Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optimizing Treatment Performance of Microbial Fuel Cells by Reactor Staging  

Science Journals Connector (OSTI)

Optimizing Treatment Performance of Microbial Fuel Cells by Reactor Staging ... Multi-unit optimization is a recently proposed method that uses multiple similar units to optimize process performance. ...

Roberto P. Pinto; Boris Tartakovsky; Michel Perrier; Bala Srinivasan

2010-08-18T23:59:59.000Z

2

Cost–Performance Analysis and Optimization of Fuel-Burning Thermoelectric Power Generators  

Science Journals Connector (OSTI)

Energy cost analysis and optimization of thermoelectric (TE) power generators burning fossil fuel show a lower initial cost ... The produced heat generates electric power. Unlike waste heat recovery systems, the ...

Kazuaki Yazawa; Ali Shakouri

2013-07-01T23:59:59.000Z

3

Carver Performance and Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03...

4

PDSF Performance and Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Performance and Optimization Running Jobs Efficiently This page defines job efficiency and how to measure the efficiency of your jobs. Read More PDSF IO Monitoring...

5

HTGR Fuel performance basis  

SciTech Connect (OSTI)

The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

1982-05-01T23:59:59.000Z

6

Hopper Performance and Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization Optimization Performance and Optimization Compiler Comparisons Comparison of different compilers with different options on several benchmarks. Read More » Using OpenMP Effectively Performance implications and case studies of codes combining MPI and OpenMP Read More » Reordering MPI Ranks Reordering MPI ranks can result in improved application performance depending on the communication patterns of the application. Read More » Application Performance Variability on Hopper How an application is placed across Hopper's roughly 6300 compute nodes can affect its performance. See a study of application runtimes vs node placement. Read More » Hopper Performance Monitoring Benchmarking performance of scientific applications on Hopper Read More » Hopper:Improving I/O performance to GSCRATCH and PROJECT

7

Cost Optimal Energy Performance  

Science Journals Connector (OSTI)

EPBD recast requires Member States (MS) to ensure that minimum energy performance requirements of buildings are set with a view to achieving cost optimal levels using a comparative methodology framework...1]. Cost

Jarek Kurnitski

2013-01-01T23:59:59.000Z

8

Cetane Performance and Chemistry Comparing Conventional Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels...

9

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect (OSTI)

The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

2010-12-31T23:59:59.000Z

10

Performance and Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance and Performance and Optimization Performance and Optimization Benchmarking Software on Hopper and Carver PURPOSE Test the performance impact of multithreading with representative public domain software including blastn, blastp, rpsblast, hmmsearch, usearch. Run on Hopper (24 cores/node) and Carver (8 cores/node) with different combinations of the number of tasks and threads. Provide useful set of parameters to maximize throughput PROGRAMS TESTED BLAST+ programs (blastn, blastp, rpsblast) version 2.2.26 usearch verison 5.2.32 hmmsearch version 3.0 DATASETS usearch: a collection of protein sequences (~900MB) against a reference "udb" (~900MB) blastn Query: a collection of nucleotide sequences from NCBI Microbial database from ftp://ftp.ncbi.nlm.nih.gov/refseq/release/microbial/ (34,154

11

Handbook of fuel cell performance  

SciTech Connect (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

12

Sensitivity analysis and optimization of the nuclear fuel cycle  

SciTech Connect (OSTI)

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

Passerini, S.; Kazimi, M. S.; Shwageraus, E. [Massachusetts Inst. of Technology, Dept. of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States)

2012-07-01T23:59:59.000Z

13

Optimizing performance of energy systems  

SciTech Connect (OSTI)

This book discusses optimizing performance of energy systems. Topics covered include a test station, heat flow integrator, microcomputer control of MIMIC operation, and microcomputer control of simulation operation.

Stricker, S.

1985-01-01T23:59:59.000Z

14

SCR Performance Optimization Through Advancements in Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Optimization Through Advancements in Aftertreatment Packaging SCR Performance Optimization Through Advancements in Aftertreatment Packaging The impact of improved urea...

15

A GUIDE TO FUEL PERFORMANCE  

SciTech Connect (OSTI)

Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

LITZKE,W.

2004-08-01T23:59:59.000Z

16

A NEW PEMFC FLOW FIELD PLATE OPTIMIZATION COMPARISON - ANSYS FLUENT FUEL-CELL SIMULATION.  

E-Print Network [OSTI]

??The performance of a new cathode flow field plate located on a PEM fuel cell was compared to an industry standard and optimal serpentine design… (more)

Soueidan, Ahmed Yassin

2012-01-01T23:59:59.000Z

17

Cetane Performance and Chemistry Comparing Conventional Fuels...  

Broader source: Energy.gov (indexed) [DOE]

Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources Bruce Bunting, Sam Lewis, John Storey OAK RIDGE NATIONAL LABORATORY U. S....

18

Performance and Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Math Library Performance Core Specialization Hyper-Threading DLFM library tools for large scale dynamic applications Chapel Shared and Dynamic Libraries Cluster Compatibility Mode...

19

Fuel Performance Annual Report for 1980  

SciTech Connect (OSTI)

This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

Bailey, W. J.; Rising, K. H.; Tokar, M.

1981-12-01T23:59:59.000Z

20

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. Facilities NREL conducts...

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Vehicles and Fuels Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

22

Fuel performance: Annual report for 1987  

SciTech Connect (OSTI)

This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

Bailey, W.J.; Wu, S.

1989-03-01T23:59:59.000Z

23

Fuel performance annual report for 1985  

SciTech Connect (OSTI)

This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Wu, S.

1987-02-01T23:59:59.000Z

24

Fuel performance annual report for 1986  

SciTech Connect (OSTI)

This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

Bailey, W.J.; Wu, S.

1988-03-01T23:59:59.000Z

25

Fuel performance annual report for 1989  

SciTech Connect (OSTI)

This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

Bailey, W.J.; Berting, F.M. (Pacific Northwest Lab., Richland, WA (United States)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology)

1992-06-01T23:59:59.000Z

26

Fuel performance annual report for 1988  

SciTech Connect (OSTI)

This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

Bailey, W.J. (Pacific Northwest Lab., Richland, WA (USA)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology)

1990-03-01T23:59:59.000Z

27

Synthetic fuels handbook: properties, process and performance  

SciTech Connect (OSTI)

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01T23:59:59.000Z

28

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

29

Optimization of Microfluidic Fuel Cells Using Transport Principles  

Science Journals Connector (OSTI)

Optimization of Microfluidic Fuel Cells Using Transport Principles ... In this paper, we describe an approach to designing microfluidic fuel cells that optimizes the reaction?depletion boundary layer using transport principles. ... The data represented as ? or · in Figure 7 correspond to microfluidic fuel cells where the gap between consecutive electrodes was not optimized. ...

Jinkee Lee; Keng Guan Lim; G. Tayhas R. Palmore; Anubhav Tripathi

2007-08-30T23:59:59.000Z

30

Benchmarking optimization software with performance profiles  

E-Print Network [OSTI]

Abstract: We propose performance profiles -- probability distribution functions for a performance metric -- as a tool for benchmarking and comparing optimization ...

Elizabeth Dolan

31

Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR  

SciTech Connect (OSTI)

One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

G. S. Chang; Hongbin Zhang

2009-09-01T23:59:59.000Z

32

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect (OSTI)

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

33

Design and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial  

E-Print Network [OSTI]

aircraft R1 Maximum payload at maximum range SFC Engine specific fuel consumption Sref Reference area STADesign and Optimization of Future Aircraft for Assessing the Fuel Burn Trends of Commercial Francisco, CA 94104, U.S.A. Accurately predicting the fuel burn performance and CO2 emissions of future

Alonso, Juan J.

34

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect (OSTI)

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01T23:59:59.000Z

35

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

to achieve stable system operation and maximum fuel economy.optimizing the fuel cell system operation and the sizing ofoptimize the fuel cell system operation over the full load

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

36

Transmutation Fuel Performance Code Conceptual Design  

SciTech Connect (OSTI)

One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

Gregory K. Miller; Pavel G. Medvedev

2007-03-01T23:59:59.000Z

37

NREL: Transportation Research - Fuels Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

38

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

1] D.J. Friedman etc. , PEM Fuel Cell System Optimization,Pressure Operation of PEM Fuel Cell Systems, SAE 2001, 2001-Maximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

39

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

40

Optimization strategies for sustainable fuel cycle of the BR2 Reactor  

SciTech Connect (OSTI)

The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)

Kalcheva, S.; Van Den Branden, G.; Koonen, E. [SCK-CEN, BR2 Reactor, Boeretang 200, Mol, 2400 (Belgium)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches  

Science Journals Connector (OSTI)

Abstract In this paper, different optimal hybrid techniques have been proposed for management of a hybrid power generation system including photovoltaic (PV), fuel cell and battery. The main power of the hybrid system comes from the photovoltaic panels, while the fuel cell and batteries are used as back up units. In order to achieve maximum power point tracking for the photovoltaic system, both fuzzy logic controller and perturb and observation methods are examined and their performances have been investigated via simulations. Next, the performance of the hybrid system has been improved via employing a family of well-known optimization approaches for load sharing among the available resources. Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization (PSO), Quantum behaved Particle Swarm Optimization (QPSO), Ant Colony Optimization (ACO), and Cuckoo Optimization Algorithm (COA) are used to manage the load sharing to achieve optimal performance while the system constraints are met. The optimal performance has been characterized via the control strategy performance measure being the ratio of the amount of hydrogen production with respect to the hydrogen consumption. In order to verify the system performance, simulation studies have been carried out using practical load demand data and real weather data (solar irradiance and air temperature). Different combination of maximum power point tracking methods with various optimization algorithms have been compared with each other. The results show that the combination of fuzzy logic controller with QPSO has the best performance among the considered combinations. In this situation, when the solar irradiation is noticeably high, the required load is supplied mainly by PV array, while the battery is charged, simultaneously. In the other times, the load is mainly fed by the battery and fuel cell while the performance constraints of battery is met and the daily performance measure is optimized.

Nooshin Bigdeli

2015-01-01T23:59:59.000Z

42

Optimal Pitch, Speed and Fuel Control at Sea Thomas Hellstrom  

E-Print Network [OSTI]

largest item (after salaries) on a big vessel's budget. The fuel consumption for a large ferry ranges vessels. The fuel saving is achieved by optimizing control at three levels: low level propeller and main engine control, dy- namic speed control to avoid peeks in the fuel consumption and finally route planning

Hellström, Thomas

43

Sootblowing optimization for improved boiler performance  

DOE Patents [OSTI]

A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

2013-07-30T23:59:59.000Z

44

EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY  

SciTech Connect (OSTI)

A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

Colon-Mercado, H.

2010-09-28T23:59:59.000Z

45

NREL: Transportation Research - Fuel Combustion and Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in...

46

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

47

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

48

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network [OSTI]

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

49

Fuel performance annual report for 1983. Volume 1  

SciTech Connect (OSTI)

This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Dunenfeld, M.S.

1985-03-01T23:59:59.000Z

50

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

51

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

52

Fuel Optimal Thrust Allocation in Dynamic Positioning  

E-Print Network [OSTI]

vessels with diesel-electric power system. In this paper the focus is on using the thrust allocation to make the diesel generators on board the vessel work more fuel efficiently, by reducing the total fuel consumption of all online diesel generators. A static model for the fuel consumption of a diesel generator

Johansen, Tor Arne

53

Fuel reforming for scramjet thermal management and combustion optimization  

E-Print Network [OSTI]

Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

Paris-Sud XI, Université de

54

High performance internal reforming unit for high temperature fuel cells  

DOE Patents [OSTI]

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

55

Optimization of the Spatial and Temporal Fuel Distribution for Stable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimization of the Spatial and Temporal Fuel Distribution for Stable Optimization of the Spatial and Temporal Fuel Distribution for Stable Combustion in Lean Premixed Combustors Speaker(s): Jong Guen Lee Date: November 30, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Robert Cheng The limited success that has been achieved to date in suppressing unstable combustion in lean premixed combustors has been based on the use one of three approaches: a pilot flame, active combustion control using either primary or secondary fuel flow modulation, or modification of the fuel time lag. What these approaches have in common is that they all involve changing the spatial and/or temporal fuel distribution in a manner, which suppresses a given instability. In this presentation, results are presented from an experimental study of the effect of the spatial and temporal fuel

56

Wood energy fuel cycle optimization in beech and spruce forests  

Science Journals Connector (OSTI)

A novel synergistic approach to reducing emissions from residential wood combustion (RWC) is presented. Wood energy fuel cycle optimization (FCO) aims to provide cleaner burning fuels through optimization of forestry and renewable energy management practices. In this work, beech and spruce forests of average and high quality were modelled and analysed to determine the volume of fuel wood and its associated bark fraction produced during typical forestry cycles. Two separate fuel wood bark production regimes were observed for beech trees, while only one production regime was observed for spruce. The single tree and stand models were combined with existing thinning parameters to replicate existing management practices. Utilizing estimates of initial seedling numbers and existing thinning patterns a dynamic model was formed that responded to changes in thinning practices. By varying the thinning parameters, this model enabled optimization of the forestry practices for the reduction of bark impurities in the fuel wood supply chain. Beech forestry cycles responded well to fuel cycle optimization with volume reductions of bark from fuel wood of between ~10% and ~20% for average and high quality forest stands. Spruce, on the other hand, was fairly insensitive to FCO with bark reductions of 0–5%. The responsiveness of beech to FCO further supports its status as the preferred RWC fuel in Switzerland. FCO could easily be extended beyond Switzerland and applied across continental Europe and North America.

Nickolas K Meyer; Marco Mina

2012-01-01T23:59:59.000Z

57

Fuels Performance Group: Center for Transportation Technologies and Systems  

SciTech Connect (OSTI)

Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

Not Available

2008-08-01T23:59:59.000Z

58

Effects of Impurities on Fuel Cell Performance and Durability  

Broader source: Energy.gov [DOE]

This presentation, which focuses on fuel cell performance and durability, was given by James Goodwin of Clemson Univeristy at a February 2007 meeting on new fuel cell projects.

59

Assessment of humidity management effects on PEM fuel cell performance.  

E-Print Network [OSTI]

?? The electrical energy output and the performance of a PEM fuel cell is dependent on the ion transfer in the fuel cell. The ion… (more)

Osamudiamen Ose Micah, Ose Micah

2011-01-01T23:59:59.000Z

60

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Office of Environmental Management (EM)

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading...

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gasifiers optimized for fuel cell applications  

SciTech Connect (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-01-01T23:59:59.000Z

62

Gasifiers optimized for fuel cell applications  

SciTech Connect (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-12-01T23:59:59.000Z

63

3 - Optimizing Performance of Enterprise Web Application  

Science Journals Connector (OSTI)

Fast and responsive web pages are critical to success factors of a website. An optimized web provides the competitive advantage and increases the overall user experience. It has direct impact on business drivers such as site traffic, conversion ratio, and user satisfaction index. With the proliferation of ubiquitous devices and mobile platforms, the speed of the web is more relevant than ever. Web performance optimization (WPO) is mainly related to making the web components, such as web pages, perform faster and render in the most optimal way on the user device so as to provide a positive user experience. Web components include web pages, widgets, client-side components, JavaScript libraries, static assets, and others. Normally, for a web application, the web page forms the final component in the entire delivery chain. This chapter elaborates a complete strategy for WPO. The chapter takes a 360° approach in analyzing various dimensions of WPO, including performance optimization principles at each of the project lifecycle phases, common pitfalls in page development, caching strategy, monitoring and maintenance strategy, infrastructure guidelines, and fine-tuning existing web pages. The chapter also elaborates performance metrics, performance governance framework, and performance techniques for the entire ecosystem. Finally, we see the tools that can be leveraged for implementing the strategies discussed. The optimization techniques explained in this chapter are drawn from various real-world performance engineering programs where the strategy was successfully implemented to meet the challenging performance \\{SLAs\\} across geographies. Performance engineering is a multilayer exercise involving software components at various layers in an n-tier architecture. Equally, hardware also plays a key role in ensuring optimal performance for the application. This chapter predominantly focuses on the web tier wherein the optimization techniques for presentation components are discussed in detail. There is a brief section related to performance best practices that can be implemented at other layers.

Shailesh Kumar Shivakumar

2015-01-01T23:59:59.000Z

64

Thorium fuel performance assessment in \\{HTRs\\}  

Science Journals Connector (OSTI)

Abstract Thorium as a nuclear fuel is receiving renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTR development employed thorium together with high-enriched uranium. After 1980, most HTR fuel systems switched to low-enriched uranium. After completing fuel development for AVR and THTR with BISO coated particles, the German program expanded efforts on a new program utilizing thorium and high-enriched uranium TRISO coated particles for advanced HTR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of LTI inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with HTI-BISO coatings. The improved performance of the HEU (Th,U)O2 TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 °C in normal operations and 1600 °C in accidents, with burnups up to 13% FIMA and fast fluences to 8 × 1025 m?2 (E > 16 fJ), the results exceed the design limits on manufacturing and operational requirements for the German HTR Modul concept, which were: <6.5 × 10?5 for manufacturing; <2 × 10?4 for normal operating conditions; and <5 × 10?4 for accident conditions. These performance statistics for the HEU (Th,U)O2 TRISO fuel system are in good agreement with similar results for the LEU UO2 TRISO fuel system.

H.-J. Allelein; M.J. Kania; H. Nabielek; K. Verfondern

2014-01-01T23:59:59.000Z

65

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network [OSTI]

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

66

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance  

Broader source: Energy.gov [DOE]

This presentation, which focuses on PEM fuel cell performance, was given by Fernando Garzon of LANL at a February 2007 meeting on new fuel cell projects.

67

Model-based Interpretation of the Performance and Degradation of Reformate Fueled Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??Solid oxide fuel cells offer great prospects for the sustainable, clean and safe conversion of various fuels into electrical energy. In this thesis, the performance-determining… (more)

Kromp, Alexander

2013-01-01T23:59:59.000Z

68

Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation  

SciTech Connect (OSTI)

Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

2013-07-01T23:59:59.000Z

69

Experimental Investigation in Optimizing the Hydrogen Fuel on a Hydrogen Diesel Dual-Fuel Engine  

Science Journals Connector (OSTI)

Lee et al.(8) studied the performance of a dual-injection hydrogen-fueled engine by using solenoid in-cylinder injection and an external fuel injection technique. ... Zuohua, H.; Jinhua, W.; Bing, L.; Ke, Z.; Jinrong, Y.; Deming, J. Combustion Characteristics of a Direct-Injection Engine Fueled with Natural Gas-Hydrogen Mixtures Energy Fuels 2006, 20 ( 2) 540– 546 ... Timed manifold injection (TMI) has the potential of being the most appropriate fueling strategy. ...

N. Saravanan; G. Nagarajan

2009-04-10T23:59:59.000Z

70

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

71

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

of a cost effective and reliable dual combustion mode engine (multi-cylinder and flex fuel) using cost effective actuating system (two-step valves and electrical cam phasing...

72

Comparison between two optimization strategies for solid oxide fuel cell–gas turbine hybrid cycles  

Science Journals Connector (OSTI)

This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.

Yingru Zhao; Nilay Shah; Nigel Brandon

2011-01-01T23:59:59.000Z

73

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

74

Fuel performance annual report for 1984. Volume 2  

SciTech Connect (OSTI)

This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

Bailey, W.J.; Dunenfeld, M.S.

1986-03-01T23:59:59.000Z

75

Optimal performance of endoreversible quantum refrigerators  

E-Print Network [OSTI]

The derivation of general performance benchmarks is important in the design of highly optimized heat engines and refrigerators. To obtain them, one may model phenomenologically the leading sources of irreversibility ending up with results which are model-independent, but limited in scope. Alternatively, one can take a simple physical system realizing a thermodynamic cycle and assess its optimal operation from a complete microscopic description. We follow this approach in order to derive the coefficient of performance at maximum cooling rate for \\textit{any} endoreversible quantum refrigerator. At striking variance with the \\textit{universality} of the optimal efficiency of heat engines, we find that the cooling performance at maximum power is crucially determined by the details of the specific system-bath interaction mechanism. A closed analytical benchmark is found for endoreversible refrigerators weakly coupled to unstructured bosonic heat baths: an ubiquitous case study in quantum thermodynamics.

Luis A. Correa; José P. Palao; Gerardo Adesso; Daniel Alonso

2014-11-24T23:59:59.000Z

76

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary  

SciTech Connect (OSTI)

Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

77

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect (OSTI)

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL] [ORNL; Aguilar, Juan P. [Georgia Institute of Technology] [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

78

Performance Optimization and Auto-Tuning  

SciTech Connect (OSTI)

In the broader computational research community, one subject of recent research is the problem of adapting algorithms to make effective use of multi- and many-core processors. Effective use of these architectures, which have complex memory hierarchies with many layers of cache, typically involves a careful examination of how an algorithm moves data through the memory hierarchy. Unfortunately, there is often a non-obvious relationship between algorithmic parameters like blocking strategies, and their impact on memory utilization, and, in turn, the relationship with runtime performance. Auto-tuning is an empirical method used to discover optimal values for tunable algorithmic parameters under such circumstances. The challenge is compounded by the fact that the settings that produce the best performance for a given problem and a given platform may not be the best for a different problem on the same platform, or the same problem on a different platform. The high performance visualization research community has begun to explore and adapt the principles of auto-tuning for the purpose of optimizing codes on modern multi- and many-core processors. This report focuses on how performance optimization studies reveal a dramatic variation in performance for two fundamental visualization algorithms: one based on a stencil operation having structured, uniform memory access, and the other is ray casting volume rendering, which uses unstructured memory access patterns. The two case studies highlighted in this report show the extra effort required to optimize such codes by adjusting the tunable algorithmic parameters can return substantial gains in performance. Additionally, these case studies also explore the potential impact of and the interaction between algorithmic optimizations and tunable algorithmic parameters, along with the potential performance gains resulting from leveraging architecture-specific features.

Howison, Mark

2012-10-01T23:59:59.000Z

79

Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics  

SciTech Connect (OSTI)

The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

2014-02-01T23:59:59.000Z

80

Multi objective optimization of solid oxide fuel cell stacks considering parameter effects: Fuel utilization and hydrogen cost  

Science Journals Connector (OSTI)

In the context of stationary power generation fuel cell based systems are being predicted as a valuable option to tabernacle the thermodynamic cycle based power plants. In this paper multi objective optimization approach is used to optimize the planer solid oxide fuel cell (SOFC) stacks performance using genetic algorithm technique. Multi objective optimization generates the most attractive operating conditions of a SOFC system. This allows performing the optimization of the system regarding to two different objectives. Two pairs of different objectives are considered in this paper as distinguished strategies. In the first strategy minimization of the breakeven per-unit energy cost ($/kWh) and maximization of the output power is considered. Similarly two other objectives are also considered in the second strategy as minimization of the breakeven per-unit energy cost ($/kWh) and maximization of the electrical efficiency. Optimization of the first strategy predicts a maximum power output of 108.33?kW at a breakeven per-unit energy cost of 0.51 $/kWh and minimum breakeven per-unit energy cost of 0.30 $/kWh at a power of 42.18?kW. In the second strategy maximum efficiency of 63.93% at a breakeven per-unit energy cost of 0.42$/kWh is predicted while minimum breakeven per-unit energy cost of 0.25 $/kWh at efficiency of 48.3% is obtained. At the end evaluation of parameter effects on multi objective optimization regarding different hydrogen costs and fuel utilization factors are presented. It is worthy to note that the sensitivity analysis for multi objective optimization can be considered both as an advanced analysis tool and as support to technology managers engineers and decision makers when working by such as systems.

Atefeh Behzadi Forough; Ramin Roshandel

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Broader source: Energy.gov (indexed) [DOE]

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and...

