Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electro-optical voltage sensor head  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

2

Electro-optic voltage sensor head  

DOE Patents [OSTI]

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Woods, Gregory K. (Cornelius, OR)

1999-01-01T23:59:59.000Z

3

Electro-optic voltage sensor head  

DOE Patents [OSTI]

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

Crawford, T.M.; Davidson, J.R.; Woods, G.K.

1999-08-17T23:59:59.000Z

4

Electro-optic high voltage sensor  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

Davidson, James R.; Seifert, Gary D.

2003-09-16T23:59:59.000Z

5

Electro-optic high voltage sensor  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

Davidson, James R. (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

6

Electro-optic voltage sensor with Multiple Beam Splitting  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

7

Electro-optic voltage sensor with beam splitting  

DOE Patents [OSTI]

The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

8

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID); Renak, Todd W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

9

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents [OSTI]

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

Woods, G.K.; Renak, T.W.

1999-04-06T23:59:59.000Z

10

Manufacturing challenges of optical current and voltage sensors for utility applications  

SciTech Connect (OSTI)

Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

1997-12-01T23:59:59.000Z

11

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents [OSTI]

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

Wood, C.B.

1992-12-15T23:59:59.000Z

12

Optical voltage reference  

DOE Patents [OSTI]

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26T23:59:59.000Z

13

Non-contact current and voltage sensor  

SciTech Connect (OSTI)

A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

2014-03-25T23:59:59.000Z

14

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

15

Fiber optic coupled optical sensor  

DOE Patents [OSTI]

A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

Fleming, Kevin J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

16

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

1995-01-01T23:59:59.000Z

17

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

1995-01-10T23:59:59.000Z

18

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

19

Optical displacement sensor  

DOE Patents [OSTI]

An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

Carr, Dustin W. (Albuquerque, NM)

2008-04-08T23:59:59.000Z

20

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

1994-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

22

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

23

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

24

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

25

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

26

Time varying voltage combustion control and diagnostics sensor  

DOE Patents [OSTI]

A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

Chorpening, Benjamin T. (Morgantown, WV); Thornton, Jimmy D. (Morgantown, WV); Huckaby, E. David (Morgantown, WV); Fincham, William (Fairmont, WV)

2011-04-19T23:59:59.000Z

27

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

Spear, Jonathan David (Berkeley, CA)

1999-01-01T23:59:59.000Z

28

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

Spear, J.D.

1999-03-09T23:59:59.000Z

29

Fiber optic sensor and method for making  

DOE Patents [OSTI]

A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

2010-05-18T23:59:59.000Z

30

Silicon fiber optic sensors  

DOE Patents [OSTI]

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

31

Buried fiber optic intrusion sensor  

E-Print Network [OSTI]

to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry...

Maier, Eric William

2004-09-30T23:59:59.000Z

32

High pressure fiber optic sensor system  

DOE Patents [OSTI]

The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

2013-11-26T23:59:59.000Z

33

Optical high acidity sensor  

DOE Patents [OSTI]

An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

Jorgensen, Betty S. (Jemez Springs, NM); Nekimken, Howard L. (Los Alamos, NM); Carey, W. Patrick (Lynnwood, WA); O'Rourke, Patrick E. (Martinez, GA)

1997-01-01T23:59:59.000Z

34

Fiber-optic liquid level sensor  

DOE Patents [OSTI]

A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

Weiss, Jonathan D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

35

Design guidelines for optical resonator biochemical sensors  

E-Print Network [OSTI]

In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

Kimerling, Lionel C.

36

Optical sensor of magnetic fields  

DOE Patents [OSTI]

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25T23:59:59.000Z

37

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors  

E-Print Network [OSTI]

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors were developed and tested. The sensor was fabricated in a 0.5 µm CMOS process. The measured reset noise of the sensor is reduced by a factor of 10 compared to conventional active pixel

Maryland at College Park, University of

38

Fiber-optic Fabry-Perot ultrasound sensor  

E-Print Network [OSTI]

modulates the power of the light reflected from it. An avalanche photodiode finally converts this optical signal into a voltage V(t) proportional to the acoustic pressure P(t). CHAPTER II BACKGROUND Over a decade ago external effects over optical... splitting ratio of 50/50 was used to direct the reflected light from the sensor to the detector. The unused forth fiber was terminated in matching liquid. The detection was performed by an avalanche photodiode, taking advantage of its high gain. The DG...

Alcoz, Jorge Jose

2012-06-07T23:59:59.000Z

39

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

40

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents [OSTI]

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reactive Grasping Using Optical Proximity Sensors  

E-Print Network [OSTI]

We propose a system for improving grasping using fingertip optical proximity sensors that allows us to perform online grasp adjustments to an initial grasp point without requiring premature object contact or regrasping ...

Nangeroni, Paul

42

Nobody but You: Sensor Selection for Voltage Regulation in Smart Grid  

E-Print Network [OSTI]

The increasing availability of distributed energy resources (DERs) and sensors in smart grid, as well as overlaying communication network, provides substantial potential benefits for improving the power system's reliability. In this paper, the problem of sensor selection is studied for the MAC layer design of wireless sensor networks for regulating the voltages in smart grid. The framework of hybrid dynamical system is proposed, using Kalman filter for voltage state estimation and LQR feedback control for voltage adjustment. The approach to obtain the optimal sensor selection sequence is studied. A sub- optimal sequence is obtained by applying the sliding window algorithm. Simulation results show that the proposed sensor selection strategy achieves a 40% performance gain over the baseline algorithm of the round-robin sensor polling.

Mao, Rukun

2011-01-01T23:59:59.000Z

43

Mechanical and optical behavior of a novel optical fiber crack sensor and an interferometric strain sensor  

E-Print Network [OSTI]

The proper interpretation of measurements from an optical fiber sensor requires a full understanding of its mechanical response to external action and the corresponding change in optical output. To quantify the mechanical ...

Olson, Noah Gale, 1969-

2002-01-01T23:59:59.000Z

44

Optically triggered high voltage switch network and method for switching a high voltage  

DOE Patents [OSTI]

An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

1993-01-19T23:59:59.000Z

45

Dynamic temperature measurements with embedded optical sensors.  

SciTech Connect (OSTI)

This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

2013-10-01T23:59:59.000Z

46

Microbend fiber-optic chemical sensor  

DOE Patents [OSTI]

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

47

Lensless magneto-optic speed sensor  

DOE Patents [OSTI]

Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

1998-02-17T23:59:59.000Z

48

Lensless Magneto-optic speed sensor  

DOE Patents [OSTI]

Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

Veeser, Lynn R. (Los Alamos, NM); Forman, Peter R. (Los Alamos, NM); Rodriguez, Patrick J. (Santa Fe, NM)

1998-01-01T23:59:59.000Z

49

Fiber optics spectrochemical emission sensors  

DOE Patents [OSTI]

A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.

Griffin, J.W.; Olsen, K.B.

1992-02-04T23:59:59.000Z

50

Optical fiber sensors for harsh environments  

DOE Patents [OSTI]

A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

Xu, Juncheng; Wang, Anbo

2007-02-06T23:59:59.000Z

51

Voltage sensor with fiber Fabry-Perot interferometer  

E-Print Network [OSTI]

with smaller strain constants, a larger voltage must be applied to get a 2x round trip phase shift. Hence, a longer FFPI is needed to get higher resolution. 16 A plate type PZT was selected because it's more convenient to attach to a thermo-electric cooler... in electron-beam evaporation system, they can be spliced to uncoated fibers, which also have cleaved end surfaces. The basic configuration for this Siecor Model M 67 fusion splicer is shown in fig. 12. A electric arc is initiated between the electrodes...

Wann, Been-Huey

1992-01-01T23:59:59.000Z

52

Phase sensor for solar adaptive-optics  

E-Print Network [OSTI]

Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

Kellerer, Aglae

2011-01-01T23:59:59.000Z

53

INTRODUCTION Optical sensors have long been used in the Great  

E-Print Network [OSTI]

INTRODUCTION Optical sensors have long been used in the Great Lakes to track changes and Haw- ley 1998, Hawley and Lee 1999, for example), but the use of acoustic sensors for this purpose Concentrations Measured by Acoustic and Optical Sensors Nathan Hawley* Great Lakes Environmental Research

54

Fiber Optic Sensors for PEM Fuel Cells Nigel David  

E-Print Network [OSTI]

Fiber Optic Sensors for PEM Fuel Cells by Nigel David B.Sc., Simon Fraser University, 2004 M or other means, without the permission of the author. #12;ii Fiber Optic Sensors for PEM Fuel Cells Fyles, Outside Member (Department of Chemistry) ABSTRACT Fibre-optic sensing techniques for application

Victoria, University of

55

Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical  

E-Print Network [OSTI]

Sensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits

Quake, Stephen R.

56

Observation of pressure stimulated voltages in rocks using an electric potential sensor  

SciTech Connect (OSTI)

Recent interest in the electrical activity in rock and the use of electric field transients as candidates for earthquake precursors has led to studies of pressure stimulated currents in laboratory samples. In this paper, an electric field sensor is used to measure directly the voltages associated with these currents. Stress was applied as uniaxial compression to marble and granite at an approximately constant rate. In contrast with the small pressure stimulated currents previously measured, large voltage signals are reported. Polarity reversal of the signal was observed immediately before fracture for the marble, in agreement with previous pressure stimulated current studies.

Aydin, A.; Prance, R. J.; Prance, H.; Harland, C. J. [Centre for Physical Electronics and Quantum Technology, School of Engineering and Design, University of Sussex, Brighton BN1 9QT (United Kingdom)

2009-09-21T23:59:59.000Z

57

Signal processing for fiber optic acoustic sensor system  

E-Print Network [OSTI]

pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

Zhu, Juhong

2000-01-01T23:59:59.000Z

58

Side-emitting fiber optic position sensor  

DOE Patents [OSTI]

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

59

Excess optical quantum noise in atomic sensors  

E-Print Network [OSTI]

Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

2014-10-14T23:59:59.000Z

60

Proceedings: 3rd EPRI Optical Sensor Systems Workshop  

SciTech Connect (OSTI)

These are the proceedings of the third Optical Sensor System Workshop, part of an ongoing effort by EPRI to support development of optical sensor technology, to identify benefits for utility users, and to position EPRI members as more ''informed buyers'' and users.

None

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence  

E-Print Network [OSTI]

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear molybdenum chloride clusters. Measurements of the probe operating in a 0%­21% gaseous oxygen environment have

Ghosh, Ruby N.

62

Fiber-Optic Long-Line Position Sensor  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia National Laboratories has developed a side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. Non-electrical position sensors like the one developed by Sandia are desirable for use in hazardous environment, e.g., for measuring the liquid level in gasoline or jet fuel tanks. This sensor is an attractive option because it does notintroduce electrical energy, is insensitive to electromagnetic interference,...

2013-03-12T23:59:59.000Z

63

Evaluations of fiber optic sensors for interior applications  

SciTech Connect (OSTI)

This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

Sandoval, M.W.; Malone, T.P.

1996-02-01T23:59:59.000Z

64

Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets  

DOE Patents [OSTI]

Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

2002-01-01T23:59:59.000Z

65

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect (OSTI)

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

66

Distributed fiber optic intrusion sensor system for monitoring long perimeters  

E-Print Network [OSTI]

A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

Juarez, Juan C.

2009-06-02T23:59:59.000Z

67

Fiber Optic Temperature Sensor for PEM Fuel Cells  

E-Print Network [OSTI]

Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance Hydrogren and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, California #12;Program Goals

68

Optical sensors and multisensor arrays containing thin film electroluminescent devices  

DOE Patents [OSTI]

Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

2001-12-18T23:59:59.000Z

69

Cloaking a sensor for three-dimensional Maxwell's equations: transformation optics approach  

E-Print Network [OSTI]

P. Sheng, Transformation optics and metamaterials, Nat.sensor via transformation optics, Phys. Rev. E 83, 016603 (October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20518 13. G.

