optimized for pion production and cancer treatment use in a hospital environment. Technology developed during a four-year PIGMI Prototype experimental program allows the design of smaller, less expensive, and more reliable proton linacs. A new type of low-energy accelerating structure, the radio-frequency quadrupole (RFQ) has been tested; it produces an exceptionally good-quality beam and allows the use of a simple 30-kV injector. Average axial electric-field gradients of over 9 MV/m have been demonstrated in a drift-tube linac (DTL) structure. Experimental work is underway to test the disk-and-washer (DAW) structure, another new type of accelerating structure for use in the high-energy coupled-cavity linac (CCL). Sufficient experimental and developmental progress has been made to closely define an actual PIGMI. It will consist of a 30-kV injector, and RFQ linac to a proton energy of 2.5 MeV, a DTL linac to 125 MeV, and a CCL linac to the final energy of 650 MeV. The total length of the accelerator is 133 meters. The RFQ and DTL will be driven by a single 440-MHz klystron; the CCL will be driven by six 1320-MHz klystrons. The peak beam current is 28 mA. The beam pulse length is 60 ..mu..s at a 60-Hz repetition rate, resulting in a 100-..mu..A average beam current. The total cost of the accelerator is estimated to be approx. $10 million.

  13. Complex Flow Workshop Report

    SciTech Connect (OSTI)

    none,

    2012-05-01

    This report documents findings from a workshop on the impacts of complex wind flows in and out of wind turbine environments, the research needs, and the challenges of meteorological and engineering modeling at regional, wind plant, and wind turbine scales.

  14. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  15. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  16. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbar, Emin Caglan

    2015-11-05

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  17. Electrochemical flow capacitors

    DOE Patents [OSTI]

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  18. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  19. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  20. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Optimization of a CNG series hybrid concept vehicle

    SciTech Connect (OSTI)

    Aceves, S.M.; Smith, J.R.; Perkins, L.J.; Haney, S.W.; Flowers, D.L.

    1995-09-22

    Compressed Natural Gas (CNG) has favorable characteristics as a vehicular fuel, in terms of fuel economy as well as emissions. Using CNG as a fuel in a series hybrid vehicle has the potential of resulting in very high fuel economy (between 26 and 30 km/liter, 60 to 70 mpg) and very low emissions (substantially lower than Federal Tier II or CARB ULEV). This paper uses a vehicle evaluation code and an optimizer to find a set of vehicle parameters that result in optimum vehicle fuel economy. The vehicle evaluation code used in this analysis estimates vehicle power performance, including engine efficiency and power, generator efficiency, energy storage device efficiency and state-of-charge, and motor and transmission efficiencies. Eight vehicle parameters are selected as free variables for the optimization. The optimum vehicle must also meet two perfect requirements: accelerate to 97 km/h in less than 10 s, and climb an infinitely long hill with a 6% slope at 97 km/h with a 272 kg (600 lb.) payload. The optimizer used in this work was originally developed in the magnetic fusion energy program, and has been used to optimize complex systems, such as magnetic and inertial fusion devices, neutron sources, and mil guns. The optimizer consists of two parts: an optimization package for minimizing non-linear functions of many variables subject to several non-linear equality and/or inequality constraints and a programmable shell that allows interactive configuration and execution of the optimizer. The results of the analysis indicate that the CNG series hybrid vehicle has a high efficiency and low emissions. These results emphasize the advantages of CNG as a near-term alternative fuel for vehicles.

  2. Power Services (pbl/about)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Power Services > About Power Services Power Services Home Page Other Related Web Sites Power Services Organization Power Services Financial Information Tribal Affairs Office...

  3. Bonneville Power Administration 1991 Annual Report.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-01-01

    Congress enacted the Bonneville Project Act in 1937, creating the Bonneville Power Administration to market and transmit the power produced by Bonneville Dam on the Columbia River. Since then, Congress has directed BPA to sell at wholesale the power produced at a total of 30 Federal dams in the Pacific Northwest, and to acquire conservation and generating resources sufficient to meet the needs of BPA`s customer utilities. The dams and the electrical system are known as the Federal Columbia River Power System. Bonneville sells wholesale power to public and private utilities, rural cooperatives, large industries, and Federal agencies. BPA also sells or exchanges power with utilities in California. BPA uses revenues from the sale of power and transmission services to recover its own expenses, to repay the Federal investment in the power system, and to pay for the resources it has acquired. BPA pays for operation and maintenance expenses at the Federal dams and at non-Federal power plants. It also pays for irrigation benefits of Federal projects allocated to power to repay, and for fish and wildlife projects which offset damage to these resources by the Federal hydropower system. This document is the 1991 statement of budget, financial statement, cash flows, capitalization, expenses, and projects. An organization chart is included.

