Sample records for optimal fuel performance

  1. Design optimization and analysis of coated particle fuel using advanced fuel performance modeling techniques

    E-Print Network [OSTI]

    Soontrapa, Chaiyod

    2005-01-01T23:59:59.000Z

    Modifying material properties provides another approach to optimize coated particle fuel used in pebble bed reactors. In this study, the MIT fuel performance model (TIMCOAT) was applied after benchmarking against the ...

  2. Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL] [ORNL; Eaton, Scott J [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

    2009-01-01T23:59:59.000Z

    The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

  3. Carver Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26,ComputersTrinitytheOptimization Performance

  4. Influence of electrode stress on proton exchange membrane fuel cell performance : experimental characterization and power optimization

    E-Print Network [OSTI]

    Gallant, Betar M. (Betar Maurkah)

    2008-01-01T23:59:59.000Z

    Compressive stress applied to the electrode area of a Proton Exchange Membrane (PEM) fuel cell is known to significantly affect power output. In practice, electrode stress arises during operation due to the clamping force ...

  5. OPTIMAL DESIGN OF HYBRID FUEL CELL VEHICLES

    E-Print Network [OSTI]

    Jeongwoo Han; Michael Kokkolaras; Panos Papalambros

    Fuel cells are being considered increasingly as a viable alternative energy source for automobiles because of their clean and efficient power generation. Numerous technological concepts have been developed and compared in terms of safety, robust operation, fuel economy, and vehicle performance. However, several issues still exist and must be addressed to improve the viability of this emerging technology. Despite the relatively large number of models and prototypes, a model-based vehicle design capability with sufficient fidelity and efficiency is not yet available in the literature. In this article we present an analysis and design optimization model for fuel cell vehicles that can be applied to both hybrid and non-hybrid vehicles by integrating a fuel cell vehicle simulator with a physics-based fuel cell model. The integration is achieved via quasi-steady fuel cell performance maps, and provides the ability to modify the characteristics of fuel cell systems with sufficient accuracy (less than 5 % error) and efficiency (98 % computational time reduction on average). Thus, a vehicle can be optimized subject to constraints that include various performance metrics and design specifications so that the overall efficiency of the hybrid fuel cell vehicle can be improved by 14 % without violating any constraints. The obtained optimal fuel cell system is also compared to other, not vehicle-related, fuel cell systems optimized for maximum power density or maximum efficiency. A tradeoff between power density and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency because it operates in a wider current region. When optimizing the fuel cell

  6. PDSF Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize832 2.860 2.864PDSFOptimization

  7. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer a Math Library Performance Core

  8. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoid Nanosheets Offer a Math Library Performance

  9. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31T23:59:59.000Z

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  10. Nitride fuel performance 

    E-Print Network [OSTI]

    Reynaud, Sylvie Marie Aurel?ie

    2002-01-01T23:59:59.000Z

    The purpose of this work was to assess the potential of nitride fuels in the current context of the nuclear industry. Nitride fuels systems have indeed been for the past decade the subject of new interest from the international community...

  11. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30T23:59:59.000Z

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  12. Cetane Performance and Chemistry Comparing Conventional Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels...

  13. Nitride fuel performance

    E-Print Network [OSTI]

    Reynaud, Sylvie Marie Aurel?ie

    2002-01-01T23:59:59.000Z

    fuel is never separated from the other, highly radioactive, minor actinides. This will act as a very efficient proliferation resistance feature. The partitioning and transmutation processes are currently in the development stage and active research... methods are available for this enrichment: low temperature rectification, chemical exchange, gaseous diffusion, centrifugation, electronic discharge, and laser beam separation (Adamov et al. , 1997), with this last one being preferred. Table 2 presents...

  14. MPQC: Performance Analysis and Optimization

    SciTech Connect (OSTI)

    Sarje, Abhinav; Williams, Samuel; Bailey, David

    2012-11-30T23:59:59.000Z

    MPQC (Massively Parallel Quantum Chemistry) is a widely used computational quantum chemistry code. It is capable of performing a number of computations commonly occurring in quantum chemistry. In order to achieve better performance of MPQC, in this report we present a detailed performance analysis of this code. We then perform loop and memory access optimizations, and measure performance improvements by comparing the performance of the optimized code with that of the original MPQC code. We observe that the optimized MPQC code achieves a significant improvement in the performance through a better utilization of vector processing and memory hierarchies.

  15. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Passerini, S.; Kazimi, M. S.; Shwageraus, E. [Massachusetts Inst. of Technology, Dept. of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02138 (United States)

    2012-07-01T23:59:59.000Z

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  16. Hopper Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010 A

  17. A GUIDE TO FUEL PERFORMANCE

    SciTech Connect (OSTI)

    LITZKE,W.

    2004-08-01T23:59:59.000Z

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

  18. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

  19. NREL: Transportation Research - Fuels Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway imageFuelFuels

  20. Fuel Performance Annual Report for 1979

    SciTech Connect (OSTI)

    Tokar, M.; Mailey, W. J.; Cunningham, M. E.

    1981-01-01T23:59:59.000Z

    This annual report, the second in a series, provides a brief description of fuel performance in commercial nuclear power plants. Brief summaries are given of fuel surveillance programs, fuel performance problems, and fuel design changes. References to additional, more detailed, information and related NRC evaluation are provided.

  1. Fuel Performance Annual Report for 1980

    SciTech Connect (OSTI)

    Bailey, W. J.; Rising, K. H.; Tokar, M.

    1981-12-01T23:59:59.000Z

    This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

  2. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    A.F. Burke, Modeling and Optimization of PEMFC Systems andPEM Fuel Cell System Optimization, Proceedings of the 2 ndof the fuel cell system optimization model Fig. 5 Flowchart

  3. Mixed-Oxide (MOX) Fuel Performance Benchmarks

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL; Tverberg, Terje [OECD Halden Reactor Project; Sartori, Enrico [ORNL

    2009-01-01T23:59:59.000Z

    Within the framework of the OECD/NEA Expert Group on Reactor-based Plutonium disposition (TFRPD), a fuel modeling code benchmarks for MOX fuel was initiated. This paper summarizes the calculation results provided by the contributors for the first two fuel performance benchmark problems. A limited sensitivity study of the effect of the rod power uncertainty on code predictions of fuel centerline temperature and fuel pin pressure also was performed and is included in the paper.

  4. Fuel performance annual report for 1986

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1988-03-01T23:59:59.000Z

    This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

  5. Fuel performance annual report for 1989

    SciTech Connect (OSTI)

    Bailey, W.J.; Berting, F.M. (Pacific Northwest Lab., Richland, WA (United States)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology)

    1992-06-01T23:59:59.000Z

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

  6. Fuel performance annual report for 1988

    SciTech Connect (OSTI)

    Bailey, W.J. (Pacific Northwest Lab., Richland, WA (USA)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology)

    1990-03-01T23:59:59.000Z

    This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

  7. Fuel performance annual report for 1985

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1987-02-01T23:59:59.000Z

    This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  8. Fuel performance: Annual report for 1987

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1989-03-01T23:59:59.000Z

    This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

  9. Synthetic fuels handbook: properties, process and performance

    SciTech Connect (OSTI)

    Speight, J. [University of Utah, UT (United States)

    2008-07-01T23:59:59.000Z

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  10. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Broader source: Energy.gov (indexed) [DOE]

    Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel Quarterly Biomass ProgramClean Cities State Web Conference:...

  11. Design and optimization of polymer electrolyte membrane (PEM) fuel cells

    E-Print Network [OSTI]

    Grujicic, Mica

    Design and optimization of polymer electrolyte membrane (PEM) fuel cells M. Grujicic* , K optimization algorithm to determine an optimum design of the fuel cell with respect to the operation difference has the largest effect on the predicted polarization curve of the fuel cell. However, the optimal

  12. Computational Modeling and Optimization of Proton Exchange Membrane Fuel Cells

    E-Print Network [OSTI]

    Victoria, University of

    Computational Modeling and Optimization of Proton Exchange Membrane Fuel Cells by Marc Secanell and Optimization of Proton Exchange Membrane Fuel Cells by Marc Secanell Gallart Bachelor in Engineering cells. In this thesis, a computational framework for fuel cell analysis and optimization is presented

  13. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect (OSTI)

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01T23:59:59.000Z

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  14. An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Vehicles

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Abstract--Hybrid Vehicle fuel economy performance is highly sensitive to the energy management strategy used to regulate power flow among the various energy sources and sinks. Optimal non-causal solutions

  15. Alcohol Fuel Cells at Optimal Temperatures Tetsuya Uda,a

    E-Print Network [OSTI]

    Alcohol Fuel Cells at Optimal Temperatures Tetsuya Uda,a Dane A. Boysen,b Calum R. I. Chisholm of operation, 250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak, California 91125, USA High-power-density alcohol fuel cells can relieve many of the daunting challenges

  16. Verification of the BISON fuel performance code

    SciTech Connect (OSTI)

    D. M. Perez; R. J. Gardner; J. D. Hales; S. R. Novascone; G. Pastore; B. W. Spencer; R. L. Williamson

    2014-09-01T23:59:59.000Z

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Labo- ratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze 1D spherical, 2D axisymmetric, or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISON’s unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI.

  17. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  18. Sootblowing optimization for improved boiler performance

    DOE Patents [OSTI]

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30T23:59:59.000Z

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  19. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules for Low Cost, High Performance Fuel Cell Humidifiers Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Presented at the Department of Energy Fuel...

  20. Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Victoria, University of

    Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair electric vehicles, empirical fuel cell system data has been incorporated into the NREL's vehicle design and simulation tool, ADVISOR (ADvanced Vehicle SimulatOR), to predict the performance of a low-speed, fuel cell

  1. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Model-Based Transient Calibration Optimization for Next Generation Diesel Engines Demonstrating Fuel Consumption and Emissions Reductions with...

  2. EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY

    SciTech Connect (OSTI)

    Colon-Mercado, H.

    2010-09-28T23:59:59.000Z

    A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

  3. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01T23:59:59.000Z

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal- and coke-fueled IGCC power plants. A side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, shows their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a four-train coal-fueled IGCC power plant, also based on the Subtask 1.3 cases. This plant has a thermal efficiency to power of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency to power of 44.5% (HHV) and a plant cost of 1,116 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to co-produce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. Subtask 2.1 developed a petroleum coke IGCC power plant with the coproduction of liquid fuel precursors from the Subtask 1.3 Next Plant by eliminating the export steam and hydrogen production and replacing it with a Fischer-Tropsch hydrocarbon synthesis facility that produced 4,125 bpd of liquid fuel precursors. By maximizing liquids production at the expense of power generation, Subtask 2.2 developed an optimized design that produces 10,450 bpd of liquid fuel precursors and 617 MW of export power from 5,417 tpd of dry petroleum coke. With 27 $/MW-hr power and 30 $/bbl liquids, the Subtask 2.2 plant can have a return on investment of 18%. Subtask 2.3 converted the Subtask 1.6 four-train coal fueled IGCC power plant

  4. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01T23:59:59.000Z

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

  5. Fuel Cycle Options for Optimized Recycling of Nuclear Fuel

    E-Print Network [OSTI]

    Aquien, A.

    The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

  6. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

    2013-07-01T23:59:59.000Z

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  7. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

    2008-07-22T23:59:59.000Z

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  8. Method for improving fuel cell performance

    DOE Patents [OSTI]

    Uribe, Francisco A.; Zawodzinski, Thomas

    2003-10-21T23:59:59.000Z

    A method is provided for operating a fuel cell at high voltage for sustained periods of time. The cathode is switched to an output load effective to reduce the cell voltage at a pulse width effective to reverse performance degradation from OH adsorption onto cathode catalyst surfaces. The voltage is stepped to a value of less than about 0.6 V to obtain the improved and sustained performance.

  9. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReport Postednanorod light

  11. Optimization strategies for sustainable fuel cycle of the BR2 Reactor

    SciTech Connect (OSTI)

    Kalcheva, S.; Van Den Branden, G.; Koonen, E. [SCK-CEN, BR2 Reactor, Boeretang 200, Mol, 2400 (Belgium)

    2013-07-01T23:59:59.000Z

    The objective of the present study is to achieve a sustainable fuel cycle in a long term of reactor operation applying advanced in-core loading strategies. The optimization criteria concern mainly enhancement of nuclear safety by means of reactivity margins and minimization of the operational fuel cycle cost at a given (constant) power level and same or longer cycle length. An important goal is also to maintain the same or to improve the experimental performances. Current developments are focused on optimization of control rods localization; optimization of fresh and burnt fuel assemblies in-core distribution; optimization of azimuth and axial fuel burn up strategies, including fuel assembly rotating and flipping upside down. (authors)

  12. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance targets - Turbocharger sizing - Exhaust gas recirculation system architecture and components sizing - Charge air cooler - Fuel variation 4 Barriers * Current...

  13. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources...

  14. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Energy Savers [EERE]

    Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

  15. Performance of solid oxide fuel cells operated with coal syngas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process. Performance of solid oxide fuel cells operated with coal syngas...

  16. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

  17. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom...

  18. Fuel cycle optimization of thorium and uranium fueled PWR systems

    E-Print Network [OSTI]

    Garel, Keith Courtnay

    1977-01-01T23:59:59.000Z

    The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

  19. Fuel cycle options for optimized recycling of nuclear fuel

    E-Print Network [OSTI]

    Aquien, Alexandre

    2006-01-01T23:59:59.000Z

    The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

  20. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from to produce electricity from fuels. To speed the search for why fuel cell performance decreases over time fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  1. Gasifiers optimized for fuel cell applications

    SciTech Connect (OSTI)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

    1992-12-01T23:59:59.000Z

    Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  2. Gasifiers optimized for fuel cell applications

    SciTech Connect (OSTI)

    Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

    1992-01-01T23:59:59.000Z

    Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

  3. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

    2008-10-07T23:59:59.000Z

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  4. axial fuel optimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    axial fuel optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Trajectory optimization for...

  5. Optimal Performance of Quantum Refrigerators

    E-Print Network [OSTI]

    Tova Feldmann; Ronnie Kosloff

    2009-09-08T23:59:59.000Z

    A reciprocating quantum refrigerator is studied with the purpose of determining the limitations of cooling to absolute zero. We find that if the energy spectrum of the working medium possesses an uncontrollable gap, then there is a minimum achievable temperature above zero. Such a gap, combined with a negligible amount of noise, prevents adiabatic following during the demagnetization stage which is the necessary condition for reaching $T_c \\to 0$. The refrigerator is based on an Otto cycle where the working medium is an interacting spin system with an energy gap. For this system the external control Hamiltonian does not commute with the internal interaction. As a result during the demagnetization and magnetization segments of the operating cycle the system cannot follow adiabatically the temporal change in the energy levels. We connect the nonadiabatic dynamics to quantum friction. An adiabatic measure is defined characterizing the rate of change of the Hamiltonian. Closed form solutions are found for a constant adiabatic measure for all the cycle segments. We have identified a family of quantized frictionless cycles with increasing cycle times. These cycles minimize the entropy production. Such frictionless cycles are able to cool to $T_c=0$. External noise on the controls eliminates these frictionless cycles. The influence of phase and amplitude noise on the demagnetization and magnetization segments is explicitly derived. An extensive numerical study of optimal cooling cycles was carried out which showed that at sufficiently low temperature the noise always dominates restricting the minimum temperature.

  6. using the Intel compiler as a performance optimization and characteriz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compiler performance optimization and characterization Intel compiler performance optimization and characterization May 13, 2015 NERSC will host an in-depth training presentation...

  7. Flex Fuel Optimized SI and HCCI Engine

    Broader source: Energy.gov (indexed) [DOE]

    12 439,489 Barriers - Target: Demonstrate a SI and HCCI dual combustion mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost...

  8. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

  9. Fuel reforming for scramjet thermal management and combustion optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the composition of the cracked fuel entering the combustor, an accurate predictive model of the thermalFuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ of the main issues of hypersonic flight is the thermal management of the overall vehicle and more specifically

  10. Optimal performance of endoreversible quantum refrigerators

    E-Print Network [OSTI]

    Luis A. Correa; José P. Palao; Gerardo Adesso; Daniel Alonso

    2014-11-24T23:59:59.000Z

    The derivation of general performance benchmarks is important in the design of highly optimized heat engines and refrigerators. To obtain them, one may model phenomenologically the leading sources of irreversibility ending up with results which are model-independent, but limited in scope. Alternatively, one can take a simple physical system realizing a thermodynamic cycle and assess its optimal operation from a complete microscopic description. We follow this approach in order to derive the coefficient of performance at maximum cooling rate for \\textit{any} endoreversible quantum refrigerator. At striking variance with the \\textit{universality} of the optimal efficiency of heat engines, we find that the cooling performance at maximum power is crucially determined by the details of the specific system-bath interaction mechanism. A closed analytical benchmark is found for endoreversible refrigerators weakly coupled to unstructured bosonic heat baths: an ubiquitous case study in quantum thermodynamics.

  11. Gasification Plant Cost and Performance Optimization

    SciTech Connect (OSTI)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01T23:59:59.000Z

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air-blown gasification combined heat and power facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  12. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01T23:59:59.000Z

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  13. Performance Optimization and Auto-Tuning

    SciTech Connect (OSTI)

    Howison, Mark

    2012-10-01T23:59:59.000Z

    In the broader computational research community, one subject of recent research is the problem of adapting algorithms to make effective use of multi- and many-core processors. Effective use of these architectures, which have complex memory hierarchies with many layers of cache, typically involves a careful examination of how an algorithm moves data through the memory hierarchy. Unfortunately, there is often a non-obvious relationship between algorithmic parameters like blocking strategies, and their impact on memory utilization, and, in turn, the relationship with runtime performance. Auto-tuning is an empirical method used to discover optimal values for tunable algorithmic parameters under such circumstances. The challenge is compounded by the fact that the settings that produce the best performance for a given problem and a given platform may not be the best for a different problem on the same platform, or the same problem on a different platform. The high performance visualization research community has begun to explore and adapt the principles of auto-tuning for the purpose of optimizing codes on modern multi- and many-core processors. This report focuses on how performance optimization studies reveal a dramatic variation in performance for two fundamental visualization algorithms: one based on a stencil operation having structured, uniform memory access, and the other is ray casting volume rendering, which uses unstructured memory access patterns. The two case studies highlighted in this report show the extra effort required to optimize such codes by adjusting the tunable algorithmic parameters can return substantial gains in performance. Additionally, these case studies also explore the potential impact of and the interaction between algorithmic optimizations and tunable algorithmic parameters, along with the potential performance gains resulting from leveraging architecture-specific features.

  14. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect (OSTI)

    Bailey, W.J.; Tokar, M.

    1982-12-01T23:59:59.000Z

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  15. Fuel performance annual report for 1990. Volume 8

    SciTech Connect (OSTI)

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A. [Pacific Northwest Lab., Richland, WA (United States); Wu, S.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1993-11-01T23:59:59.000Z

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  16. Fuel performance annual report for 1983. Volume 1

    SciTech Connect (OSTI)

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01T23:59:59.000Z

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  17. advanced fuel performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for fuel cell 2 Silicon carbide performance as cladding for advanced uranium and thorium fuels for light water reactors MIT - DSpace Summary: There has been an ongoing...

  18. Membrane Performance and Durability Overview for Automotive Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    September 14, 2006 Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Tom Greszler General Motors Corporation Fuel Cell Activities Honeoye...