Chen, Xudong; Uhlmann, Gunther

2011-01-01T23:59:59.000Z

70

Extrinsic fiber optic displacement sensors and displacement sensing systems  

DOE Patents [OSTI]

An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

1994-01-01T23:59:59.000Z

71

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents [OSTI]

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

72

Optics-less Sensors for Localization of Radiation Sources  

E-Print Network [OSTI]

A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a given number of sources in known positions. The accuracy is found to be dependent only on the sub-sensors noise level, on the number of sub-sensors and on the spacing between radiation sources.

H. J. Caulfield; L. P. Yaroslavsky; Ch. Goerzen; S. Umansky

2008-08-08T23:59:59.000Z

73

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect (OSTI)

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

74

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

75

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

SciTech Connect (OSTI)

The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

Wang, a.; Pickrell, G.; Xiao, H.; May, r.

2003-02-27T23:59:59.000Z

76

An earth-isolated optically coupled wideband high voltage probe powered by ambient light  

E-Print Network [OSTI]

(2012) Optimized working conditions for a thermoelectric generator as a topping cycle for gas turbines J (2012) Feasibility study in application of forging waste heat on absorption cooling system J. Renewable-emitting diode that converts high voltage into an amplitude-modulated optical signal, which is then conveyed

Bellan, Paul M.

77

Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries  

SciTech Connect (OSTI)

This report summarizes technical progress during the program Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700C and a frequency response up to 150 kHz, the worlds smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700C capability, UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, a single crystal sapphire fiber-based sensor with a temperature capability up to 1600C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

2006-11-14T23:59:59.000Z

78

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

79

Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics Ammonia Sensors Based on Doped-Sol-Gel-Tipped Optical Fibers for Catalyst System Diagnostics...

80

Optical fiber sensors for smart materials characterization  

SciTech Connect (OSTI)

Optical and optical fiber methods may be used to characterize materials and structures. Their advantages for such applications include their immunity to electromagnetic interference, high sensitivity, resolution and dynamic range, and ability to operate in harsh environmental conditions. This paper describes the application of such methods to the characterization of smart materials and structures during their fabrication, in-service lifetime, and damage and degradation.

Claus, R.O. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Electrical Engineering Dept.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

Russell G. May; Tony Peng; Tom Flynn

2004-04-01T23:59:59.000Z

82

On-Road Vehicle Detection Using Optical Sensors: A Review  

E-Print Network [OSTI]

1 On-Road Vehicle Detection Using Optical Sensors: A Review Zehang Sun1 , George Bebis2 and Ronald are expected to add up to 1%-3% of the world's gross domestic product [1]. With the aim of reducing injury

Bebis, George

83

Dynamic Fiber Optic Sensors Under Intense Radioactive Environments  

SciTech Connect (OSTI)

A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

1998-10-15T23:59:59.000Z

84

Sandia National Laboratories: sensors and optical diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensors and optical diagnostics

85

A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-  

E-Print Network [OSTI]

Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication for distributed sensor net- works has been demonstrated. The device digitizes inte- grated sensor signals, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR

Kahn, Joseph M.

86

Optical penetration sensor for pulsed laser welding  

DOE Patents [OSTI]

An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

87

Fluorescent Optical Position Sensor - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |

88

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers  

E-Print Network [OSTI]

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

Theodorakis, Emmanuel

89

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect (OSTI)

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

90

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-09-10T23:59:59.000Z

91

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect (OSTI)

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the BPDI sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-10-18T23:59:59.000Z

92

Low-Voltage CMOS Temperature Sensor Design Using Schottky Diode-Based References  

E-Print Network [OSTI]

have been used for many years in systems such as air conditioners, heating systems, and automotive-delta temperature sensor using Schottky diode-based current references as a replacement for the traditional PN diode as a replacement for the tradition PN junction diode in a temperature sensor. It also explores

Baker, R. Jacob

93

An optical water vapor sensor for unmanned aerial vehicles  

SciTech Connect (OSTI)

The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

1998-12-01T23:59:59.000Z

94

Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers  

SciTech Connect (OSTI)

Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

Anbo Wang; Kristie Cooper

2008-07-19T23:59:59.000Z

95

Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms  

SciTech Connect (OSTI)

The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

Parameswaran, Krishnan R. [Physical Sciences Inc.

2013-12-02T23:59:59.000Z

96

An optical fiber Faraday effect current sensor for power system applications  

E-Print Network [OSTI]

Optical fiber sensors have many inherent properties which make them ideal for applications within electric power systems. The dielectric isolation achieved in using optical fiber has fostered research in the areas of communication and sensing...

Short, Shayne Xavier

1995-01-01T23:59:59.000Z

97

SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors  

E-Print Network [OSTI]

SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors for structural and filament wound pipes has been studied, where one of the glass fibers is replaced by an optical fiber

?tügen, Volkan

98

Ultra-High Temperature Sensors Based on Optical Property  

SciTech Connect (OSTI)

In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

Nabeel Riza

2008-09-30T23:59:59.000Z

99

Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index  

E-Print Network [OSTI]

Sensors and Actuators B 123 (2007) 594­605 Fiber optic sensing of liquid refractive index Argha is immersed, to a high degree of precision and over a wide range of refractive index. The slope of sensor of the fiber. The sensitivity of the sensor to refractive index change is dependent on cladding thickness

100

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL FIBER ACOUSTIC EMISSION SENSOR  

E-Print Network [OSTI]

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL technology. PZT sensors have been being used as AE sensors. However, because this kind of sensor has bulk

Boyer, Edmond

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber  

DOE Patents [OSTI]

A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

Weiss, Jonathan D.

2005-02-08T23:59:59.000Z

102

Development of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors  

E-Print Network [OSTI]

to the case of a ball wheel. The system measures surface speed by using two or more optical mouse sensorsDevelopment of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors Masaaki Kumagai and Ralph L. Hollis Abstract-- Robots using ball(s) as spherical wheels have the advantage

103

FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR  

SciTech Connect (OSTI)

The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

Michael A. Carpenter

2004-03-30T23:59:59.000Z

104

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature  

E-Print Network [OSTI]

Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

2008-08-08T23:59:59.000Z

105

Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors  

E-Print Network [OSTI]

-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff melting patterns and the effects of solar heating on southwest-facing slopes. These proof

Selker, John

106

An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor  

E-Print Network [OSTI]

A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby...

Kuppuswamy, Harini

2006-04-12T23:59:59.000Z

107

506 IEEE SENSORS JOURNAL, VOL. 7, NO. 4, APRIL 2007 Neuromorphic Processing for Optical Microbead  

E-Print Network [OSTI]

in the olfactory bulb. The sensor array contains hundreds of microbeads coated with solvatochromic dyes adsorbed in with corresponding intensity changes, spectral shifts, and time-dependent variations associated with the fluorescent--Lateral inhibition, machine olfaction, neuromor- phic computation, olfactory bulb, optical microbead sensors, sen

Gutierrez-Osuna, Ricardo

108

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change  

E-Print Network [OSTI]

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Edgewater, Maryland Abstract As the lowest point in the surrounding landscape, lakes act as sensors to respond to changes in air temperature, precipitation, and solar radiation at timescales ranging from

Williamson, Craig E.

109

Strain-optic voltage monitor wherein strain causes a change in the optical absorption of a crystalline material  

DOE Patents [OSTI]

A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field. 6 figs.

Weiss, J.D.

1997-01-14T23:59:59.000Z

110

Strain-optic voltage monitor wherein strain causes a change in the optical absorption of a crystalline material  

DOE Patents [OSTI]

A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field.

Weiss, Jonathan D. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

111

NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE  

E-Print Network [OSTI]

NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence of ancillary sensors as part of the ARGO program. The ARGO program, if funded at the level of effort proposed

Boss, Emmanuel S.

112

Compact, low-cost, and high-resolution interrogation unit for optical sensors  

SciTech Connect (OSTI)

Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors.

Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan [Palo Alto Research Center Inc., 3333 Coyote Hill Road, Palo Alto, California 94304 (United States); Max Planck Research Group, Institute of Optics, Information and Photonics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

2006-11-13T23:59:59.000Z

113

High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402  

SciTech Connect (OSTI)

There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

Peng, W.; Pickrell, G.R.; Wang, A.B. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

2005-12-15T23:59:59.000Z

114

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

Moya, David

2012-01-01T23:59:59.000Z

115

Separation of CO2 Using Ultra-Thin Multi-Layer Polymeric Membranes for Compartmentalized Fiber Optic Sensor Applications  

E-Print Network [OSTI]

Optic Sensor Applications by Benjamin Davies B.Eng., University of Guelph, 2011 A Thesis Submitted for Compartmentalized Fiber Optic Sensor Applications by Benjamin Davies B. Eng., University of Guelph, 2011 Supervisory trapping occurring through mineralization within the first 20-50 years. A fiber optic based monitoring

Victoria, University of

116

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

117

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

118

High throughput optical sensor arrays for drug screening  

E-Print Network [OSTI]

In the world of drug discovery, high throughput whole cell assays are a critical step in discovering therapeutically relevant drug compounds [1]. This report details the development of several novel sensor systems capable ...

Harjes, Daniel I

2006-01-01T23:59:59.000Z

119

Fabry-Perot fiber optic sensor using multimode laser diode  

E-Print Network [OSTI]

heating and cooling cycles. Also, a sporadic waveform on top of the periodic waveform is observed. This is due to mechanical drift in the feedback loop between the thermoelectric cooler and the temperature controller as previously mentioned. Fig. 11... fiber and later reaches a transducer, which takes the form of an integrated optics device, bulk optical components or a fiber optic device, placed within the sensing environment. The optical signal is modulated within the sensing region...

Chu, Siu Yi Andrew

1993-01-01T23:59:59.000Z

120

Optical position sensor for determining the interface between a clear and an opaque fluid  

DOE Patents [OSTI]

An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

Weiss, Jonathan D. (Albuquerque, NM)

2006-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A study of semiconductor laser noise and its effect on fiber optic sensor performance  

E-Print Network [OSTI]

and its Effect on Fiber Optic Sensor Performance. (August 1994) Wanku Lee, B. S. , Hanyang University, S. Korea; Chair of Advisory Committee Dr. Henry F, Taylor A general description of laser diode noise is presented. Intensity and frequency noise in a... 1. 3 pm multimode laser diode are measured using a Michelson interferometer. The methodology in choosing the length of Fiber Fabry-Perot Interferometric (FFPQ sensors which reduces the effect of laser noise is presented. The reduction in relative...

Lee, Wanku

2012-06-07T23:59:59.000Z

122

Method and apparatus for packaging optical fiber sensors for harsh environments  

DOE Patents [OSTI]

A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

Pickrell, Gary; Duan, Yuhong; Wang, Anbo

2005-08-09T23:59:59.000Z

123

Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors  

SciTech Connect (OSTI)

This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

Nabeel Riza

2010-09-01T23:59:59.000Z

124

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

125

Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors  

E-Print Network [OSTI]

A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

Chin B Su; Jun Kameoka

2007-09-21T23:59:59.000Z

126

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect (OSTI)

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

127

A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber  

SciTech Connect (OSTI)

We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

Candiani, A. [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece); Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Argyros, A.; Leon-Saval, S. G.; Lwin, R. [Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney (Australia); Selleri, S. [Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Pissadakis, S., E-mail: pissas@iesl.forth.gr [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece)

2014-03-17T23:59:59.000Z

128

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

129

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

130

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect (OSTI)

The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2005-07-22T23:59:59.000Z

131

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav G. Chushak*  

E-Print Network [OSTI]

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background-4 These RNA-based sensors bind to a ligand and alter the gene expression of downstream genes. Riboswitches

132

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid  

E-Print Network [OSTI]

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-Cadavid Mech electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated

Victoria, University of

133

Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires  

E-Print Network [OSTI]

electrochromic dyes, yet have much faster kinetics and much less added capacitance than existing sensors based targetability, or phototoxicity. Two of the more widely used classes of VSDs, electrochromic and FRET dyes, illustrate the problems associated with developing fast and sensi- tive fluorescent VSDs. Electrochromic dyes

Tsien, Roger Y.