  4. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A.

    2012-07-01

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  5. System for sensing droplet formation time delay in a flow cytometer

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect System for sensing droplet formation time delay in a flow cytometer Citation Details In-Document Search Title: System for sensing droplet formation time delay in a flow cytometer A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously

  6. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  7. Development of fundamental power coupler for high-current superconducting RF cavity

    SciTech Connect (OSTI)

    Jain P.; Belomestnykh, S.; Ben-Zvi, I.; Xu, W.

    2012-05-20

    Brookhaven National Laboratory took a project of developing a 704 MHz five-cell superconducting RF cavity for high-current linacs, including Energy Recovery Linac (ERL) for planned electron-hadron collider eRHIC. The cavity will be fed by a high-power RF amplifier using a coaxial Fundamental Power Coupler (FPC), which delivers 20 kW of CW RF power to the cavity. The design of FPC is one of the important aspects as one has to take into account the heat losses dissipated on the surface of the conductor by RF fields along with that of the static heat load. Using a simple simulation model we show the temperature profile and the heat load dissipated along the coupler length. To minimize the heat load on FPC near the cavity end, a thermal intercept is required at an appropriate location on FPC. A 10 K intercept was chosen and its location optimized with our simulation code. The requirement on the helium gas flow rate for the effective heat removal from the thermal intercept is also discussed.

  8. Regenerator optimization for Stirling cycle refrigeration II

    SciTech Connect (OSTI)

    Colgate, S.A.; Petschek, A.G.

    1994-07-01

    A cryogenic regenerator for a Stirling cycle is discussed using fractional loss or entropy gain as the criterion of performance. The gas losses are treated separately from heat storage medium losses. We argue that the optimum design corresponds to uniform channel flow with minimum turbulence where the gas velocity and channel width are optimized as a function of gas temperature. The maximization of heat transfer from the gas to the wall and the minimization of entropy production by friction leads to a gas flow velocity equal to sound speed times loss fraction, 1/{sigma}. This velocity and an axial thermal conductivity in the gas leads to a minimum channel width and characteristic length, L=T(dz/dT). A particular scaling of width, W{sup 2} = W{sub o}{sup 2}T{sup 1/2}, and length, L = L{sub o} T{sup {minus}1/2} leads to a design where longitudinal conduction decreases as T{sup 3/2} and the remaining two losses, transverse conduction and friction are equal and constant. The loss fraction, 1/{sigma}, must be made quite small, {approximately}(1/60) in order that the cumulative losses for a large temperature ratio like 300K to 4K, be small enough, like 20% to 40%. This is because half the entropy generated as a loss must be transported first to the cold end before returning to the hot end before being rejected. The dead volume ratio then determines the minimum frequency and with it and the pressure the necessary wall properties. The thermal properties of the channel wall must then accommodate this cyclic heat flow without substantially increasing the loss fraction. This generation of entropy in the walls is derived in terms of the wall heat capacity and thermal conductivity.

  9. Wind power: executive summary on research on network wind power over the Pacific Northwest. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Baker, R.W.; Hewson, E.W.

    1980-10-01

    This research in FY80 is composed of six primary tasks. These tasks include data collection and analysis, wind flow studies around an operational wind turbine generator (WTG), kite anemometer calibration, wind flow analysis and prediction, the Klickitat County small wind energy conversion system (SWECS) program, and network wind power analysis. The data collection and analysis task consists of four sections, three of which deal with wind flow site surveys and the fourth with collecting and analyzing wind data from existing data stations.