  19. Fuels Performance Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

  20. Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-Desertof Energy PresentationCeramic

  1. PMU Deployment for Optimal State Estimation Performance

    E-Print Network [OSTI]

    Roy, Sumit

    the observability of candidate deployments at each step and improves the convergence speed of the search. In [5PMU Deployment for Optimal State Estimation Performance Yue Yang, Student Member IEEE, and Sumit electronic devices (IED), that sense the grid state variables so as to support enhanced, real-time monitoring

  2. Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical

    E-Print Network [OSTI]

    Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed Generator George Research Center program. This report is of work done under the PSERC project "Investigation of Fuel Cell

  3. Optimization of Driving Styles for Fuel Economy Improvement

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Aguilar, Juan P. [Georgia Institute of Technology] [Georgia Institute of Technology

    2012-01-01T23:59:59.000Z

    Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

  4. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  5. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton

    2014-02-01T23:59:59.000Z

    Research and development (R&D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R&D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. “Metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

  6. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  7. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  8. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of...

  9. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference...

  10. Visualization of Fuel Cell Water Transport and Performance Characteriz...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Characterization under Freezing Conditions Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions Part of a 100 million...

  11. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    SciTech Connect (OSTI)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01T23:59:59.000Z

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

  12. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30T23:59:59.000Z

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combust

  13. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace009wallner2011o.pdf More Documents & Publications Optimization...

  14. Fuel performance annual report for 1984. Volume 2

    SciTech Connect (OSTI)

    Bailey, W.J.; Dunenfeld, M.S.

    1986-03-01T23:59:59.000Z

    This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

  15. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm

    SciTech Connect (OSTI)

    Shi, J.; Xue, X.

    2011-01-01T23:59:59.000Z

    Porous electrode is the critical component of solid-oxide fuel cells (SOFCs) and provides a functional material backbone for multi-physicochemical processes. Model based electrode designs could significantly improve SOFC performance. This task is usually performed via parameter studies for simple case and assumed property distributions for graded electrodes. When nonlinearly coupled multiparameters of electrodes are considered, it could be very difficult for the model based parameter study method to effectively and systematically search the design space. In this research, the optimization approach with a genetic algorithm is demonstrated for this purpose. An anode-supported proton conducting SOFC integrated with a fuel supply system is utilized as a physical base for the model development and the optimization design. The optimization results are presented, which are difficult to obtain for parametric study method.

  16. Design of gasifiers to optimize fuel cell systems

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  17. Evaluation of alternate-fuels performance in an external combustion system. Final report

    SciTech Connect (OSTI)

    Battista, R.A.; Connelly, M.

    1985-12-01T23:59:59.000Z

    As the economic attractiveness of many alternate fuels increases relative to gasoline, the viability of any future automotive power plant may soon depend on the ease with which these alternate fuels can be utilized. It is generally assumed that external-combustion engines are more tolerant of alternate fuels than internal-combustion engines. This study attempted to verify that assumption. The purpose of the Alternate-Fuels Performance Evaluation Program was to evaluate and compare the impact of burning six different liquids fuels in an external-combustion system. Testing was conducted in the automotive Stirling engine (ASE) combustion performance rig, which duplicates the external heat system (EHS) of a Stirling engine. The program expanded the range of fuels evaluated over previous studies conducted at Mechanical Technology Incorporated (MTI). The specific objective was to determine the optimal combustion stoichiometry considering the performance parameters of combustion efficiency, temperature profile, exhaust emissions, and burner wall temperature. 14 refs., 34 figs., 6 tabs.

  18. Fuel performance annual report for 1991. Volume 9

    SciTech Connect (OSTI)

    Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

    1994-08-01T23:59:59.000Z

    This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

  19. Early User Experience with BISON Fuel Performance Code

    SciTech Connect (OSTI)

    D. M. Perez

    2012-08-01T23:59:59.000Z

    Three Fuel Modeling Exercise II (FUMEX II) LWR fuel irradiation experiments were simulated and analyzed using the fuel performance code BISON to demonstrate code utility for modeling of the LWR fuel performance. Comparisons were made against the BISON results and the experimental data for the three assessment cases. The assessment cases reported within this report include IFA-597.3 Rod 8, Riso AN3 and Riso AN4.

  20. Fuel Retrieval Sub Project (FRS) Stuck Fuel Station Performance Test Data Report

    SciTech Connect (OSTI)

    THIELGES, J.R.

    2000-02-23T23:59:59.000Z

    This document provides the test data report for Stuck Fuel Station Performance Testing in support of the Fuel Retrieval Sub-Project. The stuck fuel station was designed to provide a means of cutting open a canister barrel to release fuel elements, etc.

  1. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Energy Savers [EERE]

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

  2. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  3. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  4. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    Performance STudies Authors: George T. Lee (METC) Frederick A. Sudhoff (METC) Conference: Fuel Cells '96 Review Meeting Conference Location: Morgantown, West Virginia Conference...

  5. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov (indexed) [DOE]

    Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

  6. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31T23:59:59.000Z

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  7. FORMOSA-B: A Boiling Water Reactor In-Core Fuel Management Optimization Package II

    SciTech Connect (OSTI)

    Karve, Atul A.; Turinsky, Paul J. [North Carolina State University (United States)

    2000-07-15T23:59:59.000Z

    As part of the continuing development of the boiling water reactor in-core fuel management optimization code FORMOSA-B, the fidelity of the core simulator has been improved and a control rod pattern (CRP) sampling capability has been added. The robustness of the core simulator is first demonstrated by benchmarking against core load-follow depletion predictions of both SIMULATE-3 and MICROBURN-B2 codes. The CRP sampling capability, based on heuristic rules, is next successfully tested on a fixed fuel loading pattern (LP) to yield a feasible CRP that removes the thermal margin and critical flow constraint violations. Its performance in facilitating a spectral shift flow operation is also demonstrated, and then its significant influence on the cost of thermal margin is presented. Finally, the heuristic CRP sampling capability is coupled with the stochastic LP optimization capability in FORMOSA-B - based on simulated annealing (SA) - to solve the combined CRP-LP optimization problem. Effectiveness of the sampling in improving the efficiency of the SA adaptive algorithm is shown by comparing the results to those obtained with the sampling turned off (i.e., only LP optimization is carried out for the fixed reference CRP). The results presented clearly indicate the successful implementation of the CRP sampling algorithm and demonstrate FORMOSA-B's enhanced optimization features, which facilitate the code's usage for broader optimization studies.

  8. Multiobjective Design and Optimization of Polymer Flood Performance 

    E-Print Network [OSTI]

    Ekkawong, Peerapong

    2013-07-22T23:59:59.000Z

    (Pareto front) to maximize oil production while preserving polymer performance. Then an optimal polymer flood design can be considered from post-optimization analysis. A 2D synthetic example, and a 3D field-scale application, accounting for geologic...

  9. Optimization of advanced telecommunication algorithms from power and performance perspective 

    E-Print Network [OSTI]

    Khan, Zahid

    2011-11-22T23:59:59.000Z

    This thesis investigates optimization of advanced telecommunication algorithms from power and performance perspectives. The algorithms chosen are MIMO and LDPC. MIMO is implemented in custom ASIC for power optimization ...

  10. Flex Fuel Polygeneration: Optimizing Cost, Sustainability, and Resiliency

    E-Print Network [OSTI]

    Daniels, Thomas E.

    a system to perform high level techno-economic analysis (TEA) · Determine economic feasibility of each · Energy sources · Energy carriers 2 #12;Initial Analysis of FFPG Systems · Design power plants;Conventional Approaches to Energy Conversion (Coal, Biomass, Wind, Natural Gas, Photons) ( Fuel, Chemicals

  11. Optimizing Hydronic System Performance in Residential Applications

    SciTech Connect (OSTI)

    Arena, L.; Faakye, O.

    2013-10-01T23:59:59.000Z

    Even though new homes constructed with hydronic heat comprise only 3% of the market (US Census Bureau 2009), of the 115 million existing homes in the United States, almost 14 million of those homes (11%) are heated with steam or hot water systems according to 2009 US Census data. Therefore, improvements in hydronic system performance could result in significant energy savings in the US. When operating properly, the combination of a gas-fired condensing boiler with baseboard convectors and an indirect water heater is a viable option for high-efficiency residential space heating in cold climates. Based on previous research efforts, however, it is apparent that these types of systems are typically not designed and installed to achieve maximum efficiency. Furthermore, guidance on proper design and commissioning for heating contractors and energy consultants is hard to find and is not comprehensive. Through modeling and monitoring, CARB sought to determine the optimal combination(s) of components - pumps, high efficiency heat sources, plumbing configurations and controls - that result in the highest overall efficiency for a hydronic system when baseboard convectors are used as the heat emitter. The impact of variable-speed pumps on energy use and system performance was also investigated along with the effects of various control strategies and the introduction of thermal mass.

  12. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect (OSTI)

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01T23:59:59.000Z

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  13. A Unified Approach to Runtime Performance and Power Optimization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Unified Approach to Runtime Performance and Power Optimization in Adaptive Processors using Support Vector Regression Event Sponsor: Mathematics and Computing Science Seminar...

  14. Optimization Online - Performance-based regularization in mean ...

    E-Print Network [OSTI]

    Gah-Yi Vahn

    2014-11-03T23:59:59.000Z

    Nov 3, 2014 ... Performance-based regularization in mean-CVaR portfolio optimization. Gah-Yi Vahn(gvahn ***at*** london.edu) Noureddine El ...

  15. High performance magnet power supply optimization

    SciTech Connect (OSTI)

    Jackson, L.T.

    1988-01-01T23:59:59.000Z

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems.

  16. Optimization Online - Performance of CONDOR, a Parallel ...

    E-Print Network [OSTI]

    Frank Vanden Berghen

    2004-08-19T23:59:59.000Z

    Aug 19, 2004 ... ... Fluid Dynamic) codes or PDE (partial differential equations) solvers. ... Keywords: non-linear, lagrange interpolation, optimal shape design, ...

  17. SCR Performance Optimization Through Advancements in Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundAofSCE&G-4-E WholesalePackaging

  18. Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a

    E-Print Network [OSTI]

    Peng, Huei

    Management and Design Optimization of Fuel Cell/Battery Hybrid Vehicles #12;Journal of Power Sources, Vol.165 strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid management strategy and component sizing affect vehicle performance and fuel economy considerably in hybrid

  19. Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.

    SciTech Connect (OSTI)

    Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

    2001-12-04T23:59:59.000Z

    Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

  20. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles

    E-Print Network [OSTI]

    Wu, Changxu (Sean)

    A fuel economy optimization system with applications in vehicles with human drivers and autonomous University of New York, Buffalo, USA a r t i c l e i n f o Keywords: Vehicle fuel economy Eco-driving Human developed and validated a new fuel-economy optimization system (FEOS), which receives input from vehicle

  1. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  2. BATS: Budget-Constrained Autoscaling for Cloud Performance Optimization

    E-Print Network [OSTI]

    Ren, Shaolei

    BATS: Budget-Constrained Autoscaling for Cloud Performance Optimization A. Hasan Mahmud Florida to optimize cloud application performance by leveraging autoscaling while sat- isfying a long-term budget constraint (e.g., monthly or yearly budget). Such budget constraints are commonly applied to businesses

  3. Advanced Fuel Performance: Modeling and Simulation Light Water Reactor Fuel Performance:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvanced ComponentsenzymeAdvanced Fossil

  4. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25T23:59:59.000Z

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  5. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    SciTech Connect (OSTI)

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01T23:59:59.000Z

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  6. Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination

    E-Print Network [OSTI]

    A. Vaudrey; P. Baucour; F. Lanzetta; R. Glises

    2010-08-30T23:59:59.000Z

    Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

  7. Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination

    E-Print Network [OSTI]

    Vaudrey, A; Lanzetta, F; Glises, R

    2009-01-01T23:59:59.000Z

    Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

  8. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    SciTech Connect (OSTI)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01T23:59:59.000Z

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  9. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Wayne Moore, Matt Foster, Kevin Hoyer, Keith Confer Delphi Advanced Powertrain DEER Conference September 29, 2010...

  10. Metal Matrix Microencapsulated (M3) fuel neutronics performance in PWRs

    SciTech Connect (OSTI)

    Fratoni, Massimiliano [Pennsylvania State University] [Pennsylvania State University; Terrani, Kurt A [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Metal Matrix Microencapsulated (M3) fuel consists of TRISO or BISO coated fuel particles directly dispersed in a matrix of zirconium metal to form a solid rod (Fig. 1). In this integral fuel concept the cladding tube and the failure mechanisms associated with it have been eliminated. In this manner pellet-clad-interactions (PCI), thin tube failure due to oxidation and hydriding, and tube pressurization and burst will be absent. M3 fuel, given the high stiffness of the integral rod design, could as well improve grid-to-rod wear behavior. Overall M3 fuel, compared to existing fuel designs, is expected to provide greatly improved operational performance. Multiple barriers to fission product release (ceramic coating layers in the coated fuel particle and te metal matrix) and the high thermal conductivity zirconium alloy metal matrix contribute to the enhancement in fuel behavior. The discontinuous nature of fissile material encapsulated in coated particles provides additional assistance; for instance if the M3 fuel rod is snapped into multiple pieces, only the limited number of fuel particles at the failure cross section are susceptible to release fission products. This is in contrast to the conventional oxide fuel where the presence of a small opening in the cladding provides the pathway for release of the entire inventory of fission products from the fuel rod. While conventional metal fuels (e.g. U-Zr and U-Mo) are typically expected to experience large swelling under irradiation due to the high degree of damage from fission fragments and introduction of fission gas into the lattice, this is not the case for M3 fuels. The fissile portion of the fuel is contained within the coated particle where enough room is available to accommodate fission gases and kernel swelling. The zirconium metal matrix will not be exposed to fission products and its swelling is known to be very limited when exposed solely to neutrons. Under design basis RIA and LOCA, fuel performance will be superior to the conventional oxide fuel since PCMI and rod burst, respectively, have been mitigated. Under beyond design basis accident scenarios where the fuel is exposed to high temperature steam for prolonged periods, larger inventory of zirconium metal in the core could negatively affect the accident progression. A thin steam resistant layer (e.g. alumina forming alloy steel), integrated into the solid rod during fabrication by co-extrusion or hot-isostatic-pressing, offers the potential to provide additional fuel protection from steam interaction: blanketing under a range of boiling regimes and under severe accident conditions up to high temperatures well beyond what is currently possible in the conventional fuel. A crucial aspect to the viability of M3 fuel in light water reactors is the reduced heavy metal load compared to standard pellet fuel. This study evaluated the design requirements to operate a Pressurized Water Reactor (PWR) with M3 fuel in order to obtain fuel cycle length, reactivity coefficients, and power peaking factors comparable to that of standard fuel.

  11. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01T23:59:59.000Z

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  12. Optimizing HPSS Storage and Retrieval Performance at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxide sequestration,

  13. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01T23:59:59.000Z

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  14. Design Optimization of Robot Manipulators over Global Stiffness Performance Evaluation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    objective is to fulfill the industrial demands in the preliminary design of the robots manipulatorsDesign Optimization of Robot Manipulators over Global Stiffness Performance Evaluation Eric for the design optimization of robot manipulators with respect to multiple global stiffness objectives

  15. Spent nuclear fuel storage -- Performance tests and demonstrations

    SciTech Connect (OSTI)

    McKinnon, M.A.; DeLoach, V.A.

    1993-04-01T23:59:59.000Z

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

  16. MA transmutation performance in the optimized MYRRHA

    SciTech Connect (OSTI)

    Malambu, E.; Van den Eynde, G.; Fernandez, R.; Baeten, P.; Ait Abderrahim, H. [SCK-CEN, Boeretang 200, BE-2400 Mol (Belgium)

    2013-07-01T23:59:59.000Z

    MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days of shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.

  17. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

  18. Hybrid Model for Building Performance Diagnosis and Optimal Control 

    E-Print Network [OSTI]

    Wang, S.; Xu, X.

    2003-01-01T23:59:59.000Z

    Modern buildings require continuous performance monitoring, automatic diagnostics and optimal supervisory control. For these applications, simplified dynamic building models are needed to predict the cooling and heating requirement viewing...

  19. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Acsystem for direct hydrogen fuel cell vehicles Fig. 3 Driver

  20. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

  1. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01T23:59:59.000Z

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  2. Pwr fuel assembly optimization using adaptive simulated annealing coupled with translat

    E-Print Network [OSTI]

    Rogers, Timothy James

    2009-05-15T23:59:59.000Z

    assembly to be used in an operating nuclear power reactor. The two main cases of optimization are: one that finds the optimal 235U enrichment layout of the fuel pins in the assembly and another that finds both the optimal 235U enrichments where gadolinium...

  3. PWR fuel performance and future trend in Japan

    SciTech Connect (OSTI)

    Kondo, Y.

    1988-01-01T23:59:59.000Z

    Since the first PWR power plant Mihama Unit 1 initiated its commercial operation in 1970, Japanese utilities and manufacturers have expended much of their resources and efforts to improve PWR technology. The results are already seen in significantly improved performance of 16 PWR plants now in operation. Mitsubishi Heavy Industries Ltd. (MHI) has been supplying them with nuclear fuel assemblies, which are over 5700. As the reliability of the current design fuel has been achieved, the direction of RandD on nuclear fuel has changed to make nuclear power more competitive to the other power generation methods. The most important RandD targets are the burnup extension, Gd contained fuel, utilization and the load follow capability.

  4. The manufacture and performance of homogeneous microstructure SBR MOX fuel

    SciTech Connect (OSTI)

    Barker, Matthew A. [Nexia Solutions Ltd., British Technology Centre, Sellafield, CA20 1PG (United Kingdom); Stephenson, Keith; Weston, Rebecca [Sellafield Ltd., B582, Sellafield, CA20 1PG (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the early 1980's, British experience in the manufacture of mixed-oxide fast reactor fuel was used to develop a new thermal MOX manufacturing route called the Short Binder-less Route (SBR). Laboratory- scale development led to the manufacture of commercial PWR fuel in a small pilot plant, and the construction of the full-scale dual-line Sellafield MOX Plant (SMP). SMP's first MOX assemblies are now under irradiation. SBR MOX is manufactured with 100% co-milled feedstock, leading to a microstructure dominated by a solid solution of (U,Pu)O{sub 2} at the nominal enrichment. A comprehensive fuel performance research programme has demonstrated the benign performance of SBR MOX up to 54 MWd/kgHM. In particular, the homogeneous microstructure is believed to be instrumental in the favourable fission gas retention and PCI resistance properties. (authors)

  5. Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel

    E-Print Network [OSTI]

    S1 Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black Xiaoyuan Zhang 1 , Xue Xia 2 , Ivan Ivanov 1 , Xia Huang 2 , Bruce E. Logan *1 1, School of Environment, Tsinghua University, Beijing 100084, P.R.China *Corresponding Author: Phone: (1

  6. Optimal Fueling Strategies for Locomotive Fleets in Railroad Networks

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    · Fuel (diesel) price influenced by: ­ Crude oil price ­ Refining ­ Distribution and marketing ­ Others 4 Price 3 · Railroad fuel consumption remains steady · Crude oil price sharply increases in recent years · Fuel-related expenditure is one of the biggest cost items in the railroad industry #12;Fuel Price

  7. Advanced Multiphysics Coupling for LWR Fuel Performance Analysis

    SciTech Connect (OSTI)

    J. D. Hales; M. R. Tonks; F. N. Gleicher; B. W. Spencer; S. R. Novascone; R. L. Williamson; G. Pastore; D. M. Perez

    2014-11-01T23:59:59.000Z

    The most basic nuclear fuel analysis considers heat conduction and mechanical deformation and is therefore a multiphysics under- taking. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. This paper firstly reviews an effective approach to manage the nonlinearities associated with an evolving gap using BISON, a nuclear fuel performance application. Another example of multiphysics coupling for LWR analysis is that of neutronics and thermomechanics. In this case, we show coupling DeCART, a high fidelity core analysis program (based on the method of characteristics), to our fuel performance modeling application. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. The data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal model in BISON. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed to converge the two physics. In addition to coupling to DeCART, efforts are underway to couple BISON to other neutronics packages. As a final example, we consider the need for multiscale coupling. Fission gas production and evolution significantly impact fuel performance, causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower-length-scale models such as the MARMOT code to compute average properties, such as swelling or thermal conductivity. These may then be used by an engineering-scale model. We show examples of this multiscale, multiphysics modeling.