134

Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems  

SciTech Connect (OSTI)

This report summarizes technical progress on the program ??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems? funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

Anbo Wang; Gary Pickrell

2011-12-31T23:59:59.000Z

135

FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS  

E-Print Network [OSTI]

/analyzed the incident reflected waves to identify and measure the total transit time of the sound wave (of known wave-speed1 FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS T. W. Ng/disadvantages of many known liquid film thickness sensing devices (viz. conductivity probes, reflectance based fiber

Narain, Amitabh

136

Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis  

DOE Patents [OSTI]

A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

2004-07-13T23:59:59.000Z

137

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

138

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network [OSTI]

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

David Moya; Ivn Vila

2012-03-01T23:59:59.000Z

139

Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors  

SciTech Connect (OSTI)

Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.

Moro, Erik A. [Los Alamos National Laboratory

2012-06-07T23:59:59.000Z

140

Detection of biological molecules using chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials  

DOE Patents [OSTI]

Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

Muhs, Jeffrey D. (Lenoir City, TN); Capps, Gary J. (Knoxville, TN); Smith, David B. (Oak Ridge, TN); White, Clifford P. (Knoxville, TN)

1994-01-01T23:59:59.000Z

142

Detection of biological molecules using chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal. Specifically, the analyte transducer immobilized in a polymeric matrix can be a boronic acid moiety.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA)

2001-01-01T23:59:59.000Z

143

Sandia National Laboratories: Fiber-optic Bragg grating sensor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum OnFactFiber-optic Bragg grating

144

Fiber optic sensor system for detecting movement or position of a rotating wheel bearing  

DOE Patents [OSTI]

An improved fiber optic sensor system and integrated sensor bearing assembly for detecting movement or position of a rotating wheel bearing having a multi-pole tone ring which produces an alternating magnetic field indicative of movement and position of the rotating member. A magneto-optical material, such as a bismuth garnet iron (B.I.G.) crystal, having discrete magnetic domains is positioned in the vicinity of the tone ring so that the domains align themselves to the magnetic field generated by the tone ring. A single fiber optic cable, preferably single mode fiber, carries light generated by a source of light to the B.I.G. crystal. The light passes through the B.I.G. crystal and is refracted at domain boundaries in the crystal. The intensity of the refracted light is indicative of the amount of alignment of the domains and therefore the strength of the magnetic field. The refracted light is carried by the fiber optic cable to an optic receiver where the intensity is measured and an electrical signal is generated and sent to a controller indicating the frequency of the changes in light intensity and therefore the rotational speed of the rotating wheel bearing.

Veeser, Lynn R. (Los Alamos, NM); Rodriguez, Patrick J. (Santa Fe, NM); Forman, Peter R. (Los Alamos, NM); Monahan, Russell E. (Ann Arbor, MI); Adler, Jonathan M. (Ypsilanti, MI)

1997-01-01T23:59:59.000Z

145

Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN  

E-Print Network [OSTI]

The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

2014-01-01T23:59:59.000Z

146

Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location  

DOE Patents [OSTI]

A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

Weiss, J.D.

1995-08-29T23:59:59.000Z

147

Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature  

SciTech Connect (OSTI)

This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

Chen, Kevin

2014-08-31T23:59:59.000Z

148

Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring  

SciTech Connect (OSTI)

A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

Repasky, Kevin

2013-09-30T23:59:59.000Z

149

Self-compensating fiber optic flow sensor having an end of a fiber optics element and a reflective surface within a tube  

DOE Patents [OSTI]

A flow rate fiber optic transducer is made self-compensating for both temperature and pressure by using preferably well-matched integral Fabry-Perot sensors symmetrically located around a cantilever-like structure. Common mode rejection signal processing of the outputs allows substantially all effects of both temperature and pressure to be compensated. Additionally, the integral sensors can individually be made insensitive to temperature.

Peng, Wei; Qi, Bing; Wang, Anbo

2006-05-16T23:59:59.000Z

150

Bright and fast voltage reporters across the visible spectrum via electrochromic FRET (eFRET)  

E-Print Network [OSTI]

We present a palette of brightly fluorescent genetically encoded voltage indicators (GEVIs) with excitation and emission peaks spanning the visible spectrum, sensitivities from 6 - 10% Delta F/F per 100 mV, and half-maximal response times from 1 - 7 ms. A fluorescent protein is fused to an Archaerhodopsin-derived voltage sensor. Voltage-induced shifts in the absorption spectrum of the rhodopsin lead to voltage-dependent nonradiative quenching of the appended fluorescent protein. Through a library screen, we identified linkers and fluorescent protein combinations which reported neuronal action potentials in cultured rat hippocampal neurons with a single-trial signal-to-noise ratio from 6.6 to 11.6 in a 1 kHz imaging bandwidth at modest illumination intensity. The freedom to choose a voltage indicator from an array of colors facilitates multicolor voltage imaging, as well as combination with other optical reporters and optogenetic actuators.

Zou, Peng; Douglass, Adam D; Hochbaum, Daniel R; Brinks, Daan; Werley, Christopher A; Harrison, D Jed; Campbell, Robert E; Cohen, Adam E

2014-01-01T23:59:59.000Z

151

Power inverter with optical isolation  

DOE Patents [OSTI]

An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

Duncan, Paul G.; Schroeder, John Alan

2005-12-06T23:59:59.000Z

152

Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines  

E-Print Network [OSTI]

-coated fiber sensor is electroplated with copper. Finally, the metal-protected fiber sensor is embedded in a groove cut in the spark plug casing. Spark-plug-embedded FFPI sensors were used to monitor pressure in internal combustion engines...

Bae, Taehan

2001-01-01T23:59:59.000Z

153

Detecting high-frequency gravitational waves with optically-levitated sensors  

E-Print Network [OSTI]

We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

Asimina Arvanitaki; Andrew A. Geraci

2013-01-02T23:59:59.000Z

154

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect (OSTI)

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

155

Extreme temperature robust optical sensor designs and fault-tolerant signal processing  

DOE Patents [OSTI]

Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2012-01-17T23:59:59.000Z

156

Sensor Data Processing for Tracking Underwater Threats Using Terascale Optical Core Devices  

SciTech Connect (OSTI)

A critical aspect of littoral surveillance (including port protection) involves the localization and tracking of underwater threats such as manned or unmanned autonomous underwater vehicles. In this article, we present a methodology for locating underwater threat sources from uncertain sensor network data, and illustrate the threat tracking aspects using active sonars in a matched filter framework. The novelty of the latter paradigm lies in its implementation on a tera-scale optical core processor, EnLight , recently introduced by Lenslet Laboratories. This processor is optimized for array operations, which it performs in a fixed point arithmetic architecture at tera-scale throughput. Using the EnLight 64 prototype processor, our results (i) illustrate the ability to reach a robust tracking accuracy, and (ii) demonstrate that a considerable speed-up (a factor of over 13,000) can be achieved when compared to an Intel XeonTM processor in the computation of sets of 80K-sample complex Fourier transforms that are associated with our matched filter techniques.

Barhen, Jacob [ORNL; Imam, Neena [ORNL

2009-01-01T23:59:59.000Z

157

Journal of Materials Science, 2009. 44(6): p. 1560-1571 Whispering Gallery Mode-Based Micro-Optical Sensors for Structural Health Monitoring  

E-Print Network [OSTI]

experimental results. Keywords: Whispering gallery mode, micro sensors, syntactic foams, smart composites of the glass fibers is replaced by an optical fiber for sensing [9]. These sensing schemes are successful

Gupta, Nikhil

158

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

SciTech Connect (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

159

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents [OSTI]

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

160

1550nm Optical Interconnect Transceiver with Low Voltage Electroabsorption Modulators Flip-Chip Bonded to 90nm  

E-Print Network [OSTI]

P wafer with epitaxially grown InGaAsP/InP layers comprising a PIN diode containing a multiple quantum the epitaxially grown InGaAsP and air. The grazing incidence N contact P contact Diode mesa V-grooves Optical-air interface, further enhancing absorption. Unlike in a waveguide modulator where propagation along

Palermo, Sam

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

1550nm Optical Interconnect Transceiver with Low Voltage Electroabsorption Modulators Flip-Chip Bonded to 90nm  

E-Print Network [OSTI]

P wafer with epitaxially grown InGaAsP/InP layers comprising a PIN diode containing a multiple quantum the epitaxially grown InGaAsP and air. The grazing incidence N contact P contact Diode mesa V-grooves Optical and the epitaxy-air interface, further enhancing absorption. Unlike in a waveguide modulator where propagation

Miller, David A. B.

162

Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.  

SciTech Connect (OSTI)

The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy T.

2014-09-01T23:59:59.000Z

163

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect (OSTI)

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

164

High Temperature, High Voltage Fully Integrated Gate Driver Circuit  

Broader source: Energy.gov (indexed) [DOE]

driver circuit, 5-V on- chip voltage regulator, short-circuit protection, undervoltage lockout, bootstrap capacitor, dead time controller and temperature sensor * 0.8-micron,...

165

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers  

DOE Patents [OSTI]

An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

2009-06-02T23:59:59.000Z

166

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect (OSTI)

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

167

Design and fabrication of an optical pressure micro sensor for skin mechanics studies  

E-Print Network [OSTI]

The mechanics of skin is as central to touch as optics is to vision and acoustics is to hearing. With the advent of novel imaging technologies such as the Optical Coherence Tomography (OCT), we are now able to view structures ...

Kumar, Siddarth

2006-01-01T23:59:59.000Z

168

Large voltage modulation in magnetic field sensors from two-dimensional arrays of Y-Ba-Cu-O nano Josephson junctions  

SciTech Connect (OSTI)

We have fabricated and tested two-dimensional arrays of YBa{sub 2}Cu{sub 3}O{sub 7??} superconducting quantum interference devices. The arrays contain over 36?000 nano Josephson junctions fabricated from ion irradiation of YBa{sub 2}Cu{sub 3}O{sub 7??} through narrow slits in a resist-mask that was patterned with electron beam lithography and reactive ion etching. Measurements of current-biased arrays in magnetic field exhibit large voltage modulations as high as 30?mV.

Cybart, Shane A., E-mail: scybart@ucsd.edu; Dynes, R. C. [Department of Physics, University of California San Diego, La Jolla, California 92093 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cho, E. Y.; Wong, T. J. [Department of Physics, University of California San Diego, La Jolla, California 92093 (United States); Glyantsev, V. N.; Huh, J. U.; Yung, C. S.; Moeckly, B. H. [Superconductor Technologies Inc., Santa Barbara, California 93111 (United States); Beeman, J. W.; Ulin-Avila, E.; Wu, S. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2014-02-10T23:59:59.000Z

169

Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)  

SciTech Connect (OSTI)

Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

2003-12-31T23:59:59.000Z

170

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents [OSTI]

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

171

Voltage-dependent calcium channels and currents in native neurons and other cells have been divided into high voltage  

E-Print Network [OSTI]

Voltage-dependent calcium channels and currents in native neurons and other cells have been divided than one subtype of channel. A new subfamily of voltage-dependent calcium channel á1 subunit genes. 1999), having four domains, each with a voltage sensor and a pore-forming P loop. However

Dolphin, Annette C.