82

Fuel Additivies for Improved Performance of Diesel Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additivies for Improved Performance of Diesel Aftertreatment Systems Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems 2002 DEER Conference Presentation:...

83

Fuel Additive Strategies for Enhancing the Performance of Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference...

84

Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Coal-Derived Liquids to Enable HCCI Technology Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing...

85

PMU Deployment for Optimal State Estimation Performance  

E-Print Network [OSTI]

the benefits from data aggregation. Phasor Measurement Unit (PMU) is such an advanced device capablePMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit are anticipated; however, due to the high cost of PMU installation, their deployment will continue to be selective

Roy, Sumit

86

On fuel-optimal velocity control of a motor vehicle  

Science Journals Connector (OSTI)

This paper presents the motor vehicle velocity control that, under certain well-defined conditions, ensures a minimum fuel consumption. To this purpose, a vehicle with a stepped mechanical transmission is considered, assuming that the gear is unchanged during the movement. The optimal control problem is formulated for different cases and solved by applying Pontryagin's maximum principle. Whenever there is a singular solution, it is shown to correspond to the uniform motion law. The optimal velocity controls include the following phases that may be combined in different ways: deceleration without engine shut-off (null engine power), strong decelerative braking, constant speed movement and full-throttle acceleration. Examples are presented by using the experimental data on engine fuel consumption. The stress falls on the significant reductions in fuel consumption that can be achieved compared to uniform motion.

A.P. Stoicescu

1995-01-01T23:59:59.000Z

87

Fuel performance annual report for 1991. Volume 9  

SciTech Connect (OSTI)

This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

1994-08-01T23:59:59.000Z

88

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

89

Effects of Impurities of Fuel Cell Performance and Durability  

Broader source: Energy.gov [DOE]

This presentation, which focuses on fuel cell performance and durability, was given by Trent Molter of the University of Connecticut at a February 2007 meeting on new fuel cell projects.

90

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine...

91

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

and Control for PEM Fuel Cell Stack System, Proceedings ofmodel for an automotive PEM fuel cell system with imbedded 1Friedman and R.M. Moore, PEM Fuel Cell System Optimization,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

92

Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

Not Available

2014-12-01T23:59:59.000Z

93

Fuels Performance: Navigating the Intersection of Fuels and Combustion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs....

94

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuel Loading and Structural Performance Under Normal Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies, and discussion on the long-term goals and objectives of this

95

Cable length optimization for trawl fuel consumption reduction  

Science Journals Connector (OSTI)

A numerical method for optimization of the cable lengths in trawls with respect to the ratio between the estimated trawl drag and the predicted catch efficiency is developed and applied. The trawl cables of interest are warps, bridles, headline and footrope. The optimization algorithm applies an ordered sequential process changing one cable length at the time. It is assumed in the predictions that the catch efficiency of the trawl is proportional with the trawl mouth area. In a case study optimizing a bottom trawl used on a research vessel by applying the new method it is predicted that it would be possible to reduce the ratio between trawl drag and catch efficiency by up to 46% by optimizing the cable lengths. Thus this would enable a considerable reduction in fuel consumption to catch a specific amount of fish. Moreover, we predict an increase in the value of the trawl mouth area leading to better catching efficiency without increase in otter door drag.

Ramez Khaled; Daniel Priour; Jean-Yves Billard

2013-01-01T23:59:59.000Z

96

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect (OSTI)

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

97

SEAMOPT: A Stirling engine performance optimization code  

SciTech Connect (OSTI)

A computer code for Stirling engine research and design is described. The code system, SEAMOPT, has been used to: optimize component and engine performance, modify an existing engine to meet new application requirements, and identify design methods that lead to performance improvement and simplified engine design. SEAMOPT consists of a full Stirling engine simulation linked to a rigorous optimization code through an interface module which defines performance objectives and constraints which might limit values of design variables. Calculated results are presented from two example problems using the GPU-3 Stirling engine as a base design. The first example shows how regenerator dimensions can be changed to achieve three different performance objectives. The second example shows changes in the entire thermodynamic section needed to increase power by a factor of 8 while maintaining efficiency. The code, which requires 65K words of memory, executed problem 1 in 45 seconds and problem 2 in 10 minutes on an IBM 3033. 13 refs., 10 figs., 10 tabs.

Heames, T.J.; Daley, J.G.; Minkoff, M.

1986-05-01T23:59:59.000Z

98

Improved System Performance and Reduced Cost of a Fuel Reformer...  

Broader source: Energy.gov (indexed) [DOE]

Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Damodara Poojary, Jacques Nicole,...

99

NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-01-01T23:59:59.000Z

100

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Broader source: Energy.gov (indexed) [DOE]

deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of...

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

102

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL  

SciTech Connect (OSTI)

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

2014-04-01T23:59:59.000Z

103

Optimization Online - GPCG: A case study in the performance and ...  

E-Print Network [OSTI]

Nov 17, 2000 ... Keywords: large-scale optimization, high-performance architectures, ... Software and Modeling Systems (Problem Solving Environments ).

Steve Benson

2000-11-17T23:59:59.000Z

104

Fuel Cell Rebate and Performance Incentive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Rebate and Performance Incentive Fuel Cell Rebate and Performance Incentive Fuel Cell Rebate and Performance Incentive < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Maximum Rebate '''Total Incentives:''' Large systems (larger than 25 kW): $1 million Small systems (up to 25 kW): $50,000 '''Capacity Incentives:''' Large systems only (larger than 25 kW): $200,000 for basic capacity incentive, $100,000 for bonus capacity incentive '''Performance Incentives:''' Large systems (greater than 25 kW): $300,000 per year per project site Small systems (up to 25 kW): $20,000 per year per project site Program Info State New York Program Type Performance-Based Incentive

105

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

106

NETL: News Release - GE Sets Benchmarks for Fuel Cell Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 8, 2005 August 8, 2005 GE Sets Benchmarks for Fuel Cell Performance Achievements Move Efficient, Clean SOFC Technology Closer to Mainstream Energy Markets TORRANCE, CA - In the race to speed solid oxide fuel cell (SOFC) technology out of niche markets and into widespread commercial use, GE Hybrid Power Generation Systems has kicked fuel cell performance into high gear. Recent advancements have dramatically improved baseline cell performance and accelerate GE's prospects for achieving the system efficiency and cost objectives of DOE's Solid State Energy Alliance (SECA) program. Packing more power into smaller volumes is one of the breakthroughs needed to reduce the cost and expand the use of efficient, environmentally friendly fuel cells. But increasing power density isn't the only goal; as power density increases, fuel cells must continue to efficiently and reliably convert fuel to electric power.

107

Reduction of Fuel Consumption By Thermodynamical Optimization of the Otto-Engine  

Science Journals Connector (OSTI)

By the example of the PORSCHE 924 2-liter Otto engine it was demonstrated that the optimization of ... the compression ratio, combustion chamber shape, air/fuel ratio, and ignition timing is a means to reduce fuel

Dr. D. Gruden; R. Hahn; H. Lörcher

1980-01-01T23:59:59.000Z

108

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuel Loading and Structural Performance Under Normal Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository. This RD&D plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. The plan objective is to

109

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Broader source: Energy.gov (indexed) [DOE]

Used Nuclear Fuel Loading and Structural Performance Under Normal Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository. This RD&D plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. The plan objective is to

110

Optimization of advanced telecommunication algorithms from power and performance perspective   

E-Print Network [OSTI]

This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

Khan, Zahid

2011-11-22T23:59:59.000Z

111

Optimizing Hydronic System Performance in Residential Applications  

SciTech Connect (OSTI)

Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

Arena, L.; Faakye, O.

2013-10-01T23:59:59.000Z

112

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Wayne Moore, Matt Foster, Kevin Hoyer, Keith Confer Delphi Advanced Powertrain DEER Conference September 29, 2010...

113

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price.  

E-Print Network [OSTI]

??In this thesis we examine how fuel price variation affects the optimal mix of services in intercity transportation. Towards this end, we make two main… (more)

Ryerson, Megan Smirti

2010-01-01T23:59:59.000Z

114

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

SciTech Connect (OSTI)

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

115

Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions  

SciTech Connect (OSTI)

This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

Xu Wu; Piyush Sabharwall; Jason Hales

2014-07-01T23:59:59.000Z

116

Corrosion optimized Zircaloy for boiling water reactor (BWR) fuel elements  

SciTech Connect (OSTI)

A corrosion optimized Zircaloy has to be based primarily on in-boiling water reactor (in-BWR) results. Therefore, the material parameters affecting corrosion were deduced from results of experimental fuel rod irradiation with systematic variations and from a large variety of material coupons exposed in water rods up to four cycles. The major material effects is the size and distribution of precipitates. For optimizing both early and late corrosion, the size has to stay in a small range. In the case of material quenched in the final stage, the quenching rate appears to be an important parameter. As far as materials chemistry is concerned, the in-BWR results indicate that corrosion in BWRs is influenced by the alloying elements tin, chromium, and the impurity silicon. In addition to corrosion optimization, hydriding is also considered. A large variation from lot to lot under identically coolant condition has been found. The available data indicate that the chromium content is the most important material parameter for hydrogen pickup.

Garzarolli, F.; Schumann, R.; Steinberg, E. [Siemens AG, Erlangen (Germany). Power Generation Group

1994-12-31T23:59:59.000Z

117

TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket  

E-Print Network [OSTI]

Quantification in Fuel Performance Modeling . . . . . . .3.4 Integration with Fuel Performance Calculations ivmicroscopic image of a TRISO fuel particle cracked open to

Powers, Jeffrey

2011-01-01T23:59:59.000Z

118

On Computation of Performance Bounds of Optimal Index Assignment  

E-Print Network [OSTI]

On Computation of Performance Bounds of. Optimal Index Assignment. Xiaolin Wu. Department of Electrical and Computer Engineering. McMaster University ...

2010-01-20T23:59:59.000Z

119

High-performance Propane Fuel Cells  

Science Journals Connector (OSTI)

... The performance of propane-oxygen cells operating between 150 and 200 C was recently described in detail4.

W. T. GRUBB

1964-02-15T23:59:59.000Z

120

Pulverizer performance upgrades lower fuel costs  

SciTech Connect (OSTI)

Between 2002 and 2005, combustion equipment modifications were carried out at St. Johns River Power Plant in Jacksonville, FL. The effort succeeded in obtaining the desired emission reductions and to increase petroleum coke consumption. Since 2005 the boilers typically fired a blend of 70% Colombia coal and 30% delayed petroleum coke. To realize significant fuel savings, the pulverizer capacity was increased by 14% to allow a lower grade coal to be used. The article describes the changes made to the pulverizer to allow 11,800 Btu/pound coal to be burnt, with annual savings of $6.3 m beginning in 2006. 4 figs., 1 tab.

Hansen, T.

2007-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

3.07 - TRISO-Coated Particle Fuel Performance  

Science Journals Connector (OSTI)

Abstract Tristructural isotropic (TRISO)-coated particle fuel is used in all current and planned high-temperature gas-cooled reactors (HTGRs). The robustness of this fuel, coupled with the high heat capacity of graphite, has led to the development of modular \\{HTGRs\\} with a high degree of passive safety. In this chapter, the irradiation and accident performance of modern TRISO-coated particle fuel around the world are reviewed. For all HTGRs, TRISO-coated particle fuel forms the heart of the concept. Such fuels have been studied extensively over the past four decades around the world, for example, in countries including the United Kingdom, Germany, Japan, the United States, Russia, China, and more recently, South Africa.

D.A. Petti; P.A. Demkowicz; J.T. Maki; R.R. Hobbins

2012-01-01T23:59:59.000Z

122

Optimal design of hybrid and non-hybrid fuel cell vehicles  

E-Print Network [OSTI]

Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

Papalambros, Panos

123

Optimal investment with high-watermark performance fee Karel Janecek  

E-Print Network [OSTI]

Optimal investment with high-watermark performance fee Karel Janecek and Mihai S^irbu January 5, 2011 Abstract We consider the problem of optimal investment and consumption when the investment oppor as a geometric Brownian motion and the performance of the investment and consumption strategy is measured using

Sîrbu, Mihai

124

Performance and emissions of a dual fuel operated diesel engine  

Science Journals Connector (OSTI)

Vegetable oil and its esters (biodiesel) are the renewable alternative fuels that can be used as a substitute for diesel in the diesel engines. The vegetable oil fuelled diesel engine results in lower efficiency and higher smoke emission. Hence in this work, an attempt has been made to use inedible and under utilised mahua oil (MO) as a substitute for diesel by fumigating liquefied petroleum gas (LPG) along with the air. A single cylinder diesel engine was modified to work in dual fuel mode by suitable retrofitting. The MO was injected into the cylinder using a fuel pump and LPG was fumigated along with the air. In MO + LPG dual fuel mode, 9% increase in brake thermal efficiency and 35% reduction in smoke emission of the engine were observed as compared to the sole fuel mode with MO. Also, the engine performance characteristics in MO + LPG dual fuel mode are close to sole fuel mode with diesel. From this work, it is concluded that LPG can be fumigated along with the air to increase the performance of MO fuelled agricultural diesel engine.

N. Kapilan; R.P. Reddy

2012-01-01T23:59:59.000Z

125

Recent advances in high-performance direct methanol fuel cells  

SciTech Connect (OSTI)

Direct methanol fuel cells for portable power applications have been advanced significantly under DARPA- and ARO-sponsored programs over the last five years. A liquid-feed direct methanol fuel cell developed under these programs, employs a proton exchange membrane as electrolyte and operates on aqueous solutions of methanol with air or oxygen as the oxidant. Power densities as high as 320 mW/cm{sup 2} have been demonstrated. Demonstration of five-cell stack based on the liquid-feed concept have been successfully performed by Giner Inc. and the Jet Propulsion Laboratory. Over 2000 hours of life-testing have been completed on these stacks. These fuel cells have been also been demonstrated by USC to operate on alternate fuels such as trimethoxymethane, dimethoxymethane and trioxane. Reduction in the parasitic loss of fuel across the fuel cell, a phenomenon termed as {open_quotes}fuel crossover{close_quotes} has been achieved using polymer membranes developed at USC. As a result efficiencies as high as 40% is considered attainable with this type of fuel cell. The state-of-development has reached a point where it is now been actively considered for stationary, portable and transportation applications. The research and development issues have been the subject of several previous articles and the present article is an attempt to summarize the key advances in this technology.

Narayanan, S.R.; Chun, W.; Valdez, T.I. [California Institute of Technology, Pasadena, CA (United States)] [and others

1996-12-31T23:59:59.000Z

126

MA transmutation performance in the optimized MYRRHA  

SciTech Connect (OSTI)

MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.

Malambu, E.; Van den Eynde, G.; Fernandez, R.; Baeten, P.; Ait Abderrahim, H. [SCK-CEN, Boeretang 200, BE-2400 Mol (Belgium)

2013-07-01T23:59:59.000Z

127

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

128

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

129

Design of gasifiers to optimize fuel cell systems. Final report, September 1990--September 1993  

SciTech Connect (OSTI)

Pursuing the key national goal of clean and efficient utilization of the abundant domestic coal resources for power generation, this study was conducted to evaluate the potential of optimizing the integrated catalytic gasification/carbonate fuel cell power generation system. ERC in close collaboration with Fluor Daniel (providing engineering design and costing), conducted a detailed system configuration study to evaluate various catalytic gasification/carbonate fuel cell power plant configurations and compare them to present day, as well as emerging, alternate coal-based power plant technologies to assess their competitive position. A Topical Report (1992) was submitted documenting this effort, and the three catalytic gasification case studies are summarized in Appendix A. Results of this study indicate that system efficiencies approaching 55% (HHV) can be achieved by integrating low temperature catalytic gasification with high efficiency carbonate fuel cells. Thermal balance in the gasifier is achieved without oxygen by recycling hydrogen from the fuel cell anode exhaust. A small amount of air is added to the gasifier to minimize hydrogen recycle. In order to validate the assumptions made in the case configurations, experimental studies were performed to determine the reactivity of Illinois No. 6 coal with the gasification catalysts. The reactivity of the catalyzed coal has significant bearing on gasifier sizing and hence system cost and efficiency.

Not Available

1993-08-01T23:59:59.000Z

130

Pwr fuel assembly optimization using adaptive simulated annealing coupled with translat  

E-Print Network [OSTI]

assembly to be used in an operating nuclear power reactor. The two main cases of optimization are: one that finds the optimal 235U enrichment layout of the fuel pins in the assembly and another that finds both the optimal 235U enrichments where gadolinium...

Rogers, Timothy James

2009-05-15T23:59:59.000Z

131

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

optimizations. Technologies assessed include photovoltaics (PV), solar thermal, gas turbines, microturbines, fuel cells,

Feng, Wei

2013-01-01T23:59:59.000Z

132

Electrode Performance in Reversible Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

The performance of several negative (fuel) and positive (air) electrode compositions for use in reversible solid oxide fuel cells (SOFC) that are capable of operating both as a fuel cell and as an electrolyzer was investigated in half-cell and full-cell tests. Negative electrode compositions studied were a nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite, whereas positive electrode compositions examined included mixed ion and electron-conducting lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite (LSCuF), lanthanum strontium cobalt ferrite (LSCoF), and lanthanum strontium manganite (LSM). While titanate/ceria and Ni/YSZ electrodes performed similarly in the fuel cell mode in half-cell tests, losses associated with electrolysis were lower for the titanate/ceria electrode. Positive electrodes all gave higher losses in the electrolysis mode when compared to the fuel cell mode. This behavior was most apparent for mixed-conducting LSF, LSCuF, and LSCoF electrodes, and discernible but smaller for LSM; observations are consistent with expected trends in the interfacial oxygen vacancy concentration under anodic and cathodic polarization. Full-cell tests conducted for cells with a thin electrolyte (7 um YSZ) similarly showed higher polarization losses in the electrolysis than fuel cell direction.

Marina, Olga A.; Pederson, Larry R.; Williams, Mark C.; Coffey, Greg W.; Meinhardt, Kerry D.; Nguyen, Carolyn D.; Thomsen, Ed C.

2007-03-22T23:59:59.000Z

133

Optimal Fueling Strategies for Locomotive Fleets in Railroad Networks  

E-Print Network [OSTI]

Price 3 · Railroad fuel consumption remains steady · Crude oil price sharply increases in recent years · Fuel-related expenditure is one of the biggest cost items in the railroad industry #12;Fuel Price · Fuel (diesel) price influenced by: ­ Crude oil price ­ Refining ­ Distribution and marketing ­ Others 4

Barkan, Christopher P.L.

134

Simultaneous optimization of propeller–hull systems to minimize lifetime fuel consumption  

Science Journals Connector (OSTI)

Abstract In traditional naval architecture design methodologies optimization of the hull and propeller are done in two separate phases. This sequential approach can lead to designs that have sub-optimal fuel consumption and, thus, higher operational costs. This work presents a method to optimize the propeller–hull system simultaneously in order to design a vessel to have minimal fuel consumption. The optimization uses a probabilistic mission profile, propeller–hull interaction, and engine information to determine the coupled system with minimum fuel cost over its operational life. The design approach is tested on a KCS SIMMAN container ship using B-series propeller data and is shown to reduce fuel consumption compared to an optimized traditional design approach.

M. Nelson; D.W. Temple; J.T. Hwang; Y.L. Young; J.R.R.A. Martins; M. Collette

2013-01-01T23:59:59.000Z

135

Meet changing fuel requirements with online blend optimization  

SciTech Connect (OSTI)

Compania Espanola de Petroleos (CEPSA) embarked on an overall refinery automation program, with state-of-the-art gasoline blending being one of the highest priorities. The result of this effort is a sophisticated computerized gasoline blending system using offline LPs for initial optimal recipe calculation, an online LP for real-time blend recipe reformulation using online analyzers for blending model adjustment, complete automation of blending sequence startup and shutdown, generation of end of blend quality performance reports, and real-time integration between lab, tank gauging, plant information, and blending systems. The entry of Spain in the EEC brought with it the need to quickly adapt to the requirements of an openly competitive marketplace emphasizing no lead, oxygenated, high performance gasolines and ISO 9000 quality standards. The blending system allowed CEPSA to produce lowest cost, minimum giveaway gasolines, while having the flexibility to produce a wide variety of modern gasolines serving the Western European market. The paper describes the blender architecture, optimizer linear programming, man machine interface, and results from the blending system.

Diaz, A. [Compania Espanola de Petroleos, S.A., Cadiz (Spain). Algeciras Refinery; Barsamian, J.A. [ABB Simcon Inc., Bloomfield, NJ (United States)

1996-02-01T23:59:59.000Z

136

OPTIMIZING PERFORMANCE OF THE HESKETT STATION  

SciTech Connect (OSTI)

The overall conclusion from this work is that a switch from river sand bed material to limestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch to limestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium and sulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bed without agglomeration, allowing either the bed turnover rate to be reduced to half the current sand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned with limestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO{sub 2} emissions can be controlled. A small improvement in boiler efficiency should be achievable by operating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NO{sub x} emissions, providing a margin of safety for meeting emission standards. No detrimental effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Some specific conclusions from this work include the following: The bed material feed rate can be reduced from the current rate of 5.4% of the coal feed rate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This will result in an annual savings of approximately $200,000. (1) SO{sub 2} emissions at the recommended feed rate would be approximately 250 ppm (0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO{sub 2} allowances could be generated at a cost of $60/ton SO{sub 2} , leaving a large profit margin for the sale of allowances. The addition of limestone at the same rate currently used for sand feed could generate $455,000 net income if allowances are sold at $200/ton SO2 . (2) At full-load operation, unburned carbon losses increase significantly at excess oxygen levels below 2.8%. No efficiency gains are expected at high-load operation by switching from sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiency gain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annual savings. (3) A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by using limestone at the recommended feed rate compared to the current sand feed rate. No measurable change in volume would be realized because of the lower bulk density of the limestone-derived material.

Michael D. Mann; Ann K. Henderson

1999-03-01T23:59:59.000Z

137

Optimization study on sample pretreatment of spent fuel storage rack  

Science Journals Connector (OSTI)

In order to evaluate radionuclide inventories as an essential item for the permanent disposal of spent fuel storage racks, chemical conditions for a sample pretreatment of a spent fuel storage rack were studied. ...

Hong-Joo Ahn; Myung-Ho Lee; Se-Chul Sohn…

2010-08-01T23:59:59.000Z

138

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents [OSTI]

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

139

Performance optimization for unmanned vehicle systems  

E-Print Network [OSTI]

Technological advances in the area of unmanned vehicles are opening new possibilities for creating teams of vehicles performing complex missions with some degree of autonomy. Perhaps the most spectacular example of these ...

Le Ny, Jerome

2008-01-01T23:59:59.000Z

140

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel 13. S. Gelfi, A.G.versus a Direct-Hydrogen Load-Following Fuel Cell te d M 22.vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper number1009). for an automotive PEM fuel cell system with imbedded

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

142

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. Lpez, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel...

143

Optimizing Path Query Performance: Graph Clustering Strategies  

E-Print Network [OSTI]

ywh@us.ibm.com Ning Jingz Changsha Institute of Technology jning@eecs.umich.edu Elke A. Rundensteinerx not incur any run-time cost, requires no auxiliary data structures, and is complimentary to many of the performance of these graph clustering techniques using an actual city road network as well as randomly

144

The performance of PEM fuel cells fed with oxygen through the free-convection mode  

E-Print Network [OSTI]

The performance of PEM fuel cells fed with oxygen through the free-convection mode Pei-Wen Li; accepted 27 September 2002 Abstract The feasibility and restrictions of feeding oxygen to a PEM fuel cell in the fuel cell. Experimental tests were conducted for one PEM fuel cell stack and two single PEM fuel cell

145

Radionuclide release rates from spent fuel for performance assessment modeling  

SciTech Connect (OSTI)

In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments.