  8. Seismic performance assessment for structural optimization

    E-Print Network [OSTI]

    Ghisbain, Pierre

    2013-01-01T23:59:59.000Z

    The economic impact of earthquakes has spurred the implementation of performance-based design to mitigate damage in addition to protecting human lives. A developing trend is to consider damage directly as a measure of ...

  9. Final assessment of MOX fuel performance experiment with Japanese PWR specification fuel in the HBWR

    SciTech Connect (OSTI)

    Fujii, Hajime; Teshima, Hideyuki; Kanasugi, Katsumasa [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585 (Japan); Kosaka, Yuji [Nuclear Development Corporation, 622-12 Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Arakawa, Yasushi [The Kansai Electric Power Co., Inc., 8 Yokota, 13 Goichi, Mihama-cho, Mikata-gun, Fukui, 919-1141 (Japan)

    2007-07-01T23:59:59.000Z

    In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pu-fissile enrichment of about 6 wt% had been irradiated in the HBWR from 1995 to 2006. The peak burn-up of MOX pellet achieved 72 GWd/tM. In this test, fuel centerline temperature, rod internal pressure, stack length and cladding length were measured for MOX fuel and UO{sub 2} fuel as reference. MOX fuel temperature is confirmed to have no significant difference in comparison with UO{sub 2}, taking into account of adequate thermal conductivity degradation due to PuO{sub 2} addition and burn-up development. And the measured fuel temperature agrees well with FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly greater than UO{sub 2} based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behavior. MOX fuel swelling rate agrees well with solid swelling rate in the literature. Cladding elongation data shows onset of PCMI in high power region. (authors)

  10. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Guan, Jie; Minh, Nguyen

    2007-02-21T23:59:59.000Z

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  11. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and

  12. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and1 DOE

  13. Flex Fuel Optimized SI and HCCI Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and Fuel Cells Program and1 DOE0

  14. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. (Pacific Northwest Lab., Richland, WA (USA)); Dyksterhouse, D.J.; McLean, J.C. (Carolina Power and Light Co., Raleigh, NC (USA))

    1990-09-01T23:59:59.000Z

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  15. OPTIMIZING PERFORMANCE OF THE HESKETT STATION

    SciTech Connect (OSTI)

    Michael D. Mann; Ann K. Henderson

    1999-03-01T23:59:59.000Z

    The overall conclusion from this work is that a switch from river sand bed material to limestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch to limestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium and sulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bed without agglomeration, allowing either the bed turnover rate to be reduced to half the current sand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned with limestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO{sub 2} emissions can be controlled. A small improvement in boiler efficiency should be achievable by operating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NO{sub x} emissions, providing a margin of safety for meeting emission standards. No detrimental effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Some specific conclusions from this work include the following: The bed material feed rate can be reduced from the current rate of 5.4% of the coal feed rate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This will result in an annual savings of approximately $200,000. (1) SO{sub 2} emissions at the recommended feed rate would be approximately 250 ppm (0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO{sub 2} allowances could be generated at a cost of $60/ton SO{sub 2} , leaving a large profit margin for the sale of allowances. The addition of limestone at the same rate currently used for sand feed could generate $455,000 net income if allowances are sold at $200/ton SO2 . (2) At full-load operation, unburned carbon losses increase significantly at excess oxygen levels below 2.8%. No efficiency gains are expected at high-load operation by switching from sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiency gain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annual savings. (3) A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by using limestone at the recommended feed rate compared to the current sand feed rate. No measurable change in volume would be realized because of the lower bulk density of the limestone-derived material.

  16. Optimal design of hybrid and non-hybrid fuel cell vehicles

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

  17. 2004-01-1153 Multi-Objective Optimization of HEV Fuel Economy and

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    2004-01-1153 Multi-Objective Optimization of HEV Fuel Economy and Emissions using Evolutionary Copyright © 2004 SAE International ABSTRACT The Hybrid Electric Vehicle (HEV) consists of at least two sets of energy output systems, the fuel converter (engine or fuel cell) and the energy storage system (battery

  18. Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel at the latest, design and development of solid oxide fuel cells (SOFC) have been in the focus of research electrochemical reactions in each individual fuel cell. We consider different model dimensions resulting

  19. Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers

    E-Print Network [OSTI]

    Improving electricity production in tubular microbial fuel cells through optimizing the anolyte h l i g h t s " The spiral spacers improve electricity production in tubular microbial fuel cells fuel cells Spiral spacers Energy Wastewater treatment a b s t r a c t The use of spiral spacers

  20. Optimization of hydride fueled pressurized water reactor cores

    E-Print Network [OSTI]

    Shuffler, Carter Alexander

    2004-01-01T23:59:59.000Z

    This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

  1. Virtual TCP Offload: Optimizing Ethernet Overlay Performance on Advanced Interconnects

    E-Print Network [OSTI]

    Dinda, Peter A.

    Virtual TCP Offload: Optimizing Ethernet Overlay Performance on Advanced Interconnects Zheng Cui Patrick G. Bridges John R. Lange Peter A. Dinda Department of CS University of New Mexico Albuquerque, NM. Their performance suffers on advanced interconnects such as Infiniband, however, be- cause of differences between

  2. Optimization to reduce fuel consumption in charge depleting mode

    DOE Patents [OSTI]

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26T23:59:59.000Z

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  3. Radionuclide release rates from spent fuel for performance assessment modeling

    SciTech Connect (OSTI)

    Curtis, D.B.

    1994-11-01T23:59:59.000Z

    In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments.

  4. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    E-Print Network [OSTI]

    Powers, Jeffrey

    2011-01-01T23:59:59.000Z

    Quantification in Fuel Performance Modeling . . . . . . .3.4 Integration with Fuel Performance Calculations ivmicroscopic image of a TRISO fuel particle cracked open to

  5. Routing performance analysis and optimization within a massively parallel computer

    DOE Patents [OSTI]

    Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

    2013-04-16T23:59:59.000Z

    An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

  6. Toxicological and performance aspects of oxygenated motor vehicle fuels

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

  7. Design of gasifiers to optimize fuel cell systems. Final report, September 1990--September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Pursuing the key national goal of clean and efficient utilization of the abundant domestic coal resources for power generation, this study was conducted to evaluate the potential of optimizing the integrated catalytic gasification/carbonate fuel cell power generation system. ERC in close collaboration with Fluor Daniel (providing engineering design and costing), conducted a detailed system configuration study to evaluate various catalytic gasification/carbonate fuel cell power plant configurations and compare them to present day, as well as emerging, alternate coal-based power plant technologies to assess their competitive position. A Topical Report (1992) was submitted documenting this effort, and the three catalytic gasification case studies are summarized in Appendix A. Results of this study indicate that system efficiencies approaching 55% (HHV) can be achieved by integrating low temperature catalytic gasification with high efficiency carbonate fuel cells. Thermal balance in the gasifier is achieved without oxygen by recycling hydrogen from the fuel cell anode exhaust. A small amount of air is added to the gasifier to minimize hydrogen recycle. In order to validate the assumptions made in the case configurations, experimental studies were performed to determine the reactivity of Illinois No. 6 coal with the gasification catalysts. The reactivity of the catalyzed coal has significant bearing on gasifier sizing and hence system cost and efficiency.

  8. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter Gets PeopleTransmissionModeling Working GroupCell

  9. MODELING THE PERFORMANCE OF HIGH BURNUP THORIA AND URANIA PWR FUEL

    E-Print Network [OSTI]

    Long, Y.

    Fuel performance models have been developed to assess the performance of ThO[subscript 2]-UO[subscript 2]

  10. Short communication Performance of microbial fuel cells with and without Nafion solution as cathode

    E-Print Network [OSTI]

    Short communication Performance of microbial fuel cells with and without Nafion solution as cathode online 31 March 2010 Keywords: Microbial fuel cell (MFC) Nafion Electrochemical impedance spectroscopy (EIS) Internal resistance Electricity production The performance of tubular microbial fuel cells (MFC

  11. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01T23:59:59.000Z

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  12. Comments on: Optima: Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  13. Sandia Energy - Optima: Co-Optimization of Fuels and Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear

  14. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30T23:59:59.000Z

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  15. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18T23:59:59.000Z

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.

  16. Optimization of a seed and blanket thorium-uranium fuel cycle for pressurized water reactors

    E-Print Network [OSTI]

    Wang, Dean, 1971-

    2003-01-01T23:59:59.000Z

    A heterogeneous LWR core design, which employs a thorium/uranium once through fuel cycle, is optimized for good economics, wide safety margins, minimal waste burden and high proliferation resistance. The focus is on the ...

  17. Fuel-optimal Earth-Mars trajectories using low-thrust exhaust-modulated plasma propulsion

    E-Print Network [OSTI]

    Nah, Ren Sang

    1999-01-01T23:59:59.000Z

    The objective of this thesis is the determination of fuel-optimal interplanetary trajectories of a spacecraft using a variable specific impulse thruster. The spacecraft departs from an Earth parking orbit and is required to establish a specified...

  18. Fuel Performance Experiments and Modeling: Fission Gas Bubble Nucleation and Growth in Alloy Nuclear Fuels

    SciTech Connect (OSTI)

    McDeavitt, Sean; Shao, Lin; Tsvetkov, Pavel; Wirth, Brian; Kennedy, Rory

    2014-04-07T23:59:59.000Z

    Advanced fast reactor systems being developed under the DOE's Advanced Fuel Cycle Initiative are designed to destroy TRU isotopes generated in existing and future nuclear energy systems. Over the past 40 years, multiple experiments and demonstrations have been completed using U-Zr, U-Pu-Zr, U-Mo and other metal alloys. As a result, multiple empirical and semi-empirical relationships have been established to develop empirical performance modeling codes. many mechamistic questions about fission as mobility, bubble coalescience, and gas release have been answered through industrial experience, reearch, and empirical understanding. The advent of modern computational materials science, however, opens new doors of development such that physics-based multi-scale models may be developed to enable a new generation of predictive fuel performance codes that are not limited by empiricism.

  19. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  20. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  1. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30T23:59:59.000Z

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  2. TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; Caro, M; Caro, A

    2010-02-18T23:59:59.000Z

    A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

  3. FUSION- A Knowledge Management System for Fuel Cell Optimization

    E-Print Network [OSTI]

    Jane Hunter; Kwok Cheung; Suzanne Little; John Drennan

    Fuel cells are highly complex multi-component systems. Their efficiency depends on their internal nanostructure and the complex chemical and physical processes occurring across their internal interfaces. Significant

  4. Exploring Optimal Cost-Performance Designs for Raw Microprocessors

    E-Print Network [OSTI]

    Yeung, Donald

    Exploring Optimal Cost-Performance Designs for Raw Microprocessors Csaba Andras Moritz Donald Yeung. The MIT Raw microprocessor is a proposed architec- ture that strives to exploit these chip-level resources microprocessors fully expose their internal hardware structure to the software, they can be viewed as a gi- gantic

  5. Exploring Optimal CostPerformance Designs for Raw Microprocessors

    E-Print Network [OSTI]

    Yeung, Donald

    Exploring Optimal Cost­Performance Designs for Raw Microprocessors Csaba Andras Moritz Donald Yeung. The MIT Raw microprocessor is a proposed architec­ ture that strives to exploit these chip­level resources microprocessors fully expose their internal hardware structure to the software, they can be viewed as a gi­ gantic

  6. Optimal Performance of a Reciprocating Demagnetization Quantum Refrigerators

    E-Print Network [OSTI]

    Kosloff, Ronnie

    Optimal Performance of a Reciprocating Demagnetization Quantum Refrigerators Ronnie Kosloff A reciprocating quantum refrigerator is studied with the purpose of determining the limitations of cooling. The refrigerator is based on an Otto cycle where the working medium is an interacting spin system with an energy

  7. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    1] derived from a basic diagnostic fuel cell model [24] wasExperimental Diagnostics in Polymer Electrolyte Fuel Cells,

  8. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    of an experimental fuel cell/supercapacitor-powered hybridof fuel cell/battery/supercapacitor hybrid power source for

  9. Overview of the BISON Multidimensional Fuel Performance Code

    SciTech Connect (OSTI)

    R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

    2013-10-01T23:59:59.000Z

    BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the code’s computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

  10. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOE Patents [OSTI]

    Kim, Yu Seung (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

    2009-08-18T23:59:59.000Z

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  11. American Institute of Aeronautics and Astronautics Optimal Heavy Fuel Direct Injection analysis in a Rotary

    E-Print Network [OSTI]

    1 American Institute of Aeronautics and Astronautics Optimal Heavy Fuel Direct Injection analysis = Turbulent dissipation CFD = Computation Fluid Dynamics DPM = Discrete phase modeling DOE = Design objective of this computational study is to explore the optimum fuel injection for a 0.2 liter direct

  12. Robust Optimal Control Strategies for a Hybrid Fuel Cell Power Management System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Robust Optimal Control Strategies for a Hybrid Fuel Cell Power Management System David Hern strategies are proposed for the power management subsystem of a hybrid fuel cell/supercapacitor power generation system. The control strate- gies are based on different control configurations involving the power

  13. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and

    E-Print Network [OSTI]

    Liso, Vincenzo

    Performance of hybrid quad generation system consisting of solid oxide fuel cell system. Keywords: Energy system modeling, Solid oxide fuel cell, Absorption heat pump. 1. Introduction 1

  14. Optima: Co-Optimization of Fuels and Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9IndustrialOptima: Co-Optimization of

  15. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01T23:59:59.000Z

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  16. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect (OSTI)

    Powers, J J

    2011-11-28T23:59:59.000Z

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW{sub th}, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

  17. Design and fuel management of PWR cores to optimize the once-through fuel cycle

    E-Print Network [OSTI]

    Fujita, Edward Kei

    The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current

  18. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01T23:59:59.000Z

    optimizations. Technologies assessed include photovoltaics (PV), solar thermal, gas turbines, microturbines, fuel cells,

  19. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31T23:59:59.000Z

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  20. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a...

  1. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01T23:59:59.000Z

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  2. Challenges when performing economic optimization of waste treatment: A review

    SciTech Connect (OSTI)

    Juul, N., E-mail: njua@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Münster, M., E-mail: maem@dtu.dk [DTU Management, Risø Campus, Technical University of Denmark (Denmark); Ravn, H., E-mail: hans.ravn@aeblevangen.dk [RAM-løse edb, Æblevangen 55, 2765 Smørum (Denmark); Söderman, M. Ljunggren, E-mail: maria.ljunggren@chalmers.se [Energy and Environment, Chalmers University of Technology, Gothenburg (Sweden); IVL Swedish Environmental Research Institute, Gothenburg (Sweden)

    2013-09-15T23:59:59.000Z

    Highlights: • Review of main optimization tools in the field of waste management. • Different optimization methods are applied. • Different fractions are analyzed. • There is focus on different parameters in different geographical regions. • More research is needed which encompasses both recycling and energy solutions. - Abstract: Strategic and operational decisions in waste management, in particular with respect to investments in new treatment facilities, are needed due to a number of factors, including continuously increasing amounts of waste, political demands for efficient utilization of waste resources, and the decommissioning of existing waste treatment facilities. Optimization models can assist in ensuring that these investment strategies are economically feasible. Various economic optimization models for waste treatment have been developed which focus on different parameters. Models focusing on transport are one example, but models focusing on energy production have also been developed, as well as models which take into account a plant’s economies of scale, environmental impact, material recovery and social costs. Finally, models combining different criteria for the selection of waste treatment methods in multi-criteria analysis have been developed. A thorough updated review of the existing models is presented, and the main challenges and crucial parameters that need to be taken into account when assessing the economic performance of waste treatment alternatives are identified. The review article will assist both policy-makers and model-developers involved in assessing the economic performance of waste treatment alternatives.

  3. Steam/fuel system optimization report: 6000-tpd SRC-I Demonstration Plant

    SciTech Connect (OSTI)

    Vakil, T.D.

    1983-07-01T23:59:59.000Z

    The design and configuration of the steam and fuel system for the 6000-ton-per-day (tpd) SRC-I Demonstration plant have been optimized, based on requirements for each area of the plant that were detailed in Area Baseline Designs of December 1982. The system was optimized primarily for the two most likely modes of plant operation, that is, when the expanded-bed hydrocracker (EBH) is operating at either high or low conversion, with all other units operating. However, the design, as such, is also operable under four other anticipated operating modes. The plant is self-sufficient in fuel except when the coker/calciner unit is not operating; then the required fuel oil import ranges from 80 to 125 MM Btu/h, lower heating value (LHV). The system affords stable operation under varying fuel gas availability and is reliable, flexible, and efficient. The optimization was based on maximizing overall efficiency of the steam system. The system was optimized to operate at five different steam-pressure levels, which are justifiable based on the plant's team requirements for process, heat duty, and power. All identified critical equipment drives will be run by steam turbines. Also part of the optimization was elimination of the steam evaporator in the wastewater treatment area. This minimized the impact on the steam system of operating in either the discharge of zero-discharge mode; the steam system remains essentially the same for either mode. Any further optimization efforts should be based on overall cost-effectiveness.