172

Voltage sensing systems and methods for passive compensation of temperature related intrinsic phase shift  

DOE Patents [OSTI]

A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. In crystals that introduce a phase differential attributable to temperature, a compensating crystal is provided to cancel the effect of temperature on the phase differential of the input beam. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

Davidson, James R. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

173

Real time perfusion and oxygenation monitoring in an implantable optical sensor  

E-Print Network [OSTI]

in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

Subramanian, Hariharan

2006-04-12T23:59:59.000Z

174

Experimental validation of a high voltage pulse measurement method.  

SciTech Connect (OSTI)

This report describes X-cut lithium niobate's (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps - 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensor's U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

2013-09-01T23:59:59.000Z

175

Fiber optic temperature sensor using a grating on an angled fiber tip  

E-Print Network [OSTI]

by a DC current source. The sensor was spliced with some more single mode fiber and coupled to the photo detector. The photo detector circuit consisted of an InGaAs 1550nm photodiode along with a trans-impedance circuit to reduce the noise... and amplify the output signal. The output signal was received in a data file using an NI-DAQ interface and a C program (Appendix E). The receiver circuit used with the photodiode is shown in figure 21. 30 2K 2K DC Power Supply 9V Ph oto Dtode 10K OP27...

Varadarajan, Harini

2012-06-07T23:59:59.000Z

176

The monitoring and multiplexing of fiber optic sensors using chirped laser sources  

E-Print Network [OSTI]

photodiode through a fiber coupler. An optical isolator is connected in serial with the laser to block the destabilizing optical feedback. The reflected light from the FFPI is converted by another photodiode to an electrical current signal I r... , such that the reflectance is obtained as R FP = CI r /I i , with C a constant and I i the photocurrent measured by the laser power monitoring photodiode. The absolute value of R FP can be obtained through calibration, although it is often not necessary. Fig. 4...

Wan, Xiaoke

2004-09-30T23:59:59.000Z

177

Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results  

SciTech Connect (OSTI)

A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter, providing a unique indication of the cumulative gas exposure.

Small IV, W; Maitland, D J; Wilson, T S; Bearinger, J P; Letts, S A; Trebes, J E

2008-06-05T23:59:59.000Z

178

Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles  

E-Print Network [OSTI]

of direct solar illumination. We demonstrate a prototype system based on a network of independent camera emulator allows for realistic field tests with consumer components. Aspects of the design, implementation. Numerous versions of the SAA instrument based on radar, LIDAR and passive- optical, among other

Hornsey, Richard

179

Detection of biological molecules using boronate-based chemical amplification and optical sensors  

DOE Patents [OSTI]

Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

Van Antwerp, William Peter (Valencia, CA); Mastrototaro, John Joseph (Los Angeles, CA); Lane, Stephen M. (Oakland, CA); Satcher, Jr., Joe H. (Modesto, CA); Darrow, Christopher B. (Pleasanton, CA); Peyser, Thomas A. (Menlo Park, CA); Harder, Jennifer (Livermore, CA)

1999-01-01T23:59:59.000Z

180

In Vitro and In Vivo Comparison of Optics and Performance of a Distal Sensor Ureteroscope Versus a Standard Fiberoptic Ureteroscope  

E-Print Network [OSTI]

characteristics and optics of the X C with a stan- dardand In Vivo Comparison of Optics and Performance of a Distalperformance characteristics and optics of a new generation

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A standalone capacitively coupled occupancy sensor  

E-Print Network [OSTI]

This thesis presents the design and implementation of a standalone, capacitively coupled, occupancy sensor. Unlike previous iterations, the new sensor is decoupled from the fluorescent lamp. A well controlled, high voltage ...

Thompson, William H., M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

182

Fiber-Optic Long-Line Position Sensor - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000TechnologyTuneFewer FaultsIndustrial

183

AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations  

SciTech Connect (OSTI)

The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

Sarah Allendorf; David Ottesen; Donald Hardesty

2002-01-31T23:59:59.000Z

184

Optical memory  

DOE Patents [OSTI]

Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

Mao, Samuel S; Zhang, Yanfeng

2013-07-02T23:59:59.000Z

185

How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment  

SciTech Connect (OSTI)

We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, its 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

2014-01-16T23:59:59.000Z

186

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

187

Use of sensors in monitoring civil structures  

E-Print Network [OSTI]

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

188

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

Sherrill, David

189

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris  

DOE Patents [OSTI]

An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

2009-06-02T23:59:59.000Z

190

High Voltage Safety Act  

Broader source: Energy.gov [DOE]

The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

191

Automatic voltage imbalance detector  

DOE Patents [OSTI]

A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

Bobbett, Ronald E. (Los Alamos, NM); McCormick, J. Byron (Los Alamos, NM); Kerwin, William J. (Tucson, AZ)

1984-01-01T23:59:59.000Z

192

Buried fiber optic sensor  

E-Print Network [OSTI]

, and TMom modes. Otherwise vm gives the HEv hm and EHv-hm modest20] 18 Table I. Parameters of the laser source and the fused silica fiber which are used in this experiment. n=n1=1. 4527 n2= 1. 4483 D (core diameter )= 8 um Cladding Diameter = 125 um... Interferometer . B. Frequency Chirping of Laser Diode C. Pressure Sensitivity to Uniform Pressure . . . . . . . . . . D. Pressure Sensitivity to Transverse Pressure . . . . E. Pressure Sensitivity to Longitudinal Pressure . . . . . . . . . . I 3 . . . . 20...

Park, Jaehee

1992-01-01T23:59:59.000Z

193

Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158  

SciTech Connect (OSTI)

NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

Ringer, M.

2010-07-01T23:59:59.000Z

194

An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine  

E-Print Network [OSTI]

in head bolts were tested under a variety of operating conditions on a single cylinder, research, diesel engine. The sensors' pressure vs. crank angle output was compared with the output of a piezoelectric pressure transducer mounted, in the engine head...

Turner, Timothy Troy

1994-01-01T23:59:59.000Z

195

High voltage photovoltaic power converter  

DOE Patents [OSTI]

An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

Haigh, Ronald E. (Arvada, CO); Wojtczuk, Steve (Cambridge, MA); Jacobson, Gerard F. (Livermore, CA); Hagans, Karla G. (Livermore, CA)

2001-01-01T23:59:59.000Z

196

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

Shoemaker, Erika L. (Westmont, IL); Vogt, Michael C. (Westmont, IL)

1998-01-01T23:59:59.000Z

197

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

Shoemaker, E.L.; Vogt, M.C.

1998-06-30T23:59:59.000Z

198

Voltage Control Technical Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intro Voltage Control Conference - BPA Active Power Control in Wind Parks - Siemens Interconnection Criteria for Frequency Response Requirements - NERC Model Validation...

199

Biased low differential input impedance current receiver/converter device and method for low noise readout from voltage-controlled detectors  

DOE Patents [OSTI]

A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.

Degtiarenko, Pavel V. (Williamsburg, VA); Popov, Vladimir E. (Newport News, VA)

2011-03-22T23:59:59.000Z

200

Voltage verification unit  

DOE Patents [OSTI]

A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

Martin, Edward J. (Virginia Beach, VA)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect (OSTI)

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

202

Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532  

SciTech Connect (OSTI)

Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

2013-07-01T23:59:59.000Z

203

Voltage balanced multilevel voltage source converter system  

DOE Patents [OSTI]

A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

1997-01-01T23:59:59.000Z

204

Voltage balanced multilevel voltage source converter system  

DOE Patents [OSTI]

Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

Peng, F.Z.; Lai, J.S.

1997-07-01T23:59:59.000Z

205

High voltage DC power supply  

DOE Patents [OSTI]

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

Droege, T.F.

1989-12-19T23:59:59.000Z

206

High voltage DC power supply  

DOE Patents [OSTI]

A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

Droege, Thomas F. (Batavia, IL)

1989-01-01T23:59:59.000Z

207

Modular sensor network node  

DOE Patents [OSTI]

A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

Davis, Jesse Harper Zehring (Berkeley, CA); Stark, Jr., Douglas Paul (Tracy, CA); Kershaw, Christopher Patrick (Hayward, CA); Kyker, Ronald Dean (Livermore, CA)

2008-06-10T23:59:59.000Z

208

Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor  

SciTech Connect (OSTI)

The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

2013-08-31T23:59:59.000Z

209

E-beam high voltage switching power supply  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1996-01-01T23:59:59.000Z

210

E-beam high voltage switching power supply  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

Shimer, D.W.; Lange, A.C.

1996-10-15T23:59:59.000Z

211

High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

Shimer, D.W.; Lange, A.C.

1995-05-23T23:59:59.000Z

212

High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs  

DOE Patents [OSTI]

A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

1995-01-01T23:59:59.000Z

213

Thermal microphotonic sensor and sensor array  

DOE Patents [OSTI]

A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

2010-02-23T23:59:59.000Z

214

Compact high voltage solid state switch  

DOE Patents [OSTI]

A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

Glidden, Steven C.

2003-09-23T23:59:59.000Z

215

Optically initiated silicon carbide high voltage switch  

DOE Patents [OSTI]

An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Sullivan, James S. (Livermore, CA); Sanders; David M. (Livermore, CA)

2011-02-22T23:59:59.000Z

216

ABBGroup-1-High voltage lab  

E-Print Network [OSTI]

oscillations are due to travelling waves in the heating volume. #12;ABBGroup-9- 3-Sep-07 2. High voltage phase interrupts the injected current, it is stressed by the transient recovery voltage (TRV) oscillatingABBGroup-1- 3-Sep-07 High voltage lab Research on high voltage gas circuit breakers Nils P. Basse

Basse, Nils Plesner

217

Ris-PhD-19(EN) Self Calibrating Interferometric Sensor  

E-Print Network [OSTI]

Interferometric Sensor Department: Optics and Plasma Research Department Risø-PhD-19(EN) January 2006 This thesis

218

Electron launching voltage monitor  

DOE Patents [OSTI]

An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

Mendel, C.W.; Savage, M.E.

1992-03-17T23:59:59.000Z

219

Voltage controlled current source  

DOE Patents [OSTI]

A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

Casne, Gregory M. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

220

Fuel cell CO sensor  

DOE Patents [OSTI]

The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

1999-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microscale autonomous sensor and communications module  

DOE Patents [OSTI]

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

222

Application of an all-solid-state diode-laser-based sensor for carbon monoxide detection by optical absorption in the 4.4 ? 4.8 m spectral region  

E-Print Network [OSTI]

APPLICATION OF AN ALL-SOLID-STATE DIODE-LASER-BASED SENSOR FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to the Office of Graduate... FOR CARBON MONOXIDE DETECTION BY OPTICAL ABSORPTION IN THE 4.4 ? 4.8 ?m SPECTRAL REGION A Dissertation by RODOLFO BARRON JIMENEZ Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

Rodolfo, Barron Jimenez

2005-02-17T23:59:59.000Z

223

Development of a scalable generic platform for adaptive optics real time control  

E-Print Network [OSTI]

The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system ...

Surendran, Avinash; Ramaprakash, A N; Parihar, Padmakar

2015-01-01T23:59:59.000Z

224

High voltage pulse conditioning  

DOE Patents [OSTI]

Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

225

Charge-pump voltage converter  

DOE Patents [OSTI]

A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2009-11-03T23:59:59.000Z

226

INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS  

E-Print Network [OSTI]

INTEGRATED GHz VOLTAGE CONTROLLED OSCILLATORS Peter Kinget Bell Labs - Lucent Technologies Murray Hill, NJ (USA) Abstract The voltage controlled oscillator (VCO) is a critical sub. We focus on the de- sign of a critical sub-block: the voltage controlled oscillator (VCO). We review

Kinget, Peter

227

Experimental characterization of faults on low-voltage systems  

E-Print Network [OSTI]

arcing ground faults '10'. The first scheme is very similar to the Ground Sensor Protection scheme described in i8j. The second scheme employs the fact that the voltage waveshape at the 1'suit point is flat topped. Harmonic analysis shows that... value when an arcing fault takes place. Continued presence of a, relatively high third- harmonic component in the bus voltage is a definite sign that there is an arcing fault in the system, Kusko and Peeran recommended the use of a, third harmonic...