  10. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  11. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  12. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  13. Regulation control and energy management scheme for wireless power transfer

    SciTech Connect (OSTI)

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  14. NREL: Electricity Integration Research - Power Systems Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Engineering Center The Power Systems Engineering Center supports the science and technology goals of the U.S. Department of Energy and NREL toward a sustainable energy future. The center works with the electricity industry to optimize strategies for effectively interconnecting renewable resources and emerging energy efficiency technologies in the existing electric power system. The center focuses on resolving grid integration barriers and providing improved control and management

  15. Flexibility in 21st Century Power Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    Flexibility of operation--the ability of a power system to respond to change in demand and supply--is a characteristic of all power systems. Flexibility is especially prized in twenty-first century power systems, with higher levels of grid-connected variable renewable energy (primarily, wind and solar). Sources of flexibility exist--and can be enhanced--across all of the physical and institutional elements of the power system, including system operations and markets, demand side resources and storage; generation; and transmission networks. Accessing flexibility requires significant planning to optimize investments and ensure that both short- and long-time power system requirements are met.

  16. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Management, Energy Efficiency Services, Energy System Optimization Emission Reduction Recycling and Reuse of Products, Greenhouse Gases Management, Environment Protection...

  17. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip Navigation Links 2011 Hydropower Conference Agenda Crane Rehabilitation Hydro Optimization in the Pacific Northwest Hydropower Modernization Initiative Proposed...

  18. Power Tower System Concentrating Solar Power Basics

    Broader source: Energy.gov [DOE]

    In power tower concentrating solar power systems, a large number of flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower.

  19. A Polyoxometalate Flow Battery. (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: A Polyoxometalate Flow Battery. Citation Details In-Document Search Title: A Polyoxometalate Flow Battery. Authors: Pratt, Harry ; Hudak, Nicholas ; Anderson, Travis Mark ; Fang, Xikui Publication Date: 2013-02-01 OSTI Identifier: 1062868 Report Number(s): SAND2013-1139J DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Proposed for publication in Journal of Power Sources. Research Org: Sandia National Laboratories Sponsoring

  20. EERE Success Story-Optimizing Geothermal with Geo-Solar Hybrid Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Optimizing Geothermal with Geo-Solar Hybrid Systems EERE Success Story-Optimizing Geothermal with Geo-Solar Hybrid Systems May 6, 2015 - 9:10am Addthis The Stillwater geothermal plant is the first hybrid solar geo facility in the nation. In 2014 Enel Green Power added 2 MW of concentrating solar power to the existing geothermal plant and solar photovoltaic field, for a total installed capacity of ~60 MW. Source: Enel Green Power North America The Stillwater geothermal

  1. Advanced Redox Flow Batteries for Stationary Electrical Energy Storage

    SciTech Connect (OSTI)

    Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

    2012-03-19

    This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

  2. Pump Systems Optimization: Energy Efficiency

    Energy Savers [EERE]

    Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while

  3. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Turbulent combustion simulations, which provide input to the design of more fuel-efficient combustion systems, have gotten their own efficiency boost, thanks to researchers from the Computational Research Division (CRD) at Lawrence Berkeley National

  4. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  5. Flow distribution channels to control flow in process channels (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The invention describes features that can be used to control flow to an array of microchannels. The invention also describes methods in which a process stream is distributed to plural microchannels. Authors: Tonkovich, Anna Lee ; Arora, Ravi ; Kilanowski, David Publication Date: 2014-10-28 OSTI Identifier:

  6. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  7. Electrocapturing flow cell

    DOE Patents [OSTI]

    Morozov, Victor

    2011-04-05

    A flow cell for electrophoretically-assisted capturing analytes from a flow. The flow cell includes a specimen chamber, a first membrane, a second membrane, a first electrode chamber, and a second electrode chamber. The specimen chamber may have a sample inlet and a sample outlet. A first portion of the first membrane may be coupled to a first portion of the specimen chamber. A first portion of the second membrane may be coupled to a second portion of the specimen chamber. The first electrode chamber may be configured to accept a charge. A portion of the first electrode chamber may be coupled to a second portion of the first membrane. A second electrode chamber may be configured to accept an opposite charge. A portion of the second electrode chamber may be coupled to a second portion of the second membrane.