  4. OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL CELL VEHICLES UNDER UNCERTAINTY AND ENTERPRISE CONSIDERATIONS

    E-Print Network [OSTI]

    Jeongwoo Han; Panos Papalambros

    System research on Hybrid Electric Fuel Cell Vehicles (HEFCV) explores the tradeoffs among safety, fuel economy, acceleration, and other vehicle attributes. In addition to engineering considerations, inclusion of business aspects is important in a preliminary vehicle design optimization study. For a new technology, such as fuel cells, it is also important to include uncertainties stemming from manufacturing variability to market response to fuel price fluctuations. This paper applies a decomposition-based multidisciplinary design optimization strategy to an HEFCV. Uncertainty propagated throughout the system is accounted for in a computationally efficient manner. The latter is achieved with a new coordination strategy based on sequential linearizations. The hierarchically partitioned HEFCV design model includes enterprise, powertrain, fuel cell, and battery subsystem models. In addition to engineering uncertainties, the model takes into account uncertain behavior by consumers, and the expected maximum profit is calculated using probabilistic consumer preferences while satisfying engineering feasibility constraints. 1

  5. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    pressure operation in the partial load range. Since fuelmost of time in the partial load range, the optimal varying

  6. Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

  7. Progress performance report of clean uses of fossil fuels

    SciTech Connect (OSTI)

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01T23:59:59.000Z

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  8. Transport properties and fuel cell performance of sulfonated poly(imide) proton exchange membranes

    E-Print Network [OSTI]

    Transport properties and fuel cell performance of sulfonated poly(imide) proton exchange membranes for their performance as proton exchange membranes in direct methanol fuel cells (DMFC). The proton to methanol of chemical fuels, such as methanol [3]. For portable applications, proton exchange membrane fuel cells

  9. Output power characteristics and performance of TOPAZ II Thermionic Fuel Element No. 24

    SciTech Connect (OSTI)

    Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., TOPAZ International Program, 901 University Blvd., SE, Albuquerque, New Mexico 87106 (United States); Izhvanov, O.; Androsov, V. [JV INERTEK, Scientific Industrial Association ``Luch``, 24 Zheleznodorozhnaya, Podolsk, (Russia) 142100

    1996-03-01T23:59:59.000Z

    A final report on the output power characteristics and capabilities of single cell TOPAZ II Thermionic Fuel Element (TFE) No. 24 is presented. Thermal power tests were conducted for over 3000 hours to investigate converter performance under normal and adverse operating conditions. Experiments conducted include low power testing, high power testing, air introduction to the interelectrode gap, collector temperature optimization, thermal modeling, and output power characteristic measurements. During testing, no unexpected degradation in converter performance was observed. The TFE has been removed from the test stand and returned to Scientific Industrial Association {open_quote}{open_quote}LUCH{close_quote}{close_quote} for materials analysis and report. This research was conducted at the Thermionic System Evaluation Test (TSET) Facility at the New Mexico Engineering Research Institute (NMERI) as a part of the Topaz International Program (TIP) by the Air Force Phillips Laboratory (PL). {copyright} {ital 1996 American Institute of Physics.}

  10. The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, January 2000 |

  11. Effects of Impurities of Fuel Cell Performance and Durability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||Ratio |of

  12. Effects of Impurities on Fuel Cell Performance and Durability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||Ratio |ofof

  13. Effects of Impurities on Fuel Cell Performance and Durability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||Ratio |ofofof

  14. Effects of Impurities on Fuel Cell Performance and Durability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||Ratio |ofofofof

  15. Effects of Impurities on Fuel Cell Performance and Durability | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||Ratio

  16. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway imageFuel

  17. Experimental Evaluation of DOC Performance Using Secondary Fuel Injection |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGenerationEducationalChemistryEnergyto

  18. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    SciTech Connect (OSTI)

    Soewono, C. N.; Takaki, N. [Dept. of Applied Science Engineering, Faculty Tokai Univ., Kanagawa-ken, Hiratsuka-shi Kitakaname 4-1-1 (Japan)

    2012-07-01T23:59:59.000Z

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  19. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect (OSTI)

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30T23:59:59.000Z

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  20. Optimizing Center Performance through Coordinated Data Staging, Scheduling and Recovery

    SciTech Connect (OSTI)

    Zhang, Zhe [ORNL; Wang, Chao [ORNL; Vazhkudai, Sudharshan S [ORNL; Ma, Xiaosong [ORNL; Pike, Gregory [ORNL; Cobb, John W [ORNL; Mueller, Frank [North Carolina State University

    2007-01-01T23:59:59.000Z

    Procurement and optimized utilization of Petascale supercomputers and centers is a renewed national priority. Sustained performance and availability of such large centers is a key technical challenge significantly impacting their usability. As recent research shows, storage systems can be a primary fault source leading to unavailability of even today's supercomputer. Due to data unavailability, jobs are frequently resubmitted resulting in reduced compute center performance as well as in a lack of coordination between I/O activities and job scheduling. In this work, we explore two mechanisms, namely the coordination of job scheduling and data staging/offloading and on-demand job input data reconstruction to address the availability of job input/output data and to improve center-wide performance. Fundamental to both mechanisms is the efficient management of transient data: in the way it is scheduled and recovered. Collectively, from a center standpoint, these techniques optimize resource usage and increase its data/service availability. From a user job standpoint, they reduce job turnaround time and optimize the usage of allocated time. We have implemented our approaches within commonly used supercomputer software tools such as the PBS scheduler and the Lustre parallel file system. We have gathered reconstruction data from a production supercomputer environment using multiple data sources. We conducted simulations based on the measured data recovery performance, the job traces and staged data logs from leadership-class supercomputer centers. Our results indicate that the average waiting time of jobs is reduced. This trend increases significantly for larger jobs and also as data is striped over more I/O nodes.

  1. On the use of high performance annular fuel in PWRs

    E-Print Network [OSTI]

    Feng, Bo, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    Recently, MIT's Center for Advanced Nuclear Energy Systems developed a new high burnup annular fuel that features both internal and external cooling. Implementation of this fuel design in current pressurized water reactors ...

  2. LAMMPS strong scaling performance optimization on Blue Gene/Q

    SciTech Connect (OSTI)

    Coffman, Paul; Jiang, Wei; Romero, Nichols A.

    2014-11-12T23:59:59.000Z

    LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using an 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.

  3. Effects of Fuel and Air Impurities on PEM Fuel Cell Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board ContributionsreductionRefineries |Endurance ||

  4. Fuel Additive Strategies for Enhancing the Performance of Engines and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2JessiNicholasRE:EnergyEngine Oils |

  5. Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2JessiNicholasRE:EnergyEngine Oils

  6. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d r o

  7. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d r oEmissions |

  8. Fuel Tank Manufacturing, Testing, Field Performance, and Certification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)OverviewgreenLifeDepartment of

  9. Chimayo Elementary school performs well in Fuel Cell Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of theChemistryChicagoFuel Cell Challenge

  10. Membrane Performance and Durability Overview for Automotive Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis

  11. Visualization of Fuel Cell Water Transport and Performance Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | DepartmentTRUVictorVisualization &under

  12. Emission Performance of Modern Diesel Engines Fueled with Biodiesel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily Knouse About Us Emily

  13. A Correlation of Diesel Engine Performance with Measured NIR Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015Gross Gamma-Ray LogAFuels

  14. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01T23:59:59.000Z

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, “Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems.” This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N’,N’-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  15. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I. [Los Alamos National Lab., NM (United States)

    1996-12-31T23:59:59.000Z

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  16. OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,

    E-Print Network [OSTI]

    Stanford University

    OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION, CO2 CAPTURE AND WIND A THESIS SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY of Master of Science in Energy Resources Engineering. (Louis J. Durlofsky) Principal Co-Adviser I certify

  17. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29T23:59:59.000Z

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  18. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    system, the power consumption of the hydrogen EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicleelectric vehicles, uninterruptible power sources, distributed power generation systems,

  19. Cold-Start Performance and Emissions Behavior of Alcohol Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Methods Andrew Ickes & Thomas Wallner Argonne National Laboratory 17 th Directions in...

  20. Used Nuclear Fuel Loading and Structural Performance Under Normal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet| Department30,

  1. Used Nuclear Fuel Loading and Structural Performance Under Normal

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet|

  2. High Performance Alkaline Fuel Cell Membranes > Research Highlights >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry| Center forResearch

  3. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390 Technical

  4. Nafion-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Nafion®-sepiolite composite membranes for improved Proton Exchange Membrane Fuel Cell performance, characterized and integrated in Membrane-Electrodes Assembly to be tested in fuel cell operating conditions, mobile or stationary), Proton Exchange Membrane Fuel Cells (PEMFC) are amongst the most studied fuel

  5. Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab

    E-Print Network [OSTI]

    Cui, Yi

    Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

  6. Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Author's personal copy Performance of an alkaline-acid direct ethanol fuel cell L. An, T.S. Zhao ethanol fuel cell Alkaline-acid Species concentrations Membrane thickness Power density a b s t r a c t This paper reports on the performance of an alkaline-acid direct ethanol fuel cell (AA-DEFC) that is composed

  7. "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"

    E-Print Network [OSTI]

    Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

  8. Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France

    E-Print Network [OSTI]

    Brest, Université de

    . Keywords--Hybrid power system, renewable energy, fuel cell, photovoltaic, generation unit sizing, energy with the optimal design of a stand-alone hybrid photovoltaic and fuel cell power system without battery storage-17]. For such king of hybrid power systems, the sources can be optimally sized with different techniques

  9. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect (OSTI)

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01T23:59:59.000Z

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  10. Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell

    E-Print Network [OSTI]

    Park, Yong Hun

    2009-05-15T23:59:59.000Z

    Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode assembly (MEA) which...

  11. Investigation of the performance and water transport of a polymer electrolyte membrane (pem) fuel cell 

    E-Print Network [OSTI]

    Park, Yong Hun

    2009-05-15T23:59:59.000Z

    Fuel cell performance was obtained as functions of the humidity at the anode and cathode sites, back pressure, flow rate, temperature, and channel depth. The fuel cell used in this work included a membrane and electrode ...

  12. Physical Protection System Upgrades - Optimizing for Performance and Cost

    SciTech Connect (OSTI)

    Bouchard, Ann M.; Hicks, Mary Jane

    1999-07-09T23:59:59.000Z

    CPA--Cost and Performance Analysis--is an architecture that supports analysis of physical protection systems and upgrade options. ASSESS (Analytic System and Software for Evaluating Security Systems), a tool for evaluating performance of physical protection systems, currently forms the cornerstone for evaluating detection probabilities and delay times of the system. Cost and performance data are offered to the decision-maker at the systems level and to technologists at the path-element level. A new optimization engine has been attached to the CPA methodology to automate analyses of many combinations (portfolios) of technologies. That engine controls a new analysis sequencer that automatically modifies ASSESS PPS files (facility descriptions), automatically invokes ASSESS Outsider analysis and then saves results for post-processing. Users can constrain the search to an upper bound on total cost, to a lower bound on level of performance, or to include specific technologies or technology types. This process has been applied to a set of technology development proposals to identify those portfolios that provide the most improvement in physical security for the lowest cost to install, operate and maintain at a baseline facility.

  13. Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance

    E-Print Network [OSTI]

    Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance required for a Fusion Power Plant. Const. Cost $B Date

  14. The Effect of Variable Quality Fuels on Cogeneration Plant Performance 

    E-Print Network [OSTI]

    Ahner, D. J.; Oliva, J. J.

    1986-01-01T23:59:59.000Z

    The variable energy characteristics of solid wastes, biomass and other low grade fuels, when utilized in cogeneration applications, introduce several additional plant design considerations. The effects of longer term heating value and/or quantity...

  15. Analysis of tru-fueled vhtr prismatic core performance domains 

    E-Print Network [OSTI]

    Lewis, Tom Goslee

    2009-05-15T23:59:59.000Z

    in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy would make use of fuels containing transuranic (TRU) nuclides in nuclear reactors. This would prolong reactor operation...

  16. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Broader source: Energy.gov (indexed) [DOE]

    Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with...

  17. Optimizing small wind turbine performance in battery charging applications

    SciTech Connect (OSTI)

    Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

    1995-05-01T23:59:59.000Z

    Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

  18. 2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation COST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR

    SciTech Connect (OSTI)

    Mark K. Gee

    2004-04-01T23:59:59.000Z

    The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

  19. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    SciTech Connect (OSTI)

    Trent Molter

    2012-08-18T23:59:59.000Z

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  20. Performance and fuel-cycle cost analysis of one JANUS 30 conceptual design for several fuel-element-design options

    SciTech Connect (OSTI)

    Nurdin, M.; Matos, J.E.; Freese, K.E.

    1982-01-01T23:59:59.000Z

    The performance and fuel cycle costs for a 25 MW, JANUS 30 reactor conceptual design by INTERATOM, Federal Republic of Germany, for BATAN, Republic of Indonesia have been studied using 19.75% enriched uranium in four fuel element design options. All of these fuel element designs have either been proposed by INTERATOM for various reactors or are currently in use with 93% enriched uranium in reactors in the Federal Republic of Germany. Aluminide, oxide, and silicide fuels were studied for selected designs using the range of uranium densities that are either currently qualified or are being developed and demonstrated internationally. To assess the long-term fuel adaptation strategy as well as the present fuel acceptance, reactor performance and annual fuel cycle costs were computed for seventeen cases based on a representative end-of-cycle excess reactivity and duty factor. In addition, a study was made to provide data for evaluating the trade-off between the increased safety associated with thicker cladding and the economic penalty due to increased fuel consumption.

  1. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  2. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01T23:59:59.000Z

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  3. Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)

    SciTech Connect (OSTI)

    Campbell, W.R.; Giovengo, J.F.

    1987-10-01T23:59:59.000Z

    Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percent of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.

  4. Multiobjective Design and Optimization of Polymer Flood Performance

    E-Print Network [OSTI]

    Ekkawong, Peerapong

    2013-07-22T23:59:59.000Z

    The multiobjective genetic algorithm can be used to optimize two conflicting objectives, oil production and polymer utility factor in polymer flood design. This approach provides a set of optimal solutions which can be considered as trade-off curve...

  5. Effect of nitrate on the performance of single chamber air cathode microbial fuel cells

    E-Print Network [OSTI]

    Tullos, Desiree

    Effect of nitrate on the performance of single chamber air cathode microbial fuel cells Chontisa Accepted 26 August 2008 Published online 11 September 2008 Keywords: Microbial fuel cell Denitrification microbial fuel cells (MFCs) has drawn much attention recently as a new approach of waste- water treatment

  6. Analysis of Pt/C electrode performance in a flowing-electrolyte alkaline fuel cell

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Analysis of Pt/C electrode performance in a flowing- electrolyte alkaline fuel cell Fikile R cell Electrode characterization X-ray micro-computed tomography Microfluidic fuel cell Carbonates a b a microfluidic H2/O2 fuel cell as an analytical platform. Both anodes and cathodes were investigated

  7. Performance of a Polymer Electrolyte Membrane Fuel Cell Exposed to Transient CO Concentrations

    E-Print Network [OSTI]

    Van Zee, John W.

    . Recently, the decay and recovery of fuel cell performance in response to step changes in the level of COPerformance of a Polymer Electrolyte Membrane Fuel Cell Exposed to Transient CO Concentrations fuel cell PEMFC . The data include relatively high 500 and 3000 ppm CO levels at 70°C cell temperature

  8. High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

  9. High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : the catalyst of a fuel cell can cost no more than 5/3 per kilowatt [1]. If the catalyst is platinum (~40 g-1High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading M. Mougenot1, 2 potential for the fuel cell technology to overcome the upcoming energy and resources issues in our society

  10. Increased performance of single-chamber microbial fuel cells using an improved cathode structure

    E-Print Network [OSTI]

    Increased performance of single-chamber microbial fuel cells using an improved cathode structure Maximum power densities by air-driven microbial fuel cells (MFCs) are considerably influenced by cathode reserved. Keywords: Microbial fuel cell; Air cathode; Diffusion layer; PTFE coating; Coulombic efficiency 1

  11. Distributed Performance of Polymer Electrolyte Fuel Cells under Low-Humidity Conditions

    E-Print Network [OSTI]

    Mench, Matthew M.

    ,a, * M. M. Mench,a, **,z S. Cleghorn,b and U. Beuscherb a Fuel Cell Dynamics and Diagnostics LaboratoryDistributed Performance of Polymer Electrolyte Fuel Cells under Low-Humidity Conditions Q. Dong, Pennsylvania 16802, USA b W.L. Gore & Associates, Gore Fuel Cell Technologies, Incorporated, Elkton, Maryland

  12. Performance modeling and cell design for high concentration methanol fuel cells

    E-Print Network [OSTI]

    Chapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li density of liquid methanol (CH3OH) fuel is 4800 Wh l-1 , whereas the theoretical energy density of Li

  13. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L. [Texas A and M Univ., College Station, TX (United States). Nuclear Engineering Dept.; Gellene, G.I. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

    1999-05-01T23:59:59.000Z

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  14. Rise-M-2211 EVALUATION OF LHR FUEL PERFORMANCE UNDER TRANSIENT AND

    E-Print Network [OSTI]

    OF RECENT REPORTS Per Knudsen Abstract. Reports from the meetings at Petten (Nov. - Dec. 1978), Portland on Fuel Behaviour 10 4. Three-Mile Island Fuel Performance 12 APPENDIX A: Petten Meeting A-l Paper List A the following technical meetings: - "Ramping and Load Following Behaviour of Reactor Fuel", Petten, 3C November

  15. Selecting fines recycle methods to optimize fluid bed combustor performance

    SciTech Connect (OSTI)

    Rickman, W.S.; Fields, D.E.; Brimhall, W.L.; Callahan, S.F.

    1980-05-01T23:59:59.000Z

    Testing and analysis of a number of different fines recycle methods for fluid bed combustors has led to a generalized modeling technique. This model accounts for the effect of pertinent variables in determining overall combustion efficiencies. Computer application of this model has allowed trade-off studies to be performed that show the overall process effects of changes in individual operating parameters. Verification of the model has been accomplished in processing campaigns while combusting fuels such as graphite and bituminous coal. A 0.4 MW test unit was used for the graphite experimental work. Solid fuel was typically crushed to 5 mm maximum screen size. Bed temperatures were normally controlled at 900/sup 0/C; the combustor was an atmospheric unit with maximum in-bed pressures of 0.2 atm. Expanded bed depths ranged from 1.5 to 3 meters. Additional data was taken from recycle tests sponsored by EPRI on the B and W 6 ft x 6 ft fluid bed combustor. These tests used high sulfur coal in a 1.2 meter deep, 850/sup 0/C atmospheric fluidized bed of limestone, with low recycle rates and temperatures. Close agreement between the model and test data has been noted, with combustion efficiency predictions matching experimental results within 1%.

  16. Theory of proton exchange membranes fuel cells and the testing of performance characteristics of polymer electrolyte membranes

    E-Print Network [OSTI]

    Cruz-Gonzalez, Tizoc, 1982-

    2004-01-01T23:59:59.000Z

    Proton exchange membrane (PEM) fuel cells hold great promise as source of power. A hydrogen and oxygen PEM fuel is a simple fuel cell that can be theoretically characterized. The performance of a PEM fuel cell can be ...

  17. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-09-30T23:59:59.000Z

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions.

  18. Method to fabricate high performance tubular solid oxide fuel cells

    DOE Patents [OSTI]

    Chen, Fanglin; Yang, Chenghao; Jin, Chao

    2013-06-18T23:59:59.000Z

    In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

  19. Diesel fuel component contributions to engine emissions and performance: Clean fuel study

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulten, D.S. [Southwest Research Inst., San Antonio, TX (United States)

    1994-08-01T23:59:59.000Z

    The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

  20. Modeling the performance of high burnup thoria and urania PWR fuel

    E-Print Network [OSTI]

    Long, Yun, 1972-

    2002-01-01T23:59:59.000Z

    Fuel performance models have been developed to assess the performance of ThO?-UO? fuels that can be operated to a high burnup up to 80-100MWd/kgHM in current and future Light Water Reactors (LWRs). Among the various issues ...

  1. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    E-Print Network [OSTI]

    Kær, Søren Knudsen

    Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy a b s t r a c t This paper analyzes the effects of methanol and water vapor on the performance

  2. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-01-01T23:59:59.000Z

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (3) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (4) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (5) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we have completed the Budget Period I and have fulfilled many of the objectives. We have developed a viable model to explain the reservoir mechanism and have been able to develop a correlation between core and log data so that we can extend our analysis to other, yet unexploited, regions. In Budget Period II, we will continue to drill several additional, geologically targeted wells. Depending on the depositional system, these wells can be either vertical or horizontal wells. We will closely examine the secondary recovery techniques to improve the ultimate recovery from this field. In the mean time, we will continue to refine our geological and petrophysical model so that we can extend our approach to other adjacent fields. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.