Curtis, D.B.

1994-11-01T23:59:59.000Z

146

Metallic Fuel Casting Development and Parameter Optimization Simulations  

SciTech Connect (OSTI)

One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

2013-03-01T23:59:59.000Z

147

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

148

TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket  

SciTech Connect (OSTI)

This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW{sub th}, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

Powers, J J

2011-11-28T23:59:59.000Z

149

Optimization of combustion performance and emission of Jatropha biodiesel in a turbocharged LHR diesel engine;.  

E-Print Network [OSTI]

??Bio-diesel derived from the vegetable oils are identified as an excellent alternate fuel for petroleum based diesel fuel used in diesel engines. However, the performance… (more)

Rajendra Prasath B

2013-01-01T23:59:59.000Z

150

Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France  

E-Print Network [OSTI]

source. The produced hydrogen feeds then a fuel cell (FC) system, which will supply the city of BrestOptimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France Omar Hazem with the optimal design of a stand-alone hybrid photovoltaic and fuel cell power system without battery storage

Brest, Université de

151

Routing performance analysis and optimization within a massively parallel computer  

DOE Patents [OSTI]

An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

2013-04-16T23:59:59.000Z

152

Analysis of tru-fueled vhtr prismatic core performance domains  

E-Print Network [OSTI]

Regulatory Commission ORNL Oak Ridge National Laboratory P&T Partitioning and Transmutation PUREX Plutonium Uranium Reduction and Oxidation PWR Pressurized Water Reactor RGPu Reactor Grade Plutonium SCWCR Super-critical Water Cooled Reactor SFR Sodium.... The neutronics analysis using the 3D, whole-core VHTR model was performed using the ORNL SCALE (Standardized Computer Analysis for Licensing Evaluation) code system. The standard SCALE 5.1 TRITON sequence has been upgraded to allow fuel cycle modeling...

Lewis, Tom Goslee

2009-05-15T23:59:59.000Z

153

Studies on dual fuel engine performance and exhaust emission analysis by response surface methodology  

Science Journals Connector (OSTI)

In this present study a five factor three level Box-Behnken response surface design was used to study the effect of five independent variables such as diesel (40%–100%) ethanol (0%-30%) pongamia oil methyl ester (POME) (0%–30%) compressed natural gas (CNG) (0%–20%) and load of the engine (0%–100%) on the performance (brake thermal efficiency brake specific fuel consumption and exhaust gas temperature) and emission characteristics (carbon mono-oxide (CO) carbon dioxides (CO2) unburnt hydrocarbon oxides of nitrogen (NOX) and smoke) of a single cylinder four stroke water cooled diesel engine converted to dual fuel system. It was operated with either diesel fuel or blend with CNG using an electronically controlled solenoid actuated valve mechanism. The experimental results showed that all the process variables have significant effect on the engine performance. The emission characteristics (CO CO2 NOX and Smoke) were significantly lower than the diesel fuel emissions. From the experimental results second order polynomial models were developed to predict the response variables. The optimal conditions were determined and it was found to be: Diesel 70% Ethanol 15% POME 15% CNG 10% and load 50% respectively with a desirability value of 0.894.

R. Senthilraja; V. Sivakumar; J. Prakash Maran

2014-01-01T23:59:59.000Z

154

Heat exchanger optimization for geothermal district heating systems: A fuel saving approach  

Science Journals Connector (OSTI)

One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered.

Ahmet Dagdas

2007-01-01T23:59:59.000Z

155

Performance and power optimization in VLSI physical design  

E-Print Network [OSTI]

. This foresees the wide applicability of TDL technique. However, measured performance based on fabricated circuits is much worse than simulated performance based on the layout. It is suspected that the via resistance variation is the cause. The problem aggravates... courses inVLSI design, which provided me with many techniques for VLSI circuit analysis and optimization. In his course projects, I implemented several algorithms and performed a lot of simulations, which prepared me well to be confident in my job...

Jiang, Zhanyuan

2008-10-10T23:59:59.000Z

156

Current Capabilities of the Fuel Performance Modeling Code PARFUME  

SciTech Connect (OSTI)

The success of gas reactors depends upon the safety and quality of the coated particle fuel. A fuel performance modeling code (called PARFUME), which simulates the mechanical and physico-chemical behavior of fuel particles during irradiation, is under development at the Idaho National Engineering and Environmental Laboratory. Among current capabilities in the code are: 1) various options for calculating CO production and fission product gas release, 2) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or a prismatic block core, as well as through the layers of each analyzed particle, 3) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, kernel migration, and thinning of the SiC caused by interaction of fission products with the SiC, 4) two independent methods for determining particle failure probabilities, 5) a model for calculating release-to-birth (R/B) ratios of gaseous fission products, that accounts for particle failures and uranium contamination in the fuel matrix, and 6) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. This paper presents an overview of the code.

G. K. Miller; D. A. Petti; J. T. Maki; D. L. Knudson

2004-09-01T23:59:59.000Z

157

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel  

SciTech Connect (OSTI)

This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

Wu, Ko-Jen

2011-12-31T23:59:59.000Z

158

Building Distributed Energy Performance Optimization for China - a Regional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

159

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints. deer08kumar.pdf More...

160

An integrated performance model for high temperature gas cooled reactor coated particle fuel  

E-Print Network [OSTI]

The performance of coated fuel particles is essential for the development and deployment of High Temperature Gas Reactor (HTGR) systems for future power generation. Fuel performance modeling is indispensable for understanding ...

Wang, Jing, 1976-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions  

Broader source: Energy.gov [DOE]

Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

162

Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels  

SciTech Connect (OSTI)

Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. many mechamistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, reearch, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

2014-04-07T23:59:59.000Z

163

Fuel Cell/Gas Turbine System Performance Studies  

Office of Scientific and Technical Information (OSTI)

METC/C-97/7278 METC/C-97/7278 Title: Fuel Cell/Gas Turbine System Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference Dates: August 20-21, 1996 Conference Sponsor: U.S. DOE, Morgantown Energy Technology Center Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

164

TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket  

SciTech Connect (OSTI)

A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

DeMange, P; Marian, J; Caro, M; Caro, A

2010-02-18T23:59:59.000Z

165

Simulated Performance of the Integrated PNAR and SINRD Detector Designed for Spent Fuel Measurements at the Fugen Reactor in Japan  

SciTech Connect (OSTI)

Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio was more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.

Lafleur, Adrienne M. [Los Alamos National Laboratory; Ulrich, Timothy J. II [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Japan Atomic Energy Agency; Bolind, Alan M. [Japan Atomic Energy Agency

2012-07-13T23:59:59.000Z

166

OPTIMIZATION OF FUEL-AIR MIXING FOR A SCRAMJET COMBUSTOR GEOMETRY USING CFD AND A GENETIC ALGORITHM .  

E-Print Network [OSTI]

??A new methodology for the optimization of fuel-air mixing in a scramjet combustor using integrated Genetic Algorithms and Computational Fluid Dynamics is presented. A typical… (more)

Ahuja, Vivek

2008-01-01T23:59:59.000Z

167

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network [OSTI]

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

168

"Performance and Optimization of Building Evacuation Models" Andrea Weiss  

E-Print Network [OSTI]

"Performance and Optimization of Building Evacuation Models" Andrea Weiss Faculty Mentor: Dr. James in ensuring safety of individuals inside a building. In order to determine the most efficient paths, models that can be made when representing a building. By breaking the rooms and hallways into smaller sections

Mountziaris, T. J.

169

Performance and Optimization of Network Building Evacuation Models  

E-Print Network [OSTI]

Performance and Optimization of Network Building Evacuation Models Andrea Weiss, Dr. Jim Mac/G/C/C queues, a simulation program was used to model two buildings on the Umass Amherst campus: Machmer Hall expedient paths are taken. Research Objectives · Create a realistic model of buildings with large

Mountziaris, T. J.

170

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate  

E-Print Network [OSTI]

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy]. The report forecasts even more success for fuel cells in the near future. Proton exchange membrane (PEM) fuel

Kær, Søren Knudsen

171

The Effect of Reformate on PEM Fuel Cell Performance Mahesh Murthy  

E-Print Network [OSTI]

Exchanged Membrane (PEM) fuel cells in a "hydrogen-challenged" economy, hydrogen can be produced contains about 35 - 40 % hydrogen [1]. The effects of reformate fuel on the performance of PEM fuel cells in hydrogen for a laboratory polymer electrolyte membrane fuel cell [3, 4]. In these earlier studies

Van Zee, John W.

172

Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a...

173

Overview of the BISON Multidimensional Fuel Performance Code  

SciTech Connect (OSTI)

BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the code’s computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

2013-10-01T23:59:59.000Z

174

Assessment of the fuel magnetisation capacity to improve fuel economy and enhance performance in a four-stroke SI engine  

Science Journals Connector (OSTI)

In this paper, we investigate the effect of fuel magnetisation on the overall performance of a four-stroke Spark Ignition (SI) engine. To achieve this objective, we have designed a set of experiments using the Mitsubishi 1.5 L (4G15) SI engine. Each experiment is performed in two phases: with and without the fuel magnetisation. The collected data was analysed to assess the overall performance of the engine at several operating conditions. Our study shows that fuel magnetiser can enhance the overall performance of a typical SI engine. However, the enhancement greatly depends on the operating condition of the engine. Specifically, the best-observed performance enhancement in the tested engine owing to the usage of the fuel magnetiser was to reduce the Brake Specific Fuel Consumption (BSFC) by 9% increase the Brake Power (BP) by 9% and boost the brake thermal efficiency (?b) from 29% to 31%.

Raed Kafafy; Wajdi Bin Ali; Waleed Faris

2012-01-01T23:59:59.000Z

175

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

ip t Fig. 1 M an Water Management Motor Thermal Managementwater an us cr and transmission, and fuel cell system. The motor

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

176

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

kW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell StackkW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell Stack

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

177

Flex Fuel Polygeneration: Optimizing Cost, Sustainability, and Resiliency  

E-Print Network [OSTI]

· Energy sources · Energy carriers 2 #12;Initial Analysis of FFPG Systems · Design power plants;Conventional Approaches to Energy Conversion (Coal, Biomass, Wind, Natural Gas, Photons) ( Fuel, Chemicals, Electricity, Biochar, Heat) Energy Source Energy Carrier Energy Carrier Energy Source Energy Carrier 5 #12;The

Daniels, Thomas E.

178

Performance Analysis and Development Strategies for Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

Solid oxide fuel cells (SOFC) are of great interest for a diverse range of applications. Within the past 10 years, an increase in power density by one order of magnitude, a lowering of the operating temperature by 200 K, and degradation rates lowered by a factor of 10 have been achieved on the cell and stack level. However, there is still room for further enhancement of the overall performance by suitably tailoring the cell components on a micro- and nanostructural level. The efficiency of the electrochemically active single cell is characterized by the linear ohmic losses within the electrolyte and by nonlinear polarization losses at the electrode-electrolyte interfaces. Both depend on material composition and operation conditions (temperature and time, fuel utilisation and gas composition). The area-specific resistance (ASR) is considered as the figure of merit for overall performance. ASR values of anode supported cells (ASC) were determined by means of impedance spectroscopy and subsequently separated into ohmic losses (mainly electrolyte) and nonlinear polarisation losses resulting from gas diffusion and activation polarization in the cathode and anode. The efficiencies of ASCs will be discussed for various material combinations in the temperature range of technological interest (between 550 °C and 850 °C).

E Ivers-Tiffée; A Leonide; A Weber

2011-01-01T23:59:59.000Z

179

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

180

MODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE  

E-Print Network [OSTI]

MODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE Jeffrey Glandt, Sirivatch University of South Carolina Columbia, SC 29208 vanzee@engr.sc.edu Key words: PEM fuel cell, flow field or printed in its publications. #12;2 MODELING THE EFFECT OF FLOW FIELD DESIGN ON PEM FUEL CELL PERFORMANCE

Van Zee, John W.

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of  

Broader source: Energy.gov (indexed) [DOE]

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Development and implementation of future advanced fuel cycles including those that recycle fuel materials, use advanced fuels different from current fuels, or partition and transmute actinide radionuclides, will impact the waste management system. The Used Fuel Disposition Campaign can reasonably conclude that advanced fuel cycles, in combination with partitioning and transmutation, which remove actinides, will not materially alter the performance, the spread in dose results around the mean, the modeling effort to include significant features, events, and processes

182

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of  

Broader source: Energy.gov (indexed) [DOE]

Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems Development and implementation of future advanced fuel cycles including those that recycle fuel materials, use advanced fuels different from current fuels, or partition and transmute actinide radionuclides, will impact the waste management system. The Used Fuel Disposition Campaign can reasonably conclude that advanced fuel cycles, in combination with partitioning and transmutation, which remove actinides, will not materially alter the performance, the spread in dose results around the mean, the modeling effort to include significant features, events, and processes

183

The Effect of Airborne Contaminants on Fuel Cell Performance & Durability  

Broader source: Energy.gov [DOE]

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

184

Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell  

E-Print Network [OSTI]

Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

Park, Yong Hun

2009-05-15T23:59:59.000Z

185

Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24  

SciTech Connect (OSTI)

A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., TOPAZ International Program, 901 University Blvd., SE, Albuquerque, New Mexico 87106 (United States); Izhvanov, O.; Androsov, V. [JV INERTEK, Scientific Industrial Association ``Luch``, 24 Zheleznodorozhnaya, Podolsk, (Russia) 142100

1996-03-01T23:59:59.000Z

186

Review of Fuels for Direct Carbon Fuel Cells  

Science Journals Connector (OSTI)

Review of Fuels for Direct Carbon Fuel Cells ... After optimization for minimum activation polarization, the authors then produced impedance spectra to assess cell performance and achieved a peak power density of around 18 and 53 mW cm–2 at 700 and 800 °C, respectively. ... solid oxide fuel cell system under 600° just by optimizing the anode microstructure and operating conditions. ...

Adam C. Rady; Sarbjit Giddey; Sukhvinder P. S. Badwal; Bradley P. Ladewig; Sankar Bhattacharya

2012-01-31T23:59:59.000Z

187

Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times  

Science Journals Connector (OSTI)

We consider the problem of designing an optimal vessel schedule in the liner shipping route to minimize the total expected fuel consumption (and emissions) considering uncertain port times and frequency requirements on the liner schedule. The general optimal scheduling problem is formulated and tackled by simulation-based stochastic approximation methods. For special cases subject to the constraint of 100% service level, we prove the convexity and continuous differentiability of the objective function. Structural properties of the optimal schedule under certain conditions are obtained with useful managerial insights regarding the impact of port uncertainties. Case studies are given to illustrate the results.

Xiangtong Qi; Dong-Ping Song

2012-01-01T23:59:59.000Z

188

Fuel-optimal Earth-Mars trajectories using low-thrust exhaust-modulated plasma propulsion  

E-Print Network [OSTI]

relerence frames Lx', y', r'I are different for the Earth and Mars references. The substitutions for the second-order derivatives required in the 27 differential equations are given by 2 VIM ISI CCS M + RM RM RM (2. 64) V V sin AM + RM cosltlM ( RM.... Characteristics of the Plasma Propulsion. . Equations of Motion. III NECESSARY CONDITIONS OF OPTIMALITY?. . . 14 15 16 30 Optimal Control Theory. Necessary Conditions of a Fuel-Optimal Earth-Mars Trajectory with Low-Thrust Plasma Propulsion...

Nah, Ren Sang

2012-06-07T23:59:59.000Z

189

A new approach to optimize the operating conditions of a polymer electrolyte membrane fuel cell based on degradation mechanisms  

Science Journals Connector (OSTI)

Performance degradation remains as one of the primary limitations ... practical applications of proton exchange membrane (PEM) fuel cells. The performance of a PEM fuel cell stack is affected by many internal and...

Ramin Roshandel; Tarannom Parhizgar

2013-09-01T23:59:59.000Z

190

Progress performance report of clean uses of fossil fuels  

SciTech Connect (OSTI)

A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

Not Available

1992-01-01T23:59:59.000Z

191

Progress performance report of clean uses of fossil fuels  

SciTech Connect (OSTI)

A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

Not Available

1992-09-01T23:59:59.000Z

192

Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with  

E-Print Network [OSTI]

received an $800,000 Department of Energy grant to study how to make one type of fuel cell--solid oxide is now seeking just a 0.2 percent loss of output per 1,000 hours. Solid oxide fuel cells operate at high to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;

Rollins, Andrew M.

193

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

194

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov [DOE]

This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

195

Final Report - Effects of Impurities on Fuel Cell Performance and Durability  

SciTech Connect (OSTI)

This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

Trent Molter

2012-08-18T23:59:59.000Z

196

Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance  

E-Print Network [OSTI]

Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance required for a Fusion Power Plant. Const. Cost $B Date

197

Performance modeling and cell design for high concentration methanol fuel cells  

E-Print Network [OSTI]

) it reduces the fuel efficiency (methanol is reacted without producing electrical current). We canChapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li

198

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network [OSTI]

,2 operated by fuel cells. Unfortunately, the lack of infrastructure, such as a network of hydrogen refueling of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiencyPerformance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel

Azad, Abdul-Majeed

199

LAMMPS strong scaling performance optimization on Blue Gene/Q  

SciTech Connect (OSTI)

LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using an 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.

Coffman, Paul; Jiang, Wei; Romero, Nichols A.

2014-11-12T23:59:59.000Z

200

Fuel Performance Code Benchmark for Uncertainty Analysis in Light Water Reactor Modeling.  

E-Print Network [OSTI]

??Fuel performance codes are used in the design and safety analysis of light water reactors. The differences in the physical models and the numerics of… (more)

Blyth, Taylor

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

202

NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-02-01T23:59:59.000Z

203

SYNTHESIS, CHARACTERIZATION AND PERFORMANCE TESTING OF PT- BASED ELECTROCATALYSTS FOR LOW TEMPERATURE PEM FUEL CELLS.  

E-Print Network [OSTI]

??The oxygen reduction reaction (ORR) activity on the cathode plays a significant role in deciding the overall performance of proton exchange membrane (PEM) fuel cells.… (more)

Gong, Yanming

2008-01-01T23:59:59.000Z

204

Improvement of Electrocatalyst Performance in Hydrogen Fuel Cells by Multiscale Modelling.  

E-Print Network [OSTI]

??The work in this thesis addresses the improvement of electrocatalyst performance inhydrogen PEM fuel cells. An agglomerate model for a catalyst layer was coupled witha… (more)

Marthosa, Sutida

2012-01-01T23:59:59.000Z

205

Optimization Research of Refueled Scheme Based on Fuel Price Prediction of the Voyage Charter  

Science Journals Connector (OSTI)

Fuel cost is the key element of ship owners to control operating costs in the business of voyage charter. While fuel price changes frequently over time and also ocean shipping transport cycle is long, and therefore how to develop the most economical refueling scheme among the ports of call becomes one of the significant issues that the ship owners concerning. This study addresses the refueling scheme optimization problem for voyage charter operators from the perspective of the ship owner. First, an ARMA-based model was proposed to forecast a time serials of the fuel prices. Then, to maximize the shipping operation profit, the non-linear programming model is formulated to solve the optimal refueling scheme where to refuel and how much to refuel. Finally, a case study on a Pacific Ocean-circle route under multi-charter voyage contracts is conducted for a dry bulk cargo ship. The results indicate that the optimal fuel supply program compared with conventional refueling cost saves 263,400 USD, accounting for 14.3% of the total operating profit.

Peng JIA; Xueshan SUN; Zhongzhen YANG

2012-01-01T23:59:59.000Z

206

A computer model for optimizing the location of natural gas fueling stations  

Science Journals Connector (OSTI)

Abstract High levels of fine particulate matter and ozone in many major cities are causing increased respiratory problems, increased asthma attacks and premature death. Natural gas vehicles have been reported to emit up to 95% less particulate matter than diesel powered vehicles and up to 90% less ozone-producing carbon monoxide and reactive hydrocarbons. The adoption of natural gas vehicles, therefore, could play a large role in improving air quality in many cities. Because of the many costs associated with the introduction of a new fueling infrastructure, optimum distribution of fueling stations will play a major role in widespread use of natural gas vehicles, especially in the early stages of market penetration. A model was developed that can be used to optimize fueling station placement-based on traffic volume using a Monte Carlo algorithm. In particular, the Monte Carlo method allows for the placement of the fueling stations based upon their proximity to high volume traffic flow and the placement of all the fueling stations are optimized simultaneously. Traffic volume data from Pittsburgh, PA was used in the model simulations.

T.L. Kerzmann; G.A. Buxton; J. Preisser

2014-01-01T23:59:59.000Z

207

The performance of an optimized thermoacoustic air conditioner  

Science Journals Connector (OSTI)

Up to 25 thermoacoustic cooler design parameters were optimized to provide high COP predictions in selected air conditioning applications. Capacities ranging between 300 and 1500 W were considered. Two different configurations were investigated: (1) a single stack with a Helmholtz resonator termination and (2) two drivers and two stacks. The optimization scheme utilized the Simplex algorithm and the analysis was performed by DELTAE coupled with an original heat exchanger modeling tool which incorporated conventional straight fin analysis and semiempirical flow correlations. Various requirements were imposed for the external cooling and heat rejection temperatures ranging between 270 and 287 K on the cold side and between 310 and 320 K on the hot side. Finned tube heat exchangers with water as the secondary fluid were considered. The predicted values of COP were greater than 3.8 (0.36 relative to the Carnot value) for an application analogous to a small window air conditioner. The performance and characteristics of the two different configurations were compared and the loss distribution in each case was calculated. Furthermore the impact of various constraints was examined. The performance predictions are encouraging and suggest that thermoacoustic air conditioning may be a viable proposition.

Brian L. Minner; James E. Braun; Luc Mongeau

1996-01-01T23:59:59.000Z

208

Fuel Composition Effects and Other Operational Parameters on Solid Oxide Fuel Cell Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition Effects and Other Composition Effects and Other Operational Parameters on Solid Oxide Fuel Cell Performance DOE/NETL-401/093010 September 30, 2010 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

209

NERSC and HDF Group Optimize HDF5 Library to Improve I/O Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC and HDF Group Optimize HDF5 Library to Improve IO Performance NERSC and HDF Group Optimize HDF5 Library to Improve IO Performance June 28, 2010 A common complaint among air...

210

Finite-time thermodynamics: Engine performance improved by optimized piston motion  

Science Journals Connector (OSTI)

...real engines. We optimize the engine by "controlling" the time...that the compression ratio, fuel-to-air ratio, fuel consumption, and period of the cycle all...parable to those for a real engine. Relaxing any of these con...

Michael Mozurkewich; R. S. Berry

1981-01-01T23:59:59.000Z

211

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Methods Andrew Ickes & Thomas Wallner Argonne National Laboratory 17 th Directions in...

212

Chimayo Elementary school performs well in Fuel Cell Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Challenge Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015 All Issues submit Chimayo...

213

Optimizing human performance in the advanced CANDU control room  

SciTech Connect (OSTI)

Human performance in existing Canada deuterium uranium (CANDU) nuclear power plants has been considerably enhanced by the extensive use of computers for automatic plant control and operator interface functions. This includes a number of relatively advanced functions such as alarm conditioning, trip setpoint conditioning, signal checks and intercomparisons, special-purpose information displays, and computerized safety system testing. The CANDU supervisory control philosophy has been quite successful and well received by CANDU operators and has provided a solid foundation to build upon. Optimization of human performance in the advanced CANDU control room is being achieved by systematic integration of human factors and computer technology in an intensive Canadian program of research, design, and development.