  8. Pyomo : Python Optimization Modeling Objects.

    SciTech Connect (OSTI)

    Siirola, John; Laird, Carl Damon; Hart, William Eugene; Watson, Jean-Paul

    2010-11-01

    The Python Optimization Modeling Objects (Pyomo) package [1] is an open source tool for modeling optimization applications within Python. Pyomo provides an objected-oriented approach to optimization modeling, and it can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. While Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, Pyomo's modeling objects are embedded within a full-featured high-level programming language with a rich set of supporting libraries. Pyomo leverages the capabilities of the Coopr software library [2], which integrates Python packages (including Pyomo) for defining optimizers, modeling optimization applications, and managing computational experiments. A central design principle within Pyomo is extensibility. Pyomo is built upon a flexible component architecture [3] that allows users and developers to readily extend the core Pyomo functionality. Through these interface points, extensions and applications can have direct access to an optimization model's expression objects. This facilitates the rapid development and implementation of new modeling constructs and as well as high-level solution strategies (e.g. using decomposition- and reformulation-based techniques). In this presentation, we will give an overview of the Pyomo modeling environment and model syntax, and present several extensions to the core Pyomo environment, including support for Generalized Disjunctive Programming (Coopr GDP), Stochastic Programming (PySP), a generic Progressive Hedging solver [4], and a tailored implementation of Bender's Decomposition.

  9. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect (OSTI)

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  10. Flow line sampler

    DOE Patents [OSTI]

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  11. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  12. Optimal Shielding for Minimum Materials Cost of Mass

    SciTech Connect (OSTI)

    Woolley, Robert D.

    2014-08-01

    Material costs dominate some shielding design problems. This is certainly the case for manned nuclear power space applications for which shielding is essential and the cost of launching by rocket from earth is high. In such situations or in those where shielding volume or mass is constrained, it is important to optimize the design. Although trial and error synthesis methods may succeed a more systematic approach is warranted. Design automation may also potentially reduce engineering costs.

  13. Portable Power Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's Portable Power, Auxiliary Power Units, and R&D for Off-Road Fuel Cell Applications Research Projects Awarded April 2004

  14. Biomass: Potato Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time:...

  15. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ...

  16. PowerPoint Presentation

    Office of Environmental Management (EM)

    Southeastern Federal Power Alliance - September 29, 2015 ... of nuclear, coal, pumped storage hydro, and simple-cycle ... facilities - 2 "Wind Power for Schools" facilities - Jr. ...

  17. Power System Dispatcher (Trainer)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching (J4100) 5555...

  18. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement (Agreement) between the BC Hydro and Power uthority (BCH) and the Bonneville Power Administration (BP A), jointly the Parties, which BA for accounting purposes is...

  19. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 (Revised 060914) United States Department of Energy Bonneville Power Administration 905 N.E. 11th Avenue Portland, OR 97232 Bonneville Power Administration's 2014...

  20. power conversion efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power conversion efficiency - Sandia Energy Energy Search Icon Sandia Home Locations ... Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar ...

  1. 10 MWe power cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MWe power cycle - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  2. concentrating solar power plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power plant - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy ...

  3. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  4. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  5. Supervisory Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, J4800 Transmission Scheduling &...

  6. Wind & Water Power Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Water Power Newsletter - Sandia Energy Energy Search Icon Sandia Home Locations Contact ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  7. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exit signs, kitchen equipment, network power management, power strips, showerheads, clothes washers, water heaters and ag stock tanks. Check IM for detailed requirements. c....

  8. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Transmission Switching (J4100) 5555...

  9. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inlet Pressure (psi) Min. Flow Rate (lbsMWhr) Total Min. Flow Rate (lbhr) Allison 15 200 9500 142,500 MAN Turbo 50 50 9500 475,000 Dresser Rand 134 830 9500 1,273,000 Alston 300 ...

  10. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.

  11. Course Overview Pump Systems Matter Optimization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course Overview Pump Systems Matter Optimization Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve...

  12. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  13. Michigan: General Motors Optimizes Engine Valve Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Michigan: General Motors Optimizes Engine Valve Technology Michigan: General Motors Optimizes Engine Valve Technology November 8, 2013 - 12:00am Addthis An EERE-supported effort to ...

  14. Reservoir-Stimulation Optimization with Operational Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems Reservoir-Stimulation Optimization with Operational Monitoring for ...