  3. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2001-10-01T23:59:59.000Z

    The main objectives of the proposed study are as follows: (1) To understand and evaluate an unusual primary oil production mechanism which results in decreasing (retrograde) oil cut (ROC) behavior as reservoir pressure declines. (2) To develop better, produced water, disposal techniques so as to minimize lifting costs, surface separation costs and water disposal costs. (3) To improve calculations of initial oil in place so as to determine the economic feasibility of completing and producing a well. (4) To optimize the location of new wells based on understanding of geological and petrophysical properties heterogeneities. (5) To evaluate various secondary recovery techniques for oil reservoirs producing from fractured formations. (6) To enhance the productivity of producing wells by using new completion techniques. These objectives are important for optimizing field performance from West Carney Field located in Lincoln County, Oklahoma. The field, which was discovered in 1980, produces from Hunton Formation in a shallow-shelf carbonate reservoir. The early development in the field was sporadic. Many of the initial wells were abandoned due to high water production and constraints in surface facilities for disposing excess produced water. The field development began in earnest in 1995 by Altex Resources. They had recognized that production from this field was only possible if large volumes of water can be disposed. Being able to dispose large amounts of water, Altex aggressively drilled several producers. With few exceptions, all these wells exhibited similar characteristics. The initial production indicated trace amount of oil and gas with mostly water as dominant phase. As the reservoir was depleted, the oil cut eventually improved, making the overall production feasible. The decreasing oil cut (ROC) behavior has not been well understood. However, the field has been subjected to intense drilling activity because of prior success of Altex Resources. In this work, we will investigate the primary production mechanism by conducting several core flood experiments. After collecting cores from representative wells, we will study the wettability of the rock and simulate the depletion behavior by mimicking such behavior under controlled lab conditions. The overall project goal would be to validate our hypothesis and to determine the best method to exploit reservoirs exhibiting ROC behavior. To that end, we will collect and analyze core samples, and run a single well tracer test during the Budget Period I. We will continue to drill vertical wells during this period. Once we understand the mechanism and are able to quantify the geological model, in Budget Period II we will drill several, additional wells. Depending on the feasibility, we will equip some of the vertical wells with downhole separator, as well as surface compact separator. This will allow us to compare the new technology with the existing one. In the Budget Period III, we will monitor the field performance and revise and refine our models to further optimize the performance.

  4. Optimizing I/O Performance for the Lustre File System at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon dioxide sequestration,Optimizing

  5. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01T23:59:59.000Z

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  6. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect (OSTI)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01T23:59:59.000Z

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  7. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Jie Guan; Nguyen Minh

    2003-10-01T23:59:59.000Z

    This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

  8. Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit Scheduling

    E-Print Network [OSTI]

    Dessouky, Maged

    Jointly Optimizing Cost, Service, and Environmental Performance in Demand-Responsive Transit-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand- responsive

  9. Fuel characteristics and theoretical performance of a fluidized bed combustor with manure as a fuel 

    E-Print Network [OSTI]

    Park, Joon Hwa

    1984-01-01T23:59:59.000Z

    =tm Fuel feed rate ( kg/s) Xi NOMENCLATURE (Continued) M no nv Qg (HL) Qq ( SHL) ge (VH) 4e (CH) R u RHOF RMONO OAF SV SC Tw To T~b Tm TD Total mass flow rate Order of reaction with oxygen Order of reaction with volatiles Heat loss...

  10. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01T23:59:59.000Z

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.

  11. Performing aggressive code optimization with an ability to rollback changes made by the aggressive optimizations

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-07-23T23:59:59.000Z

    Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.

  12. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30T23:59:59.000Z

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  13. A Fine-Grained Analysis of the Performance and Power Benefits of Compiler Optimizations for Embedded

    E-Print Network [OSTI]

    Giesbrecht, Mark

    optimization phase inside of an adaptive dynamic optimizer if power consumption is of importance. 1 grant. is achieved by hand programming various transformations in PowerPC assembly. Specifically, weA Fine-Grained Analysis of the Performance and Power Benefits of Compiler Optimizations

  14. Fuel Efficiency Benefits and Implementation Consideration for Cruise Altitude and Speed Optimization in the National Airspace System

    E-Print Network [OSTI]

    Jensen, Luke

    2014-07-29T23:59:59.000Z

    This study examines the potential fuel burn benefits of altitude and speed optimization in the cruise phase of flight for domestic airlines in the United States. Airlines can achieve cost reductions and reduce environmental ...

  15. On Computation of Performance Bounds of Optimal Index Assignment

    E-Print Network [OSTI]

    X. Wu

    2010-02-18T23:59:59.000Z

    Feb 18, 2010 ... Abstract: Channel-optimized index assignment of source codewords is arguably ... Category 1: Linear, Cone and Semidefinite Programming ...

  16. Optimal_Performance_of_Hybrid_Generation_2011-05-24

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding

  17. Optimization of Direct-Injection H2 Combustion Engine Performance,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9IndustrialOptima:of Energy 0

  18. Optimization of Direct-Injection H2 Combustion Engine Performance,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9IndustrialOptima:of Energy

  19. Design Potential of Metal Foil Substrates for Optimized DOC Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D *DepartmentTS NOTDiesel Engine

  20. An Integrated Platform for Engine Performance Simulations and Optimization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance | DepartmentAnDow.comunder Diesel

  1. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    SciTech Connect (OSTI)

    Turinsky, Paul; Hays, Ross

    2011-09-02T23:59:59.000Z

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

  2. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

    SciTech Connect (OSTI)

    Jie Guan; Atul Verma; Nguyen Minh

    2003-04-01T23:59:59.000Z

    This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.

  3. Modeling the Integrated Performance of Dispersion and Monolithic U-Mo Based Fuels

    SciTech Connect (OSTI)

    Daniel M. Wachs; Douglas E. Burkes; Steven L. Hayes; Karen Moore; Greg Miller; Gerard Hofman; Yeon Soo Kim

    2006-10-01T23:59:59.000Z

    The evaluation and prediction of integrated fuel performance is a critical component of the Reduced Enrichment for Research and Test Reactors (RERTR) program. The PLATE code is the primary tool being developed and used to perform these functions. The code is being modified to incorporate the most recent fuel/matrix interaction correlations as they become available for both aluminum and aluminum/silicon matrices. The code is also being adapted to treat cylindrical and square pin geometries to enhance the validation database by including the results gathered from various international partners. Additional modeling work has been initiated to evaluate the thermal and mechanical performance requirements unique to monolithic fuels during irradiation.

  4. A Framework for Performance Evaluation and Optimization of an Emerging Multimedia DS-CDMA

    E-Print Network [OSTI]

    A Framework for Performance Evaluation and Optimization of an Emerging Multimedia DS-CDMA Network for performance evaluation and optimization of an emerging multimedia, packet Direct-Sequence Code Division tolerant traffic. Accounting for these aspects becomes essential for emerging multimedia DS-CDMA networks

  5. Complexity and Performance Tradeoffs of Near-Optimal Detectors for Cooperative ISI

    E-Print Network [OSTI]

    Klein, Andrew G.

    Complexity and Performance Tradeoffs of Near-Optimal Detectors for Cooperative ISI Channels Yanjie in intersymbol in- terference (ISI) channels. The implementation complexity of the optimal detector scales, and performance for cooperative relays in ISI channels. We first explore use of a decision feedback sequence

  6. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect (OSTI)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01T23:59:59.000Z

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  7. Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells 

    E-Print Network [OSTI]

    Wang, Wenxin

    2006-04-12T23:59:59.000Z

    This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of ...

  8. Performance of Cladding on MOX Fuel with Low 240Pu/239Pu Ratio

    SciTech Connect (OSTI)

    McCoy, Kevin [Areva NP; Blanpain, Patrick [AREVA NP SAS; Morris, Robert Noel [ORNL

    2014-01-01T23:59:59.000Z

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world s first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding.

  9. using the Intel compiler as a performance optimization and characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.ExternalscriptEnv LANL NationalR I Ntool

  10. The performance of fluidized beds, packed beds, and screens as fuel cell electrodes

    E-Print Network [OSTI]

    Ruflin, Justin, 1981-

    2006-01-01T23:59:59.000Z

    At present, most fuel cells employ porous gas diffusion (PGD) electrodes. Although much effort has been spent on their development, the performance and cost of PGD electrodes are still major obstacles to the successful ...

  11. Effects of electrode compression on the performance of a solid polymer electrolyte fuel cell

    E-Print Network [OSTI]

    Del Campo, Christopher Scott

    1997-01-01T23:59:59.000Z

    The effects of electrode compression on the performance of a polymer electrolyte fuel cell (PEFC) were investigated. Preliminary testing showed that considerable compression of the carbon cloth electrodes was provided by the PEFC structure. Further...

  12. High Performance Fuel Design for Next Generation PWRs 2nd Annual Report

    E-Print Network [OSTI]

    Ballinger, Ronald G.

    The overall objective of this NERI project is to examine the potential for a high performance advanced fuel design for Pressurized Water Reactors (PWRs), which would accommodate a substantial increase of core power density ...

  13. An improved structural mechanics model for the FRAPCON nuclear fuel performance code

    E-Print Network [OSTI]

    Mieloszyk, Alexander James

    2012-01-01T23:59:59.000Z

    In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

  14. High Performance Fuel Design for Next Generation PWRs: 11th Quarterly Report

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    I. Technical Narrative: The overall objective of this NERI project is to examine the potential for a high performance advanced fuel for Pressurized Water Reactors (PWRs), which would accommodate a substantial increase of ...

  15. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect (OSTI)

    Jason Hales; Various

    2014-06-01T23:59:59.000Z

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  16. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  17. The performance of 3500 MWth homogeneous and heterogeneous metal fueled core designs

    SciTech Connect (OSTI)

    Turski, R.; Yang, Shi-tien

    1987-11-01T23:59:59.000Z

    Performance parameters are calculated for a representative 3500 MWth homogeneous and a heterogeneous metal fueled reactor design. The equilibrium cycle neutronic characteristics, safety coefficients, control system requirements, and control rod worths are evaluated. The thermal-hydraulic characteristics for both configurations are also compared. The heavy metal fuel loading requirements and neutronic performance characteristics are also evaluated for the uranium startup option. 14 refs., 14 figs., 20 tabs.

  18. Potential opportunities for nano materials to help enable enhanced nuclear fuel performance

    SciTech Connect (OSTI)

    McClellan, Kenneth J. [Los Alamos National Laboratory

    2012-06-06T23:59:59.000Z

    This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

  19. Network design optimization of fuel cell systems and distributed energy devices.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-07-01T23:59:59.000Z

    This research explores the thermodynamics, economics, and environmental impacts of innovative, stationary, polygenerative fuel cell systems (FCSs). Each main report section is split into four subsections. The first subsection, 'Potential Greenhouse Gas (GHG) Impact of Stationary FCSs,' quantifies the degree to which GHG emissions can be reduced at a U.S. regional level with the implementation of different FCS designs. The second subsection, 'Optimizing the Design of Combined Heat and Power (CHP) FCSs,' discusses energy network optimization models that evaluate novel strategies for operating CHP FCSs so as to minimize (1) electricity and heating costs for building owners and (2) emissions of the primary GHG - carbon dioxide (CO{sub 2}). The third subsection, 'Optimizing the Design of Combined Cooling, Heating, and Electric Power (CCHP) FCSs,' is similar to the second subsection but is expanded to include capturing FCS heat with absorptive cooling cycles to produce cooling energy. The fourth subsection, - Thermodynamic and Chemical Engineering Models of CCHP FCSs,' discusses the physics and thermodynamic limits of CCHP FCSs.

  20. Optimized performance for neutron interrogation to detect SNM

    SciTech Connect (OSTI)

    Slaughter, D R; Asztalos, S J; Biltoft, P J; Church, J A; Descalle, M; Hall, J M; Luu, T C; Manatt, D R; Mauger, G J; Norman, E B; Petersen, D C; Pruet, J A; Prussin, S G

    2007-02-14T23:59:59.000Z

    A program of simulations and validating experiments was utilized to evaluate a concept for neutron interrogation of commercial cargo containers that would reliably detect special nuclear material (SNM). The goals were to develop an interrogation system capable of detecting a 5 kg solid sphere of high-enriched uranium (HEU) even when deeply embedded in commercial cargo. Performance goals included a minimum detection probability, P{sub d} {ge} 95%, a maximum occurrence of false positive indications, P{sub fA} {le} 0.001, and maximum scan duration of t {le} 1 min. The conditions necessary to meet these goals were demonstrated in experimental measurements even when the SNM is deeply buried in any commercial cargo, and are projected to be met successfully in the most challenging cases of steel or hydrocarbons at areal density {rho}L {le} 150 g/cm{sup 2}. Optimal performance was obtained with a collimated ({Delta}{Theta} = {+-} 15{sup o}) neutron beam at energy E{sub n} = 7 MeV produced by the D(d,n) reaction with the deuteron energy E{sub d} = 4 MeV. Two fission product signatures are utilized to uniquely identify SNM, including delayed neutrons detected in a large array of polyethylene moderated 3He proportional counters and high energy {beta}-delayed fission product {gamma}-radiation detected in a large array of 61 x 61 x 25 cm{sup 3} plastic scintillators. The latter detectors are nearly blind to normal terrestrial background radiation by setting an energy threshold on the detection at E{sub min} {ge} 3 MeV. Detection goals were attained with a low beam current (I{sub d} = 15-65 {micro}A) source up to {rho}L = 75 g/cm{sup 2} utilizing long irradiations, T = 30 sec, and long counting times, t = 30-100 sec. Projecting to a higher beam current, I{sub d} {ge} 600 {micro}A and larger detector array the detection and false alarm goals would be attained even with intervening cargo overburden as large as {rho}L {le} 150 g/cm{sup 2}. The latter cargo thickness corresponds to 8 ft of hydrogenous or metallic cargo at the highest density allowed by the weight limit of the container. Simulations support the efficacy of this technique in the most challenging cases and experimental measurements are shown validating these predictions. Signal and background levels have been assessed and utilized to predict error rates due to false positive and false negative results. The laboratory system demonstrates the ability to detect HEU in amounts as small as m {ge} 250 g buried in the middle of a maximum density cargo and to do so with error rates that meet the goals given above. Higher beam current allows reliable SNM detection in shorter irradiation and/or counting times and with more challenging cargo threat scenarios.

  1. Performance Assessment Analyses Unique to Department of Energy Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Loo, Henry Hung Yiu; Duguid, J. O.

    2000-06-01T23:59:59.000Z

    This paper describes the iterative process of grouping and performance assessment that has led to the current grouping of the U.S. Department of Energy (DOE) spent nuclear fuel (SNF). The unique sensitivity analyses that form the basis for incorporating DOE fuel into the total system performance assessment (TSPA) base case model are described. In addition, the chemistry that results from dissolution of DOE fuel and high level waste (HLW) glass in a failed co-disposal package, and the effects of disposal of selected DOE SNF in high integrity cans are presented.

  2. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect (OSTI)

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A. [Nuclear Engineering Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL (United States)

    2013-07-01T23:59:59.000Z

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  3. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28T23:59:59.000Z

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  4. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  5. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    the optimal conditions to operate a molten carbonate fuel cell, can be used to garner fundamental insightNational Fuel Cell Research Center www.nfcrc.uci.edu MOLTEN CARBONATE FUEL CELLS STEADY STATE MODELING OF MOLTEN CARBONATE FUEL CELLS FOR SYSTEM PERFORMANCE ANALYSES OVERVIEW Development of steady

  6. Dynamic Simulation of Performance Development: Prediction and Optimal Scheduling

    E-Print Network [OSTI]

    Perl, Jürgen

    of Performance Analysis of Sport-e, Volume 4, Number 2. (a) offline analysis (b) online prediction load profile analysis (b) online prediction load profile original performance profile simulated performance profile output depends on load input in different and specific ways. On the one hand, the kinds of load

  7. Design Optimization and Performance Evaluation of the Relaying Algorithms, Relays and Protective Systems Using Advanced Testing Tools

    E-Print Network [OSTI]

    Design Optimization and Performance Evaluation of the Relaying Algorithms, Relays and Protective quality measures for designing, optimizing, setting and evaluating the protective relaying algorithms the performance indices for the operating principles, relays and protection systems. Multi-objective formal

  8. Performance/Energy Optimization of DSP Transforms on the XScale Processor

    E-Print Network [OSTI]

    Franchetti, Franz

    Performance/Energy Optimization of DSP Transforms on the XScale Processor Paolo D'Alberto, Markus P). To do this, we use SPIRAL, a program generation and optimization system for signal processing transforms energy; this is especially important for devices operating on limited power sources such as batteries

  9. OPTIMAL CONFIGURATION OF A COMMAND AND CONTROL NETWORK: BALANCING PERFORMANCE AND RECONFIGURATION CONSTRAINTS

    SciTech Connect (OSTI)

    L. DOWELL

    1999-08-01T23:59:59.000Z

    The optimization of the configuration of communications and control networks is important for assuring the reliability and performance of the networks. This paper presents techniques for determining the optimal configuration for such a network in the presence of communication and connectivity constraints. reconfiguration to restore connectivity to a data-fusion network following the failure of a network component.

  10. Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied

    E-Print Network [OSTI]

    Navon, Michael

    Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied to Models. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms­1231, 2003 Key words: energy minimization; proteins; loops; hybrid method; truncated Newton; dielectric

  11. A Performance Comparison of DRAM Memory System Optimizations for SMT Processors

    E-Print Network [OSTI]

    Zhu, Zhichun

    A Performance Comparison of DRAM Memory System Optimizations for SMT Processors Zhichun Zhu Dept use of si- multaneous multithreading (SMT) techniques raises ques- tions over their effectiveness DRAM systems in SMT systems, and search for new thread-aware DRAM optimization tech- niques. Our major

  12. Fuel Retrieval Sub (FRS) Project Decapping Station Performance Test Data Report

    SciTech Connect (OSTI)

    THIELGES, J.R.

    2000-01-13T23:59:59.000Z

    This document is to provide the test data report for Decapping Station Performance Testing. These performance tests were full scale and viewed as a continuation of development testing performed earlier (SNF-2710). A prototype decapping station confinement box was tested, along with some special tools required for the process, providing assurance that the fuel handling equipment will operate as designed, allowing for release of the FRS equipment for installation.

  13. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  14. Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

    E-Print Network [OSTI]

    Reiche, S; Emma, P; Fawley, W M; Huang, Z; Nuhn, H D; Stupakov, G V

    2005-01-01T23:59:59.000Z

    Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

  15. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

  16. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

  17. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Broader source: Energy.gov (indexed) [DOE]

    Engine friction Values derived from measurement on multi-cylinder engine Turbo-charger performance Derived from results of turbo-charged multi-cylinder hydrogen...

  18. Key Differences in the Fabrication, Irradiation, and Safety Testing of U.S. and German TRISO-coated Particle Fuel and Their Implications on Fuel Performance

    SciTech Connect (OSTI)

    Petti, David Andrew; Maki, John Thomas; Buongiorno, Jacopo; Hobbins, Richard Redfield

    2002-06-01T23:59:59.000Z

    High temperature gas reactor technology is achieving a renaissance around the world. This technology relies on high quality production and performance of coated particle fuel. Historically, the irradiation performance of TRISO-coated gas reactor particle fuel in Germany has been superior to that in the United States. German fuel generally displayed in-pile gas release values that were three orders of magnitude lower than U.S. fuel. Thus, we have critically examined the TRISO-coated fuel fabrication processes in the U.S. and Germany and the associated irradiation database with a goal of understanding why the German fuel behaves acceptably, why the U.S. fuel has not faired as well, and what process/ production parameters impart the reliable performance to this fuel form. The postirradiation examination results are also reviewed to identify failure mechanisms that may be the cause of the poorer U.S. irradiation performance. This comparison will help determine the roles that particle fuel process/product attributes and irradiation conditions (burnup, fast neutron fluence, temperature, and degree of acceleration) have on the behavior of the fuel during irradiation and provide a more quantitative linkage between acceptable processing parameters, as-fabricated fuel properties and subsequent in-reactor performance.

  19. The effect of fuel injection angle and pressure on combustor performance 

    E-Print Network [OSTI]

    Brown, Michael Lee

    1976-01-01T23:59:59.000Z

    )ed in the areas of combustion and fuels. Michael is a member of the American Society of Mechanical Engineers, the Society of Automotive Engineers, and Pi Tau Sigma. Mr. Brown's permanent address is: P. O. Box 495 Duluth, Georgia 30136 The typist.... Furthermore, FAR can effect combustor performance. Two different mass flows, 2. 9 and 14. 7 pounds per hour, yielding two different FARs were run at each injection angle and pressure. Concerning fuel injection parameters, six different injection angles (0...