Pauksens, J. (Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada)); Lupton, L.R. (Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada))

1992-01-01T23:59:59.000Z

214

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

215

Experimental Investigation of Optimal Timing of the Diesel Engine Injection Pump Using Biodiesel Fuel  

Science Journals Connector (OSTI)

University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, SI-2000 Maribor ... Compared to mineral diesel, biodiesel and biodiesel blends in general show lower CO, smoke, and HC emissions but higher NOx emission and higher specific fuel consumption. ... In this sense, to gain knowledge about the implications of its use, waste olive oil Me ester was evaluated as a fuel for diesel engines during a 50 h short-term performance test in a diesel direct-injection Perkins engine. ...

Breda Kegl

2006-05-03T23:59:59.000Z

216

Numerical Modeling of the Distributed Electrochemistry and Performance of Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

A cell-level distributed electrochemistry (DEC) modeling tool has been developed to enable prediction of solid oxide fuel cell performance by considering the coupled and spatially varying multi-physics that occur within the tri-layer. The approach calculates the distributed electrochemistry within the electrodes, which includes the charge transfer and electric potential fields, ion transport throughout the tri-layer, and gas distributions within the composite and porous electrodes. The thickness of the electrochemically active regions within the electrodes is calculated along with the distributions of charge transfer. The DEC modeling tool can examine the overall SOFC performance based on electrode microstructural parameters, such as particle size, pore size, porosity factor, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. Recent developments in electrode fabrication methods have lead to increased interest in using graded and nano-structured electrodes to improve the electrochemical performance of SOFCs. This paper demonstrates how the DEC modeling tool can be used to help design novel electrode microstructures by optimizing a graded anode for high electrochemical performance.

Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

2011-12-01T23:59:59.000Z

217

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

218

2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation COST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

219

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

220

\\{NOx\\} reduction from a large bore natural gas engine via reformed natural gas prechamber fueling optimization  

Science Journals Connector (OSTI)

Lean combustion is a standard approach used to reduce \\{NOx\\} emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further \\{NOx\\} reductions. Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in \\{NOx\\} emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.

Mathew D. Ruter; Daniel B. Olsen; Mark V. Scotto; Mark A. Perna

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

UNDERSTANDING DIRECT BOROHYDRIDE - HYDROGEN PEROXIDE FUEL CELL PERFORMANCE .  

E-Print Network [OSTI]

??Direct borohydride fuel cells (DBFCs) generate electrical power by oxidizing aqueous BH4- at the anode and reducing an oxidizer, like aqueous H2O2 for an all-liquid… (more)

Stroman, Richard O'Neil

2013-01-01T23:59:59.000Z

222

Resolving EMI Issues To Optimize Accelerator Beam Diagnostic Performance  

SciTech Connect (OSTI)

If you have struggled to get the last bit of performance from a beam diagnostic only to find your dynamic range limited by external sources of electromagnetic interference (EMI) once the system is installed, then you will find this tutorial on electromagnetic compatibility and grounding useful. The tutorial will provide some simple, direct methods to analyze, understand and mitigate the impact of EMI on beam diagnostic systems. Several common and unique accelerator EMI sources will be characterized. The dependencies of source frequency and distance to the source on the optimal choice of grounding and shielding methods will be illustrated. The emphasis is on a stepwise process that leads to understanding and cost-effective resolution of EMI impacts on beam diagnostic systems.

Thuot, Michael [Los Alamos National Laboratory, LANSCE Division, Los Alamos, New Mexico (United States)

2004-11-10T23:59:59.000Z

223

Capsule performance optimization in the National Ignition Campaign  

SciTech Connect (OSTI)

A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2010-05-15T23:59:59.000Z

224

Capsule Performance Optimization in the National Ignition Campaign  

SciTech Connect (OSTI)

A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

2009-10-13T23:59:59.000Z

225

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

226

Initial investment choice and optimal future allocations under time-monotone performance  

E-Print Network [OSTI]

Initial investment choice and optimal future allocations under time-monotone performance criteria M investment choice can be used to determine his future optimal portfolio allocations. Optimality of investment decisions is built on the so-called forward investment performance criteria and, in particular, on the time

Zariphopoulou, Thaleia

227

Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine  

SciTech Connect (OSTI)

The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

Jason Hales; Various

2014-06-01T23:59:59.000Z

228

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

Jie Guan; Nguyen Minh

2003-10-01T23:59:59.000Z

229

Performance of a Single-Chamber Microbial Fuel Cell Degrading Phenol: Effect of Phenol Concentration and External Resistance  

Science Journals Connector (OSTI)

The performance of a single-chamber microbial fuel cell (MFC) using wastewater containing phenol as the anodic fuel was evaluated. The evaluation was performed considering ... presence of different phenol concent...

Germán Buitrón; Iván Moreno-Andrade

2014-09-01T23:59:59.000Z

230

Optimization of the Cathode Catalyst Layer Composition of a PEM Fuel Cell Using a Novel 2-Step Preparation Method.  

E-Print Network [OSTI]

??For good performance and high durability PEM fuel cells run at high water saturation levels. However, excess liquid water generated by the oxygen reduction reaction… (more)

Friedmann, Roland

2009-01-01T23:59:59.000Z

231

Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

232

The Performance Analysis on Fuel Injection System Failure for a Four-Stroke Marine Diesel Engine  

Science Journals Connector (OSTI)

The middle speed four stroke diesel engine has the advantages of small capacity, light in weight, capable to combustion poor fuel oil. In recent years, they have been used more comprehensive than before. Daihatsu 6PSHdM-26H diesel engine, which is a ... Keywords: 4-stroke medium-speed turbocharged marine diesel engine, Fuel injection system failure, delayed combustion, performance analysis

Jialiang Huang; Guohao Yang; Dan Wang

2010-12-01T23:59:59.000Z

233

Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane  

E-Print Network [OSTI]

of an anion-exchange membrane with non-platinum electrocatalysts at both the anode and cathode on the development and performance test of an alkaline direct ethylene glycol fuel cell. The fuel cell consists with the existing electrocatalysts at low temperatures; as a result, the main product of ethanol oxidation reaction

Zhao, Tianshou

234

A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends  

Broader source: Energy.gov [DOE]

Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes.

235

Coal-Fueled Diesel Technology Assessment Study: systems performance and cost comparisons  

SciTech Connect (OSTI)

This report examines the performance of diesel engines operating on coal-based fuels and compares their power generation costs with those of corresponding oil-burning prime movers. Similar performance and cost comparisons are also presented for an alternative prime mover, the direct-fired gas turbine in both a simple-cycle and a regenerative-cycle configuration. The coal-based fuels under consideration include micronized coal, coal slurries, and coal-derived gaseous fuels. The study focuses on medium-speed diesel engines for locomotive, marine, small stationary power, and industrial cogeneration applications in the 1000 to 10,000 kW size range. This report reviews the domestic industrial and transportation markets for medium-speed engines currently using oil or gas. The major problem areas involving the operation of these engines on coal-based fuels are summarized. The characteristics of available coal-based fuels are discussed and the costs of various fuels are compared. Based on performance data from the literature, as well as updated cost estimates originally developed for the Total Energy Technology Alternatives Studies program, power generation costs are determined for both oil-fueled and coal-fueled diesel engines. Similar calculations are also performed for direct-fired gas turbines. The calculations illustrate the sensitivity of the power generation cost to the associated fuel cost for these prime movers. The results also show the importance of reducing the cost of available coal-based fuels, in order to improve the economic competitiveness of coal-fueled prime movers relative to engines operating on oil or gas. 50 refs., 9 figs., 11 tabs.

Holtz, R.E.; Krazinski, J.L.

1985-12-01T23:59:59.000Z

236

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions  

Science Journals Connector (OSTI)

Experimental Study of Diesel Fuel Effects on Direct Injection (DI) Diesel Engine Performance and Pollutant Emissions ... The test fuels indicate variable hydrocarbon composition and physical and chemical properties, and they were prepared under a European Union research program aiming to identify future fuel formulations for use in modern DI diesel engines. ... 1,2,4-9,13,14,16,17,24-26 In general, there is an interrelation between the molecular structure (paraffins, olefins, napthenes, and aromatic hydrocarbons), the chemical properties (cetane number, ignition point, etc.), and the physical properties (density, viscosity, surface tension, etc.) of the diesel fuel. ...

Theodoros C. Zannis; Dimitrios T. Hountalas; Roussos G. Papagiannakis

2007-07-19T23:59:59.000Z

237

Direction and Management of Water Movement in Solid-State Alkaline Fuel Cells  

Science Journals Connector (OSTI)

Thus, optimization is required to establish design methodology for SAFCs. ... membrane fuel cells - performances are currently limited by the electrode architectures that have been optimized for use in PEM fuel cells but not alk. ...

Han Zhang; Hidenori Ohashi; Takanori Tamaki; Takeo Yamaguchi

2012-03-20T23:59:59.000Z

238

Performing aggressive code optimization with an ability to rollback changes made by the aggressive optimizations  

DOE Patents [OSTI]

Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.

Gschwind, Michael K

2013-07-23T23:59:59.000Z

239

Effects of electrode compression on the performance of a solid polymer electrolyte fuel cell  

E-Print Network [OSTI]

The effects of electrode compression on the performance of a polymer electrolyte fuel cell (PEFC) were investigated. Preliminary testing showed that considerable compression of the carbon cloth electrodes was provided by the PEFC structure. Further...

Del Campo, Christopher Scott

2012-06-07T23:59:59.000Z

240

Polymer electrolyte fuel cell performance degradation at different synchrotron beam intensities  

Science Journals Connector (OSTI)

The dependency of beam intensity on the performance degradation of polymer electrolyte fuel cells during X-ray imaging experiments at the Tomcat beamline of the Swiss Light Source is reported and the underlying degradation mechanisms are identified.

Eller, J.

2013-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessment of the use of oxygenated fuels on emissions and performance of a diesel engine  

Science Journals Connector (OSTI)

Abstract Requirements as torque, power, specific fuel consumption and emitted compounds are highly influenced by the chemical composition of the fuel being burned. Thus, the aim of this study was to assess the use of oxygenated fuels on emissions of NOx, CO, HC, CO2 and particle number and size distribution (11.5 diesel engine coupled to a dynamometer bench was used, where three types of fuels were employed, B5 (diesel with 5% of biodiesel); B5E6 (ternary composition containing 89% diesel, 5% of biodiesel and 6% of ethanol); and B100 (100% of biodiesel). The performance of a diesel engine was also evaluated to see the impact of the oxygenated fuels in this kind of engine. The use of ethanol with high latent heat of vaporization and low cetane number added to the binary blend (B5) shown an increase in the HC emissions and a reduction in \\{NOx\\} emissions when compared to B5. The use of pure biodiesel (B100) with high oxygen content showed a reduction in the HC emissions, but presented the highest emissions for both \\{NOx\\} and particle number of smaller diameter among the studied fuels. The use of more oxygenated fuels reduced the power output and increased the fuel consumption, but the exergy analysis showed that the energy efficiency of these fuels could be considered similar to the B5 fuel.

Lílian Lefol Nani Guarieiro; Egídio Teixeira de Almeida Guerreiro; Keize Katiane dos Santos Amparo; Victor Bonfim Manera; Ana Carla D. Regis; Aldenor Gomes Santos; Vitor P. Ferreira; Danilo J. Leão; Ednildo A. Torres; Jailson B. de Andrade

2014-01-01T23:59:59.000Z

242

An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel  

Science Journals Connector (OSTI)

Abstract This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P engine power, torque and specific fuel consumption. The mean values of engine power were increased in the range of 59.14–69.5 kW with increasing the engine speed. The engine power did not show significant difference for all the fuel blends except for the D65B25E10, 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P engine speed ranged from 1600 to 2000 rpm. The engine specific fuel consumption was increased significantly when the engine speed ranged from 1900 to 2000 rpm. The engine specific fuel consumption was greater for all the fuel blends when compared to neat diesel fuel. The D93B5E2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D86B10E4 and D79B15E6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application.

Seyed Reza Hassan-beygi; Vahideh Istan; Barat Ghobadian; Mohammad Aboonajmi

2013-01-01T23:59:59.000Z

243

Comparison of performance characteristics of liquid biofuels and petroleum fuels  

Science Journals Connector (OSTI)

The performance properties of different types of liquid biofuels (bioalcohols, biodiesel, etc.) are examined...

K. E. Pankin; Yu. V. Ivanova; R. I. Kuz’mina…

2011-05-01T23:59:59.000Z

244

Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis  

SciTech Connect (OSTI)

Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

Paul Turinsky; Ross Hays

2011-09-02T23:59:59.000Z

245

Performance of a direct diesel engine using aviation fuels blended with biodiesel  

Science Journals Connector (OSTI)

In this study, jet fuel (JF) and railroad fuel (D2) with SME blends (5%, 20%, 50%) were used in a four-cylinder, naturally aspirated, direct (DI) diesel engine. The engine was operated under full load and tested at various speeds to determine the engine's performance and exhaust emission characteristics. The experimental results show that as the SME ratio of the fuels increases, the break specific fuel consumption (BSFC) and exhaust temperature increase; the SME and its blends show a slight drop in engine performance. In this experiment, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and smoke opacity values were measured for each fuel. The results of the emission tests revealed that the oxygen content of SME provided a significant reduction in CO and smoke opacity emissions. However, when the test engine was fuelled by SME and its blends, NOx emissions increased.

Burak Gökalp; Hakan Serhad Soyhan; Halil ?brahim Sarac

2012-01-01T23:59:59.000Z

246

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect (OSTI)

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Papastergiou, C. [National Center for Scientific Research, Athens (Greece)

1992-12-31T23:59:59.000Z

247

Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel  

SciTech Connect (OSTI)

The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed.

Deen, J.R.; Snelgrove, J.L. (Argonne National Lab., IL (United States)); Papastergiou, C. (National Center for Scientific Research, Athens (Greece))

1992-01-01T23:59:59.000Z

248

Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit Scheduling  

E-Print Network [OSTI]

Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand- responsive

Dessouky, Maged

249

Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems  

Broader source: Energy.gov [DOE]

Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

250

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

2012-06-07T23:59:59.000Z

251

The Effect of Variable Quality Fuels on Cogeneration Plant Performance  

E-Print Network [OSTI]

on system economic evaluation. The effects of the range of heating values, quantity delivered, process heat to power requirement and use of supplemental fuel will be illustrated and described. The relative economics of alternatives for a specific... and oil energy used by u. S. utilities and equivalent to 40% of the coal energy they consume. Since waste materials must be col lected and concentrated for disposal, this material can become a significant and viable energy source for valuable power...

Ahner, D. J.; Oliva, J. J.

252

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

Jie Guan; Atul Verma; Nguyen Minh

2003-04-01T23:59:59.000Z

253

Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions  

Science Journals Connector (OSTI)

Abstract A study was undertaken to investigate renewable fuels in a compression-ignition internal combustion engine. The focus of this study was the effect of newly developed renewable fuels on engine performance, combustion, and emissions. Eight fuels were investigated, and they include diesel, jet fuel, a traditional biodiesel (fatty acid methyl ester: FAME), and five next generation biofuels. These five fuels were derived using a two-step process: hydrolysis of the oil into fatty acids (if necessary) and then a thermo-catalytic process to remove the oxygen via a decarboxylation reaction. The fuels included a fed batch deoxygenation of canola derived fatty acids (DCFA), a fed batch deoxygenation of canola derived fatty acids with varying amounts of H2 used during the deoxygenation process (DCFAH), a continuous deoxygenation of canola derived fatty acids (CDCFA), fed batch deoxygenation of lauric acid (DLA), and a third reaction to isomerize the products of the deoxygenated canola derived fatty acid alkanes (IPCF). Diesel, jet fuel, and biodiesel (FAME) have been used as benchmarks for comparing with the newer renewable fuels. The results of the experiments show slightly lower mechanical efficiency but better brake specific fuel consumption for the new renewable fuels. Results from combustion show shorter ignition delays for most of the renewable (deoxygenated) fuels with the exception of fed batch deoxygenation of lauric acid. Combustion results also show lower peak in-cylinder pressures, reduced rate of increase in cylinder pressure, and lower heat release rates for the renewable fuels. Emission results show an increase in hydrocarbon emissions for renewable deoxygenated fuels, but a general decrease in all other emissions including NOx, greenhouse gases, and soot. Results also demonstrate that isomers of the alkanes resulting from the deoxygenation of the canola derived fatty acids could be a potential replacement to conventional fossil diesel and biodiesel based on the experiments in this work.

Dolanimi Ogunkoya; William L. Roberts; Tiegang Fang; Nirajan Thapaliya

2015-01-01T23:59:59.000Z

254

Fuel performance models for high-temperature gas-cooled reactor core design  

SciTech Connect (OSTI)

Mechanistic fuel performance models are used in high-temperature gas-cooled reactor core design and licensing to predict failure and fission product release. Fuel particles manufactured with defective or missing SiC, IPyC, or fuel dispersion in the buffer fail at a level of less than 5 x 10/sup -4/ fraction. These failed particles primarily release metallic fission products because the OPyC remains intact on 90% of the particles and retains gaseous isotopes. The predicted failure of particles using performance models appears to be conservative relative to operating reactor experience.

Stansfield, O.M.; Simon, W.A.; Baxter, A.M.

1983-09-01T23:59:59.000Z

255

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

SciTech Connect (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

256

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

257

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect (OSTI)

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

258

TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket.  

E-Print Network [OSTI]

??This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing… (more)

Powers, Jeffrey

2011-01-01T23:59:59.000Z

259

Key Differences in the Fabrication, Irradiation, and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance  

SciTech Connect (OSTI)

High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.

Petti, David Andrew; Maki, John Thomas; Buongiorno, Jacopo; Hobbins, Richard Redfield

2002-06-01T23:59:59.000Z

260

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative and Durable High Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Development of Alternative and Durable High Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells Performance Cathode Supports for PEM Fuel Cells PNNL: Yong Wang Conrad Zhang Vilayanur Viswanath Yuehe Lin Jun Liu Project kick Project kick - - off meeting off meeting Feb 13 Feb 13 - - 14, 2007 14, 2007 Ballard Power Systems: Stephen Campbell University of Delaware: Jingguang Chen ORNL: Sheng Dai 2 Technical Issues and Objective Technical Issues and Objective Current technical issues z Carbon support „ Susceptible to oxidation under fuel cell operating conditions. „ Oxidation further catalyzed by Pt „ Corrosion leads to Pt migration and agglomeration

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

262

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

263

Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle  

Science Journals Connector (OSTI)

The power generation community faces a major challenge: to protect the environment while producing a plentiful supply of clean low-cost energy. “21st Century Energy Plants” (Vision 21 Plants) have been proposed and conceptualized to meet the energy and environmental challenges. The solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle introduced in this work is one example of a Vision 21 Plant. The system includes an internal-reforming tubular-SOFC, an intercooled gas turbine, a humidifier, and other auxiliary components. A recently developed thermodynamic analysis computer code entitled advanced power systems analyses tools (APSAT) was applied to analyze the system performance of the SOFC–ICGT cycle. Sensitivity analyses of several major system parameters were studied to identify the key development needs and design and operating improvements for this hybrid cycle. A novel optimization strategy including a design of experiments (DOEx) approach is proposed and applied to the hybrid system. Using this optimization strategy, a system electrical efficiency higher than 75% (net ac/lower heating value (LHV)) could be achieved when the system was designed to operate under a high operating pressure (50 bara) and with a low percent excess air (EA) (55%) in the SOFC.

Yaofan Yi; Ashok D. Rao; Jacob Brouwer; G.Scott Samuelsen

2004-01-01T23:59:59.000Z

264

Performance and Emissions of Direct Injection Diesel Engine Fueled with Diesel Fuel Containing Dissolved Methane  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China ... soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solns., one of which is the use of a gaseous fuel as a partial supplement for liq. ... (16)?Heywood, J. B. Internal Combustion Engine Fundamentals; McGraw-Hill:? New York, 1988. ...

Junqiang Zhang; Deming Jiang; Zuohua Huang; Xibin Wang; Qi Wei

2006-01-19T23:59:59.000Z

265

Benchmarking of the MIT High Temperature Gas-cooled Reactor TRISO-coated particle fuel performance model  

E-Print Network [OSTI]

MIT has developed a Coated Particle Fuel Performance Model to study the behavior of TRISO nuclear fuels. The code, TIMCOAT, is designed to assess the mechanical and chemical condition of populations of coated particles and ...

Stawicki, Michael A

2006-01-01T23:59:59.000Z

266

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

267

Designing a New Fuel for HFIR-Performance Parameters for LEU Core Configurations  

SciTech Connect (OSTI)

An engineering design study for a fuel that would enable the conversion of the High Flux Isotope Reactor from highly enriched uranium to low enriched uranium fuel is ongoing as part of an effort sponsored by the U.S. Department of Energy's National Nuclear Security Administration through the Global Threat Reduction Initiative. Given the unique fuel and core design and high power density of the reactor and the requirement that the impact of the fuel change on the core performance and operation be minimal, this conversion study presents a complex and challenging task, requiring improvements in the computational models currently used to support the operation of the reactor and development of new models that would take advantage of newly available simulation methods and tools. The computational models used to search for a fuel design that would meet the requirements for the conversion study and the results obtained with these models are presented and discussed. Estimates of relevant reactor performance parameters for the low enriched uranium fuel core are presented and compared to the corresponding data for the currently operating highly enriched uranium fuel core.

Ilas, Germina [ORNL; Primm, Trent [ORNL; Gehin, Jess C [ORNL

2009-01-01T23:59:59.000Z

268

Energy performance evaluation of fishing vessels by fuel mass flow measuring system  

Science Journals Connector (OSTI)

A new fuel consumption monitoring system was set up for research purpose in order to evaluate the energy performance of fishing vessels under different operating conditions. The system has been tested on two semi-pelagic pair trawlers in the Adriatic Sea with an engine power of around 900 kW, and with length overall of around 30 m. Both vessels work with a gear of similar design and size, the differences between the two vessels are in the propeller design and the hull material: the first with a controllable pitch propeller (CPP) and a metal hull, the second with a fixed pitch propeller (FPP) and a wooden hull. The fuel monitoring system conceived at CNR-ISMAR Ancona (Italy) consists of two mass flow sensors, one multichannel recorder and one GPS data logger. The working time duration, the vessel speed, the total fuel consumption and the instant fuel rate were logged by the system. A typical commercial round trip for a semi-pelagic trawler consists of several fishing operations (steaming, trawling sailing, etc.). Fuel consumption rate and vessel speed data were used to identify energy performance under different vessel-operating conditions. The highest fuel demands were during the trawling (130 l/h at 4.4 kn) and the steaming (100–130 l/h at 11 kn) phases. Fuel savings of up to 15% could be obtained by reducing the navigation speed of half a knot.

Antonello Sala; Francesco De Carlo; Gabriele Buglioni; Alessandro Lucchetti

2011-01-01T23:59:59.000Z

269

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5 kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shin’ya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

270

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel  

E-Print Network [OSTI]

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells Xing Xie energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC

Cui, Yi

271

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

SciTech Connect (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

272

Dormitory Optimized Energy Performance using Spatial Archetypes Eleni Primikiri,  

E-Print Network [OSTI]

operational costs of HVAC systems in an existing building. 1. INTRODUCTION Over the past years, building takes into account basic design standards. More specifically, these standards include furniture standards. With the use of optimization, competing objectives were examined and in specific the building

Papalambros, Panos

273

Exergy Optimized Wastewater Heat Recovery: Minimizing Losses and Maximizing Performance  

E-Print Network [OSTI]

the heat using a batch process with an insulated tank containing a heat exchanger. The analysis is based on statistical annual hot water usage profiles. The system shows that the exergy available in warm wastewater can be optimized with specific tank size...

Meggers, F.

274

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network [OSTI]

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which...