Ahmed, Jubayer

1992-01-01T23:59:59.000Z

228

Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer  

E-Print Network [OSTI]

Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of V{\\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators bas...

Zhang, Xingyu; Subbaraman, Harish; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Chen, Ray T

2015-01-01T23:59:59.000Z

229

Ignition distributor voltage generator  

SciTech Connect (OSTI)

This patent describes a voltage pulse generator and ignition distributor comprising, a base, a shaft rotatably supported by the base, a distributor cap supported by the base having a center electrode and circumferentially spaced outer electrodes. The pulse generator and ignition distribution also include a first rotor driven by the shaft formed of electrical insulating material having electrically conductive means connected to the center terminal and a portion that rotates past the outer electrodes. The portion of the electrically conductive means that rotates past the outer electrodes is spaced from the outer electrodes to form a gap therebetween. A voltage pulse generator comprises a second rotor driven by the shaft, at least one permanent magnet and an annular pickup coil supported by the base. The pickup coil has inner turns and outer turns, the beginning turn of the inner turns connected to a first lead and the last turn of the outer turns connected to a second lead, the outer turns enclosing the inner turns. The pickup coil also has a circuit connected directly between the second lead and ground which is operative to provide a direct conductive path to ground for high frequency energy capacitively coupled to the outer turns from the gap discharge between the electrically conductive means of the first rotor and an outer electrode, the outer turns forming a grounded shield for the inner turns.

Boyer, J.A.

1986-11-04T23:59:59.000Z

230

Solid state oxygen sensor  

DOE Patents [OSTI]

Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

231

Humidity, Temperature, and Voltage (Presentation)  

SciTech Connect (OSTI)

An update is given on the work of the PV Quality Assurance Task Force; Group 3: studying the effects of humidity, temperature, and voltage bias.

Wohlgemuth, J.

2012-03-01T23:59:59.000Z

232

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

Kruger, Hans W. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

233

Gamma-insensitive optical sensor  

DOE Patents [OSTI]

An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

Kruger, H.W.

1994-03-15T23:59:59.000Z

234

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

235

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network [OSTI]

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

236

Current isolating epitaxial buffer layers for high voltage photodiode array  

DOE Patents [OSTI]

An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

Morse, Jeffrey D. (Martinez, CA); Cooper, Gregory A. (Pleasant Hill, CA)

2002-01-01T23:59:59.000Z

237

Small, Inexpensive Combined NOx Sensor and O2 Sensor  

SciTech Connect (OSTI)

It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

W. N. Lawless; C. F. Clark, Jr.

2008-09-08T23:59:59.000Z

238

Transient voltage oscillations in coils  

SciTech Connect (OSTI)

Magnet coils may be excited into internal voltage oscillations by transient voltages. Such oscillations may electrically stress the magnet's dielectric components to many times its normal stress. This may precipitate a dielectric failure, and the attendant prolonged loss of service and costly repair work. Therefore, it is important to know the natural frequencies of oscillations of a magnet during the design stage, and to determine whether the expected switching transient voltages can excite the magnet into high-voltage internal oscillations. The series capacitance of a winding significantly affects its natural frequencies. However, the series capacitance is difficult to calculate, because it may comprise complex capacitance network, consisting of intra- and inter-coil turn-to-turn capacitances of the coil sections. A method of calculating the series capacitance of a winding is proposed. This method is rigorous but simple to execute. The time-varying transient voltages along the winding are also calculated.

Chowdhuri, P.

1985-01-01T23:59:59.000Z

239

PHOTOSWITCHR Photoelectric Sensors General Purpose 18mm Cylindrical Style  

E-Print Network [OSTI]

(Sensor) DC Micro For NPN type tie the load to Brown (+). For PNP type tie the load to Blue Beam Load Load Load Load Load Load Light Source Unit Protection Supply Voltage Current Consumption Photoelectric Sensors 42CA General Purpose 18mm Cylindrical Style R146 Typical Response Curve 100 1 0.1 0 1 (3

Allen, Gale

240

Low voltage nonprimary explosive detonator  

DOE Patents [OSTI]

A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High voltage electrical amplifier having a short rise time  

DOE Patents [OSTI]

A circuit, comprising an amplifier and a transformer is disclosed that produces a high power pulse having a fast response time, and that responds to a digital control signal applied through a digital-to-analog converter. The present invention is suitable for driving a component such as an electro-optic modulator with a voltage in the kilovolt range. The circuit is stable at high frequencies and during pulse transients, and its impedance matching circuit matches the load impedance with the output impedance. The preferred embodiment comprises an input stage compatible with high-speed semiconductor components for amplifying the voltage of the input control signal, a buffer for isolating the input stage from the output stage; and a plurality of current amplifiers connected to the buffer. Each current amplifier is connected to a field effect transistor (FET), which switches a high voltage power supply to a transformer which then provides an output terminal for driving a load. The transformer comprises a plurality of transmission lines connected to the FETs and the load. The transformer changes the impedance and voltage of the output. The preferred embodiment also comprises a low voltage power supply for biasing the FETs at or near an operational voltage.

Christie, David J. (Pleasanton, CA); Dallum, Gregory E. (Livermore, CA)

1991-01-01T23:59:59.000Z

242

Transparent electrode for optical switch  

DOE Patents [OSTI]

The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

Goldhar, J.; Henesian, M.A.

1984-10-19T23:59:59.000Z

243

Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

within a Charge Abstract: A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of sulfonated...

244

Voltage tunable microwave ferrite resonator  

E-Print Network [OSTI]

A novel method of implementing a tunable resonator using an applied voltage is presented. Stress is used to tune a microstrip resonator fabricated on a polycrystalline ferrite substrate. The stress was applied either ...

Oates, Daniel E.

245

Saving Megawatts with Voltage Optimization  

E-Print Network [OSTI]

that had been installed at several electric utility distribution substations in the U.S. and Canada. These systems, being operated in Conservation Voltage Regulation mode, have provided significant energy conservation where they have been installed...

Wilson, T.; Bell, D.

2010-01-01T23:59:59.000Z

246

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents [OSTI]

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

247

Emissive sensors and devices incorporating these sensors  

DOE Patents [OSTI]

The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

Swager, Timothy M; Zhang, Shi-Wei

2013-02-05T23:59:59.000Z

248

Thermal sensor with an improved coating  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

249

Voltage controlled MESFET pulse shape generator  

SciTech Connect (OSTI)

A programmable pulse shape generator capable of producing pulse shapes for Nova and Beamlet has been designed and simulated using the circuit code SPICE. The design utilizes power MESFETS, which are commonly used in microwave amplifiers. The pulse shape is varied by setting a bias voltage on each in a chain of MESFETS with a 200 ps temporal resolution. The electrical pulse then drives an integrated electro-optic modulator similar to what is on Beamlet. Pulse shapes 22 and 25, used on Nova, have been generated by this design. There is no fundamental barrier to making such a pulse generator for use on the National Ignition Facility. In fact, the longer time scales on the NIF pulse will ease the high speed requirements of the pulse shape generator allowing the use of less expensive components. The next step will be to build a prototype circuit for initial testing on Beamlet and Nova.

Burkhart, S.C.

1994-10-26T23:59:59.000Z

250

Voltage, energy and power in electric circuits  

E-Print Network [OSTI]

Voltage, energy and power in electric circuits Science teaching unit #12;Disclaimer The Department-2008DVD-EN Voltage, energy and power in electric circuits #12;#12; Crown copyright 2008 1The National Strategies | Secondary Voltage, energy and power in electric circuits 00094-2008DVD-EN Contents Voltage

Berzins, M.

251

Ancillary service details: Voltage control  

SciTech Connect (OSTI)

Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

Kirby, B.; Hirst, E.

1997-12-01T23:59:59.000Z

252

Oxygen partial pressure sensor  

DOE Patents [OSTI]

A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

Dees, D.W.

1994-09-06T23:59:59.000Z

253

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combusion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. The nitric oxide sensor has been used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based sensor measurements showed good agreement with the results from physical probe sampling of the combustion exhaust. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. Future planned modifications will lead to even faster response times at sensitivity levels at or below 1 ppm.

Jerald A. Caton; Kalyan Annamalai

2003-09-24T23:59:59.000Z

254

Optical caliper with compensation for specimen deflection and method  

DOE Patents [OSTI]

An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

Bernacki, Bruce E. (Knoxville, TN)

1997-01-01T23:59:59.000Z

255

Optical caliper with compensation for specimen deflection and method  

DOE Patents [OSTI]

An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

Bernacki, B.E.

1997-12-09T23:59:59.000Z

256

Modulated voltage metastable ionization detector  

SciTech Connect (OSTI)

Metastable ionization detectors used for chromatographic analysis usually employa fixed high voltage for the ionization potential. For this reason, the operating range is limited to about three orders of magnitude. By use of the technique disclosed in the instant invention, operating ranges of about nine orders of magnitude are obtained. The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration fo the constituent and a representative amplitude is applied to another input of said strip chart recorder.

Carle, G. C.; Humphry, D. E.; Kojiro, D. R.

1985-08-27T23:59:59.000Z

257

Beam current sensor  

DOE Patents [OSTI]

A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

Kuchnir, M.; Mills, F.E.

1984-09-28T23:59:59.000Z

258

Beam current sensor  

DOE Patents [OSTI]

A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

1987-01-01T23:59:59.000Z

259

Multidimensional Architectures for Functional Optical By Kevin A. Arpin, Agustin Mihi, Harley T. Johnson, Alfred J. Baca,  

E-Print Network [OSTI]

efficient solar cells, and unique sensors. Significant challenges remain including discovery of methods circuitry, enhancement of optical absorption processes in solar cells, and sensors.[1] Since the pioneering

Lewis, Jennifer

260

440 IEEE SENSORS JOURNAL, VOL. 7, NO. 3, MARCH 2007 On-Chip Capacitance Sensing for Cell Monitoring  

E-Print Network [OSTI]

440 IEEE SENSORS JOURNAL, VOL. 7, NO. 3, MARCH 2007 On-Chip Capacitance Sensing for Cell Monitoring is an indication of both the interaction between cells and substrate and cell health. The capacitance sensor uses the principle of charge sharing and translates sensed capacitance values to output voltages. The sensor chip has

Maryland at College Park, University of

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Report on Non-Contact DC Electric Field Sensors  

SciTech Connect (OSTI)

This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

Miles, R; Bond, T; Meyer, G

2009-06-16T23:59:59.000Z

262

DESIGN OF TEMPERATURE SENSOR ARRAY IN SMART ELECTRIC GRID BASED ON SAW RESONATORS  

E-Print Network [OSTI]

and electrical equipment connected at high voltage switchgear contacts, dry-type transformers, the overhead line, discrete Hartley Transform (DHT) and the method of fast searching center frequency of sensors by comparison

Wang, Ji

263

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS  

E-Print Network [OSTI]

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors to readers with a background in SAR. Keywords: Microscopy, Interferometric, Synthetic Aperture, Radar, Optical Coherence To- mography. #12;Sensors 2008, 8 3904 1. Introduction Traditional sensing modalities

Bhargava, Rohit

264

Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.  

DOE Patents [OSTI]

A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

Pipino, Andrew C. R. (Gaithersburg, MD)

2003-02-04T23:59:59.000Z

265

Micromachined pressure sensors: Review and recent developments  

SciTech Connect (OSTI)

Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

1997-03-01T23:59:59.000Z

266

Onset voltage of corona on coated conductors  

SciTech Connect (OSTI)

This paper is aimed for investigating the effect of surface coating on the positive and negative onset voltages of corona from stressed conductor as a pre-requisite for onset-voltage calculation. The electric field is accurately calculated by the charge simulation technique. The calculated onset voltages agreed satisfactorily with those measured experimentally for bare conductors. The effect of coating-layer thickness and permittivity as well as conductor radius and height on the onset-voltage values is discussed.