  15. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  16. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  17. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  18. Intel compiler performance optimization and characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compiler performance optimization and characterization Intel compiler performance optimization and characterization May 13, 2015 NERSC will host an in-depth training presentation...

  19. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  20. Energy Optimized Desalination Technology Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops Energy Optimized Desalination Technology Development Workshop - November 5-6, 2015 Energy Optimized Desalination Technology Development Workshop - November 5-6, 2015 ...

  1. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  2. Computationally Optimized Homogenization Heat Treatment of Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Computationally Optimized Homogenization Heat Treatment of Metal Alloys ... PDF Document Publication Computationally Optimized Homogenization Heat Treatment of Metal ...

  3. Klotz visits Bettis Atomic Power Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Klotz visits Bettis Atomic Power Laboratory Wednesday, July 8, 2015 - 1:03pm Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. NNSA Blog Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify techniques for in-situ repairs of nuclear powered submarine components, discussed full scale flow

  4. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, D.

    1987-11-30

    An obstruction across the flow chamber creates a one-dimensional convergence of a sheath fluid. A passageway in the obstruction directs flat cells near to the area of one-dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates. 6 figs.

  5. Flow cytometry apparatus

    DOE Patents [OSTI]

    Pinkel, Daniel (Walnut Creek, CA)

    1991-01-01

    An obstruction across the flow chamber creates a one dimensional convergence of a sheath fluid. A passageway in the construction directs flat cells near to the area of one dimensional convergence in the sheath fluid to provide proper orientation of flat cells at fast rates.

  6. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  7. ENER G Combined Power formerly Combined Power Ltd | Open Energy...

    Open Energy Info (EERE)

    ENER G Combined Power formerly Combined Power Ltd Jump to: navigation, search Name: ENER.G Combined Power (formerly Combined Power Ltd) Place: United Kingdom Product: Specialises...

  8. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 This 2008 ...

  9. Indiabulls Power Ltd formerly Sophia Power Company | Open Energy...

    Open Energy Info (EERE)

    Indiabulls Power Ltd formerly Sophia Power Company Jump to: navigation, search Name: Indiabulls Power Ltd. (formerly Sophia Power Company) Place: New Delhi, Delhi (NCT), India Zip:...

  10. Brookfield Renewable Power Corp formerly Brascan Power Corp ...

    Open Energy Info (EERE)

    Brookfield Renewable Power Corp formerly Brascan Power Corp Jump to: navigation, search Name: Brookfield Renewable Power Corp (formerly Brascan Power Corp) Place: Toronto, Ontario,...

  11. Delmarva Power Light Company Delmarva Power | Open Energy Information

    Open Energy Info (EERE)

    Delmarva Power Light Company Delmarva Power Jump to: navigation, search Name: Delmarva Power & Light Company (Delmarva Power) Place: Wilmington, Delaware Zip: 19886 Product:...

  12. High Power Laser Innovation Sparks Geothermal Power Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Power Laser Innovation Sparks Geothermal Power Potential High Power Laser Innovation Sparks Geothermal Power Potential May 29, 2015 - 11:02am Addthis The Energy Department's ...

  13. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV...

  14. Flex power perspectives of indirect power system control through...

    Open Energy Info (EERE)

    Flex power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of...

  15. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  16. Seismic Retrofit for Electric Power Systems

    SciTech Connect (OSTI)

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  17. Syngas treating options for IGCC power plants

    SciTech Connect (OSTI)

    Wen, H.; Mohammad-zadeh, Y.

    1996-12-31

    Increased environmental awareness, lower cost of gas turbine based combined cycle power plants, and advances in gasification processes have made the integrated gasification combined cycle (IGCC) a viable technology to convert solid fuel to useful energy. The raw solid fuel derived synthesis gas (syngas) contains contaminants that should be removed before combustion in a gas turbine. Therefore, an important process in a gasification based plant is the cleaning of syngas. This paper provides information about various syngas treating technologies and describes their optimal selections for power generation or cogeneration of steam for industrial applications.

  18. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  19. Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery

    SciTech Connect (OSTI)

    Luttman, A.

    2012-03-30

    The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

  20. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    SciTech Connect (OSTI)

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  1. Fossil plant maintenance optimization at FPC`s Crystal River Units 4 & 5

    SciTech Connect (OSTI)

    Cossey, J.; Pflasterer, R.; Colsher, R.; Toomey, G.; Smith, S.; Abbott, P.