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

275

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network [OSTI]

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

276

"Effects of Impurities on Fuel Cell Performance and Durability"  

E-Print Network [OSTI]

. 227 (2002) 231] Extensive poisoning of anode catalyst in PEMFC caused by 50 ppb of H2S due to strong on the performance of electrocatalysts of PEMFCs. The presence of Cl- does not significantly affect catalyst activity (Clemson & SRNL) ­ Pt, PtRu Catalysts and PEM ­ MEA ­ Premixed Gases Anode P E M Cathode Catalyst Catalyst

277

Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code  

SciTech Connect (OSTI)

Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

2009-09-01T23:59:59.000Z

278

Compiler-based Memory Optimizations for High Performance Computing Systems.  

E-Print Network [OSTI]

??Parallelism has always been the primary method to achieve higher performance. To advance the computational capabilities of state-of-the-art high performance computing systems, we continue to… (more)

Kultursay, Emre

2013-01-01T23:59:59.000Z

279

Nonlinear control and online optimization of the burn condition in ITER via heating, isotopic fueling and impurity injection  

Science Journals Connector (OSTI)

The ITER tokamak, the next experimental step toward the development of nuclear fusion reactors, will explore the burning plasma regime in which the plasma temperature is sustained mostly by fusion heating. Regulation of the fusion power through modulation of fueling and external heating sources, referred to as burn control, is one of the fundamental problems in burning plasma research. Active control will be essential for achieving and maintaining desired operating points, responding to changing power demands, and ensuring stable operation. Most existing burn control efforts use either non-model-based control techniques or designs based on linearized models. These approaches must be designed for particular operating points and break down for large perturbations. In this work, we utilize a spatially averaged (zero-dimensional) nonlinear model to synthesize a multi-variable nonlinear burn control strategy that can reject large perturbations and move between operating points. The controller uses all of the available actuation techniques in tandem to ensure good performance, even if one or more of the actuators saturate. Adaptive parameter estimation is used to improve the model parameter estimates used by the feedback controller in real-time and ensure asymptotic tracking of the desired operating point. In addition, we propose the use of a model-based online optimization algorithm to drive the system to a state that minimizes a given cost function, while respecting input and state constraints. A zero-dimensional simulation study is presented to show the performance of the adaptive control scheme and the optimization scheme with a cost function weighting the fusion power and temperature tracking errors.

Mark D Boyer; Eugenio Schuster

2014-01-01T23:59:59.000Z

280

Optimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France  

E-Print Network [OSTI]

= Photovoltaic; FC = Fuel Cell; COE = cost of energy; CC = Capital Costs; NPC = Net Present Cost; TNPC = Total. Elbaset4 Abstract ­ This paper deals with the optimal design of a stand-alone hybrid photovoltaic and fuel reserved. Keywords: Hybrid power system, renewable energy, photovoltaic, fuel cell, generation unit sizing

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Retrieval Sub (FRS) Project Decapping Station Performance Test Data Report  

SciTech Connect (OSTI)

This document is to provide the test data report for Decapping Station Performance Testing. These performance tests were full scale and viewed as a continuation of development testing performed earlier (SNF-2710). A prototype decapping station confinement box was tested, along with some special tools required for the process, providing assurance that the fuel handling equipment will operate as designed, allowing for release of the FRS equipment for installation.

THIELGES, J.R.

2000-01-13T23:59:59.000Z

282

Use of Spatial Archetypes for Optimized Energy Performance  

E-Print Network [OSTI]

(American Society of Heating Refrigerating and Air-Conditioning Engineers) and geometric standards. INTRODUCTION Classification, Standardization, Archetypes Currently, it is quite evident that building simulations require specialized knowledge... was then designed optimally with respect to the chosen platform. Pareto Set Theory Nelson et al., also suggested a more generic formula for family product platforms as a multi- objective formulation: )(:min ],[ 21 pp xxx xf ppp K= (4) subject to...

Primikiri, E.; Kokkolaras, M.; Papalambros, P. Y.

2005-01-01T23:59:59.000Z

283

Relative performance properties of the ORNL Advanced Neutron Source Reactor with reduced enrichment fuels  

SciTech Connect (OSTI)

Three cores for the Advanced Neutron Source reactor, differing in size, enrichment, and uranium density in the fuel meat, have been analyzed. Performance properties of the reduced enrichment cores are compared with those of the HEU reference configuration. Core lifetime estimates suggest that none of these configurations will operate for the design goal of 17 days at 330 MW. With modes increases in fuel density and/or enrichment, however, the operating lifetimes of the HEU and MEU designs can be extended to the desired length. Achieving this lifetime with LEU fuel in any of the three studies cores, however, will require the successful development of denser fuels and/or structural materials with thermal neutron absorption cross sections substantially less than that of Al-6061. Relative to the HEU reference case, the peak thermal neutron flux in cores with reduced enrichment will be diminished by about 25--30%.

Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, J.E.; Mo, S.C.; Pond, R.B.; Travelli, A.; Woodruff, W.L.

1994-12-31T23:59:59.000Z

284

Performance assessment modeling of high level nuclear wasteforms from the pyroprocess fuel cycle  

SciTech Connect (OSTI)

Several performance assessment (PA) analyses have been completed to estimate the release to the accessible environment of radionuclides from spent light water reactor (LWR) fuel emplaced in the proposed Yucca Mountain repository. Probabilistic methods were utilized based on the complexity of the repository system. Recent investigations have been conducted to identify the merits of a pyroprocess fuel cycle. This cycle utilizes high temperature molten salts and metals to partially separate actinides and fission products. In a closed liquid metal reactor (LMR) fuel cycle, this allows recycling of nearly all of the actinides. In a once-through cycle, this isolates the actinides for storage into a wasteform which can be specifically tailored for their retention. With appropriate front-end treatment, this Process can also be used to treat LWR spent fuel.

Nutt, W.M.; Hill, R.N. [Argonne National Lab., IL (United States); Bullen, D.B. [Ames Lab., IA (United States)

1995-06-01T23:59:59.000Z

285

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

286

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

287

Optimization of the Cathode Catalyst Layer Composition of a PEM Fuel Cell Using a Novel 2-Step Preparation Method  

E-Print Network [OSTI]

For good performance and high durability PEM fuel cells run at high water saturation levels. However, excess liquid water generated by the oxygen reduction reaction at the cathode can block pores in the catalyst layer so ...

Friedmann, Roland

2009-03-05T23:59:59.000Z

288

Coupling the core analysis program DeCART to the fuel performance application BISON  

SciTech Connect (OSTI)

The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

2013-07-01T23:59:59.000Z

289

DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT  

E-Print Network [OSTI]

DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT X.R. Wanga , S Consulting, Fliederweg 3, 76351 Linkenheim, Germany A helium-cooled plate-type divertor design concept has of the concept in the high heat flux zone. This paper describes the design optimization of the helium

Raffray, A. René

290

OPTIMAL CONFIGURATION OF A COMMAND AND CONTROL NETWORK: BALANCING PERFORMANCE AND RECONFIGURATION CONSTRAINTS  

SciTech Connect (OSTI)

The optimization of the configuration of communications and control networks is important for assuring the reliability and performance of the networks. This paper presents techniques for determining the optimal configuration for such a network in the presence of communication and connectivity constraints.

L. DOWELL

1999-07-01T23:59:59.000Z

291

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

292

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price  

E-Print Network [OSTI]

5 Figure 1.2 U.S. jet fuel price (dollars pertravel and U.S. jet fuel price paid by airlines (dollars perfuel price. ..

Ryerson, Megan S.

2010-01-01T23:59:59.000Z

293

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

294

Analysis of the spatially distributed performance degradation of a polymer electrolyte membrane fuel cell stack  

Science Journals Connector (OSTI)

Abstract Herein we report the spatially uneven degradation of a polymer electrolyte membrane fuel cell (PEMFC) stack operated under load variation. Fifteen sub-membrane electrode assemblies (sub-MEAs) at various cell positions and various points within each cell were obtained from the original \\{MEAs\\} employed in the fuel cell stack. Polarization curves and the voltammetric charge of these \\{MEAs\\} were measured in order to correlate localized performances with the redistributed electrochemically active surface on Pt using the polarization technique and cyclic voltammetry. Several ex situ characterizations including electron probe microanalysis, environmental scanning electron microscopy, and X-ray diffraction were also performed to find evidence, supporting the inhomogeneous degradation of the fuel cell stack. Possible routes and processes for the non-uniform stack degradation during the PEMFC stack operation will also be discussed.

Min Kyung Cho; Dae-Nyung Lee; Yi-Young Kim; Jonghee Han; Hyoung-Juhn Kim; EunAe Cho; Tae-Hoon Lim; Dirk Henkensmeier; Sung Jong Yoo; Yung-Eun Sung; Sehkyu Park; Jong Hyun Jang

2014-01-01T23:59:59.000Z

295

In-Flight Performance Optimization for Rotorcraft with Redundant Controls Gurbuz Taha Ozdemir  

E-Print Network [OSTI]

control system is designed to perform in-flight optimization of redundant control effectors on a compound controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop

Maroncelli, Mark

296

Effects of altitude and fuel oxygen content on the performance of a high pressure common rail diesel engine  

Science Journals Connector (OSTI)

Abstract The change of intake oxygen content caused by altitude variation and the change of fuel oxygen content both affect the performance of diesel engines. In this paper, comparative experiments were performed on a high pressure common rail diesel engine fueled with pure diesel and biodiesel–ethanol–diesel (abbreviated as BED) blends with oxygen content of 2%, 2.5%, and 3.2% in mass percentage at different atmospheric pressures of 81 kPa, 90 kPa, and 100 kPa. Moreover, in order to study the effect of different fuel blends with the same oxygen content on the performance of the diesel engine, tests were conducted on the diesel engine fueled with the BED blend and a biodiesel–diesel (abbreviated as BD) blend at 81 kPa ambient pressure. The experimental results indicate that the influence of altitude variation on the full-load engine brake torque is not significant when the pure diesel fuel is used. With the increase of BED fuel oxygen content, the engine brake torque reduces. When the pure diesel fuel is used, with the increase of atmospheric pressure, the brake specific fuel consumption (BSFC) decreases. As the fuel oxygen content increases, there is no significant difference in brake specific fuel consumption of the BED blends. And the values of brake specific energy consumption (BSEC) gradually decrease. Soot emissions of the diesel engine decrease with the increase of atmospheric pressure and fuel oxygen content. The effect of soot emission reduction by increasing the oxygen content of the fuel is more significant than the effect of increasing atmospheric pressure. The effects of BD and BED fuels with basically the same oxygen content on the full-load performance, fuel economy, and soot emissions of the diesel engine are different. The BSFC and soot emissions of the BED fuel are lower than those of the BD fuel.

Shaohua Liu; Lizhong Shen; Yuhua Bi; Jilin Lei

2014-01-01T23:59:59.000Z

297

Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project  

SciTech Connect (OSTI)

INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

R. L. Williamson; S. R. Novascone

2012-04-01T23:59:59.000Z

298

Influence of NaCl on cathode performance of solid oxide fuel cells  

Science Journals Connector (OSTI)

Degradation induced by sodium chloride in air was...0.8Sr0.2)0.98MnO3(LSM) and La0.6Sr0.4Co0.2Fe0.8O3(LSCF) cathodes in solid oxide fuel cells(SOFC). Cell performance was measured by volatilizing NaCl to...2...fo...

Run-ru Liu; De-jun Wang; Jing Leng

2013-08-01T23:59:59.000Z

299

Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)  

E-Print Network [OSTI]

not been previously examined. Three different types of cathode materials were tested here with increasingly of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathodeImpact of salinity on cathode catalyst performance in microbial fuel cells (MFCs) Xi Wang

300

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network [OSTI]

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analysis of Molten Carbonate Fuel Cell Performance Using a Three-Phase Homogeneous Model  

E-Print Network [OSTI]

temperatures, nickel oxide dissolves in the melt. This slow loss of active material contributes to an increase as compared to nickel oxide. The search for alternate cathode materials could be simplified through the use-phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell MCFC cathode

Popov, Branko N.

302

Performance Study and Optimization of the Zephergy Wind Turbine  

E-Print Network [OSTI]

There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

Soodavi, Moein

2013-12-04T23:59:59.000Z

303

Performance analysis of queueing networks via robust optimization  

E-Print Network [OSTI]

Performance analysis of queueing networks is one of the most challenging areas of queueing theory. Barring very specialized models such as product-form type queueing networks, there exist very few results that provide ...

Bertsimas, Dimitris J.

304

Performance and power optimization in VLSI physical design  

E-Print Network [OSTI]

circuit performance under inductance effect. The new algorithm works under the dynamic programming framework and runs in provably linear time for multiple buffer types due to two novel techniques: restrictive cost bucketing and efficient delay update...

Jiang, Zhanyuan

2009-05-15T23:59:59.000Z

305

Multidisciplinary structural design and optimization for performance, cost, and flexibility  

E-Print Network [OSTI]

Reducing cost and improving performance are two key factors in structural design. In the aerospace and automotive industries, this is particularly true with respect to design criteria such as strength, stiffness, mass, ...

Nadir, William David, 1979-

2005-01-01T23:59:59.000Z

306

Multi-parameter control for centrifugal compressor performance optimization  

E-Print Network [OSTI]

The potential performance benefit of actuating inlet guide vane (IGV) angle, variable diffuser vane (VDV) angle and impeller speed to implement a multi-parameter control on a centrifugal compressor system is assessed. The ...

Mannai, Sébastien (Sébastien Karim)

2014-01-01T23:59:59.000Z

307

Effect of hydrophilic treatment of microporous layer on fuel cell performance  

SciTech Connect (OSTI)

The gas diffusion layer in a polymer electrolyte fuel cell is the component primarily responsible for effective water management under a wide variety of conditions. The incorporation of hydrophilic alumosilicate fibers in the microporous layer leads to an improvement in the fuel cell performance associated with a decrease in the mass transport resistance especially under high RH operation. This improvement in performance is obtained without sacrificing performance under low RH conditions. The alumosilicate fibers create domains that wick liquid water away from the catalyst layer. The improved mass transport performance is corroborated by AC impedance and neutron radiography analysis and is consistent with an increase in the average pore diameter inside the microporous layer.

Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Fairweather, Joseph D [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Spernjak, Dusan [Los Alamos National Laboratory; Spendelow, Jacob [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Wilde, Peter [GERMANY; Schweiss, Ruediger [GERMANY

2010-01-01T23:59:59.000Z

308

Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine  

Science Journals Connector (OSTI)

Abstract This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (?th) are found to have maximum values under these conditions. The emission CO2 was found to increase with engine speed and to decrease with water content. \\{NOx\\} produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases.

Ali Alahmer

2013-01-01T23:59:59.000Z

309

THE EFFECT OF LOW CONCENTRATIONS OF TETRACHLOROETHYLENE ON THE PERFORMANCE OF PEM FUEL CELLS  

SciTech Connect (OSTI)

Polymer electrolyte membrane (PEM) fuel cells use components that are susceptible to contaminants in the fuel stream. To ensure fuel quality, standards are being set to regulate the amount of impurities allowable in fuel. The present study investigates the effect of chlorinated impurities on fuel cell systems using tetrachloroethylene (PCE) as a model compound for cleaning and degreasing agents. Concentrations between 0.05 parts per million (ppm) and 30 ppm were studied. We show how PCE causes rapid drop in cell performances for all concentrations including 0.05 ppm. At concentrations of 1 and 0.05 ppm, PCE poisoned the cell at a rate dependent on the dosage of the contaminant delivered to the cell. PCE appears to affect the cell when the cell potential was over potentials higher than approximately 0.2 V. No effects were observed at voltages around or below 0.2 V and the cells could be recovered from previous poisoning performed at higher potentials. Recoveries at those low voltages could be induced by changing the operating voltage or by purging the system. Poisoning did not appear to affect the membrane conductivity. Measurements with long-path length IR results suggested catalytic decomposition of the PCE by hydrogen over the anode catalyst.

COLON-MERCHADO, H.; MARTINEZ-RODRIGUEZ, M.; FOX, E.; RHODES, W.; MCWHORTER, C.; GREENWAY, S.

2011-04-18T23:59:59.000Z

310

Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results  

SciTech Connect (OSTI)

This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

Edelmann, Paul Guy [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Yacout, Abdellatif [Argonne National Laboratories

2012-06-27T23:59:59.000Z

311

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect (OSTI)

The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

2008-09-30T23:59:59.000Z

312

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

Mohan Kelkar

2007-06-30T23:59:59.000Z

313

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

Mohan Kelkar

2004-10-01T23:59:59.000Z

314

The steady-state thermal-hydraulic performance of 3500 MWth metal and oxide fueled LMRs  

SciTech Connect (OSTI)

The thermal-hydraulic performance of a 3500 MWth metal and oxide fueled LMR is reported. Orifice zones are defined and coolant flowrates are given for use in safety analyses. The flux calculations were carried out in three-dimensional hexagonal-Z geometry using a finite differenced diffusion theory code. The heating calculations included the transport and deposition of gamma energy. The assembly temperature calculations were performed using a subchannel code.

Vilim, R.B.; Hill, R.N.

1989-03-01T23:59:59.000Z

315

Optimizing Path Query Performance: Graph Clustering Strategies \\Lambda  

E-Print Network [OSTI]

.J. Watson Labs ywh@us.ibm.com Ning Jing z Changsha Institute of Technology jning@eecs.umich.edu Elke A because it does not incur any run­time cost, requires no auxiliary data structures, and is complimentary evaluation of the performance of these graph clustering techniques using an actual city road network as well

316

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

317

Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON  

SciTech Connect (OSTI)

The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

2013-05-01T23:59:59.000Z

318

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

319

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

320

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

322

FEL performance with pure permanent-magnet undulators having optimized ordering  

Science Journals Connector (OSTI)

The degradation of FEL performance by field errors can be greatly mitigated in a pure permanent-magnet undulator by appropriate ordering of magnets. Monte Carlo techniques have been used to obtain such optimized ordering for various systems. The resulting performance improvement has been evaluated using the Rocketdyne simulation code FELOPT.

R.A. Cover; B.L. Bobbs; G. Rakowsky; M.M. Johnson; S.P. Mills

1990-01-01T23:59:59.000Z

323

Optimizing Matrix Multiply using PHiPAC: a Portable, HighPerformance, ANSI C Coding Methodology  

E-Print Network [OSTI]

Optimizing Matrix Multiply using PHiPAC: a Portable, High­Performance, ANSI C Coding Methodology Je Portable, High­Performance, ANSI C #PHiPAC, pro­ nounced #fee­pack''#. Second, rather than code by hand, we

Bilmes, Jeff

324

Optimization of Gas Nozzles Geometry in Dual-Fuel Burners of Power Stations  

Science Journals Connector (OSTI)

Thermal power required by boilers in steam power stations is supplied through gas or heavy oil fueled burners. Incorrect functioning ... in the boilers of Shazand 325 MW power station in Arak. Gas-fueled nozzles ...

Ebrahim Moussavi Torshizi…

2008-08-01T23:59:59.000Z

325

Equipment Arrangement Planning of a Fuel Cell Energy Network Optimized for Cost Minimization  

Science Journals Connector (OSTI)

In recent years, uses of the distribution of fuel cells have been studied [9, 10]. Furthermore, fuel cell systems are connected by a network and the micro-grid of the electrical power operated in cooperation ... ...

2009-01-01T23:59:59.000Z

326

On the effect of gas diffusion layers hydrophobicity on direct methanol fuel cell performance and degradation  

Science Journals Connector (OSTI)

Abstract Degradation and mass transport phenomena management are two of the main issues hindering direct methanol fuel cell commercialization. Water and methanol crossover through the membrane, regulated by both anode and cathode gas diffusion layers hydrophobic properties, is widely studied in the literature, while the effect of mass transport phenomena evolution on the direct methanol fuel cell degradation has not been investigated yet. This work aims to present a combined experimental and modeling analysis on the effect of the gas diffusion layers hydrophobicity on DMFC degradation, through the comparison of performance characterization and degradation tests of two different fuel cells. In one of them, the lower diffusion layer hydrophobicity and the absence of anode microporous layer determines the onset of cathode flooding, negatively affecting performance and degradation. However, the cathode surface area loss is similar between the two fuel cells, meaning that flooding does not involve modifications in cathode permanent degradation mechanisms, but it mainly determines the amplification of the cathode surface area loss effects.

F. Bresciani; C. Rabissi; M. Zago; R. Marchesi; A. Casalegno

2015-01-01T23:59:59.000Z

327

Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. 1: Mechanistic model development  

SciTech Connect (OSTI)

A parametric model predicting the performance of a solid polymer electrolyte, proton exchange membrane (PEM) fuel cell has been developed using a combination of mechanistic and empirical modeling techniques. This paper details the mechanistic model development. Mass transport properties are considered in the mechanistic development via Stefan-Maxwell equations. Thermodynamic equilibrium potentials are defined using the Nernst equation. Activation overvoltages are defined via a Tafel equation, and internal resistance are defined via the Nernst-Planck equation, leading to a definition of ohmic overvoltage via an Ohm's law equation. The mechanistic model cannot adequately model fuel cell performance, since several simplifying approximations have been used in order to facilitate model development. Additionally, certain properties likely to be observed in operational fuel cells, such as thermal gradients, have not been considered. Nonetheless, the insights gained from the mechanistic assessment of fuel cell processes were found to give the resulting empirical model a firmer theoretical basis than many of the models presently available in the literature. Correlation of the empirical model to actual experimental data was very good.

Amphlett, J.C.; Baumert, R.M.; Mann, R.F.; Peppley, B.A.; Roberge, P.R. (Royal Military College of Canada, Kingston, Ontario (Canada)); Harris, T.J. (Queen's Univ., Kingston, Ontario (Canada))

1995-01-01T23:59:59.000Z

328

Mathematical modeling for the performance and emission parameters of dual fuel diesel engine using hydrogen as secondary fuel  

Science Journals Connector (OSTI)

Abstract In this work, mathematical models were developed to correlate the brake thermal efficiency, un-burnt hydrocarbons, carbon monoxides and oxides of nitrogen by varying engine parameters like Load and Gaseous (H2) fuel substitution. The developed models can be used to predict the important performance and emission parameters for diesel-hydrogen operation in various combinations at different loads within the experimental domain. Response surface methodology (RSM) has been applied for developing the models using the techniques of design of experiments and multi linear regression analysis. General factorial design was used to plan the experiments. Second order response surface models were found to be the most suitable in the present work. Analysis of variance (ANOVA) of the experimental results at 95% confidence level revealed that the developed models are significant. Comparison of experimental output with those predicted by the developed models showed close proximity having high correlation coefficients R2 for the various response variables.

A.E. Dhole; R.B. Yarasu; D.B. Lata; S.S. Baraskar

2014-01-01T23:59:59.000Z

329

Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

330

Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

331

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

Mohan Kelkar

2002-03-31T23:59:59.000Z

332

An Optimal Solution to a General Dynamic Jet Fuel Hedging Problem  

E-Print Network [OSTI]

hedging against jumps in the price of jet fuel and placing bets that the price will rise, lowering the overall cost of jet fuel. We model the commodity price using an unobservable two-factor model that allows for a large portion of an airline's operating expenses and when fuel prices rise dramatically, airlines cannot

Powell, Warren B.

333

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

Mohan Kelkar

2003-10-01T23:59:59.000Z

334

W-1 Sodium Loop Safety Facility experiment centerline fuel thermocouple performance. [LMFBR  

SciTech Connect (OSTI)

The W-1 Sodium Loop Safety Facility (SLSF) experiment is the fifth in a series of experiments sponsored by the Department of Energy (DOE) as part of the National Fast Breeder Reactor (FBR) Safety Assurance Program. The experiments are being conducted under the direction of Argonne National Laboratory (ANL) and Hanford Engineering Development Laboratory (HEDL). The irradiation phase of the W-1 SLSF experiment was conducted between May 27 and July 20, 1979, and terminated with incipient fuel pin cladding failure during the final boiling transient. Experimental hardware and facility performed as designed, allowing completion of all planned tests and test objectives. This paper focuses on high temperature in-fuel thermocouples and discusses their development, fabrication, and performance in the W-1 experiment.