  20. Maneuvering of Distributed Space-Borne Sensors for Optimal Interferometric Imaging Performance

    E-Print Network [OSTI]

    Sandberg, Julie

    2011-10-21T23:59:59.000Z

    MANEUVERING OF DISTRIBUTED SPACE-BORNE SENSORS FOR OPTIMAL INTERFEROMETRIC IMAGING PERFORMANCE A Thesis by JULIE SANDBERG Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Aerospace Engineering MANEUVERING OF DISTRIBUTED SPACE-BORNE SENSORS FOR OPTIMAL INTERFEROMETRIC IMAGING PERFORMANCE A Thesis by JULIE SANDBERG Submitted to the O ce of Graduate Studies...

  1. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    derived from a basic diagnostic fuel cell model [3] was usedExperimental Diagnostics in Polymer Electrolyte Fuel Cells,

  2. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02T23:59:59.000Z

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  3. Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2010-04-01T23:59:59.000Z

    Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

  4. Diesel fuel component contribution to engine emissions and performance. Final report

    SciTech Connect (OSTI)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

    1994-11-01T23:59:59.000Z

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  5. Multidisciplinary structural design and optimization for performance, cost, and flexibility

    E-Print Network [OSTI]

    Nadir, William David, 1979-

    2005-01-01T23:59:59.000Z

    Reducing cost and improving performance are two key factors in structural design. In the aerospace and automotive industries, this is particularly true with respect to design criteria such as strength, stiffness, mass, ...

  6. Performance Study and Optimization of the Zephergy Wind Turbine

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  7. Multi-parameter control for centrifugal compressor performance optimization

    E-Print Network [OSTI]

    Mannai, Sébastien (Sébastien Karim)

    2014-01-01T23:59:59.000Z

    The potential performance benefit of actuating inlet guide vane (IGV) angle, variable diffuser vane (VDV) angle and impeller speed to implement a multi-parameter control on a centrifugal compressor system is assessed. The ...

  8. Performance Study and Optimization of the Zephergy Wind Turbine 

    E-Print Network [OSTI]

    Soodavi, Moein

    2013-12-04T23:59:59.000Z

    There are many problems associated with small wind turbines, such as small Reynolds number and poor starting performance, that make them much more expensive than the large ones per unit power. New technologies are needed to improve the quality...

  9. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Mohan Kelkar

    2007-06-30T23:59:59.000Z

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  10. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2004-10-01T23:59:59.000Z

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability of water could be decreased, and that of gas could be increased. This should result in improved gas recovery from the reservoir. Our geological analysis of the reservoir develops the detailed stratigraphic description of the reservoir. Two new stratigraphic units, previously unrecognized, are identified. Additional lithofacies are recognized in new core descriptions. Our engineering analysis has determined that well density is an important parameter in optimally producing Hunton reservoirs. It appears that 160 acre is an optimal spacing. The reservoir pressure appears to decline over time; however, recovery per well is only weakly influenced by the pressure. This indicates that additional opportunity to drill wells exists in relatively depleted fields. A simple material balance technique is developed to validate the recovery of gas, oil and water. This technique can be used to further extrapolate recoveries from other fields with similar field characteristics.

  11. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-11-01T23:59:59.000Z

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  12. Effect of hydrophilic treatment of microporous layer on fuel cell performance

    SciTech Connect (OSTI)

    Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Fairweather, Joseph D [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Spernjak, Dusan [Los Alamos National Laboratory; Spendelow, Jacob [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Wilde, Peter [GERMANY; Schweiss, Ruediger [GERMANY

    2010-01-01T23:59:59.000Z

    The gas diffusion layer in a polymer electrolyte fuel cell is the component primarily responsible for effective water management under a wide variety of conditions. The incorporation of hydrophilic alumosilicate fibers in the microporous layer leads to an improvement in the fuel cell performance associated with a decrease in the mass transport resistance especially under high RH operation. This improvement in performance is obtained without sacrificing performance under low RH conditions. The alumosilicate fibers create domains that wick liquid water away from the catalyst layer. The improved mass transport performance is corroborated by AC impedance and neutron radiography analysis and is consistent with an increase in the average pore diameter inside the microporous layer.

  13. Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code

    SciTech Connect (OSTI)

    Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

    2009-09-01T23:59:59.000Z

    Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

  14. Coupling the core analysis program DeCART to the fuel performance application BISON

    SciTech Connect (OSTI)

    Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

    2013-07-01T23:59:59.000Z

    The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

  15. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01T23:59:59.000Z

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INL’s BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  16. Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System

    SciTech Connect (OSTI)

    James F. McElroy; Darren B. Hickey; Fred Mitlitsky

    2006-09-30T23:59:59.000Z

    Single cell solid oxide regenerative fuel cells (SORFCs) have been demonstrated for over 1000 hours of operation at degradation rates as low as 0.5% per thousand hours for current densities as high as 300mA/cm{sup 2}. Efficiency levels (fuel cell power out vs. electrolysis power in) have been demonstrated in excess of 80% at 100mA/cm{sup 2}. All testing has been performed with metallic based interconnects and non-noble metal electrodes in order to limit fabrication costs for commercial considerations. The SORFC cell technology will be scaled up to a 1kW sized stack which will be demonstrated in Year 2 of the program. A self contained SORFC system requires efficient thermal management in order to maintain operating temperatures during exothermic and endothermic operational modes. The use of LiF as a phase change material (PCM) was selected as the optimum thermal storage medium by virtue of its superior thermal energy density by volume. Thermal storage experiments were performed using LiF and a simulated SORFC stack. The thermal storage concept was deemed to be technically viable for larger well insulated systems, although it would not enable a high efficiency thermally self-sufficient SORFC system at the 1 kW level.

  17. Configuration and performance of the indirect-fired fuel cell bottomed turbine cycle

    SciTech Connect (OSTI)

    Micheli, P.L.; Williams, M.C.; Parsons, E.L. Jr.

    1993-12-31T23:59:59.000Z

    The natural gas, indirect-fired fuel cell bottomed turbine cycle (NG-IFFC) is introduced as a novel power plant system for the distributed power and on-site markets in the 20--200 megawatt (MW) size range. The novel indirect-fired carbonate fuel cell bottomed turbine cycle (NG-IFCFC) power plant system configures the ambient pressure carbonate fuel cell with a gas turbine, air compressor, combustor, and ceramic heat exchanger. Performance calculations from ASPEN simulations present material and energy balances with expected power output. The results indicate efficiencies and heat rates for the NG-IFCFC are comparable to conventionally bottomed carbonate fuel cell steam bottomed cycles, but with smaller and less expensive components.

  18. Performance-Based Evaluation of an Improved Robust Optimization Formulation

    E-Print Network [OSTI]

    Vogel, Richard M.

    of risk, and ability to adapt. Formulating a tool to meet the information needs of a decision management; Benefit-cost analysis; Decision-making under uncertainty; Regional planning. Introduction), and (4) risk of performance deterioration (sustainability). In addition, a decision-maker may want

  19. Power Performance Optimal 64-Bit Carry-Lookahead Adders

    E-Print Network [OSTI]

    Nikolic, Borivoje

    constraints has been developed using optimisation software, tabulated delay models and analytical energy models. The tool is used to generate energy­delay (E-D) tradeoff curves for selected high- performance 64-lookahead (CLA) adders using optimisation software and accurate tabulated delay models. A number of selected

  20. Optimizing Mobile Application Performance with ModelDriven Engineering

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    describes current research in developing an MDE tool for modeling mobile software architectures and using the following contributions to the study of mobile software development: (1) it shows how models of a mobile it difficult to test power consumption and performance until late in the software lifecycle [14], e.g., during

  1. Optimization of Lithium Iron Phosphate Battery Charging and Performance

    E-Print Network [OSTI]

    Misic, Aleksandar

    The goal of this project is to efficiently and safely charge a 5kWh battery pack in 15 minutes. Since the project is still in progress, this report describes experiments on a 56Wh battery. Experiments were performed to ...

  2. OPTIMIZATION AND PERFORMANCE MODELING OF STENCIL COMPUTATIONS ON MODERN MICROPROCESSORS

    E-Print Network [OSTI]

    (PDE) solvers constitute a large fraction of scientific applications in such diverse areas as heat- tive finite-difference techniques, which sweep over a spatial grid, performing nearest neighbor the coefficients of the PDE for that data element. These operations are then used to build solvers that range from

  3. Performance evaluation of the R6R018 fuel plate using PLATE code

    SciTech Connect (OSTI)

    Pavel G. Medvedev; Hakan Ozaltun

    2010-03-01T23:59:59.000Z

    The paper presents results of performance evaluation of the R6R018 fuel plate using PLATE code. R6R018 is a U-7Mo dispersion type mini-plate with Al-3.5Si matrix irradiated in the RERTR-9B experiment. The design of this plate is prototypical of the planned LEONIDAS irradiation test. Therefore, a detailed performance analysis of this plate is important to confirm acceptable behavior in pile, and to provide baseline and justification for further analysis and testing. Specific results presented in the paper include fuel temperature history, growth of the interaction layer between the U-Mo and the matrix, swelling, growth of the corrosion layer, and degradation of thermal conductivity. The methodology of the analysis will be discussed including the newly developed capability to account for the formation of the interaction layer during fuel fabrication.

  4. Verification as a Foundation for Validation of a Nuclear Fuel Performance Code

    SciTech Connect (OSTI)

    J. D. Hales; S. R. Novascone; B. W. Spencer; R. L. Williamson; G. Pastore; D. M. Perez

    2014-09-01T23:59:59.000Z

    Complex multiphysics simulations such as nuclear fuel performance analysis are composed of many submodels used to describe specific phenomena. These phenomena include, as examples, the relationship between stress and strain, heat transfer across a gas gap, and mechanical contact. These submodels work in concert to simulate real-world events, like the behavior of a fuel rod in a reactor. If a simulation tool is able to represent real-world behavior, the tool is said to be validated. While much emphasis is rightly placed on validation, model verification may be undervalued. Verification involves showing that a model performs as intended, that it computes results consistent with its mathematical description. This paper explains the differences between verification and validation and shows how validation should be preceded by verification. Specific verification problems, including several specific to nuclear fuel analysis, are given. Validation results are also presented.

  5. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    SciTech Connect (OSTI)

    Cahalan, J.; Wigeland, R. (Argonne National Lab., IL (USA)); Friedel, G. (Internationale Atomreaktorbau GmbH (INTERATOM), Bergisch Gladbach (Germany, F.R.)); Kussmaul, G.; Royl, P. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.)); Moreau, J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Perks, M. (UKAEA Risley Nuclear Power Development Establishment (UK)

    1990-01-01T23:59:59.000Z

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs.

  6. Performance of plasma sputtered Fuel Cell electrodes with ultra-low Pt M. Cavarroca

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Performance of plasma sputtered Fuel Cell electrodes with ultra-low Pt loadings M. Cavarroca , A. Abstract Ultra-low Pt content PEMFC electrodes have been manufactured using magnetron co- sputtering cell; Plasma sputtering deposition; ultra low platinum loading * Corresponding author: Fax: +33 2 38 41

  7. Stirling engine performance optimization with different working fluids

    SciTech Connect (OSTI)

    Daley, J.G.; Marr, W.W.; Heames, T.J.

    1986-01-01T23:59:59.000Z

    The design flexibility of Stirling cycle devices is evident from the wide variety of mechanical configurations that have been developed as well as the many differing applications that have been shown to be technically feasible. The choice of working fluid is one option that strongly influences engine design. Hydrogen permits the most compact engine (for a given power output and efficiency) of any gaseous working fluid investigated and has therefore been the choice in Stirling development programs directed at the automotive application where engine size is a major concern. Systems using helium or air are presently under development for applications where size is not as important a consideration. This paper describes calculated characteristics of engines optimized for four working fluids (hydrogen, helium, air and methane). A comparison is given between engines whose exterior dimensions are minimized and with lower rpm, lower pressure engine designs calculated by maximizing the dimensionless parameter known as the Beale number. Design point power and efficiency are the same in the resulting eight conceptual designs but great variation is shown in engine characteristics due both to working fluid differences and to the two different design objectives. 5 refs., 7 figs., 5 tabs.

  8. Benchmarking of the MIT High Temperature Gas-cooled Reactor TRISO-coated particle fuel performance model

    E-Print Network [OSTI]

    Stawicki, Michael A

    2006-01-01T23:59:59.000Z

    MIT has developed a Coated Particle Fuel Performance Model to study the behavior of TRISO nuclear fuels. The code, TIMCOAT, is designed to assess the mechanical and chemical condition of populations of coated particles and ...

  9. Optimizing drilling performance using a selected drilling fluid

    DOE Patents [OSTI]

    Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

    2011-04-19T23:59:59.000Z

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  10. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  11. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    SciTech Connect (OSTI)

    Sheryl L. Morton; Philip L. Winston; Toshiari Saegusa; Koji Shirai; Akihiro Sasahara; Takatoshi Hattori

    2006-04-01T23:59:59.000Z

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC-17) spent nuclear fuel storage cask as a candidate to study cask performance, because it had been used to store fuel as part of a dry cask storage demonstration project for more than 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. Preliminary cask evaluations performed in 2003 indicated that the cask has no visual degradation. However, a 4-5 mrem/hr step-change in the radiation levels about halfway up the cask and a localized hot spot beneath an upper air vent indicate that there may be variability in the density of the concrete or localized cracking. In 2005, INL and CRIEPI scientists performed additional surveys on the VSC-17 cask. This document summarizes the methods used on the VSC-17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.

  12. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    response of the fuel cell system under a series of stepresponse of the fuel cell system under a series of step

  13. Results from Tight and Loose Coupled Multiphysics in Nuclear Fuels Performance Simulations using BISON

    SciTech Connect (OSTI)

    S. R. Novascone; B. W. Spencer; D. Andrs; R. L. Williamson; J. D. Hales; D. M. Perez

    2013-05-01T23:59:59.000Z

    The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won’t converge and vice versa.

  14. Optimization of the Cathode Catalyst Layer Composition of a PEM Fuel Cell Using a Novel 2-Step Preparation Method

    E-Print Network [OSTI]

    Friedmann, Roland

    2009-03-05T23:59:59.000Z

    For good performance and high durability PEM fuel cells run at high water saturation levels. However, excess liquid water generated by the oxygen reduction reaction at the cathode can block pores in the catalyst layer so that reactant gases can...

  15. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-03-31T23:59:59.000Z

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  16. Optimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , energy cost, HOMER. Nomenclature HOMER = Hybrid Optimization Model for Electric Renewables; PV as a secondary source of energy [18-19]. For such king of hybrid power systems, the sources can be optimallyOptimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France

  17. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect (OSTI)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30T23:59:59.000Z

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  18. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  19. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01T23:59:59.000Z

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

  20. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2|&FuelEconomy

  1. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01T23:59:59.000Z

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  2. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, JanuarySunShotDepartment ofof

  3. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    SciTech Connect (OSTI)

    B. Boer; R. S. Sen; M. A. Pope; A. M. Ougouag

    2011-09-01T23:59:59.000Z

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO{sub 2} kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 {micro}mm kernel diameter, 100 {micro}mm buffer, 35 {micro}mm IPyC, 35 {micro}mm SiC, 40 {micro}mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10{sup -2} failure probability. For a 'best-estimate' FGR fraction of 50% and a more modest burnup target level of 500 MWd/kg ,the failure probability drops below 2.0 x 10{sup -5}, the typical performance of TRISO fuel made under the German HTR research program. An optimization study on particle design shows improved performance if the buffer size is increased from 100 to 120 {micro}mm while reducing the OPyC layer. The presence of the latter layer does not provide much benefit at high burnup levels (and fast fluence levels). Normally the shrinkage of the OPyC would result in a beneficial compressive force on the SiC coating. However, at high fluence levels the shrinkage is expected to turn into swelling, resulting in the opposite effect. However, this situation is different when the SiC-matrix, in which the particles are embedded, is also considered: the OPyC swelling can result in a beneficial compressive force on the SiC coating since outward displacement of the OPyC outer surface is inhibited by the presence of the also-swelling SiC matrix. Taking some credit for this effect by adopting a 5 {micro}mm SiC-matrix layer, the optimized particle (100 {micro}mm buffer and 10 {micro}mm OPyC), gives a failure probability of 1.9 x 10{sup -4} for conservative conditions. During a LOCA transient, assuming core re-flood in 30 seconds, the temperature of the coated particle can be expected to be about 200K higher than nominal temperature (900K). For this event the particle failure fraction for a conservative case is 1.0 x 10{sup -2}, for the optimized particle design. For a FGR-fraction of 50% this value reduces to 6.4 x 10{sup -4}.

  4. Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-04-20T23:59:59.000Z

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  5. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  6. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication 

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  7. A Parametric Study of Cathode Catalyst Layer Structural Parameters on the Performance of a PEM Fuel Cell

    E-Print Network [OSTI]

    Stockie, John

    exchange membrane fuel cell (PEMFC) and how changes in its structural parameters affect performance. These results give useful guidelines for manufactures of PEMFC catalyst layers. Keywords: PEM fuel cell In a proton exchange membrane fuel cell (or PEMFC), electrical energy is generated directly through

  8. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  9. Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol 2010 Available online 12 June 2010 Keywords: Fuel cell Direct methanol fuel cell Catalyst Active Site Pt-Au alloy a b s t r a c t A pure Pt cathode catalyst in direct methanol fuel cells is not only

  10. Recent Updates to NRC Fuel Performance Codes and Plans for Future Improvements

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.

    2011-12-31T23:59:59.000Z

    FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

  11. Empirical Performance Model-Driven Data Layout Optimization and Library Call Selection for Tensor Contraction Expressions

    SciTech Connect (OSTI)

    Lu, Qingda; Gao, Xiaoyang; Krishnamoorthy, Sriram; Baumgartner, Gerald; Ramanujam, J.; Sadayappan, Ponnuswamy

    2012-03-01T23:59:59.000Z

    Empirical optimizers like ATLAS have been very effective in optimizing computational kernels in libraries. The best choice of parameters such as tile size and degree of loop unrolling is determined by executing different versions of the computation. In contrast, optimizing compilers use a model-driven approach to program transformation. While the model-driven approach of optimizing compilers is generally orders of magnitude faster than ATLAS-like library generators, its effectiveness can be limited by the accuracy of the performance models used. In this paper, we describe an approach where a class of computations is modeled in terms of constituent operations that are empirically measured, thereby allowing modeling of the overall execution time. The performance model with empirically determined cost components is used to perform data layout optimization together with the selection of library calls and layout transformations in the context of the Tensor Contraction Engine, a compiler for a high-level domain-specific language for expressing computational models in quantum chemistry. The effectiveness of the approach is demonstrated through experimental measurements on representative computations from quantum chemistry.

  12. A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide

    E-Print Network [OSTI]

    DeVivo, D. G.

    1980-01-01T23:59:59.000Z

    A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue...

  13. Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01T23:59:59.000Z

    internal combustion engine vehicles, the hydrogen fuel cell vehicle has the advantages of high energy efficiency and low emissions

  15. Electrochimica Acta 52 (2006) 14091416 Optimization of cathode catalyst layer for direct methanol fuel cells

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    methanol fuel cells (DMFCs) features a large thickness and mass transport loss due to higher Pt loading electrolyte fuel cells, as a result of an optimum balance of proton transport and oxygen diffusion. Different rights reserved. Keywords: Direct methanol fuel cell; Cathode; Catalyst layer; Porosity distribution

  16. Fuel-performance-improvement program. Semiannual progress report, October 1980-March 1981. [Sphere-pac and annular-coated-pressurized

    SciTech Connect (OSTI)

    Crouthamel, C E; Freshley, M D

    1981-04-01T23:59:59.000Z

    Progress on the Fuel Performance Improvement Program's fuel test and demonstration irradiations is reported for the period of October 1980-March 1981. The purpose of the program is to test and demonstrate improved light water reactor fuel concepts that are more resistant to failure from pellet-cladding interaction during power increases than standard pellet fuel. This would also offer extended burnup potential and, hence, improved uranium utilization.