Abdel-Salam, M. [Assiut Univ. (Egypt). Electrical Engineering Dept.; Abo-Shal, Y. [SCECO-East, Dammam (Saudi Arabia). Electrical Engineering Div.

1995-12-31T23:59:59.000Z

267

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2006-12-31T23:59:59.000Z

268

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences. We will concentrate on the spectral region near 1530 nm, where other researchers have had some success in measuring ammonia.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2005-09-30T23:59:59.000Z

269

DEVELOPMENT OF ALL-SOLID-STATE SENSORS FOR MEASUREMENT OF NITRIC OXIDE AND AMMONIA CONCENTRATIONS BY OPTICAL ABSORPTION IN PARTICLE-LADEN COMBUSTION EXHAUST STREAMS  

SciTech Connect (OSTI)

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2 described in this progress report, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2004-09-30T23:59:59.000Z

270

Theory of the circular closed loop antenna in the terahertz, infrared, and optical regions  

E-Print Network [OSTI]

-materials, single photon emitters,2 wireless optical broadcasting links,3 bio-sensors,4 and light capture in solar

271

Optical microphone  

DOE Patents [OSTI]

An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

Veligdan, James T. (Manorville, NY)

2000-01-11T23:59:59.000Z

272

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

273

Sensor apparatus  

DOE Patents [OSTI]

A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

2009-12-22T23:59:59.000Z

274

Molecular Design of Intercalation-Based Sensors. 1. Ammonia Sensing with Quartz Crystal  

E-Print Network [OSTI]

portable, ammonia sensors has grown markedly in recent years. Ammonia sensors recently described in the literature have taken advantage of optical or electrochemical responses in both liquids and vapors

275

Low power, scalable multichannel high voltage controller  

DOE Patents [OSTI]

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2006-03-14T23:59:59.000Z

276

Low power, scalable multichannel high voltage controller  

DOE Patents [OSTI]

A low voltage control circuit is provided for individually controlling high voltage power provided over bus lines to a multitude of interconnected loads. An example of a load is a drive for capillary channels in a microfluidic system. Control is distributed from a central high voltage circuit, rather than using a number of large expensive central high voltage circuits to enable reducing circuit size and cost. Voltage is distributed to each individual load and controlled using a number of high voltage controller channel switches connected to high voltage bus lines. The channel switches each include complementary pull up and pull down photo isolator relays with photo isolator switching controlled from the central high voltage circuit to provide a desired bus line voltage. Switching of the photo isolator relays is further controlled in each channel switch using feedback from a resistor divider circuit to maintain the bus voltage swing within desired limits. Current sensing is provided using a switched resistive load in each channel switch, with switching of the resistive loads controlled from the central high voltage circuit.

Stamps, James Frederick (Livermore, CA); Crocker, Robert Ward (Fremont, CA); Yee, Daniel Dadwa (Dublin, CA); Dils, David Wright (Fort Worth, TX)

2008-03-25T23:59:59.000Z

277

Assessing Deterioration of ADSS Fiber Optic Cables  

E-Print Network [OSTI]

Assessing Deterioration of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report of ADSS Fiber Optic Cables Due to Corona Discharge Final Project Report George G. Karady, Project Leader-Supporting) fiber optic cables installed on high voltage lines. The high electric field on those lines generates

278

Dynamic Voltage Regulation Using Distributed Energy Resources  

SciTech Connect (OSTI)

Many distributed energy resources (DE) are near load centres and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide ancillary services such as voltage regulation, nonactive power compensation, and power factor correction. A synchronous condenser and a microturbine with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Voltage control schemes of the inverter and the synchronous condenser are developed. The experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously, while the dynamic response of the inverter is faster than the synchronous condenser; and that integrated voltage regulation (multiple DE perform voltage regulation) can increase the voltage regulation capability, increase the lifetime of the equipment, and reduce the capital and operation costs.

Xu, Yan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2007-01-01T23:59:59.000Z

279

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS data Jump to: navigation, search ToolVoith HydroVoltage

280

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network [OSTI]

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fabrication of thermal microphotonic sensors and sensor arrays  

DOE Patents [OSTI]

A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

Shaw, Michael J. (Tijeras, NM); Watts, Michael R. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2010-10-26T23:59:59.000Z

282

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

1994-01-01T23:59:59.000Z

283

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

1994-04-26T23:59:59.000Z

284

1-and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022  

E-Print Network [OSTI]

advantages over coil based magnetic sensors. They are extremely sensitive, low field, solid-state magnetic solid-state magnetic sensor solutions. These are highly reliable, top performance products Low Noise Passive Element Design 4 Low Voltage Operations (2.0V) 4 Compatible for Battery Powered

Kleinfeld, David

285

Handbook of actuators and edge alignment sensors  

SciTech Connect (OSTI)

This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

Krulewich, D A

1992-11-01T23:59:59.000Z

286

12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF  

E-Print Network [OSTI]

12/22/2000 State of Art Fiber Optic 1 UTILITY APPLICATION OF FIBER OPTIC CABLES George G. Karady Fiber Optic 2 UTILITY APPLICATION OF FIBER OPTIC CABLES Utilities are installing fiber optic cables on high voltage transmission lines. Three basic designs employed are: · 1) OPGW (optical ground wire) · 2

287

Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions...  

Broader source: Energy.gov (indexed) [DOE]

Accomplishments * Extensive sensor characterization - Optical, SEM, X-ray micro tomography, XRD, and EDAX * Identified interfacial issues and worked with ESL to address these...

288

Wind Power Plant Voltage Stability Evaluation: Preprint  

SciTech Connect (OSTI)

Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

Muljadi, E.; Zhang, Y. C.

2014-09-01T23:59:59.000Z

289

Optically-initiated silicon carbide high voltage switch  

DOE Patents [OSTI]

An improved photoconductive switch having a SIC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Sullivan, James S. (Livermore, CA); Sanders, David M. (Livermore, CA)

2012-02-28T23:59:59.000Z

290

Low-voltage embedded biomedical processor design  

E-Print Network [OSTI]

Advances in mobile electronics are fueling new possibilities in a variety of applications, one of which is ambulatory medical monitoring with body-worn or implanted sensors. Digital processors on such sensors serve to ...

Kwong, Joyce Y. S. (Joyce Yui Si)

2010-01-01T23:59:59.000Z

291

Multiple channel optical data acquisition system  

DOE Patents [OSTI]

A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

Fasching, G.E.; Goff, D.R.

1985-02-22T23:59:59.000Z

292

To be published in IEEE Aerospace Conference Proceedings, 2003, Cat No. 0-7803-7651-X/03/$17.00 2003 IEEE Planar REDOX and Conductivity Sensors  

E-Print Network [OSTI]

/$17.00 © 2003 IEEE Planar REDOX and Conductivity Sensors for ISS Water Quality Measurements1 Martin G. Buehler REDOX and conductivity sensors that are used to detect ionic species in solution by measuring the electrochemical cell current as the voltage is scanned. The simplicity and robustness of these sensors allows

Kounaves, Samuel P.

293

High voltage load resistor array  

DOE Patents [OSTI]

A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

Lehmann, Monty Ray (Smithfield, VA)

2005-01-18T23:59:59.000Z

294

Group 3: Humidity, Temperature, and Voltage (Presentation)  

SciTech Connect (OSTI)

Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

295

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

296

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

297

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

298

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

299

Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal  

E-Print Network [OSTI]

is too low to be used directly for many practical applications. For example, a single light emitting diode (LED) requires a minimum voltage of 2 V.2 Thus, effective methods of boosting MFC voltages

300

The Constant Voltage Transformer (CVT) for Mitigating Effects of Voltage Sags on Industrial Equipment  

E-Print Network [OSTI]

) an increase in loads that use power electronics in some type of power conversion configuration [1][2]. This paper presents applications of the constant-voltage transformer (CVT) for mitigating the effects of electric service voltage sags on industrial...

Ferraro, R. J.; Osborne, R.; Stephens, R.

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Universal signal processing method for multimode reflective sensors  

E-Print Network [OSTI]

reference amplitude in the measurements. Generation of transmitted pulse and triggering of the monitoring satnple and hold chips was accomplished using existing PROM technology. Optical signals were received by a 600 MHz unity gain bandwidth receiver.... In the experiment, the effect of losses was introduced in the fiber by the use of bulkhead connections. The reflected pulse amplitudes of the reference and sensor pulses were measured while the sensor mirror distance was varied, and The ratio of sensor...

Larson, Robert Eugene

1988-01-01T23:59:59.000Z

302

Voltage Collapse SimulationVoltage Collapse Simulation (Eastern Interconnection(Eastern Interconnection  

E-Print Network [OSTI]

PSERC Voltage Collapse SimulationVoltage Collapse Simulation (Eastern Interconnection(Eastern Interconnection Scenario)Scenario) Simulation Prepared by Dennis J. RaySimulation Prepared by Dennis J. Ray Interconnection based on a series of generator and line outages. An actual voltage collapse may not occur due

303

DESIGN AND IMPLEMENTATION OF A FUZZY LOGIC-BASED VOLTAGE CONTROLLER FOR VOLTAGE REGULATION  

E-Print Network [OSTI]

1 DESIGN AND IMPLEMENTATION OF A FUZZY LOGIC-BASED VOLTAGE CONTROLLER FOR VOLTAGE REGULATION In this paper the design and implementation of a fuzzy logic-based controller is described for regulating the output voltage of a synchronous generator. An automated fuzzy logic-based control strategy is presented

LaMeres, Brock J.

304

Reducing the color shift of a multidomain vertical alignment liquid crystal display using dual threshold voltages  

E-Print Network [OSTI]

threshold voltages Ruibo Lu and Shin-Tson Wua College of Optics and Photonics, University of Central Florida region. As a result, the final gamma curve is a superposition of two different-shaped gamma curves coupled method and two thin-film-transistor TFT method, have been pro- posed to improve the gamma curve

Wu, Shin-Tson

305

Optimal Power Flow Incorporating Voltage Collapse Constraints  

E-Print Network [OSTI]

Optimal Power Flow Incorporating Voltage Collapse Constraints William Rosehart Claudio Ca on the current operating con- ditions is presented. Second, an Optimal Power Flow formulation that incorporates: Voltage Collapse, Optimal Power Flow, Bifur- cations. I. Introduction As open-access market principles

Cañizares, Claudio A.

306

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

307

Voltage regulation in linear induction accelerators  

DOE Patents [OSTI]

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

308

Flexible method for monitoring fuel cell voltage  

DOE Patents [OSTI]

A method for equalizing the measured voltage of each cluster in a fuel cell stack wherein at least one of the clusters has a different number of cells than the identical number of cells in the remaining clusters by creating a pseudo voltage for the different cell numbered cluster. The average cell voltage of the all of the cells in the fuel cell stack is calculated and multiplied by a constant equal to the difference in the number of cells in the identical cell clusters and the number of cells in the different numbered cell cluster. The resultant product is added to the actual voltage measured across the different numbered cell cluster to create a pseudo voltage which is equivalent in cell number to the number of cells in the other identical numbered cell clusters.

Mowery, Kenneth D. (Noblesville, IN); Ripley, Eugene V. (Russiaville, IN)

2002-01-01T23:59:59.000Z

309

Wide-range voltage modulation  

SciTech Connect (OSTI)

The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

Rust, K.R.; Wilson, J.M.