Meyers, S.C.; Henderson, J.M.

1980-05-01T23:59:59.000Z

335

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

Mohan Kelkar

2005-02-01T23:59:59.000Z

336

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

337

Influence from fuel type on the performance of an air-blown cyclone gasifier  

Science Journals Connector (OSTI)

Abstract Entrained flow gasification of biomass using the cyclone principle has been proposed in combination with a gas engine as a method for combined heat and power production in small to medium scale (gasifier also has the potential to operate using ash rich fuels since the reactor temperature is lower than the ash melting temperature and the ash can be separated after being collected at the bottom of the cyclone. The purpose of this work was to assess the fuel flexibility of cyclone gasification by performing tests with five different types of fuels; torrefied spruce, peat, rice husk, bark and wood. All of the fuels were dried to below 15% moisture content and milled to a powder with a maximum particle size of around 1 mm. The experiments were carried out in a 500 kWth pilot gasifier with a 3-step gas cleaning process consisting of a multi-cyclone for removal of coarse particles, a bio-scrubber for tar removal and a wet electrostatic precipitator for removal of fine particles and droplets from the oil scrubber (aerosols). The lower heating value (LHV) of the clean producer gas was 4.09, 4.54, 4.84 and 4.57 MJ/Nm3 for peat, rice husk, bark and wood, respectively, at a fuel load of 400 kW and an equivalence ratio of 0.27. Torrefied fuel was gasified at an equivalence ratio of 0.2 which resulted in a LHV of 5.75 MJ/Nm3 which can be compared to 5.50 MJ/Nm3 for wood powder that was gasified at the same equivalence ratio. A particle sampling system was designed in order to collect ultrafine particles upstream and downstream the gasifier cleaning device. The results revealed that the gas cleaning successfully removed >99.9% of the particulate matter smaller than 1 ?m.

M. Risberg; O.G.W. Öhrman; B.R. Gebart; P.T. Nilsson; A. Gudmundsson; M. Sanati

2014-01-01T23:59:59.000Z

338

Analysis of Topaz-II thermionic fuel element performance using TFEHX  

SciTech Connect (OSTI)

Data reported by Russian Scientists and engineers for the TOPAZ-II single cell thermionic fuel elments (TFE) is compared with analytical results calculated using the TFEHX computer program in order to benchmark the code. The results of this comparison show good agreement with the TOPAZ-II results over a wide range of power inputs, cesium vapor pressures, and other design variables. Future refinements of the TFEHX methodology should enhance the performance of the code to better predict single cell TFE behavior.

Klein, A.C. (Department of Nuclear Engineering, Oregon State University, Corvallis, OR 97331 (United States)); Pawlowski, R.A. (Battelle Pacific Northwest Laboratory P.O. Box 999, Richland, WA 99352 (United States))

1993-01-20T23:59:59.000Z

339

Resonance Stabilized Perfluorinated Ionomers for Alkaline Membrane Fuel Cells  

Science Journals Connector (OSTI)

(12) Geometry optimization and harmonic vibrational frequency calculations were performed employing wB97xD functional developed by Head-Gordon et al.(13) with 6-311++G(2d, 2p) basis set. ... Developing strategies to prevent the hydrolysis and optimizing electrode structure may warrant further improved AMFC performance and durability. ... membrane fuel cells - performances are currently limited by the electrode architectures that have been optimized for use in PEM fuel cells but not alk. ...

Dae Sik Kim; Cy H. Fujimoto; Michael R. Hibbs; Andrea Labouriau; Yoong-Kee Choe; Yu Seung Kim

2013-09-18T23:59:59.000Z

340

Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask  

SciTech Connect (OSTI)

The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

2001-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network [OSTI]

This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of the treatment parameters...

Wang, Wenxin

2006-04-12T23:59:59.000Z

342

Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells  

Science Journals Connector (OSTI)

Abstract Polymer electrolyte membrane fuel cell (PEMFC) stacks in a fuel cell vehicle can be inevitably exposed to harsh environments such as cold weather in winter, causing water flooding by the direct flow of condensed water to the electrodes. In this study, anode flooding was experimentally investigated with condensed water generated by cooling the anode gas line during a long-term operation (?1600 h). The results showed that the performance of the PEMFC was considerably degraded. After the long-term experiment, the thickness of the anode decreased, and the ratio of Pt to carbon in the anode increased. Moreover, repeated fuel starvation of the half-cell severely oxidized the carbon surface due to the high induced potential (>1.5 VRHE). The cyclic voltammogram of the anode in the half-cell experiments indicated that the characteristic feature of the oxidized carbon surface was similar to that of the anode in the single cell under anode flooding conditions during the long-term experiment. Therefore, repeated fuel starvation by anode flooding caused severe carbon corrosion in the anode because the electrode potential locally increased to >1.0 VRHE. Consequently, the density of the tri-phase boundary decreased due to the corrosion of carbons supporting the Pt nanoparticles in the anode.

Mansu Kim; Namgee Jung; KwangSup Eom; Sung Jong Yoo; Jin Young Kim; Jong Hyun Jang; Hyoung-Juhn Kim; Bo Ki Hong; EunAe Cho

2014-01-01T23:59:59.000Z

343

CRC fuel rating program: road octane performance of oxygenates in 1982 model cars  

SciTech Connect (OSTI)

Because of the widespread interest in the use of alcohols and ethers as gasoline blending components, this program was conducted to evaluate the effects of several oxygenates on gasoline octane performance and to evaluate the effects of car design features such as engine and transmission type. Five oxygenates were evaluated at two nominal concentrations, 5 and 10 volume%, at both regular- and premium-grade octane levels: methanol (MeOH), ethanol (ETOH), isopropanol (IPA), tertiary butanol (TBA), and methyl tertiary butyl ether (MTBE). A blend of 5% MeOH and 5 percent TBA was also tested at both octane levels. Twenty-eight unleaded fuels, including four hydrocarbon fuels, two hydrocarbon fuels plus toluene, and twenty-two oxygenated fuels, were rated in duplicate in thirty-eight cars using the Modified Uniontown Technique (CRC Designation F-28-75 described in Appendix C), plus some additional instructions. All testing was done on chassis dynamometers. Ratings were obtained at full throttle with all thirty-eight cars, and at the most critical part-throttle condition (occurring with manifold vacuum of 4 in. Hg (13.5 kPa) or greater above the full-throttle vacuum) with nine cars.

Not Available

1985-07-01T23:59:59.000Z

344

Performance data of a proton exchange membrane fuel cell using H{sub 2}/CO as fuel gas  

SciTech Connect (OSTI)

The performance of a proton exchange membrane fuel cell (PEMFC) was evaluated at 80 C in H{sub 2} with defined amounts of CO (25 to 250 ppm) and pure oxygen. Membrane electrode assemblies (MEAs) were made using Nafion{trademark} 117 with carbon-supported dispersed Pt, Pt{sub 0.7}Ru{sub 0.3}, and Pt{sub 0.5}Ru{sub 0.5} as anode catalysts, and Pt as a cathode catalyst. For comparison the MEAs were first characterized in H{sub 2}/O{sub 2}. In H{sub 2}/CO//O{sub 2} steady-state current-voltage curves were obtained after a poisoning period. It was found that the performance of the cell depends strongly on the CO concentration and the anode catalyst used. For Pt{sub 0.5}Ru{sub 0.5} as anode catalyst, the maximum power density in H{sub 2}/CO//O{sub 2} was enhanced by a factor of four compared with a Pt anode catalyst. Using Pt{sub 0.5}Ru{sub 0.5} no difference in power density was found between pure H{sub 2} and H{sub 2}/100 ppm CO up to current densities of about 0.4 cm{sup {minus}2}.

Oetjen, H.F.; Schmidt, V.M.; Stimming, U.; Trila, F. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik

1996-12-01T23:59:59.000Z

345

Empirical Performance Model-Driven Data Layout Optimization and Library Call Selection for Tensor Contraction Expressions  

SciTech Connect (OSTI)

Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best choice of parameters such as tile size and degree of loop unrolling is determined by executing different versions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation. While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like library generators, its effectiveness can be limited by the accuracy of the performance models used. In this paper, we describe an approach where a class of computations is modeled in terms of constituent operations that are empirically measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout optimization together with the selection of library calls and layout transformations in the context of the Tensor Contraction Engine, a compiler for a high-level domain-specific language for expressing computational models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements on representative computations from quantum chemistry.

Lu, Qingda; Gao, Xiaoyang; Krishnamoorthy, Sriram; Baumgartner, Gerald; Ramanujam, J.; Sadayappan, Ponnuswamy

2012-03-01T23:59:59.000Z

346

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

347

Optimization of channel geometry in a proton exchange membrane (PEM) fuel cell.  

E-Print Network [OSTI]

??Bipolar plates are the important components of the PEM fuel cell. The flow distribution inside the bipolar plate should be uniform. Non-uniform flow distribution inside… (more)

Kasukurthi, Jephanya

2009-01-01T23:59:59.000Z

348

Development, Optimization and Validation of Gas Chromatographic Fingerprinting of Brazilian Commercial Diesel Fuel for Quality Control  

Science Journals Connector (OSTI)

......Science and Technology - IFSP, Campus...three-step development, optimization...described for gas chromatography...Engineering for Gas Turbines and Power...methodology - A gas chromatography...Heyden Y.V. Development, optimization......

Bruno César Diniz Brito dos Santos; Danilo Luiz Flumignan; José Eduardo de Oliveira

2012-10-01T23:59:59.000Z

349

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect (OSTI)

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

350

Performance and degradation of metal-supported solid oxide fuel cells with impregnated electrodes  

Science Journals Connector (OSTI)

Abstract Metal-supported solid oxide fuel cells (MS-SOFCs) containing porous 430L stainless steel supports, YSZ electrolytes and porous YSZ cathode backbones are fabricated by tape casting, laminating and co-firing in a reducing atmosphere. Nano-scale Ni and La0.6Sr0.4Fe0.9Sc0.1O3?? (LSFSc) coatings are impregnated onto the internal surfaces of porous 430L and YSZ, acting as the anode and the cathode catalysts, respectively. The resulting MS-SOFCs exhibit maximum power densities of 193, 418, 636 and 907 mW cm?2 at 650, 700, 750 and 800 °C, respectively. Nevertheless, a continuous degradation in the fuel cell performance is observed at 650 °C and 0.7 V during a 200-h durability measurement. Possible degradation mechanisms were discussed in detail.

Yucun Zhou; Xianshuang Xin; Junliang Li; Xiaofeng Ye; Changrong Xia; Shaorong Wang; Zhongliang Zhan

2014-01-01T23:59:59.000Z

351

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect (OSTI)

The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700? to 900?C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700?, 750?, and 800?C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800?C. The electrical performance of SOFC samples suffered less than 1% in when exposed to contaminants such as HCl(g), Hg(g), and Zn(g), and SbO(g) at levels of 8 ppm and above. AsH3 vapor at 0.5 ppm did not affect the electrical performance of an SOFC sample even after 1000 h at 750?C. In Phase II of the program, long-term tests will be performed with multiple contaminants at a temperature range of 750? to 850?C. These tests will be at contaminant levels typical of coal-derived gas streams that have undergone gas cleanup using Selexol technology. The chemical nature of the contaminant species will be identified at the operating temperature of SOFC and compare them with thermodynamic equilibrium calculations. The results of the testing will be used to recommend the sensitivity limits for SOFC operation and to assess the reduction in the service life of the SOFC for trace level contaminants.

Gopala N. Krishnan, Palitha Jayaweera, Jordi Perez, M. Hornbostel, John. R. Albritton and Raghubir P. Gupta

2007-10-31T23:59:59.000Z

352

Performance Optimization of a Photovoltaic Generator with an Active Power Filter Application  

E-Print Network [OSTI]

1 Performance Optimization of a Photovoltaic Generator with an Active Power Filter Application (MPPT) for photovoltaic (PV) systems maximizes the power that can be transferred from the PV system), a constant voltage on the DC side of the inverter was proposed, it is a photovoltaic generator which is used

Paris-Sud XI, Université de

353

Performance Optimization by Wire and Buffer Sizing Under the Transmission Line Model \\Lambda  

E-Print Network [OSTI]

Performance Optimization by Wire and Buffer Sizing Under the Transmission Line Model \\Lambda Tai to the time­of­flight delay of a line, it is necessary to consider the transmission line behavior for de­ lay on this formula, we show the property that the minimum delay for a transmission line with reflection occurs when

Chen, Tai-Chen

354

The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic  

E-Print Network [OSTI]

The Influence of Heat Transfer Irreversibilities on the Optimal Performance of Diabatic is only slightly dependent on the heat transfer law considered. In the limit of an infinite number of trays even this column with resistance to transfer of heat becomes reversible. 1 #12;Keywords Diabatic

Salamon, Peter

355

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits  

E-Print Network [OSTI]

Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

Carloni, Luca

356

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

357

Metallic Interconnects for Solid Oxide Fuel Cell: Performance of Reactive Element Oxide Coating During 10, 20 and 30 Months Exposure  

Science Journals Connector (OSTI)

One of challenges in improving the performance and cost-effectiveness of SOFCs (Solid Oxide Fuel Cells) is the development of suitable interconnect materials. Chromia-forming alloys and especially ferritic sta...

S. Fontana; S. Chevalier; G. Caboche

2012-12-01T23:59:59.000Z

358

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters  

Broader source: Energy.gov [DOE]

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

359

H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

2014-03-01T23:59:59.000Z

360

Effect of oxygen on performance and mass transport in a single-cell thermionic fuel element  

SciTech Connect (OSTI)

The introduction of tracer amounts of oxygen into the interelectrode gap of a thermionic converter has been shown to improve converter performance. Excess oxygen, however, increases the loss rate of emitter material, reducing the converter performance and shortening its lifetime, owing to the increase in the effective emissivity of the electrodes, the change in the collector work function, and the deposition of emitter material oxides on spacers and insulators. In this paper, a model was developed, which calculated the emitter material loss rate, composition of the emitter material deposits on the collector surface and investigated the effect on performance of a single-cell Thermionic Fuel Element (TFE) in the presence of oxygen and cesium oxides in the interelectrode gap. The amount of oxygen and the cesium pressure in the interelectrode gap were varied parametrically and the TFE volt-ampere characteristics, and axial distributions of current density and emitter material loss rate along the TFE were calculated.

Paramonov, D.V.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a  

E-Print Network [OSTI]

significantly improve the fuel economy of FCHVs. Rodatz et al. [2] used the equivalent consumption minimization combination in maximizing the fuel economy. For the engine scaling, in particular, they replaced the linear strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid

Peng, Huei

362

Optimizing performance per watt on GPUs in High Performance Computing: temperature, frequency and voltage effects  

E-Print Network [OSTI]

The magnitude of the real-time digital signal processing challenge attached to large radio astronomical antenna arrays motivates use of high performance computing (HPC) systems. The need for high power efficiency (performance per watt) at remote observatory sites parallels that in HPC broadly, where efficiency is an emerging critical metric. We investigate how the performance per watt of graphics processing units (GPUs) is affected by temperature, core clock frequency and voltage. Our results highlight how the underlying physical processes that govern transistor operation affect power efficiency. In particular, we show experimentally that GPU power consumption grows non-linearly with both temperature and supply voltage, as predicted by physical transistor models. We show lowering GPU supply voltage and increasing clock frequency while maintaining a low die temperature increases the power efficiency of an NVIDIA K20 GPU by up to 37-48% over default settings when running xGPU, a compute-bound code used in radio...

Price, D C; Barsdell, B R; Babich, R; Greenhill, L J

2014-01-01T23:59:59.000Z

363

Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells  

Science Journals Connector (OSTI)

Further device optimization studies are needed to optimize catalysts and MEA fabrication procedure to improve the compatibility between the interface of catalyst and ionomer. ... membrane fuel cells - performances are currently limited by the electrode architectures that have been optimized for use in PEM fuel cells but not alk. ...

Nanwen Li; Yongjun Leng; Michael A. Hickner; Chao-Yang Wang

2013-05-30T23:59:59.000Z

364

Impact of Fuel Properties on Light-Duty Engine Performance and Emissions  

Broader source: Energy.gov [DOE]

Describes the effects of seven fuels with significantly different fuel properties on a state-of-the-art light-duty diesel engine. Cetane numbers range between 26 and 76 for the investigated fuels.

365

NERSC and HDF Group Optimize HDF5 Library to Improve I/O Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and HDF Group and HDF Group Optimize HDF5 Library to Improve I/O Performance NERSC and HDF Group Optimize HDF5 Library to Improve I/O Performance June 28, 2010 A common complaint among air travelers on short trips is that the time it takes to get in and out of the airplane and airports can be as long as the flight itself. In computer terms, that's a classic input/output (I/O) problem. Supercomputer users sometimes face a similar problem: the computer tears through the calculations with amazing speed, but the time it takes to write the resulting data to disk ends up slowing down the whole job. There are several layers of software that deal with I/O on high performance computing (HPC) systems. The filesystem software, such as Lustre or GPFS, is closest to the hardware and deals with the physical access and storage

366

Assessment of Cost-optimal Energy Performance Requirements for the Italian Residential Building Stock  

Science Journals Connector (OSTI)

Abstract Directive 2010/31/EU establishes that Member States must ensure that minimum energy performance requirements for buildings are set with a view to achieve cost-optimal levels. The paper presents a methodology for identifying the cost-optimal levels for the Italian residential building stock, following the Guidelines accompanying the Commission Delegated Regulation No. 244/2012. The methodology is applied to a reference building of the IEE-TABULA project and considering different energy efficiency measures. The energy performance and the global cost calculations are performed according to UNI/TS 11300 and UNI EN 15459, respectively. A new cost optimisation procedure based on a sequential search-optimisation technique considering discrete options is applied.

Vincenzo Corrado; Ilaria Ballarini; Simona Paduos

2014-01-01T23:59:59.000Z

367

Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators  

E-Print Network [OSTI]

A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

2008-01-01T23:59:59.000Z

368

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect (OSTI)

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

369

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

This presentation, which focuses on cathode supports for PEM fuel cells, was given by Yong Wang of PNNL at a February 2007 meeting on new fuel cell projects.

370

Development of Novel Nanomaterials for High-Performance and Low-Cost Fuel Cell Applications.  

E-Print Network [OSTI]

??Proton exchange membrane fuel cells (PEMFCs) are promising energy converting technologies to generate electricity by mainly using hydrogen as a fuel, producing water as the… (more)

Sun, Shuhui

2011-01-01T23:59:59.000Z

371

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

372

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network [OSTI]

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams… (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

373

E-Print Network 3.0 - advanced fuel performance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Liquid Fed Direct Fuel...

374

Computer simulation of optimal functioning regimes with minimum fuel consumption for automotives  

Science Journals Connector (OSTI)

The paper deals with computer simulation that allows the calculus of operating regimes with minimum fuel consumption for road vehicles, using engine’s mechanical characteristics for power and consumption, charact...

Salvadore Mugurel Burciu

2014-10-01T23:59:59.000Z

375

More efficiency in fuel consumption using gearbox optimization based on Taguchi method  

Science Journals Connector (OSTI)

Automotive emission is becoming a critical threat to today’s human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In...

Masoud Goharimanesh; Aliakbar Akbari…

2014-05-01T23:59:59.000Z

376

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Fuel Cell System Water Management Motor Cooling HumidifierComp. Motor Power SM Outlet Mass Flow -C- Desired RH WaterP motor , 0 k comp = P comp P comp , 0 Thermal and water

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

377

Optimization of compost fermentation of glycerol by-product discharged from biodiesel fuel production process  

Science Journals Connector (OSTI)

Development of a cheap system for reuse of glycerol by-product discharged from the biodiesel fuel (BDF) production process is needed in parallel with development of ... in the compost. Finally, a material cost evaluation

Yuta Sadano; Ryota Toshimitsu; Jiro Kohda…

2010-11-01T23:59:59.000Z

378

A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE  

SciTech Connect (OSTI)

The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.

Jorge Navarro

2013-12-01T23:59:59.000Z

379

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

380

Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India  

Science Journals Connector (OSTI)

Global transportation-related CO2 emissions are expected to substantially increase by 2050, with a majority of growth coming from rapidly developing countries like India. To understand the potential for using hybrid vehicles to limit the CO2 emissions growth, this paper compares driving conditions and the fuel savings potential of hybrids in the USA and India. It is shown that hybrids offer more fuel savings potential in India than in the USA, largely because of the limited highway driving in India. In order of relative importance, the analysis shows that fuel savings from power-split hybrids come from: 1) enabling higher efficiency engine operation; 2) energy recovered from regenerative braking; 3) engine shutdown. This understanding of the fuel savings mechanisms of hybrids and their relative importance is used in assessing how smaller battery capacities for hybrids in India can be used to reduce costs for this highly cost-sensitive market while preserving fuel savings. A parametric analysis of battery size on fuel savings mechanisms is carried out, and it is shown that hybrid vehicles for Indian driving conditions should ideally have a power capacity between 15 and 20 kW, with 10 kW as a lower limit.

Samveg Saxena; Amol Phadke; Anand Gopal; Venkat Srinivasan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Accounting for the effects of rehabilitation actions on the reliability of flexible pavements: performance modeling and optimization  

E-Print Network [OSTI]

A performance model and a reliability-based optimization model for flexible pavements that accounts for the effects of rehabilitation actions are developed. The developed performance model can be effectively implemented in all the applications...

Deshpande, Vighnesh Prakash

2009-05-15T23:59:59.000Z

382

Quantitative Cultures of Bronchoscopically Obtained Specimens Should Be Performed for Optimal Management of Ventilator-Associated Pneumonia  

Science Journals Connector (OSTI)

...Performed for Optimal Management of Ventilator-Associated...Tennessee Health Science Center, Memphis...semiquantitative approach. We have asked...using invasive approaches supports the general...performed for optimal management in patients with...improved using this approach. At the same time...

Vickie Baselski; J. Stacey Klutts

2013-01-02T23:59:59.000Z

383

Effects of mesh and interconnector design on solid oxide fuel cell performance  

Science Journals Connector (OSTI)

Abstract In this study, three different nickel based meshes are investigated as an anode side current collector and flow-field for solid oxide fuel cells (SOFCs) to reduce the fabrication cost. The same meshes are also tested on the conventional interconnectors with machined gas channels for comparison. Eight different short stacks are installed for this purpose. The characterizations of the short stacks are achieved via performance tests together with electrochemical impedance spectroscopy analyses. The experimental results reveal that the woven nickel mesh provides the required current collection and can act as an anode flow-field. It is also found that the spot welding of this mesh significantly improves the cell performance due to the enhanced contact between the mesh and the interconnector. Therefore, the spot welded nickel mesh can be directly employed on the anode interconnector as an effective anode current collector and flow-field without machining gas channels to reduce the SOFC cell/stack fabrication cost.

Murat Canavar; Yuksel Kaplan

2014-01-01T23:59:59.000Z

384

Dual-fuel natural gas/diesel engines: Technology, performance, and emissions. Topical report, February 1993-November 1994  

SciTech Connect (OSTI)

An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NOx and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

Turner, S.H.; Weaver, C.S.