  17. Electro-Thermal Comparison and Performance Optimization of Thin-Body SOI and GOI MOSFETs

    E-Print Network [OSTI]

    Dutton, Robert W.

    .723.8482, Fax 650.723.7657 ABSTRACT This paper examines self-heating trends in ultra-scaled fully depleted SOI for SOI [6][7]. In this work we analyze self-heating trends in GOI and SOI devices and show that despite can be designed to provide optimal performance, taking self-heating into account self

  18. Journal of Power Sources 134 (2004) 130138 Performance optimization of a batterycapacitor hybrid system

    E-Print Network [OSTI]

    Popov, Branko N.

    2004-01-01T23:59:59.000Z

    -ion battery with commercial super capacitors using impedance measurement were car- ried out by Chu and Braatz and the battery system were compared under a similar set of operating parameters. 2. Experimental A Sony US 18650Journal of Power Sources 134 (2004) 130­138 Performance optimization of a battery­capacitor hybrid

  19. Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits

    E-Print Network [OSTI]

    Carloni, Luca

    Combining Retiming and Recycling to Optimize the Performance of Synchronous Circuits Luca P, CA 94720-1772 Abstract Recycling was recently proposed as a system-level design tech- nique to facilitate the building of complex System-on-Chips (SOC) by assembling pre-designed components. Recycling

  20. Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin

    E-Print Network [OSTI]

    Choueiri, Edgar

    Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin and Edgar Y. Choueiri Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL) Mechanical and Aerospace A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one

  1. REFINING AND MAINTAINING THE OPTIMAL PERFORMANCE OF THE CEBAF SRF SYSTEMS *

    E-Print Network [OSTI]

    REFINING AND MAINTAINING THE OPTIMAL PERFORMANCE OF THE CEBAF SRF SYSTEMS * C. Reece, J. Benesch CEBAF at Jefferson Lab is striving to achieve its maximum reliability at the maximum deliverable energy beam time when CEBAF is run near its maximum energy. Operation at increased rf power levels has

  2. Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures

    E-Print Network [OSTI]

    Bregni, Stefano

    Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures Stefano Bregni (SSL) protocol is one of the most viable solutions to provide the required level of confidentiality, message integrity and endpoint authentication. The two main alternatives for providing SSL security

  3. Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures

    E-Print Network [OSTI]

    Bregni, Stefano

    Cost-Performance Optimization of SSL-Based Secure Distributed Infrastructures S. Bregni, Senior. The Secure Socket Layer (SSL) protocol is one of the most viable solutions to provide the required level of confidentiality, message integrity and endpoint authentication. The two main alternatives for providing SSL

  4. Source-to-Source Architecture Transformation for Performance Optimization in BIP

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Source-to-Source Architecture Transformation for Performance Optimization in BIP Marius Bozga of composition operators: inter- actions and priorities. In this paper we present a method that transforms of the interconnection of components [14]. Source-to-source transformations have been considered as a powerful means

  5. Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost

    E-Print Network [OSTI]

    Minnesota, University of

    Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost Effectiveness Stephen J in Method? #12;Deicing and Anti-icing Treatments ·Sodium Chloride (NaCl) ·Cargill, NA Salt ·Magnesium Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger

  6. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Dissertation Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines) #12;iii ABSTRACT This thesis examines methods for designing and analyzing kinetic turbines based

  7. Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Turbines by Michael Robert Shives B.Eng., Carleton University, 2008 A Thesis Submitted in Partial Hydrodynamic Modeling, Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines examines methods for designing and analyzing kinetic turbines based on blade element momentum (BEM) theory

  8. LEARN MORE @ CENTRALINA CLEAN FUELS COALITION

    E-Print Network [OSTI]

    LEARN MORE @ ETHANOL E85 CENTRALINA CLEAN FUELS COALITION www.4cleanfuels.com GROWTH ENERGY www fuel made by fermenting plant-based sugars. Corn is the primary feedstock for ethanol in the U blend of ethanol and gasoline. A fuel sensor regulates the air/fuel ratio to optimize performance

  9. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

    2011-09-01T23:59:59.000Z

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  10. Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h yDepartmentusing

  11. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday,NewsletterFuel Economy

  12. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000: Development of aanValvetrain |

  13. DoE Optimally Controlled Flexible Fuel Powertrain System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prev

  14. DoE Optimally Controlled Flexible Fuel Powertrain System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April 2015 < prevEnergy 2009

  15. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, JanuarySunShotDepartment ofofEmissions in

  16. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect (OSTI)

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01T23:59:59.000Z

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  17. Infinite Time Optimal Control of Hybrid Systems with a Linear Performance Index Mato Baotic, Frank J. Christophersen, and Manfred Morari

    E-Print Network [OSTI]

    Sontag, Eduardo

    Infinite Time Optimal Control of Hybrid Systems with a Linear Performance Index Mato Baoti´c, Frank the constrained infinite time optimal control problem for the class of discrete time linear hybrid systems. When time, optimal control, discrete time, linear hybrid systems, dynamic program- ming, multi

  18. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    SciTech Connect (OSTI)

    Gopala N. Krishnan, Palitha Jayaweera, Jordi Perez, M. Hornbostel, John. R. Albritton and Raghubir P. Gupta

    2007-10-31T23:59:59.000Z

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700? to 900?C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700?, 750?, and 800?C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800?C. The electrical performance of SOFC samples suffered less than 1% in when exposed to contaminants such as HCl(g), Hg(g), and Zn(g), and SbO(g) at levels of 8 ppm and above. AsH3 vapor at 0.5 ppm did not affect the electrical performance of an SOFC sample even after 1000 h at 750?C. In Phase II of the program, long-term tests will be performed with multiple contaminants at a temperature range of 750? to 850?C. These tests will be at contaminant levels typical of coal-derived gas streams that have undergone gas cleanup using Selexol technology. The chemical nature of the contaminant species will be identified at the operating temperature of SOFC and compare them with thermodynamic equilibrium calculations. The results of the testing will be used to recommend the sensitivity limits for SOFC operation and to assess the reduction in the service life of the SOFC for trace level contaminants.

  19. Final Technical Report: Effects of Impurities on Fuel Cell Performance and Durability

    SciTech Connect (OSTI)

    James G. Goodwin, Jr.; Hector Colon-Mercado; Kitiya Hongsirikarn; and Jack Z. Zhang

    2011-11-11T23:59:59.000Z

    The main objectives of this project were to investigate the effect of a series of potential impurities on fuel cell operation and on the particular components of the fuel cell MEA, to propose (where possible) mechanism(s) by which these impurities affected fuel cell performance, and to suggest strategies for minimizing these impurity effects. The negative effect on Pt/C was to decrease hydrogen surface coverage and hydrogen activation at fuel cell conditions. The negative effect on Nafion components was to decrease proton conductivity, primarily by replacing/reacting with the protons on the Bronsted acid sites of the Nafion. Even though already well known as fuel cell poisons, the effects of CO and NH3 were studied in great detail early on in the project in order to develop methodology for evaluating poisoning effects in general, to help establish reproducibility of results among a number of laboratories in the U.S. investigating impurity effects, and to help establish lower limit standards for impurities during hydrogen production for fuel cell utilization. New methodologies developed included (1) a means to measure hydrogen surface concentration on the Pt catalyst (HDSAP) before and after exposure to impurities, (2) a way to predict conductivity of a Nafion membranes exposed to impurities using a characteristic acid catalyzed reaction (methanol esterification of acetic acid), and, more importantly, (3) application of the latter technique to predict conductivity on Nafion in the catalyst layer of the MEA. H2-D2 exchange was found to be suitable for predicting hydrogen activation of Pt catalysts. The Nafion (ca. 30 wt%) on the Pt/C catalyst resides primarily on the external surface of the C support where it blocks significant numbers of micropores, but only partially blocks the pore openings of the meso- and macro-pores wherein lie the small Pt particles (crystallites). For this reason, even with 30 wt% Nafion on the Pt/C, few Pt sites are blocked and, hence, are accessible for hydrogen activation. Of the impurities studied, CO, NH3, perchloroethylene (also known as tetrachloroethylene), tetrahydrofuran, diborane, and metal cations had significant negative effects on the components in a fuel cell. While CO has no effect on the Nafion, it significantly poisons the Pt catalyst by adsorbing and blocking hydrogen activation. The effect can be reversed with time once the flow of CO is stopped. NH3 has no effect on the Pt catalyst at fuel cell conditions; it poisons the proton sites on Nafion (by forming NH4+ cations), decreasing drastically the proton conductivity of Nafion. This poisoning can slowly be reversed once the flow of NH3 is stopped. Perchloroethylene has a major effect on fuel cell performance. Since it has little/no effect on Nafion conductivity, its poisoning effect is on the Pt catalyst. However, this effect takes place primarily for the Pt catalyst at the cathode, since the presence of oxygen is very important for this poisoning effect. Tetrahydrofuran was shown not to impact Nafion conductivity; however, it does affect fuel cell performance. Therefore, its primary effect is on the Pt catalyst. The effect of THF on fuel cell performance is reversible. Diborane also can significant affect fuel cell performance. This effect is reversible once diborane is removed from the inlet streams. H2O2 is not an impurity usually present in the hydrogen or oxygen streams to a fuel cell. However, it is generated during fuel cell operation. The presence of Fe cations in the Nafion due to system corrosion and/or arising from MEA production act to catalyze the severe degradation of the Nafion by H2O2. Finally, the presence of metal cation impurities (Na+, Ca 2+, Fe3+) in Nafion from MEA preparation or from corrosion significantly impacts its proton conductivity due to replacement of proton sites. This effect is not reversible. Hydrocarbons, such as ethylene, might be expected to affect Pt or Nafion but do not at a typical fuel cell temperature of 80oC. In the presence of large quantities of hydrogen on the anode side, ethylene i

  20. Effect of oxygen on performance and mass transport in a single-cell thermionic fuel element

    SciTech Connect (OSTI)

    Paramonov, D.V.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    The introduction of tracer amounts of oxygen into the interelectrode gap of a thermionic converter has been shown to improve converter performance. Excess oxygen, however, increases the loss rate of emitter material, reducing the converter performance and shortening its lifetime, owing to the increase in the effective emissivity of the electrodes, the change in the collector work function, and the deposition of emitter material oxides on spacers and insulators. In this paper, a model was developed, which calculated the emitter material loss rate, composition of the emitter material deposits on the collector surface and investigated the effect on performance of a single-cell Thermionic Fuel Element (TFE) in the presence of oxygen and cesium oxides in the interelectrode gap. The amount of oxygen and the cesium pressure in the interelectrode gap were varied parametrically and the TFE volt-ampere characteristics, and axial distributions of current density and emitter material loss rate along the TFE were calculated.

  1. The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Component Analysis

    SciTech Connect (OSTI)

    Bunting, Bruce G [ORNL; Crawford, Robert W [Rincon Ranch Consulting

    2007-01-01T23:59:59.000Z

    In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may significantly alter other specifications or fuel chemistry. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal component analysis (PCA) was used in this work, because of its ability to deal with co-linear variables and to uncover 'hidden' relationships in the data. In this paper, a set of 11 diesel fuels with widely varying properties were run in a simple HCCI engine. Fuel properties and engine performance are examined to identify underlying fuel relationships and to determine the interplay between engine behavior and fuels. Results indicate that fuel efficiency is mainly controlled by a collection of specifications related to density and energy content and ignition characteristics are controlled mainly by cetane number.

  2. Optimizing performance per watt on GPUs in High Performance Computing: temperature, frequency and voltage effects

    E-Print Network [OSTI]

    Price, D C; Barsdell, B R; Babich, R; Greenhill, L J

    2014-01-01T23:59:59.000Z

    The magnitude of the real-time digital signal processing challenge attached to large radio astronomical antenna arrays motivates use of high performance computing (HPC) systems. The need for high power efficiency (performance per watt) at remote observatory sites parallels that in HPC broadly, where efficiency is an emerging critical metric. We investigate how the performance per watt of graphics processing units (GPUs) is affected by temperature, core clock frequency and voltage. Our results highlight how the underlying physical processes that govern transistor operation affect power efficiency. In particular, we show experimentally that GPU power consumption grows non-linearly with both temperature and supply voltage, as predicted by physical transistor models. We show lowering GPU supply voltage and increasing clock frequency while maintaining a low die temperature increases the power efficiency of an NVIDIA K20 GPU by up to 37-48% over default settings when running xGPU, a compute-bound code used in radio...

  3. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    SciTech Connect (OSTI)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01T23:59:59.000Z

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automated processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.

  4. Accounting for the effects of rehabilitation actions on the reliability of flexible pavements: performance modeling and optimization

    E-Print Network [OSTI]

    Deshpande, Vighnesh Prakash

    2009-05-15T23:59:59.000Z

    A performance model and a reliability-based optimization model for flexible pavements that accounts for the effects of rehabilitation actions are developed. The developed performance model can be effectively implemented in all the applications...

  5. Incremental costs and optimization of in-core fuel management of nuclear power plants

    E-Print Network [OSTI]

    Watt, Hing Yan

    1973-01-01T23:59:59.000Z

    This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

  6. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    SciTech Connect (OSTI)

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20T23:59:59.000Z

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  7. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30T23:59:59.000Z

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  8. An Optimal Solution to a General Dynamic Jet Fuel Hedging Problem

    E-Print Network [OSTI]

    Powell, Warren B.

    that have a high price correlation with jet fuel must be used for hedging. Heating and crude oil are usually or crude oil to hedge jet fuel demand that will occur at time T. The hedging policy should maximize IE tT e consumption. On the other hand, exchange-traded derivatives are more liquid and eliminate counter- party risk

  9. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01T23:59:59.000Z

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  10. Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

    2011-03-01T23:59:59.000Z

    The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

  11. Instrumentation Report No. 3: performance and reliability of instrumentation deployed for the Spent Fuel Test - Climax

    SciTech Connect (OSTI)

    Patrick, W.C.; Rector, N.L.; Scarafiotti, J.J.

    1984-12-01T23:59:59.000Z

    A demonstration of the short-term storage and subsequent retrieval of spent nuclear fuel assemblies was successfully completed at the US Department of Energy`s Nevada Test Site. Nearly 1000 instruments were deployed to monitor the temperature of rock, air, and metallic components of the test; displacements and stress changes within the rock mass; radiation dosage to personnel and to the rock; thermal energy input; characteristics of the ventilation airstream; and the operational status of the test. Careful selection, installation, calibration, and maintenance of these instruments ensured the acquisition of about 15.3 x 10{sup 6} high-quality data points. With few exceptions, the performance and reliability of the instrumentation and associated data acquisition system (DAS) were within specified acceptable limits. Details of the performance and reliability of the instrumentation are discussed in this report. 42 figs., 32 tabs.

  12. Westinghouse Fuel Assemblies Performance after Operation in South-Ukraine NPP Mixed Core

    SciTech Connect (OSTI)

    Abdullayev, A. M.; Kulish, G. V.; Slyeptsov, O.; Slyeptsov, S.; Aleshin, Y.; Sparrow, S.; Lashevych, P.; Sokolov, D.; Latorre, Richard

    2013-09-14T23:59:59.000Z

    The evaluation of WWER-1000 Westinghouse fuel performance was done using the results of post–irradiation examinations of six LTAs and the WFA reload batches that have operated normally in mixed cores at South-Ukraine NPP, Unit-3 and Unit-2. The data on WFA/LTA elongation, FR growth and bow, WFA bow and twist, RCCA drag force and drag work, RCCA drop time, FR cladding integrity as well as the visual observation of fuel assemblies obtained during the 2006-2012 outages was utilized. The analysis of the measured data showed that assembly growth, FR bow, irradiation growth, and Zr-1%Nb grid and ZIRLO cladding corrosion lies within the design limits. The RCCA drop time measured for the LTA/WFA is about 1.9 s at BOC and practically does not change at EOC. The measured WFA bow and twist, and data of drag work on RCCA insertion showed that the WFA deformation in the mixed core is mostly controlled by the distortion of Russian FAs (TVSA) having the higher lateral stiffness. The visual inspection of WFAs carried out during the 2012 outages revealed some damage to the Zr-1%Nb grid outer strap for some WFAs during the loading sequence. The performed fundamental investigations allowed identifying the root cause of grid outer strap deformation and proposing the WFA design modifications for preventing damage to SG at a 225 kg handling trip limit.

  13. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    E-Print Network [OSTI]

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01T23:59:59.000Z

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  14. Sensitivity analysis and optimization of the nuclear fuel cycle : a systematic approach

    E-Print Network [OSTI]

    Passerini, Stefano

    2012-01-01T23:59:59.000Z

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon ...

  15. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels 

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  16. CFD in support of development and optimization of the MIT LEU fuel element design

    E-Print Network [OSTI]

    Diaconeasa, Mihai Aurelian

    2014-01-01T23:59:59.000Z

    The effect of lateral power distribution of the MITR LEU fuel design was analyzed using Computational Fluid Dynamics. Coupled conduction and convective heat transfer were modeled for uniform and non-uniform lateral power ...

  17. Design strategies for optimizing high burnup fuel in pressurized water reactors

    E-Print Network [OSTI]

    Xu, Zhiwen, 1975-

    2003-01-01T23:59:59.000Z

    This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge ...

  18. Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels

    E-Print Network [OSTI]

    Tora, Eman

    2012-02-14T23:59:59.000Z

    at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels...

  19. Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    . Keywords: Energy, Biofuels, Hydrogen, Alternative fuels, Diesel, Fisher ­ Tropsch 1 Corresponding author of oil (vegetal, cooking oil or the one obtained from microalgae (Martín & Grossmann, 2012), glycerol, biodiesel production requires energy (Martín & Grossmann, 2012). Therefore, this is another incentive

  20. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    SciTech Connect (OSTI)

    A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

    1998-01-01T23:59:59.000Z

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

  1. High speed diesel performance/combustion characteristics correlated with structural composition of tar sands derived experimental fuels

    SciTech Connect (OSTI)

    Webster, G.D.; Chiappetta, S.J.; Neill, W.S.; Glavihcevski, B.; Stringer, P.L.

    1985-01-01T23:59:59.000Z

    Two Canadian tar sands derived experimental diesel fuels with cetane numbers of 26 and 36 and a reference fuel with a cetane number of 47 were tested in a Deutz (FIL511D), single cylinder, 4 stroke, naturally aspirated research engine. The fuels were tested at intake and cooling air temperatures of 30 and 0/sup 0/C. The 36 cetane number fuel was tested with advanced, rated and retarded injection timings. Poor engine speed stability at light loads and excessive rates of combustion pressure rise were experienced with the lowest cetane number fuel. Detailed performance/combustion behavior is presented and a correlation with fuel structural compostiton is made. The analytical techniques used to characterize the fuels included liquid chromatography, gas chromatography mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (PNMR).

  2. Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating

    E-Print Network [OSTI]

    Zhao, Tianshou

    Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a cells Direct methanol fuel cells Neat methanol Water concentration a b s t r a c t This paper reports

  3. Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels 

    E-Print Network [OSTI]

    Esquivel, Jason

    2010-01-16T23:59:59.000Z

    characterizes the performance of a medium-duty diesel engine fuelled with biodiesel and conventional diesel. The objective is accomplished by taking measurements of manifold pressure and temperature, fuel flow, air flow, and torque. The study first characterizes...