1992-06-01T23:59:59.000Z

310

PH-315 A. La Rosa VOLTAGE-CONTROLLED OSCILLATOR  

E-Print Network [OSTI]

PH-315 A. La Rosa VOLTAGE-CONTROLLED OSCILLATOR 1. PURPOSE: An integrator and a Schmitt Trigger voltage; hence its name "voltage-controlled oscillator." 2. VOLTAGE-CONTROLLED OSCILLATOR Figure 1 shows voltage. An unusual feature of the circuit is its operation using a single positive supply.1 #12;- + 50k V

311

Optically Controlled Jitter Generator  

E-Print Network [OSTI]

A new simple circuit producing random pulse trains is proposed and experimentally studied. The circuit is composed of an operational amplifier and two feedback links, one of which comprises two photodiodes. The photodiodes are responsible for nonlinearity in the feedback. By varying the illumination it is possible to control the nonlinearity in the photodiode current-voltage characteristics and change the degree of randomness in the oscillations. The circuit's simplicity and optical control make it attractive for coupled map lattices.

Julia Manasson; V. A. Manasson

2006-08-17T23:59:59.000Z

312

Ris-PhD-15(EN) Metal-Clad Waveguide Sensors  

E-Print Network [OSTI]

Risø-PhD-15(EN) Metal-Clad Waveguide Sensors Nina Skivesen Risø National Laboratory Roskilde Denmark September 2005 #12;Author: Nina Skivesen Title: Metal-Clad Waveguide Sensors Department: OPL Risø: 77 Abstract (max. 2000 char.): This work concerns planar optical waveguide sensors for biosensing

313

Compact real-time 2-D gradient-based analog VLSI motion sensor  

E-Print Network [OSTI]

the sensor might be favourably applied in industrial applications. Keywords: analog VLSI, motion sensor selectivity even for very low contrast input is demonstrated. As application it is shown how the pixel, smart vision sensor, parallel image processing, real-time computation, optical ow, machine vision, robot

Deutschmann, Rainer

314

Sensor response rate accelerator  

DOE Patents [OSTI]

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

315

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

316

Micro-position sensor using faraday effect  

DOE Patents [OSTI]

A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

McElfresh, Michael (Livermore, CA); Lucas, Matthew (Pittsburgh, PA); Silveira, Joseph P. (Tracy, CA); Groves, Scott E. (Brentwood, CA)

2007-02-27T23:59:59.000Z

317

Researchers map atomic movements that trigger voltage fade in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

map atomic movements that trigger voltage fade in high-energy-density batteries January 22, 2015 Voltage and capacity curves from an LMR-NMC high-energy cathode show voltage fade...

318

Fiber-optic displacement sensor system  

E-Print Network [OSTI]

. Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a... emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude...

Cava, Norayda Nora

2012-06-07T23:59:59.000Z

319

Vision based navigation using novel optical sensors  

E-Print Network [OSTI]

~ O g M ~ R o 3j a o g O o 4k o + 6go O ) + A O L g A 0 ~O VJ A 'tS A oo A M A O O I4 8 'C el CC + C O C O ~O L 0 A V C C4 . 8 M C5 0 'C 0 C4 8 'C CC . 5 0 27 ~Sl R*Bt Experimental Setup 2 In a first.... Additionally, we define the following quantities: I: Inertia of the robot about G. M: Mass of the robot. Let's calculate the equations of inofion of G. Projecting the thrusters forces: MX ' VU~ cos 8 + VU2 cos 8 VUi sin 8 ? VU4 sin 8 MY = VU, sin 8+ VU...

Wazni, Karim Patrick

2012-06-07T23:59:59.000Z

320

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work onClimateSemiconductor RevolutionSensing

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work onClimateSemiconductor RevolutionSensingMeasurements of

322

Sandia National Laboratories: Sensors & Optical Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientific ResearchSensing

323

Six degree of freedom sensor  

DOE Patents [OSTI]

This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

Vann, C.S.

1999-03-16T23:59:59.000Z

324

Modular high voltage power supply for chemical analysis  

DOE Patents [OSTI]

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2008-07-15T23:59:59.000Z

325

Modular high voltage power supply for chemical analysis  

SciTech Connect (OSTI)

A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2010-05-04T23:59:59.000Z

326

Modular high voltage power supply for chemical analysis  

DOE Patents [OSTI]

A high voltage power supply for use in a system such as a microfluidics system, uses a DC--DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC--DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

Stamps, James F. (Livermore, CA); Yee, Daniel D. (Dublin, CA)

2007-01-09T23:59:59.000Z

327

Voltage Management of Networks with Distributed Generation.  

E-Print Network [OSTI]

At present there is much debate about the impacts and benefits of increasing the amount of generation connected to the low voltage areas of the electricity distribution network. The UK government is under political ...

O'Donnell, James

2008-01-01T23:59:59.000Z

328

Low voltage arc formation in railguns  

DOE Patents [OSTI]

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

Hawke, R.S.

1985-08-05T23:59:59.000Z

329

Low voltage arc formation in railguns  

DOE Patents [OSTI]

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

Hawke, R.S.

1987-11-17T23:59:59.000Z

330

Low voltage arc formation in railguns  

DOE Patents [OSTI]

A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

Hawke, Ronald S. (Livermore, CA)

1987-01-01T23:59:59.000Z

331

Group 3: Humidity, Temperature, and Voltage  

Broader source: Energy.gov [DOE]

This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented by John Wohlgemuth at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO. It summarizes the activities of a working group chartered to develop accelerated stress tests that can be used as comparative predictors of module life versus stresses associated with humidity, temperature and voltage.

332

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

333

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2012 DOE Hydrogen and...

334

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

335

Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

336

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

337

High voltage overhead long transmission line design and fault analysis.  

E-Print Network [OSTI]

??The goal of this project is to design a reliable high voltage overhead long transmission line that satisfies specific design criteria including voltage regulation, efficiency, (more)

Elzain, Mohamed Ali

2011-01-01T23:59:59.000Z

338

Transformer current sensor for superconducting magnetic coils  

DOE Patents [OSTI]

A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

Shen, Stewart S. (Oak Ridge, TN); Wilson, C. Thomas (Norris, TN)

1988-01-01T23:59:59.000Z

339

Background-free balanced optical cross correlator  

DOE Patents [OSTI]

A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

Nejadmalayeri, Amir Hossein; Kaertner, Franz X

2014-12-23T23:59:59.000Z

340

Energy use in optical modulators David A. B. Miller  

E-Print Network [OSTI]

Energy use in optical modulators David A. B. Miller Ginzton Laboratory, Stanford University, Nano particularly low energy for low-voltage electroabsorption modulators Optical modulators can offer low energy can usefully define an optical energy launch efficiency E , which is the ratio of the useful energy

Miller, David A. B.

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sensor for detecting changes in magnetic fields  

DOE Patents [OSTI]

A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

Praeg, W.F.

1980-02-26T23:59:59.000Z

342

Optically stimulated differential impedance spectroscopy  

DOE Patents [OSTI]

Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

2014-02-18T23:59:59.000Z

343

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical  

E-Print Network [OSTI]

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical spatial fi ltering-crossing detection algorithm for arrays of compact low-cost optical sensors for measuring e.g. minor fl uctuations-to-noise ratio, and delivers a "real time" output (0-1 kHz). The sensors use optical spatial-fi ltering

344

Building Adaptable Sensor Networks with Sensor Cubes  

E-Print Network [OSTI]

of layers allows easy experiments, upgrades and extensions Small-scale sensor network Example sensor module- world network algorithm and power management behavior · Results from small scale tests can be compared (short packets and high bit rate reduce collision probability); Transmitter's MAC table logic: Small

Roussos, George

345

Digital Sensor Technology  

SciTech Connect (OSTI)

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

346

Giant magnetoresistive sensor  

DOE Patents [OSTI]

A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

1999-01-01T23:59:59.000Z

347

High-speed, sub-pull-in voltage MEMS switching.  

SciTech Connect (OSTI)

We have proposed and demonstrated MEMS switching devices that take advantage of the dynamic behavior of the MEMS devices to provide lower voltage actuation and higher switching speeds. We have explored the theory behind these switching techniques and have demonstrated these techniques in a range of devices including MEMS micromirror devices and in-plane parallel plate MEMS switches. In both devices we have demonstrated switching speeds under one microsecond which has essentially been a firm limit in MEMS switching. We also developed low-loss silicon waveguide technology and the ability to incorporate high-permittivity dielectric materials with MEMS. The successful development of these technologies have generated a number of new projects and have increased both the MEMS switching and optics capabilities of Sandia National Laboratories.

Spahn, Olga Blum; Brewer, Steven; Olsson, Roy H.; Bogart, Gregory R.; Luck, David L.; Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Resnick, Paul James; Tigges, Christopher P.; Grossetete, Grant David

2008-01-01T23:59:59.000Z

348

Full spectrum optical safeguard  

DOE Patents [OSTI]

An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

Ackerman, Mark R. (Albuquerque, NM)

2008-12-02T23:59:59.000Z

349

Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics  

SciTech Connect (OSTI)

This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

Liu, E.; Bebic, J.

2008-02-01T23:59:59.000Z

350

A Charge Pump that Generates Negative High Voltage with Variable Voltage , Eugene Ivanova,  

E-Print Network [OSTI]

A Charge Pump that Generates Negative High Voltage with Variable Voltage Gain Jun Zhaob, , Eugene, Massachusetts 02115, U.S.A. Abstract A cross-coupled structure based charge pump that generates negative high. The proposed negative charge pump is designed to deliver 40 uA with a wide supply range from 2.5V to 5.5V using

Ayers, Joseph

351

Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct  

E-Print Network [OSTI]

}@kth.se.) Abstract: High-voltage direct current (HVDC) is a commonly used technology for long-distance power for multi-terminal HVDC (MTDC) systems is proposed. Under certain conditions on the controller gains factor behind long-distance power transmission. High-voltage direct current (HVDC) is a commonly used

Dimarogonas, Dimos

352

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

Chu, D.D.; Thelen, D.C. Jr.

1998-08-11T23:59:59.000Z

353

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT)

1998-01-01T23:59:59.000Z

354

Sensor system scaling issues  

SciTech Connect (OSTI)

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

355

Sensors for Environmental Observatories  

E-Print Network [OSTI]

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

356

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

357

Electronic circuit for measuring series connected electrochemical cell voltages  

DOE Patents [OSTI]

An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2000-01-01T23:59:59.000Z

358

High temperature, minimally invasive optical sensing modules  

DOE Patents [OSTI]

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

359

Keer electro-optic measurements in liquid dielectrics  

E-Print Network [OSTI]

Kerr electro-optic technique has been used to measure the electric field distribution in high voltage stressed dielectric liquids, where the difference between refractive indices for light polarized parallel and perpendicular ...

Zhang, Xuewei

2014-01-01T23:59:59.000Z

360

SiGe BiCMOS Topologies for Low-Voltage Millimeter-Wave Voltage Controlled Oscillators and Frequency Dividers  

E-Print Network [OSTI]

SiGe BiCMOS Topologies for Low-Voltage Millimeter-Wave Voltage Controlled Oscillators and Frequency-mail: tod@eecg.toronto.edu Abstract -- BiCMOS topologies for mm-wave voltage- controlled oscillators operation for mm-wave applications. II. BICMOS VOLTAGE-CONTROLLED OSCILLATOR The Colpitts topology

Voinigescu, Sorin Petre

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Physical simulation study of dynamic voltage instability  

SciTech Connect (OSTI)

This paper presents a physical simulation of the dynamic behavior of voltage instability in an interconnected multimachine environment. The dynamic evolving process leading to eventual voltage collapse, the scenario of the progressive reactive support reduction resulting from the MXL protection relays, the OLTC operation, and the effect of switched-in capacitor banks are examined using physical facilities in the laboratory. The physical simulation results are also compared with digital simulation results. This physical investigation provides a reliable foundation for the effective development of assessment approaches and countermeasures.