1994-11-01T23:59:59.000Z

385

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

Broader source: Energy.gov [DOE]

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 – October 1, 2009

386

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

387

Alternative fuels for low emissions and improved performance in CI and heavy duty engines  

SciTech Connect (OSTI)

Contents include: Limited durability of the diesel engine with a dual-fuel system on neat sunflower oil; Analysis and testing of a high-pressure micro-compressor; Spark-assisted alcohol operation in a low heat rejection engine; Combustion improvement of heavy-duty methanol engine by using autoignition system; Clean Fleet Alternative Fuels demonstration project; Vehicle fuel economy -- the Clean Fleet Alternative Fuels project; Safety and occupational hygiene results -- Clean Fleet Alternative Fuels project; Vehicle reliability and maintenance -- Clean Fleet Alternative Fuels project; Flammability tests of alcohol/gasoline vapors; Flame luminosity enhancement of neat methanol fuel by non-aromatic hydrocarbon additives; and more.

NONE

1995-12-31T23:59:59.000Z

388

EXPERIMENTAL STUDY OF USING EMULSIFIED DIESEL FUEL ON THE PERFORMANCE AND POLLUTANTS EMITTED FROM FOUR STROKE WATER COOLED DIESEL ENGINE  

Science Journals Connector (OSTI)

A water?cooled four stroke four cylinder direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0% 5% 10% 15% 20% 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that in general using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm the torque the BMEP and efficiency are found to have maximum values under these conditions. CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

A. Sakhrieh; R. H. Fouad; J. A. Yamin

2009-01-01T23:59:59.000Z

389

Incremental costs and optimization of in-core fuel management of nuclear power plants  

E-Print Network [OSTI]

This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

Watt, Hing Yan

1973-01-01T23:59:59.000Z

390

Combined cooling, heating and power: A review of performance improvement and optimization  

Science Journals Connector (OSTI)

Abstract This paper presents a review on combined cooling, heating, and power (CCHP) systems. This work summarizes the methods used to perform energetic and exergetic analyses, system optimization, performance improvement studies, and development and analysis of CCHP systems, as reported in existing literature. In addition, this work highlights the most current research and emerging trends in CCHP technologies. It is envisioned that the information collected in this review paper will be a valuable source of information, for researchers, designers, and engineers, and provides direction and guidance for future research in CCHP technology.

Heejin Cho; Amanda D. Smith; Pedro Mago

2014-01-01T23:59:59.000Z

391

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect (OSTI)

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

392

Nanostructured Polyaniline/Titanium Dioxide Composite Anode for Microbial Fuel Cells  

Science Journals Connector (OSTI)

Optimization of the anode shows that the composite with 30 wt % PANI gives the best bio- and electrocatalytic performance. ... The catalytic performance of the composite anode in microbial fuel cells can be optimized by adjusting the PANI percentage in the composite, and the composite with 30 wt % PANI gives the highest bio- and electrocatalytic performance. ... To optimize and develop energy prodn. ...

Yan Qiao; Shu-Juan Bao; Chang Ming Li; Xiao-Qiang Cui; Zhi-Song Lu; Jun Guo

2007-12-14T23:59:59.000Z

393

SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

2013-09-01T23:59:59.000Z

394

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

395

Part-load performance and emissions of a spark ignition engine fueled with RON95 and RON97 gasoline: Technical viewpoint on Malaysia’s fuel price debate  

Science Journals Connector (OSTI)

Abstract Due to world crude oil price hike in the recent years, many countries have experienced increase in gasoline price. In Malaysia, where gasoline are sold in two grades; RON95 and RON97, and fuel price are regulated by the government, gasoline price have been gradually increased since 2009. Price rise for RON97 is more significant. By 2014, its per liter price is 38% more than that of RON95. This has resulted in escalated dissatisfaction among the mass. People argued they were denied from using a better fuel (RON97). In order to evaluate the claim, there is a need to investigate engine response to these two gasoline grades. The effect of gasoline RON95 and RON97 on performance and exhaust emissions in spark ignition engine was investigated on a representative engine: 1.6L, 4-cylinder Mitsubishi 4G92 engine with CR 11:1. The engine was run at constant speed between 1500 and 3500 rpm with 500 rpm increment at various part-load conditions. The original engine ECU, a hydraulic dynamometer and control, a combustion analyzer and an exhaust gas analyzer were used to determine engine performance, cylinder pressure and emissions. Results showed that RON95 produced higher engine performance for all part-load conditions within the speed range. RON95 produced on average 4.4% higher brake torque, brake power, brake mean effective pressure as compared to RON97. The difference in engine performance was more significant at higher engine speed and loads. Cylinder pressure and ROHR were evaluated and correlated with engine output. With RON95, the engine produces 2.3% higher fuel conversion efficiency on average but RON97 was advantageous with 2.3% lower brake specific fuel consumption throughout all load condition. In terms of exhaust emissions, RON95 produced 7.7% lower \\{NOx\\} emission but higher CO2, CO and HC emissions by 7.9%, 36.9% and 20.3% respectively. Higher octane rating of gasoline may not necessarily beneficial on engine power, fuel economy and emissions of polluting gases. Even though there is some advantage using RON97 in terms of emission reduction of CO2, CO and HC, the 38% higher price and higher \\{NOx\\} emission is more expensive in the long run. Therefore using RON95 is economically better and environmentally friendlier. The findings provide some techno-economic evaluation on the fuel price debate that surround the Malaysia’s population in the recent years. The increased of fuel price may have limited their ability to use higher octane gasoline but it did not negatively affecting the users as they perceive.

Taib Iskandar Mohamad; Heoy Geok How

2014-01-01T23:59:59.000Z

396

Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.  

SciTech Connect (OSTI)

The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

Kim, Y S; Hofman, G L [Nuclear Engineering Division

2011-06-01T23:59:59.000Z

397

Risk-based performance analysis for regional hybrid fuel with compressed natural gas option  

Science Journals Connector (OSTI)

Compressed natural gas is widely used for transportation due to its competitive price and less environmental impacts compared with traditional gasoline. With the recent push to implement electric vehicles, it became important to evaluate the current transportation fuelling status and identify best scenarios to move towards greener transportation. This paper presents analysis of hybrid transportation with compressed natural gas as a fuelling option to determine the most effective way to implement regional green transportation. Intelligent modelling and simulation techniques are proposed to model transportation and fuelling process and used as basis for performance modelling and analysis for different scenarios. Compressed natural gas is found to be a superior fuel to gasoline based on given scenario conditions and criteria for regional green hybrid transportation. The proposed scenarios are applied on case studies in Ontario to confirm the high value of compressed natural gas as viable fuelling scenarios.

Hossam A. Gabbar; Raymond Bedard

2012-01-01T23:59:59.000Z

398

The performance of High-Temperature Reactor fuel particles at extreme temperatures  

SciTech Connect (OSTI)

Coated particles embedded in graphitic elements are the fuel for the High-Temperature Reactor (HTR). Experimental investigations of the performance of particles at extremely high temperatures have been conducted to achieve an understanding of coating failure mechanisms and to establish the data base for safety and risk analyses of hypothetical accidents in large- and medium-sized HTRs. The primary mechanism for coating failure and fission product release in the 1900 to 2500/sup 0/C temperature range is thermal decomposition of silicon carbide (SiC). Heating tests have provided the activation energy of this process and the correlation of SiC decomposition with coating failure and subsequent fission product release.

Nabielek, H.; Schenk, W.; Heit, W.; Mehner, A.W.; Goodin, D.T.

1989-01-01T23:59:59.000Z

399

Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment  

Science Journals Connector (OSTI)

Abstract Various countries engaged in the development and fabrication of modern HTGR fuel have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under HTGR operating and accident conditions. Verification and validation studies are conducted by code-to-code benchmarking and code-to-experiment comparisons as part of international exercises. The methodology developed in Germany since the 1980s represents valuable and efficient tools to describe fission product release from spherical fuel elements and TRISO fuel performance, respectively, under given conditions. Continued application to new results of irradiation and accident simulation testing demonstrates the appropriateness of the models in terms of a conservative estimation of the source term as part of interactions with HTGR licensing authorities. Within the European irradiation testing program for HTGR fuel and as part of the former EU RAPHAEL project, the HFR-EU1 irradiation experiment explores the potential for high performance of the presently existing German and newly produced Chinese fuel spheres under defined conditions up to high burnups. The fuel irradiation was completed in 2010. Test samples are prepared for further postirradiation examinations (PIE) including heatup simulation testing in the KÜFA-II furnace at the JRC-ITU, Karlsruhe, to be conducted within the on-going ARCHER Project of the European Commission. The paper will describe the application of the German computer models to the HFR-EU1 irradiation test and compare within the preliminary experimental results as well as with previously conducted, true predictive calculations. Furthermore, results will be compared with the German code development STACY that extends the earlier codes toward new features.

Karl Verfondern; André Xhonneux; Heinz Nabielek; Hans-Josef Allelein

2014-01-01T23:59:59.000Z

400

The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack  

Science Journals Connector (OSTI)

Abstract In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance.

Linfeng Zhang; Jing Xiang

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells  

Science Journals Connector (OSTI)

Abstract High performance anode supported proton-conducting solid oxide fuel cells (PC-SOFC) were fabricated and their performance in syngas was studied. PC-SOFC button cells produced a maximum power density of 812 mW cm?2 in H2 at 750 °C. It was found that the CO-containing feed streams could drastically degrade the performance of PC-SOFC. Based on the experimental results and the theoretical analysis, the detailed process of the CO-induced Ni catalyst deactivation was identified. This process could be divided into three distinguishable stages during the continuous exposure of the Ni catalyst in the CO-containing environment. The first stage could be described using the CO surface active site blocking mechanism, which was further confirmed by CO/H2 competitive adsorption model. The second stage deactivation was proposed to be related to the carbon deposition at TPB (Triple-phase Boundary). The deactivation during this stage was accelerated by the electrochemical conversion of H2. The last stage was attributed to the coking of Ni catalyst and the resulted metal dusting effect.

Ning Yan; Xian-Zhu Fu; Karl T. Chuang; Jing-Li Luo

2014-01-01T23:59:59.000Z

402

Effects of marine atmosphere on the cell performance in molten carbonate fuel cells  

Science Journals Connector (OSTI)

The effects of NaCl, a main component in seawater, on molten carbonate fuel cell (MCFC) performance is investigated using a single cell test with 1, 5, and 10 wt.% NaCl-impregnated cathodes for marine applications. The cell performance increases with increasing amounts of impregnated NaCl in the cathode. This cell performance enhancement is due to the reduction in the charge transfer resistance of the electrode. From the analysis of the electrolyte composition using the inductively coupled plasma (ICP) and ion chromatography (IC) methods after cell operation, it is confirmed that the Na+ ions are accumulated in the carbonate melts, and approximately 80 at.% of the Cl- ions are emitted into the anode outlet as HCl. Expecting that the emitted \\{HCl\\} causes severe corrosion of the utilities, the concentrations of accumulated Na+ ions of emitted \\{HCl\\} in the anode outlet are calculated when air with a sea-salt particle concentration of 5–500 ugm?3 is supplied to the MCFC stack. Although \\{HCl\\} is a very corrosive gas, it is expected that the emitted \\{HCl\\} does not cause severe corrosion because, even at a high sea-salt concentration of 500 ugm?3, the emitted \\{HCl\\} concentration is low enough to operate the stack safely.

Shin Ae Song; Hyun Koo Kim; Hyung Chul Ham; Jonghee Han; Suk Woo Nam; Sung Pil Yoon

2013-01-01T23:59:59.000Z

403

EXPERIMENTAL INVESTIGATION ON PERFORMANCE CHARACTERISTICS OF A DI DIESEL ENGINE USING FUEL DERIVED FROM ORANGE PEEL;.  

E-Print Network [OSTI]

??For more than 70 years, in many countries bio-fuels have played an newlineimportant role as fuel in automobiles as they are renewable, eco-friendly and newlinenon-toxic.… (more)

PURUSHOTHAMAN K

2009-01-01T23:59:59.000Z

404

Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions  

E-Print Network [OSTI]

Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

Bonnet, Nicéphore

2007-01-01T23:59:59.000Z

405

Optimisation of gasoline engine performance and fuel consumption through combination of technologies  

Science Journals Connector (OSTI)

The gasoline engine has undergone intensive development in recent history ... introduction of technologies such as turbocharging and direct fuel injection. In addition to the reduction of part load fuel consumption

Dr.-Ing. Peter Wieske; Bernhardt Lüddecke; Sebastian Ewert…

2009-11-01T23:59:59.000Z

406

Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester  

Science Journals Connector (OSTI)

Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.

B. Gokalp; E. Buyukkaya; H.S. Soyhan

2011-01-01T23:59:59.000Z

407

Highly Conductive Anion Exchange Membrane for High Power Density Fuel-Cell Performance  

Science Journals Connector (OSTI)

membranes (fueled with H or MeOH) and also to identify candidate alk. ... Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidn. of complex fuels beyond hydrogen and methanol. ... Price, S. C.; Ren, X. M.; Jackson, A. C.; Ye, Y. S.; Elabd, Y. A.; Beyer, F. L.Bicontinuous Alkaline Fuel Cell Membranes from Strongly Self-Segregating Block Copolymers Macromolecules 2013, 46, 7332– 7340 ...

Xiaoming Ren; Samuel C. Price; Aaron C. Jackson; Natalie Pomerantz; Frederick L. Beyer

2014-08-05T23:59:59.000Z

408

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect (OSTI)

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

409

Optimizing the design of a hydrogen engine with pilot diesel fuel ignition  

Science Journals Connector (OSTI)

A diesel engine was converted to dual-fuel hydrogen operation, ignition being started by a 'pilot' quantity of diesel fuel but with 65 to 90% of the energy being supplied as hydrogen. With later injection timing, use of delayed port admission of the gas, and a modified combustion chamber, thermal efficiencies were achieved nearly 15% greater than those for diesel as the sole fuel. A 'solid' water injection technique was used to curb knock under full load conditions when the power output equalled or exceeded that of a similar diesel engine. The indicator diagrams under these conditions closely approach those of the Otto cycle. The development was assisted by computer simulation using a novel self-ignition and flame propagation model. The very fast burning rates obtained with stoichiometric hydrogen-air mixtures show combustion to occur within 5 degrees of crank rotation yet Otto cycle thermal efficiency was not achieved. However, greenhouse gases are shown to be reduced by more than 80%, nitrogen oxides by up to 70%, and exhaust smoke by nearly 80%.

S.M. Lambe; H.C. Watson

1993-01-01T23:59:59.000Z

410

Compression ignition engine performance and emission evaluation of industrial oilseed biofuel feedstocks camelina, carinata, and pennycress across three fuel pathways  

Science Journals Connector (OSTI)

Abstract Industrial oilseeds camelina (Camelina sativa L.), carinata (Brassica carinata), and pennycress (Thlaspi arvense L.) offer great potential as biofuel feedstocks due to their non-food nature and positive agronomic attributes. This research focused on compression ignition (CI) engine performance and emissions of these industrial oilseeds as compared to both traditional feedstocks and petroleum diesel. A John Deere 4.5 L test engine was used to evaluate these oils using three fuel pathways (triglyceride blends, biodiesel, and renewable diesel). This engine research represents the first direct comparison of these new biofuel feedstocks to each other and to conventional sources. For some industrial oilseed feedstock and fuel pathway combinations, this study also represents the first engine performance data available. The results were promising, with camelina, carinata, and pennycress engine performance very similar to the traditional oils for each fuel pathway. Fuel consumption, thermal efficiency, and emissions were all were typical as compared to traditional oilseed feedstocks. Average brake specific fuel consumption (bsfc) for the industrial oilseed biofuels was within ±1.3% of the conventional oilseed biofuels for each fuel type. Initial research with triglyceride blends (TGB), formed by blending straight vegetable oil with gasoline, indicate it may be an ideal fuel pathway for farm-scale fuel production, and was compatible with a direct injection CI engine without modification. TGB had lower fuel consumption and a higher thermal efficiency than biodiesel for each feedstock tested. For several categories, TGB performed similar to petroleum diesel. TGB volumetric bsfc was only 1.9% higher than the petroleum runs. TGB combustion characteristics were similar to biodiesel. Biodiesel runs had several emission benefits such as reductions in carbon monoxide (CO), non-methane hydrocarbons (NMHC), volatile organic compounds (VOCs), and formaldehyde (CH20) emissions as compared to TGB runs. The renewable diesels had petroleum-like engine performance and combustion characteristics, while still maintaining some of the benefits of biodiesel such as reduced CO emissions. Nitrogen oxides (NOx) emissions were also 6% lower for renewable diesel runs than petroleum. Both crude and refined oil was used as feedstock, and did not significantly affect engine performance or emissions in a modern CI engine.

A.C. Drenth; D.B. Olsen; P.E. Cabot; J.J. Johnson

2014-01-01T23:59:59.000Z

411

Performance Modeling and Optimization of a High Energy CollidingBeam Simulation Code  

SciTech Connect (OSTI)

An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms.

Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

2006-06-01T23:59:59.000Z

412

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

413

Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX  

SciTech Connect (OSTI)

The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

414

Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

2013-02-11T23:59:59.000Z

415

A Dynamic Performance Analysis on CANDU Fuel Handling System for Operational Improvement  

SciTech Connect (OSTI)

The dynamic performance of the Fueling Machine (F/M) Heavy Water (D{sub 2}O) supply system for Wolsong Nuclear Power Plant (NPP) was evaluated using Modular Modeling System (MMS) computer code. Parametric study has been carried out to investigate the effects of dual common set pressure and the position change rate of series valve on the dynamic behavior of common header pressure and common bleed valve position during the mode changes of supply pressure. The results show that the introduction of the series valve position demand curve and the dual common header set pressure is effective to attenuate the overshoot of common header pressure during mode changes. This does not lead any adverse effects on the system performance of supply pressure control and heavy water supply to F/M during the mode changes. The dynamic evaluation results of the F/M D{sub 2}O supply system will be used for the new control system parameter settings and help to relieve system operators' burdens during the system operation. (authors)

Jeong Mann Kim; Byung Ryul Jung [Korea Power Engineering Company, Inc, 360 9 Mabuk Dong, Giheung-gu Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of); Wan Kyu Park [Korea Hydro and Nuclear Power Company, 167 Samseong-dong, Kangnam-gu, Seoul 135-791 (Korea, Republic of)

2002-07-01T23:59:59.000Z

416

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems Â… Projected Performance and Cost Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

417

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

418

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

419

Performance of an optimally contact-cooled high-heat-load mirror at the APS.  

SciTech Connect (OSTI)

X-ray undulator beamlines at third-generation synchrotrons facilities use either a monochromator or a mirror as the first optical element. In this paper, the thermal and optical performance of an optimally designed contact-cooled high-heat-load x-ray mirror used as the first optical element on the 2ID undulator beamline at the Advanced Photon Source (APS) is reported. It is shown that this simple and economical mirror design can comfortably handle the high heat load of undulator beamlines and provide good performance with long-term reliability and ease of operation. Availability and advantages of such mirrors can make the mirror-first approach to high-heat-load beamline design an attractive alternative to monochromator-first beamlines in many circumstances.

Cai, Z.; Khounsary, A.; Lai, B.; McNulty, I.; Yun, W.

1998-11-18T23:59:59.000Z

420

Vehicle System Impacts of Fuel Cell System Power Response Capability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 01 - 1959 - 01 - 1959 Vehicle System Impacts of Fuel Cell System Power Response Capability Tony Markel and Keith Wipke National Renewable Energy Laboratory Doug Nelson Virginia Polytechnic University and State Institute Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating  

E-Print Network [OSTI]

significantly increase the methanol-crossover rate, producing an unfavorable * Corresponding author. DepartmentEffect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a

Zhao, Tianshou

422

Corrosion performance of structural alloys for oxy-fuel combustion systems.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Fossil Energy is intensely promoting research and development of oxyfuel combustion systems that employ oxygen, instead of air, for burning the fuel. The resulting flue gas primarily consists of H{sub 2}O and CO{sub 2} that facilitates sequestration of CO{sub 2}, thereby leading to reduction in CO{sub 2} emissions. Also, as the oxidant is bereft of N{sub 2}, NO{sub x} emissions are minimized to a great extent from the exhaust gas. Studies at NETL have indicated that oxy-fuel combustion can increase efficiency in the power plants from the current 30-35% to 50-60%. However, the presence of H{sub 2}O/CO{sub 2} and trace constituents like nitrogen and sulfur in the environment at the operating temperatures and pressures can have adverse effects on the corrosion and mechanical properties of structural alloys. Thus, there is a critical need to evaluate the response of structural and turbine materials in simulated H{sub 2}O/CO{sub 2} environments in an effort to select materials that have adequate high temperature mechanical properties and environmental performance. During the past year, a program was initiated to evaluate the corrosion performance of structural alloys in CO{sub 2} and CO{sub 2}-steam environments at elevated temperatures. Materials selected for the study include intermediate-chromium ferritic steels, Fe-Cr-Ni heat-resistant alloys, and nickelbased superalloys. Coupon specimens of several of the alloys were exposed to pure CO{sub 2} at temperatures between 650 and 850C for times up to 1450 h. The corrosion tests in CO{sub 2}-50% steam environment was conducted at temperatures between 650 and 850C for times up to 1250 h. The steam for the experiment was generated by pumping distilled water and converting it to steam in the preheat portion of the furnace, ahead of the specimen exposure location. Preliminary results will be presented on weight change, scale thickness, internal penetration, and microstructural characteristics of corrosion products.

Natesan, K.; Rink, D. L.; Nuclear Engineering Division

2007-01-01T23:59:59.000Z

423

Performance of fuel cells a study on Ip-SODC and DMFC.  

E-Print Network [OSTI]

??As the effects of climate change are increasingly recognised interest has been renewed in the development of clean electricity generation methods. The Solid oxide fuel… (more)

Meadowcroft, Antony David

2014-01-01T23:59:59.000Z

424

Convection-type PEM fuel cell control system performance testing and modeling.  

E-Print Network [OSTI]

??The PEM (Polymer Electrolyte Membrane) fuel cell is a promising technology for mobile applications because of its compactness, low operating temperature, and quick startup time.… (more)

Hoy, Jeannette M.

2008-01-01T23:59:59.000Z

425

Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

426

SPACE-R nuclear power system SC-320 thermionic fuel element performance tests  

SciTech Connect (OSTI)

In 1993 and 1994, the Russian Scientific Research Institute NII NPO ``LUCH`` and Space Power, Inc., (SPI), of San Jose, California, developed a prototype of the single-cell thermionic fuel element (TFE) for the SPACE-R space nuclear power system (NPS). The SPACE-R system was designed as a part of the US Department of Energy`s (DOE) Space Reactor Development Program to develop a long life, space reactor system capable of supplying up to 40 kW(e) output power. The jointly developed SC-320 TFE is a prototype of the next generation thermionic converter for nuclear applications in space. This paper presents the results of the initial demonstration tests and subsequent parametric evaluations conducted on the SC-320 TFE as compared to the calculated performance characteristics. The demonstration tests were conducted jointly by Russian and American specialists at the Thermionic Evaluation Facility (TEF) at the New Mexico Engineering Research Institute (NMERI) of the University of New Mexico in Albuquerque.

Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., Albuquerque, NM (United States); Nikolaev, Y.V. [SIA LUCH Scientific Research Inst., Podolsk (Russian Federation)] [and others

1996-12-31T23:59:59.000Z

427

Performance and Emissions of a Compression Ignition Engine Fueled with Diesel/Oxygenate Blends for Various Fuel Delivery Advance Angles  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus and Ofner,2 and Sorenson and Mikkelsen3 have studied dimethyl ether (DME) in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Although some previous work has revealed the characteristics of diesel/ethanol blends in a compression ignition engine (Satge de Caro et al.,14 Ali et al.15), there, however, is still much work that needs to be done in regard to the application of diesel/methanol blends in compression ignition engines, especially in clarifying the basic combustion and emission. ...