  4. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01T23:59:59.000Z

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  5. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

  6. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect (OSTI)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20T23:59:59.000Z

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

  7. Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization

    E-Print Network [OSTI]

    Qin, Wensheng

    of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran d Imperial Oil Limited, Supply additive, and the process was optimized in this study using response surface methodology. A model biodiesel process [1,2]. Hence a huge amount of glycerol is expected on the market in near future. Due

  8. New approaches to improve the performance of the PEM based fuel cell power systems

    E-Print Network [OSTI]

    Choi, Woojin

    2005-11-01T23:59:59.000Z

    Fuel cells are expected to play an important role in future power generation. However, significant technical challenges remain and the commercial breakthrough of fuel cells is hindered by the high price of fuel cell components. As is well known...

  9. New approaches to improve the performance of the PEM based fuel cell power systems 

    E-Print Network [OSTI]

    Choi, Woojin

    2005-11-01T23:59:59.000Z

    Fuel cells are expected to play an important role in future power generation. However, significant technical challenges remain and the commercial breakthrough of fuel cells is hindered by the high price of fuel cell ...

  10. ATLAS I/O Performance Optimization in As-Deployed Environments

    E-Print Network [OSTI]

    Maier, Thomas; The ATLAS collaboration; Bhimji, Wahid; Elmsheuser, Johannes; van Gemmeren, Peter; Malon, David; Krumnack, Nils

    2015-01-01T23:59:59.000Z

    I/O is a fundamental determinant in the overall performance of physics analysis and other data-intensive scientific computing. It is, further, crucial to effective resource delivery by the facilities and infrastructure that support data-intensive science. To understand I/O performance, clean measurements in controlled environments are essential, but effective optimization requires as well an understanding of the complicated realities of as-deployed environments. These include a spectrum of local and wide-area data delivery and resilience models, heterogeneous storage systems, matches and mismatches between data organization and access patterns, multi-user considerations that may help or hinder individual job performance, and more. The ATLAS experiment has organized an interdisciplinary working group of I/O, persistence, analysis framework, distributed infrastructure, site deployment, and external experts to understand and improve I/O performance in preparation for Run 2 of the Large Hadron Collider. The adopt...

  11. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect (OSTI)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01T23:59:59.000Z

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

  12. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27T23:59:59.000Z

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  13. Monitoring the Long-Term Safety Performance of a Repository for Used Nuclear Fuel - 12294

    SciTech Connect (OSTI)

    Villagran, J.E. [Nuclear Waste Management Organization, Toronto (Canada)

    2012-07-01T23:59:59.000Z

    The nuclear waste management programs of several nations include plans for the design, construction and operation of deep geological repositories. Some of these programs have initiated the licensing process for their repository designs. Monitoring strategies and systems are at different levels of development in each program and there is common ground with respect to the ultimate goal of the monitoring function. In this context, the primary functions of a monitoring system are considered to be the verification of safety performance and making available information that may be required for implementation of future decisions such as the timing of repository decommissioning and closure or the possible retrieval of waste containers. This study examines some of the relevant issues and outlines a conceptual monitoring system for further study and development during implementation of Adaptive Phased Management, the method selected by the Government of Canada for long-term management of used nuclear fuel. (author)

  14. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect (OSTI)

    Kim, Y S; Hofman, G L [Nuclear Engineering Division

    2011-06-01T23:59:59.000Z

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  15. Influence of H{sub 2}O{sub 2} on LPG fuel performance evaluation

    SciTech Connect (OSTI)

    Khan, Muhammad Saad, E-mail: iqbalmouj@gmail.com; Ahmed, Iqbal, E-mail: iqbalmouj@gmail.com; Mutalib, Mohammad Ibrahim bin Abdul, E-mail: iqbalmouj@gmail.com; Nadeem, Saad, E-mail: iqbalmouj@gmail.com; Ali, Shahid, E-mail: iqbalmouj@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    The objective of this mode of combustion is to insertion of hydrogen peroxide (H{sub 2}O{sub 2}) to the Liquefied Petroleum Gas (LPG) combustion on spark plug ignition engines. The addition of hydrogen peroxide may probably decrease the formation of NO{sub x}, CO{sub x} and unburned hydrocarbons. Hypothetically, Studies have shown that addition of hydrogen peroxide to examine the performance of LPG/H{sub 2}O{sub 2} mixture in numerous volumetric compositions starting from lean LPG until obtaining a better composition can reduce the LPG fuel consumption. The theory behind this idea is that, the addition of H{sub 2}O{sub 2} can cover the lean operation limit, increase the lean burn ability, diminution the burn duration along with controlling the exhaust emission by significantly reducing the greenhouse gaseous.

  16. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01T23:59:59.000Z

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  17. Scoping design analyses for optimized shipping casks containing 1-, 2-, 3-, 5-, 7-, or 10-year-old PWR spent fuel

    SciTech Connect (OSTI)

    Bucholz, J.A.

    1983-01-01T23:59:59.000Z

    This report details many of the interrelated considerations involved in optimizing large Pb, Fe, or U-metal spent fuel shipping casks containing 1, 2, 3, 5, 7, or 10-year-old PWR fuel assemblies. Scoping analyses based on criticality, shielding, and heat transfer considerations indicate that some casks may be able to hold as many as 18 to 21 ten-year-old PWR fuel assemblies. In the criticality section, a new type of inherently subcritical fuel assembly separator is described which uses hollow, borated stainless-steel tubes in the wall-forming structure between the assemblies. In another section, details of many n/..gamma.. shielding optimization studies are presented, including the optimal n/..gamma.. design points and the actual shielding requirements for each type of cask as a function of the age of the spent fuel and the number of assemblies in the cask. Multigroup source terms based on ORIGEN2 calculations at these and other decay times are also included. Lastly, the numerical methods and experimental correlations used in the steady-state and transient heat transfer analyses are fully documented, as are pertinent aspects of the SCOPE code for Shipping Cask Optimization and Parametric Evaluation. (While only casks for square, intact PWR fuel assemblies were considered in this study, the SCOPE code may also be used to design and analyze casks containing canistered spent fuel or other waste material. An abbreviated input data guide is included as an appendix).

  18. Generation IV benchmarking of TRISO fuel performance models under accident conditions. Modeling input data

    SciTech Connect (OSTI)

    Blaise Collin

    2014-09-01T23:59:59.000Z

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary.

  19. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies| Department of

  20. Effect of GTL Diesel Fuels on Emissions and Engine Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributionsreduction systemParticulateWear | Department

  1. The Effect of Airborne Contaminants on Fuel Cell Performance & Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentThe DoDSmallManagement

  2. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01T23:59:59.000Z

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  3. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 23, NO. 2, JUNE 2008 651 Clustering-Based Performance Optimization of the

    E-Print Network [OSTI]

    Kusiak, Andrew

    . Kuprianov [13] discussed different objective func- tions to improve boiler thermal efficiency and reduce Optimization of the Boiler­Turbine System Andrew Kusiak, Member, IEEE, and Zhe Song Abstract--In this paper, two optimization models for improve- ment of the boiler­turbine system performance are formulated

  4. 66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With

    E-Print Network [OSTI]

    Kusiak, Andrew

    mass damper to mitigate vibrations of the blades and tower of a wind turbine was presented in [1466 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine, IEEE Abstract--This paper presents a multiobjective optimization model of wind turbine performance

  5. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11T23:59:59.000Z

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  6. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  7. Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

    2012-01-01T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  8. A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide 

    E-Print Network [OSTI]

    DeVivo, D. G.

    1980-01-01T23:59:59.000Z

    efficiency, safety and cost-effectiveness. With this control approach, the existing analog boiler controls remain intact and continue to function. No costly retrofit of computer compatible controllers and actuators is required and full analog backup.... The control output to the boiler control interface, such as a pUlse-to pneumatic converter linked to an air bias station that adjusts the air:fuel ratio, is calculated based on the time domain response of the boiler. The control algorithm recognizes...

  9. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect (OSTI)

    Steven Markovich

    2010-06-30T23:59:59.000Z

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  10. Structural Design Optimization and Comparative Analysis of a New HighPerformance Robot Arm via Finite Element Analysis

    E-Print Network [OSTI]

    Whitcomb, Louis L.

    Structural Design Optimization and Comparative Analysis of a New High­Performance Robot Arm via, 1997 Abstract This paper reports the structural design of a new high­performance robot arm. Design Introduction Our goal is to design and build a robot arm for high performance tracking and force control

  11. A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE

    SciTech Connect (OSTI)

    Jorge Navarro

    2013-12-01T23:59:59.000Z

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.

  12. Performance of an industrial type combustor burning simulated fuels of medium BTU content

    E-Print Network [OSTI]

    Goehring, Howard Lee

    1983-01-01T23:59:59.000Z

    studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

  13. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  14. Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions

    E-Print Network [OSTI]

    Bonnet, Nicéphore

    2007-01-01T23:59:59.000Z

    Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

  15. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2012-08-15T23:59:59.000Z

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  16. Electrochimica Acta 52 (2007) 49424946 High-performance microfluidic vanadium redox fuel cell

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    2007-01-01T23:59:59.000Z

    vanadium redox fuel cell Erik Kjeanga,c, Brenton T. Proctora,c, Alexandre G. Brolob,c, David A. Harringtonb a new microfluidic fuel cell design with high-surface area porous carbon electrodes and high aspect-effective and rapid fabrication, and would be applicable to most microfluidic fuel cell architectures. © 2007 Elsevier

  17. Application of EPRI`s plant monitoring workstation to NO{sub x} control and performance optimization

    SciTech Connect (OSTI)

    Levy, E.; Eskenazi, D.; D`Agostini, M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-06-01T23:59:59.000Z

    Investigators from Lehigh University and Potomac Electric Power Company (PEPCO) are involved in the development of boiler tuning techniques for NO{sub x} control and performance optimization. Key to this effort is the availability of EPRI`s Plant Monitoring Workstation (PMW) in utilizing plant data to establish optimal operating conditions and maintain low-NO{sub x} operation over the long term. The various ways in which PMW has been used to characterize the boiler will be described. In addition, future developments with respect to sootblow optimization and a NO{sub x}/performance advisor will be discussed.

  18. Effects of a platinum-based fuel additive on the performance of a single cylinder research diesel engine

    E-Print Network [OSTI]

    Ruemmele, Warren Pietro

    1990-01-01T23:59:59.000Z

    Specifications Engine: Bore: Stroke: Rod Length: Displaced Volume: Clearance Volume: Piston Bowl Volume: Compression Ratio: Fuel Injection: Nozzle Nozzle Opening Pressure Intake Valve Open: Intake Valve Close: Exhaust Valve Open: Exhaust Valve...EFFECTS OF A PLATINUM-BASED FUEL ADDITIVE ON THE PERFORMANCE OF A SZNGLE CYLINDER RESEARCH DZESEL ENGINE A Thesis WARREN P IETRO RUEMMELE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  19. Fuel Cell Power Model for CHHP System Economics and Performance Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet)UTCLift Trucks:Department

  20. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergy 5:Department of Energy 0:

  1. Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |EnergysoilEfficiency,SubpartEngine Using

  2. Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"DepartmentToward Targets of EfficientModelbyon

  3. Impact of Fuel Properties on Light-Duty Engine Performance and Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImagingofEGR onDepartment of

  4. Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy PetroleumEnergyImplementingImproveMethodsSCR

  5. Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriersPipelineGeologic Disposal

  6. The determination of performance characteristics of a small two-stroke-cycle engine operated with various fuel-lubricant mixtures

    E-Print Network [OSTI]

    Doolittle, James Harold

    1968-01-01T23:59:59.000Z

    for nitrated fuels with glow and spark ignition. 30 the engine during these tests because of the fact that the engine's only source of lubricant is that carried in by the fuel. The piston and connecting rod were removed and a similar test carried out...THE DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A SMALL TWO-STROKE-CYCLE ENGINE OPERATED WITH VARIOUS FUEL-LUBRICANT MIXTURES A Thesis by JAMES HAROLD DOOLITTLE III Submitted to the Graduate College of the Texas AFM University in partial...

  7. New MEA Materials for Improved DMFC Performance, Durability and...

    Broader source: Energy.gov (indexed) [DOE]

    performance and durability - Johnson Matthey * MEA fabrication scale up and MEA optimization 2 Project Objectives * Leverage the PolyFuel Passive water recovery MEA design to...

  8. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect (OSTI)

    Kevin Whitty

    2003-12-01T23:59:59.000Z

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  9. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01T23:59:59.000Z

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  10. SPACE-R nuclear power system SC-320 thermionic fuel element performance tests

    SciTech Connect (OSTI)

    Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., Albuquerque, NM (United States); Nikolaev, Y.V. [SIA LUCH Scientific Research Inst., Podolsk (Russian Federation)] [and others

    1996-12-31T23:59:59.000Z

    In 1993 and 1994, the Russian Scientific Research Institute NII NPO ``LUCH`` and Space Power, Inc., (SPI), of San Jose, California, developed a prototype of the single-cell thermionic fuel element (TFE) for the SPACE-R space nuclear power system (NPS). The SPACE-R system was designed as a part of the US Department of Energy`s (DOE) Space Reactor Development Program to develop a long life, space reactor system capable of supplying up to 40 kW(e) output power. The jointly developed SC-320 TFE is a prototype of the next generation thermionic converter for nuclear applications in space. This paper presents the results of the initial demonstration tests and subsequent parametric evaluations conducted on the SC-320 TFE as compared to the calculated performance characteristics. The demonstration tests were conducted jointly by Russian and American specialists at the Thermionic Evaluation Facility (TEF) at the New Mexico Engineering Research Institute (NMERI) of the University of New Mexico in Albuquerque.

  11. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts.

    SciTech Connect (OSTI)

    Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard; Chaplya, Pavel Mikhail; Clough, Roger Lee; Elliott, Julie M.; Martin, Jeffrey W.; Mowery, Daniel Michael; Celina, Mathew Christopher

    2005-11-01T23:59:59.000Z

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.

  12. Performance optimization of solar cells based on colloidal lead sulfide nanocrystals

    SciTech Connect (OSTI)

    Ulfa, Maria, E-mail: mu.ulfa@gmail.com [Department of Physics, Bandung Institute of Technology (ITB), Jalan Ganesha 10 Bandung 40132, Bandung (Indonesia)

    2014-02-24T23:59:59.000Z

    Colloidal semiconducting quantum dot nanocrystals (NCs) have attracted extensive interest as active building-block for low-cost solution-processed photovoltaic due to their size tunable absorption from the visible to near IR. Among various nanocrystal composition, lead sulfide (PbS), having a bulk bandgap of 0.41 eV, are particularly attractive for photovoltaic applications due to their excellent photosensitivity in the near IR. Starting from colloidal synthesis, in this project functional solar cells are fabricated and characterized based on the nearly monodispersed colloidal PbS nanocrystals that we synthesized. These NC-solar cells are fabricated under a “depleted heterojunction” device architecture containing a planar “tipe II” heretojunction formed by a layer of electron-transporting TiO{sub 2} and a layer of PbS NCs. Relevant structural, optical, and electrical characterizations are performed on NCs and their devices. To understand the operational mechanism of these NC-based solar cells, various material and device aspects are investigated in this work aiming for optimized photovoltaic performance. These aspects include the effect of: (1) NC dimensions (and thus their band gaps); (2) passivation of surface traps through post-synthesis treatments; (3) NC surface ligand-exchange; and (4) interfacial modifications at the heterojunction. The most optimized photovoltaic performance is found after combining the surface trap passivation strategy by halides, ligand-exchange by 3-mercaptopropionic acids, and interfacial TiCl4 treatment, leading to a peak open-circuit voltage of 0.53 V, a short-circuit current density of 14.03 mAcm{sup ?2}, and a power conversion efficiency of 3.25%.

  13. Design and reliability optimization of a MEMS micro-hotplate for combustion of gaseous fuel

    SciTech Connect (OSTI)

    Manginell, R. P.

    2012-03-01T23:59:59.000Z

    This report will detail the process by which the silicon carbide (SiC) microhotplate devices, manufactured by GE, were imaged using IR microscopy equipment available at Sandia. The images taken were used as inputs to a finite element modeling (FEM) process using the ANSYS software package. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the nonlinearity of the doped SiC's resistance with temperature. As a result of this thermal modeling and IR imaging, a number of design recommendations were made to facilitate this temperature measurement. The lower heating value (LHV) of gaseous fuels can be measured with a catalyst-coated microhotplate calorimeter. GE created a silicon carbide (SiC) based microhotplate to address high-temperature survivability requirements for the application. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the non-linearity of the doped SiC's resistance with temperature. In this work, thermal modeling and IR imaging were utilized to determine the operation temperature as a function of parameters such as operation voltage and device sheet resistance. A number of design recommendations were made according to this work.

  14. High Performance Mica-based Compressive Seals for Solid Oxide Fuel Cells -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartmentInnovationHigh Flux Isotopethe Role

  15. Method to improve reliability of a fuel cell system using low performance cell detection at low power operation

    DOE Patents [OSTI]

    Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.

    2013-04-16T23:59:59.000Z

    A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.

  16. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    (SOFCs) running on jet fuel reformates for its uninhabited aerial vehicle (UAV) and low emission, military missions can be enhanced and made more effective. Reports indicate that an SOFC operating with jet of hydrogen sulfide (H2S), which poisons the anode in the fuel cell stack, leading to low SOFC efficiency

  17. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    SciTech Connect (OSTI)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01T23:59:59.000Z

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  18. Analysis of high-burnup fuel performance during load-follow operation

    SciTech Connect (OSTI)

    Matsui, T.; Fukuya, K.; Kinoshita, M.

    1987-01-01T23:59:59.000Z

    In Japan, an objective of the burnup extension of nuclear fuel is to raise the licensing limit of burnup from 39 to 48 GWd/t for pressurized water reactors (PWRs) in the near future. Because of an increasing ratio of nuclear power generation, the necessity of the load-follow operation, which responds flexibly to changing power demands, is more apparent. To evaluate accurately the mechanical integrity of PWR fuel at high burnup during a load-follow operation, the FEMAXI-III code, originally developed for analyses of fuel experiments, was modified, improving submodels to evaluate PWR fuel; the new code was named IRON. The results of verification work on the code using data on PWR fuel covering wide ranges of burnup and linear heat rate show that it has good predictability and, therefore, that the improvement was confirmed as effective.

  19. Performing a scatterv operation on a hierarchical tree network optimized for collective operations

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-10-22T23:59:59.000Z

    Performing a scatterv operation on a hierarchical tree network optimized for collective operations including receiving, by the scatterv module installed on the node, from a nearest neighbor parent above the node a chunk of data having at least a portion of data for the node; maintaining, by the scatterv module installed on the node, the portion of the data for the node; determining, by the scatterv module installed on the node, whether any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child; and sending, by the scatterv module installed on the node, those portions of data to the nearest neighbor child if any portions of the data are for a particular nearest neighbor child below the node or one or more other nodes below the particular nearest neighbor child.

  20. Exploration of Optimization Options for Increasing Performance of a GPU Implementation of a Three-dimensional Bilateral Filter

    SciTech Connect (OSTI)

    Bethel, E. Wes; Bethel, E. Wes

    2012-01-06T23:59:59.000Z

    This report explores using GPUs as a platform for performing high performance medical image data processing, specifically smoothing using a 3D bilateral filter, which performs anisotropic, edge-preserving smoothing. The algorithm consists of a running a specialized 3D convolution kernel over a source volume to produce an output volume. Overall, our objective is to understand what algorithmic design choices and configuration options lead to optimal performance of this algorithm on the GPU. We explore the performance impact of using different memory access patterns, of using different types of device/on-chip memories, of using strictly aligned and unaligned memory, and of varying the size/shape of thread blocks. Our results reveal optimal configuration parameters for our algorithm when executed sample 3D medical data set, and show performance gains ranging from 30x to over 200x as compared to a single-threaded CPU implementation.