    1996-07-01

    Florida Power Corporation recently completed a Fossil Plant Maintenance Optimization project at it`s Crystal River Units 4 and 5 coal fired power plant. The project combined Streamlined Reliability Centered Maintenance (SRCM) techniques with a Predictive Maintenance (PDM) Assessment to analyze eleven of the plants systems that represent the principal contributors to maintenance costs. The plant had an extensive existing maintenance program that included several types of condition monitoring. The Benefit-to-Cost analysis indicates that the annual savings associated with the project recommendations result in a payback period of less than one year. This paper summarizes the types of recommendations that were made and describes the processes used for both the SRCM analysis and the PDM Assessment. The SRCM analysis used proven techniques and software that have been used on other projects, including some sponsored by EPRI. The PDM Assessment process was similar to processes used previously for EPRI and non- EPRI utilities; however, this was the first project where the two processes were modified to take advantage of work performed using the other. All of the recommendations developed by the SRCM analysts were reviewed by the PDM analysts before they were finalized. The structure and flow of the project is also described including how the SRCM and PDM analysts interfaced with the plant staff and how implementation was facilitated. The analysis relied on plant experience related to the operation and maintenance history of the equipment. The recommendations for each system were reviewed by a team consisting of the first-line maintenance supervisors, the maintenance planners, and the plant technical services group. The project recommendations are essentially two-thirds implemented, with many of them implemented before the analysis was completed.

  2. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    SciTech Connect (OSTI)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  3. Low Standby Power Products

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) develops acquisition guidance for products with low standby power. Standby power is the level of power consumption that occurs when a device is in the lowest power-consuming mode—typically when the product is switched off or not performing its primary purpose.

  4. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedules Skip Navigation Links Excess Energy Hydro Peaking Power Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative (Rayburn) Hydro Power and Energy Sold to Sam Rayburn Municipal Power Agency (Willis) Non-Federal Transmission/Interconnection Facilities Service Contact swparates@swpa.gov Last Updated: January 05, 2016

  5. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

  6. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  7. Optimal segmentation and packaging process

    DOE Patents [OSTI]

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  8. Western Area Power Administration. Combined power system financial statements

    SciTech Connect (OSTI)

    1998-02-26

    This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

  9. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect (OSTI)

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7?kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  10. Uncertainty in BWR power during ATWS events

    SciTech Connect (OSTI)

    Diamond, D.J.

    1986-01-01

    A study was undertaken to improve our understanding of BWR conditions following the closure of main steam isolation valves and the failure of reactor trip. Of particular interest was the power during the period when the core had reached a quasi-equilibrium condition with a natural circulation flow rate determined by the water level in the downcomer. Insights into the uncertainity in the calculation of this power with sophisticated computer codes were quantified using a simple model which relates power to the principal thermal-hydraulic variables and reactivity coefficients; the latter representing the link between the thermal-hydraulics and the neutronics. Assumptions regarding the uncertainty in these variables and coefficients were then used to determine the uncertainty in power.

  11. Distributed optimization system and method

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  12. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIA/Privacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power Administration FOIA Program Department of Energy FOIA Program Southeastern Power Administration FOIA Program Western Area Power Administration FOIA Program Contact FOIA/Privacy Act Officer Southwestern Power Administration One West Third Street Tulsa, Oklahoma 74103-3502 Phone: 918-595-6609 Fax: 918-595-6755 foia@swpa.gov Last

  13. Oahu Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  14. TEP process flow diagram

    SciTech Connect (OSTI)

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  15. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis Purpose: produces optimal investment decisions and dispatch for technologies as fuel cells, PV, solar thermal, electric heat storage, heat pumps, EVs, etc.; it...

  16. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    SciTech Connect (OSTI)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-12-09

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  17. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  18. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  19. Fuel from Waste Helps Power Two Tribes | Department of Energy

    Energy Savers [EERE]

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  20. Optimal Real-time Dispatch for Integrated Energy Systems

    SciTech Connect (OSTI)

    Firestone, Ryan Michael

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and (4) most of the trade-off between least-cost and least-carbon IES is determined during the system design stage; for the IES system considered, there is little difference between least-cost control and least-carbon control.