Zuohua Huang; Hongbing Lu; Deming Jiang; Ke Zeng; Bing Liu; Junqiang Zhang; Xibin Wang

2005-02-02T23:59:59.000Z

428

Methodology for predicting long-term fuel-cell performance from short-term testing. Final technical report  

SciTech Connect (OSTI)

The objective of this program was to develop a methodology for predicting long-term fuel cell performance from short-term testing, utilizing a perturbation testing technique. The technique applies small changes of predetermined levels in a predetermined sequence to the operating variables such that the decay mechanisms are not altered. This technique was tested on the phosphoric acid fuel cell (PAFC), because this technology is approaching a mature stage. The initial series of perturbation tests appear to be reasonably successful and a methodology is now available for further refinements. The progress made during the study is detailed.

Patel, D.; Farooque, M.; Maru, H.; Ware, C.

1981-08-01T23:59:59.000Z

429

Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition  

SciTech Connect (OSTI)

Anode-supported yttria stabilized zirconia (YSZ)/samaria doped ceria (SDC) bi-layer electrolytes with uniform thickness and high density were fabricated by pulsed laser deposition at 1000 degrees C. Fuel cells with such bi-layer electrolytes were fabricated and tested, yielding open circuit voltages from 0.94 to 1.0 V at 600-700 degrees C. Power densities from 0.4 to 1.0 W cm{sup -2} at 0.7 V were achieved in air at temperatures of 600-700 degrees C. Cell performance was improved in flowing oxygen, with an estimated peak power density of over 2 W cm{sup -2} at 650 degrees C, assuming the same overall resistance over the entire range of current density. The high cell performance was attributed to the very low ohmic resistance of the fuel cell, owing to the small thickness of the electrolyte. Stable performance was also demonstrated in that the voltage of the fuel cell showed very little change at a constant current density of 1 A cm{sup -2} during more than 400 hours of operation at 650 degrees C in flowing oxygen. SEM analysis of the fuel cell after testing showed that the bi-layer electrolyte had retained its chemical and mechanical integrity.

Lu, Zigui; Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.; Fisher, Daniel; Wu, Naijuan; Ignatiev, Alex

2012-07-15T23:59:59.000Z

430

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

431

2005 DOE Hydrogen Program Review PresentationCOST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

SciTech Connect (OSTI)

The objectives of the program during the past year was to complete Technical Objectives 2 and 3 and initiate Technical Objective 4 are described. To assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2005-04-01T23:59:59.000Z

432

Journal of Power Sources 153 (2006) 6875 Numerical study of a flat-tube high power density solid oxide fuel cell  

E-Print Network [OSTI]

power density (HPD) solid oxide fuel cell (SOFC) is a geometry based on a tubular type SOFC: Flat-tube; High power density (HPD); Solid oxide fuel cell (SOFC); Simulation; Performance; Optimization 1. Introduction A solid oxide fuel cell (SOFC), like any other fuel cell, produces electrical

433

Performance optimization of biological waste treatment by flotation clarification at a chemical manufacturing facility  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc., utilizes a deep-tank activated sludge wastewater treatment system with a dissolved air flotation clarifier (DAF) to effectively treat amine wastes containing residual organics, ammonia-nitrogen and organic nitrogen. The bio-system, a deep tank aeration system, produces a high quality final effluent low in biochemical oxygen demand (BOD), ammonia and organic nitrogen, turbidity and total suspended solids. Prior to installing the DAF, treatment performance was at risk with a gravity clarifier. Waste treatment performance was jeopardized by poor settling bio-flocs and uncontrollable solids-liquid separation problems within the gravity clarifier. The solids settleability problems resulted primarily from mixed liquor nitrogen supersaturation degassing in the clarifier. As a result of the degassing, biomass floated on the gravity clarifier or overflowed the effluent weir. As a result of biomass loss periodically organic carbon and total Kjeldahl nitrogen loadings had to be reduced in order to maintain optimal food-to-mass ratios. As biomass levels dropped within the aeration basin, waste treatment performance was at risk and waste loads had to be decreased causing waste inventories to increase in storage tanks.

Kerecz, B.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Miller, D.R. [Komline-Sanderson, Peapack, NJ (United States)

1995-12-31T23:59:59.000Z

434

Performing a scatterv operation on a hierarchical tree network optimized for collective operations  

DOE Patents [OSTI]

Performing a scatterv operation on a hierarchical tree network optimized for collective operations including receiving, by the scatterv module installed on the node, from a nearest neighbor parent above the node a chunk of data having at least a portion of data for the node; maintaining, by the scatterv module installed on the node, the portion of the data for the node; determining, by the scatterv module installed on the node, whether any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child; and sending, by the scatterv module installed on the node, those portions of data to the nearest neighbor child if any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child.

Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

2013-10-22T23:59:59.000Z

435

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network [OSTI]

I.2. Solar Trigeneration System and Process Integration?????. 3 I.3. Integration of Refrigeration Cycles???????????? 9 I.4. Overall Objective of the Dissertation and Research Challenges??????????????????..??? 11 I.5. Problem... Decomposition????????????????. 12 I.6. Dissertation Overview????????????????? 12 II BACKGROUND AND LITERATURE REVIEW????????? 14 II.1. Solar Collectors???????????????????.. 14 II.2. Performance of the Concentrating Collectors???????? 25 II.3. Solar...

Tora, Eman

2012-02-14T23:59:59.000Z

436

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

SciTech Connect (OSTI)

This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

2002-09-01T23:59:59.000Z

437

Performance of a low-cost iron ore as an oxygen carrier for Chemical Looping Combustion of gaseous fuels  

Science Journals Connector (OSTI)

Abstract This work evaluates the performance of an iron ore, mainly composed of Fe2O3, as an oxygen carrier (OC) for Chemical Looping Combustion (CLC) with gaseous fuels. The OC was characterized by TGA and evaluated in a continuous 500 Wth CLC unit, using CH4, syngas and a PSA off-gas as fuels. The OC was able to fully convert syngas at 880 °C. However, lower conversion rates were observed with methane-containing fuels. The addition of a Ni-based OC was evaluated in order to increase the reactivity of the OC with methane. In spite of this, an absence of catalytic effect was observed for the Ni-based OC. A deep analysis was carried out into the reasons for the absence of catalytic effect of the Ni-based OC. The performance of the iron ore with regard to attrition and fluidization behaviour was satisfactory throughout 50 h of hot operation in the continuous CLC plant. Thus, this low cost material is a suitable OC for gaseous fuels mainly composed of H2 and CO.

Miguel A. Pans; Pilar Gayán; Luis F. de Diego; Francisco García-Labiano; Alberto Abad; Juan Adánez.

2014-01-01T23:59:59.000Z

438

Exploration of Optimization Options for Increasing Performance of a GPU Implementation of a Three-dimensional Bilateral Filter  

SciTech Connect (OSTI)

This report explores using GPUs as a platform for performing high performance medical image data processing, specifically smoothing using a 3D bilateral filter, which performs anisotropic, edge-preserving smoothing. The algorithm consists of a running a specialized 3D convolution kernel over a source volume to produce an output volume. Overall, our objective is to understand what algorithmic design choices and configuration options lead to optimal performance of this algorithm on the GPU. We explore the performance impact of using different memory access patterns, of using different types of device/on-chip memories, of using strictly aligned and unaligned memory, and of varying the size/shape of thread blocks. Our results reveal optimal configuration parameters for our algorithm when executed sample 3D medical data set, and show performance gains ranging from 30x to over 200x as compared to a single-threaded CPU implementation.

Bethel, E. Wes; Bethel, E. Wes

2012-01-06T23:59:59.000Z

439

High Performance Catalytic Heat Exchanger for SOFC Systems - FuelCell Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Heat Catalytic Heat Exchanger for SOFC Systems-FuelCell Energy Background In a typical solid oxide fuel cell (SOFC) power generation system, hot (~900 °C) effluent gas from a catalytic combustor serves as the heat source within a high-temperature heat exchanger, preheating incoming fresh air for the SOFC's cathode. The catalytic combustor and the cathode air heat exchanger together represent the largest opportunity for cost

440

Engine performance and emissions from the combustion of low-temperature Fischerâ??Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends  

Science Journals Connector (OSTI)

The combustion of oxygenated biodiesel (rapeseed methyl ester (RME)) improves the engine-out particulate matter, hydrocarbon and carbon monoxide (CO) emissions, while the low-temperature Fischerâ??Tropsch synthetic paraffinic diesel fuel improves engine-out NOx, CO, hydrocarbon and particulate matter emissions. Blending synthetic diesel (SD) fuel with oxygenated biodiesel could unlock potential performance synergies in the fuel properties (e.g. O2 content in RME and high cetane number of the synthetic fuels) of such blends and benefit engine performance and emissions. The combustion of synthetic diesel fuel/RME blend, named synthetic diesel B50, has shown similar combustion characteristics to diesel fuel, while simultaneous improvements in engine efficiency and smoke-NOx trade-off were achieved by taking advantage of the fuel's properties. The engine thermal efficiency was dependent on the fuel type, and followed the general trend: synthetic diesel > SDB50 > diesel > RME. Therefore, it has been shown that the design of a synthetic fuel with properties similar to the fuel blends presented in this work could improve engine-out NOx, smoke and hydrocarbon emissions and maintain or improve engine performance.

Kampanart Theinnoi; Athanasios Tsolakis; Sathaporn Chuepeng; Andrew P.E. York; Roger F. Cracknell; Richard H. Clark

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance characteristics of the annular core research reactor fuel motion detection system  

SciTech Connect (OSTI)

Recent proof tests have shown that the annular core research reactor (ACRR) fuel motion detection system has reached its design goals of providing high temporal and spatial resolution pictures of fuel distributions in the ACRR. The coded aperture imaging system (CAIS) images the fuel by monitoring the fission gamma rays from the fuel that pass through collimators in the reactor core. The gamma-ray beam is modulated by coded apertures before producing a visible light coded image in thin scintillators. Each coded image is then amplified and recorded by an opticalimage-intensifier/fast-framing-camera combination. The proximity to the core and the coded aperture technique provide a high data collection rate and high resolution. Experiments of CAIS at the ACRR conducted under steady-state operation have documented the beneficial effects of changes in the radiation shielding and imaging technique. The spatial resolutions are 1.7 mm perpendicular to the axis of a single liquid-metal fast breeder reactor fuel pin and 9 mm in the axial dimension. Changes in mass of 100 mg in each resolution element can be detected each frame period, which may be from 5 to 100 ms. This diagnostic instrument may help resolve important questions in fuel motion phenomenology.

Kelly, J.G.; Stalker, K.T.

1983-12-01T23:59:59.000Z

442

Investigation of the Performance of D2O-Cooled High-Conversion Reactors for Fuel Cycle Calculations  

SciTech Connect (OSTI)

This report presents FY13 activities for the analysis of D2O cooled tight-pitch High-Conversion PWRs (HCPWRs) with U-Pu and Th-U fueled cores aiming at break-even or near breeder conditions while retaining the negative void reactivity. The analyses are carried out from several aspects which could not be covered in FY12 activities. SCALE 6.1 code system is utilized, and a series of simple 3D fuel pin-cell models are developed in order to perform Monte Carlo based criticality and burnup calculations. The performance of U-Pu fueled cores with axial and internal blankets is analyzed in terms of their impact on the relative fissile Pu mass balance, initial Pu enrichment, and void coefficient. In FY12, Pu conversion performances of D2O-cooled HCPWRs fueled with MOX were evaluated with small sized axial/internal DU blankets (approximately 4cm of axial length) in order to ensure the negative void reactivity, which evidently limits the conversion performance of HCPWRs. In this fiscal year report, the axial sizes of DU blankets are extended up to 30 cm in order to evaluate the amount of DU necessary to reach break-even and/or breeding conditions. Several attempts are made in order to attain the milestone of the HCPWR designs (i.e., break-even condition and negative void reactivity) by modeling of HCPWRs under different conditions such as boiling of D2O coolant, MOX with different 235U enrichment, and different target burnups. A similar set of analyses are performed for Th-U fueled cores. Several promising characteristics of 233U over other fissile like 239Pu and 235U, most notably its higher fission neutrons per absorption in thermal and epithermal ranges combined with lower ___ in the fast range than 239Pu allows Th-U cores to be taller than MOX ones. Such an advantage results in 4% higher relative fissile mass balance than that of U-Pu fueled cores while retaining the negative void reactivity until the target burnup of 51 GWd/t. Several other distinctions between U-Pu and Th-U fueled cores are identified by evaluating the sensitivity coefficients of keff, mass balance, and void coefficient. The effect of advanced iron alloy cladding (i.e., FeCrAl) on the performance of Pu conversion in MOX fueled cores is studied instead of using standard stainless-steel cladding. Variations in clad thickness and coolant-to-fuel volume ratio are also exercised. The use of FeCrAl instead of SS as a cladding alloy reduces the required Pu enrichment and improves the Pu conversion rate primarily due to the absence of nickel in the cladding alloy that results in the reduction of the neutron absorption. Also the difference in void coefficients between SS and FeCrAl alloys is nearly 500 pcm over the entire burnup range. The report also shows sensitivity and uncertainty analyses in order to characterize D2O cooled HCPWRs from different aspects. The uncertainties of integral parameters (keff and void coefficient) for selected reactor cores are evaluated at different burnup points in order to find similarities and trends respect to D2O-HCPWR.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

443

An Integrated Platform for Engine Performance Simulations and Optimization under Diesel Conditions  

Broader source: Energy.gov [DOE]

The direct injection stochastic reactor model is capable of accurate simulation of combustion under diesel conditions and can also be used to simulate and test different fuels.

444

Vehicle Technologies Office Merit Review 2014: Predicting Microstructure and Performance for Optimal Cell Fabrication  

Broader source: Energy.gov [DOE]

Presentation given by Brigham Young University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

445

Solar-powered/fuel-assisted Rankine-cycle power and cooling system: Simulation method and seasonal performance  

SciTech Connect (OSTI)

The subject of this analysis is a solar cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100/sup 0/C, and it is then superheated to about 600/sup 0/C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of fuel doubles the power cycle's efficiencyas compared to organic Rankine cycles operating at similar collector temperatures. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Transient simulation was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.). One of the conclusions is that the seasonal system COP is 0.82 for the design configuration and that the use of watercooled condensers and flat-plate collectors of higher efficiency increases this value to 1.35.

Lior, N.; Koai, K.

1984-05-01T23:59:59.000Z

446

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

447

Concurrent design and optimization of a star tracker for space applications by identification of critical design parameters and their effect on a performance measure  

E-Print Network [OSTI]

An optimization procedure to be used concurrently with a top-down general design process was developed. The optimization procedure consists of identifying the critical design parameters and analyzing their effect on a performance measure...

Smit, Larissa Christine

2012-06-07T23:59:59.000Z

448

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network [OSTI]

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

449

Low-Load Dual-Fuel Compression Ignition (CI) Engine Operation with an On-Board Reformer and a Diesel Oxidation Catalyst: Effects on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Ideally, homogeneous air fuel mixtures ignited spontaneously exhibit less pollutants and can improve engine efficiency compared to standard diesel combustion, which is based on diffusion combustion. ... Although optimization of the injection timing of the in-cylinder DI fuel (e.g., diesel) aims to ignite the mixture and control the start of combustion (SOC) for the different premixed fuel ratios, the fuel ignition timing is complicated and problematic for a dual-fueled engine under a number of engine-operating conditions (e.g., low loads and use of residual gas trapping). ... Deactivation due to coking of a single Ni/Pt-based catalyst is significant, but operation using a platinum-ceria catalyst in line with a Ni-based steam-reforming catalyst allows acceptable efficiencies. ...

A. Tsolakis; R. Torbati; A. Megaritis; A. Abu-Jrai

2009-10-07T23:59:59.000Z

450

Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion  

SciTech Connect (OSTI)

The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

Wayne Penrod

2006-12-31T23:59:59.000Z

451

Performance and emission parameters optimization of mahua (Madhuca indica) based biodiesel in direct injection diesel engine using response surface methodology  

Science Journals Connector (OSTI)

Mahua oil ethyl ester was prepared from mahua oil using potassium hydroxide as catalyst by trans-esterification. The important fuel properties of mahua biodiesel blends were compared with those of high speed diesel and biodiesel standards. Variation of brake specific fuel consumption (BSFC) brake thermal efficiency (BTE) Pmax CO NOx hydrocarbons and smoke opacity across compression ratio blending ratio and load were studied successfully using response surface methodology based on Central composite rotatable design. The trends similar to general theory of compression ignition engines (CI) were obtained. Optimum performance and emission parameters were determined by considering the significant variables affecting the diesel engine. Significant reduction in emissions at 23% blending ratio were observed as compared to neat diesel at optimum input variables. Hence mahua biodiesel is an environment friendly alternate fuel over diesel and has good scope to run the compression ignition engines.

Sunil Dhingra; Gian Bhushan; Kashyap Kumar Dubey

2013-01-01T23:59:59.000Z

452

Performance characteristic of a tubular carbon-based fuel cell short stack coupled with a dry carbon gasifier  

Science Journals Connector (OSTI)

Abstract A carbon gasified carbon-based fuel cell (CFC) short stack was fabricated and investigated for generating effective carbon fuel cell reactions. Anode-supported tubular CFC cells with a 45 cm2 active electrode area were used to manufacture the CFC short stack, which was coupled with a dry gasifier induced by a reverse Boudouard reaction. Activated carbon (BET area 1800 m2/g) powder was mixed with K2CO3 powder (5 wt.%) and used to fill a dry gasifier as a solid carbon fuel, and pure CO2 gas was supplied to the gasifier. The CO fuel generated by the reverse Boudouard reaction in the dry gasifier increased the performance of the CFC short stack. The tubular CFC short stack showed a maximum power of 29.4 W at 800 °C. It was operated under a range of operating conditions by changing the operating temperature, flow rate of the pure CO2 and the thermal cycle operation. The results indicate that the fabricated tubular CFC is a promising power generation system candidate for many practical applications, such as residential power generation (RPG) and stationary power systems.

Tak-Hyoung Lim; Sun-Kyung Kim; Ui-Jin Yun; Jong-Won Lee; Seung-Bok Lee; Seok-Joo Park; Rak-Hyun Song

2014-01-01T23:59:59.000Z

453

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

454

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

455

Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel  

Science Journals Connector (OSTI)

Abstract The diesel/methanol dual fuel (DMDF) combustion mode was conducted on a turbo-charged, inter-cooling diesel engine with 6-cylinder for the heavy duty (HD) vehicle. In DMDF mode, methanol is injected into the intake port to form lean air/methanol premixed mixture, and then ignited by the direct-injected diesel fuel in cylinder. This study is aimed to investigate the effect of diesel injection pressure on the characteristics of performance and exhaust emissions from the engine with common-rail fuel system. The experimental results show that at low injection pressure, the IMEP of DMDF mode is lower than that of pure diesel combustion (D) mode. COVIEMP of DMDF mode firstly decreases and then increases with increasing injection pressure, and it remains under 2.1% for all the tests. It is found that the combustion duration in DMDF mode becomes shorter, the maximum cylinder pressure and the peak heat release rate increase, and CA50 gets close to the top dead center as the injection pressure increases. BSFC of DMDF mode decreases with the increase of injection pressure, and is lower than that of D mode for injection pressure over 115 MPa. Both of NOX and smoke emissions are reduced in DMDF mode. But smoke decreases and NOX increases as the diesel injection pressure increases in DMDF mode. DMDF generates lower NO and CO2 emissions, while produces higher HC, CO, andNO2 emissions compared to D mode. As the diesel injection pressure increases, CO and HC emissions are decreased, however, CO2 and NO2 emissions are slightly increased.

Junheng Liu; Anren Yao; Chunde Yao

2015-01-01T23:59:59.000Z

456

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network [OSTI]

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

Bellanger, Philippe

2012-06-07T23:59:59.000Z

457

Measure Guideline: Condensing Boilers - Control Strategies for Optimizing Performance and Comfort in Residential Applications  

SciTech Connect (OSTI)

The combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater has become a common option for high-efficiency residential space heating in cold climates. While there are many condensing boilers available on the market with rated efficiencies in the low to mid 90% efficient range, it is imperative to understand that if the control systems are not properly configured, these heaters will perform no better than their non-condensing counterparts. Based on previous research efforts, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency (Arena 2010). It was found that there is a significant lack of information for contractors on how to configure the control systems to optimize overall efficiency. For example, there is little advice on selecting the best settings for the boiler reset curve or how to measure and set flow rates in the system to ensure that the return temperatures are low enough to promote condensing. It has also been observed that recovery from setback can be extremely slow and, at times, not achieved. Recovery can be affected by the outdoor reset control, the differential setting on the boiler and over-sizing of the boiler itself. This guide is intended for designers and installers of hydronic heating systems interested in maximizing the overall system efficiency of condensing boilers when coupled with baseboard convectors. It is applicable to new and retrofit applications.

Arena, L.

2013-05-01T23:59:59.000Z

458

Exergy analysis of PEM fuel cells for marine applications  

Science Journals Connector (OSTI)

Fuel cells have a promising potential use in stationary and mobile power generation systems, as well as in automotive, aerospace or marine industries. At present, the main field of marine applications of fuel cells is submarines. Hydrogen/oxygen polymer electrolyte membrane (PEM) fuel cells are commonly used in this field. Storage of oxygen in liquid form is the optimal solution. Hydrogen can be stored in carbon-nanofibres or metallic hydrides, for example, or in liquid fuels, as alcohols, with further generation of the hydrogen required on-board. The objective of this study is to perform an exergetic analysis of two possibilities of using PEM fuel cells on surface ships and submarines: hydrogen/oxygen PEM fuel cells fed with hydrogen generated by reforming of methanol, and Direct Methanol Fuel Cells directly fed with liquid methanol. To do this, exergy losses and exergetic efficiencies are calculated for both configurations at selected optimal operation points.

T.J. Leo; J.A. Durango; E. Navarro

2010-01-01T23:59:59.000Z

459

Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances  

SciTech Connect (OSTI)

From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

2009-09-01T23:59:59.000Z

460

International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety  

SciTech Connect (OSTI)

The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

Not Listed

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "optimal fuel performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Design and optimization of high-performance low-power CMOS VLSI interconnects  

E-Print Network [OSTI]

total delay and energy dissipation of pipelined globaltotal energy of parallel wires under the total throughput constraint [15]. Max-TPA is utilized for optimizing global

Zhang, Yulei

2011-01-01T23:59:59.000Z

462

Domain Decomposition Methods in Optimal Flow Control for High Performance Computing.  

E-Print Network [OSTI]

??This thesis is concerned with linear and non-linear optimal flow control problems which are modeled by systems of partial differential equations. The numerical treatment of… (more)

Ketelaer, Eva

2013-01-01T23:59:59.000Z

463

Effects of a Combustion Improver on Diesel Engine Performance and Emission Characteristics When Using Three-Phase Emulsions as an Alternative Fuel  

Science Journals Connector (OSTI)

The application of an emulsification technique to prepare the fuel has been considered to be one of the possible approaches to reduce the production of diesel engine pollutants, as well as the rate of fuel consumption. ... 8 The effects on engine performance and emission characteristics of diesel engines when using diglyme as an oxygenated additive for diesel fuels, W/O emulsions, and O/W/O emulsions are studied in this paper. ... A lower oxygen component was consumed for burning the O/W/O diesel emulsion, leading to a larger excess-oxygen concentration in the exhaust gas, compared to that of neat diesel fuel, as shown in Figure 7. ...

Cherng-Yuan Lin; Kuo-Hua Wang

2004-01-28T23:59:59.000Z

464

Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL  

SciTech Connect (OSTI)

The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

2009-05-01T23:59:59.000Z

465