Tso, S.K.; Zhu, T.X. [Univ. of Hong Kong (Hong Kong); Zeng, Q.Y. [Electric Power Research Inst., Beijing (China); Lo, K.L. [Univ. of Strathclyde, Glasgow (United Kingdom). Dept. of Electrical and Electrical Engineering

1995-12-31T23:59:59.000Z

362

Small, Inexpensive Combined NOx and O2 Sensor  

SciTech Connect (OSTI)

It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NO{sub x} sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NO{sub x} from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5-$10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NO{sub x}. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650-700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NO{sub x} sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NO{sub x} sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NO{sub x} and oxygen sensors yields the NO{sub x} content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

W. Lawless; C. Clark

2008-09-01T23:59:59.000Z

363

Chemical detection and laser wavelength stabilization employing spectroscopic absorption via laser compliance voltage sensing  

DOE Patents [OSTI]

Systems and methods are disclosed that provide a direct indication of the presence and concentration of an analyte within the external cavity of a laser device that employ the compliance voltage across the laser device. The systems can provide stabilization of the laser wavelength. The systems and methods can obviate the need for an external optical detector, an external gas cell, or other sensing region and reduce the complexity and size of the sensing configuration.

Taubman, Matthew S; Phillips, Mark C

2014-03-18T23:59:59.000Z

364

Current-biased potentiometric NOx sensor for vehicle emissions  

DOE Patents [OSTI]

A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

Martin, Louis Peter (Castro Valley, CA); Pham, Ai Quoc (San Jose, CA)

2006-12-26T23:59:59.000Z

365

Sensor apparatus using an electrochemical cell  

DOE Patents [OSTI]

A novel technology for sensing mechanical quantities such as force, stress, strain, pressure and acceleration has been invented. This technology is based on a change in the electrochemically generated voltage (electromotive force) with application of force, stress, strain, pressure or acceleration. The change in the voltage is due to a change in the internal resistance of the electrochemical cell with a change in the relative position or orientation of the electrodes (anode and cathode) in the cell. The signal to be detected (e.g. force, stress, strain, pressure or acceleration) is applied to one of the electrodes to cause a change in the relative position or orientation between the electrodes. Various materials, solid, semisolid, gel, paste or liquid can be utilized as the electrolyte. The electrolyte must be an ion conductor. The examples of solid electrolytes include specific polymer conductors, polymer composites, ion conducting glasses and ceramics. The electrodes are made of conductors such as metals with dissimilar electronegativities. Significantly enhanced sensitivities, up to three orders of magnitude higher than that of comparable commercial sensors, are obtained. The materials are substantially less expensive than commercially used materials for mechanical sensors.

Thakur, Mrinal (1309 Gatewood Dr., Apt. 1703, Auburn, AL 36830)

2002-01-01T23:59:59.000Z

366

Group 3: Humidity, Temperature and Voltage (Presentation)  

SciTech Connect (OSTI)

This is a summary of the work of Group 3 of the International PV QA Task Force. Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

Wohlgemuth, J.

2013-09-01T23:59:59.000Z

367

Voltage control on a train system  

DOE Patents [OSTI]

The present invention provides methods for preventing low train voltages and managing interference, thereby improving the efficiency, reliability, and passenger comfort associated with commuter trains. An algorithm implementing neural network technology is used to predict low voltages before they occur. Once voltages are predicted, then multiple trains can be controlled to prevent low voltage events. Further, algorithms for managing inference are presented in the present invention. Different types of interference problems are addressed in the present invention such as "Interference During Acceleration", "Interference Near Station Stops", and "Interference During Delay Recovery." Managing such interference avoids unnecessary brake/acceleration cycles during acceleration, immediately before station stops, and after substantial delays. Algorithms are demonstrated to avoid oscillatory brake/acceleration cycles due to interference and to smooth the trajectories of closely following trains. This is achieved by maintaining sufficient following distances to avoid unnecessary braking/accelerating. These methods generate smooth train trajectories, making for a more comfortable ride, and improve train motor reliability by avoiding unnecessary mode-changes between propulsion and braking. These algorithms can also have a favorable impact on traction power system requirements and energy consumption.

Gordon, Susanna P.; Evans, John A.

2004-01-20T23:59:59.000Z

368

Fiber optic refractive index monitor  

DOE Patents [OSTI]

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

Weiss, Jonathan David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

369

Low Voltage High Precision Spatial Light ModulatorsFinal Report  

SciTech Connect (OSTI)

The goal of this project was to make LLNL a leader in Spatial Light Modulators (SLMs) by developing the technology that will be needed by the next generation of SLMs. We would use new lower voltage actuators and bond those actuators directly to controlling circuitry to break the fundamental limitations that constrain current SLM technology. This three-year project was underfunded in the first year and not funded in the second year. With the funding that was available, we produced actuators and designs for the controlling circuitry that would have been integrated in the second year. Spatial light modulators (SLMs) are arrays of tiny movable mirrors that modulate the wave-fronts of light. SLMs can correct aberrations in incoming light for adaptive optics or modulate light for beam control, optical communication and particle manipulation. MicroElectroMechanical Systems (MEMS) is a technology that utilizes the microfabrication tools developed by the semiconductor industry to fabricate a wide variety of tiny machines. The first generation of MEMS SLMs have improved the functionality of SLMs while drastically reducing per pixel cost making arrays on the order of 1000 pixels readily available. These MEMS SLMs however are limited by the nature of their designs to be very difficult to scale above 1000 pixels and have very limited positioning accuracy. By co-locating the MEMS mirrors with CMOS electronics, we will increase the scalability and positioning accuracy. To do this we will have to make substantial advances in SLM actuator design, and fabrication.

Papavasiliou, A P

2005-02-09T23:59:59.000Z

370

Distribution System Voltage Regulation by Distributed Energy Resources  

SciTech Connect (OSTI)

This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

371

Multilevel Cascade H-bridge Inverter DC Voltage Estimation Through Output Voltage Sensing  

E-Print Network [OSTI]

system as the inverter power supply may vary. For example, interface of solar panels or fuel cell. The output voltage is then processed by a DSP unit that uses the signals that command the switches

Tolbert, Leon M.

372

Optical Fibers Optics and Photonics  

E-Print Network [OSTI]

Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

Palffy-Muhoray, Peter

373

Working Group Report: Sensors  

SciTech Connect (OSTI)

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

374

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

375

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents [OSTI]

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

376

Tests gauge LED sensors for fuel-dye measurements  

SciTech Connect (OSTI)

The goal of this work was to develop a low cost, robust sensor to allow direct measurement of Solvent Red 164 dye concentration in off-road fuel at refineries and fuel terminals. Optical absorption sensors based on light emitting diodes (LEDs) are rugged, low-cost, have low power consumption, and can be designed to be intrinsically safe.LED-based systems have been used in a variety of chemical detection applications including heavy metals, pH, CO2, and O2. The approach for this work was to develop a sensor that could be mounted on a pipeline sight glass, precluding the need for direct contact of the sensor with the fuel. Below is described the design and testing of three different LED/photodiode sensors utilizing reflectance spectrometry for the measurement of dye concentration.

Ozanich, Richard M.; Lucke, Richard B.; Melville, Angela M.; Wright, Bob W.

2009-10-19T23:59:59.000Z

377

Contact stress sensor  

DOE Patents [OSTI]

A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

Kotovsky, Jack

2014-02-11T23:59:59.000Z

378

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

379

Electro-Mechanical Resonant Magnetic Field Sensor  

E-Print Network [OSTI]

We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

2002-01-01T23:59:59.000Z

380

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents [OSTI]

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Adaptive optics for ophthalmic applications using a pyramid wavefront  

E-Print Network [OSTI]

Adaptive optics for ophthalmic applications using a pyramid wavefront sensor St´ephane R. Chamot and Chris Dainty Applied Optics, Experimental Physics Department National University of Ireland Galway, University Road Galway, Ireland stephane.chamot@nuigalway.ie http://optics.nuigalway.ie/index.html Simone

Dainty, Chris

382

Quasi-static displacement calibration system for a Violin-Mode shadow-sensor intended for Gravitational Wave detector suspensions  

SciTech Connect (OSTI)

This paper describes the design of, and results from, a calibration system for optical linear displacement (shadow) sensors. The shadow sensors were designed to detect Violin-Mode (VM) resonances in the 0.4 mm diameter silica fibre suspensions of the test masses/mirrors of Advanced Laser Interferometer Gravitational Wave Observatory gravitational wave interferometers. Each sensor illuminated the fibre under test, so as to cast its narrow shadow onto a synthesized split photodiode detector, the shadow falling over adjacent edges of the paired photodiodes. The apparatus described here translated a vertically orientated silica test fibre horizontally through a collimated Near InfraRed illuminating beam, whilst simultaneously capturing the separate DC shadow notch outputs from each of the paired split photodiode detectors. As the ratio of AC to DC photocurrent sensitivities to displacement was known, a calibration of the DC response to quasi-static shadow displacement allowed the required AC sensitivity to vibrational displacement to be found. Special techniques are described for generating the required constant scan rate for the test fibre using a DC motor-driven stage, for removing jitter at such low translation rates from a linear magnetic encoder, and so for capturing the two shadow-notch signals at each micrometre of the test fibre's travel. Calibration, across the four detectors of this work, gave a vibrational responsivity in voltage terms of (9.45 1.20) MV (rms)/m, yielding a VM displacement sensitivity of (69 13) pm (rms)/?Hz, at 500 Hz, over the required measuring span of 0.1 mm.

Lockerbie, N. A.; Tokmakov, K. V. [SUPA (Scottish Universities Physics Alliance), Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG (United Kingdom)

2014-10-15T23:59:59.000Z

383

Electrical system architecture having high voltage bus  

DOE Patents [OSTI]

An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

Hoff, Brian Douglas (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL)

2011-03-22T23:59:59.000Z

384

Reactive Support and Voltage Control Service: Key Issues and Challenges  

E-Print Network [OSTI]

reactive support and voltage control services. Keywords ­ Competitive Electricity Markets, Reactive PowerReactive Support and Voltage Control Service: Key Issues and Challenges George Gross^, Paolo Marannino° and Gianfranco Chicco* ^ Department of Electrical and Computer Engineering, University

Gross, George

385

Low Voltage White Phosphorescent OLED Achievements  

Broader source: Energy.gov [DOE]

Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

386

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

5.0E-04 1.0E-03 2 2.2 2.4 2.6 2.8 Voltage (V) dQdV (AhV) 1 st Charge 1.2M LiPF 6 ECEMC 37 1 st Charge 1.0M LiPF 6 TMS1NM3 55 with 2% and 4% VC 1 st Charge 1.0M LiPF 6 TMS...

387

Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners  

E-Print Network [OSTI]

) (b) Fig. 2. (a) Charge driven tube scanner. (b) Voltage equivalent circuit. introduces two simple nonSensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners-fabrication. Much research has proceeded with the aim of reducing hysteresis and vibration, the foremost problems

Fleming, Andrew J.

388

Electrostatically screened, voltage-controlled electrostatic chuck  

DOE Patents [OSTI]

Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

Klebanoff, Leonard Elliott (San Ramon, CA)

2001-01-01T23:59:59.000Z

389

Energy Conservation in Sensor and  

E-Print Network [OSTI]

Chapter 4 Energy Conservation in Sensor and Sensor-Actuator Networks Ivan Stojmenovic 4 wireless network, and must work unattended. The limited energy budget at the individual sensor level

Stojmenovic, Ivan

390

Analysis and design of an electronic voltage ratchet  

E-Print Network [OSTI]

and decay. Impulse voltages are produced through the discharging of 0, capacitor into a shaping network consisting of resistors and a. capacitor as is shown in Figure 2. 9. The operation of the impulse generator is as follows. Capacitor Ci is charged from... voltage shaping network. as possible in order to reduce oscillations in the wavefront and wavetail portions of the impulse voltage [1). The impulse voltage generator requires a, highly charged capacitor or bank of capacitors. Capacitors may be charged...

Menendez, Jorge Carlos

2012-06-07T23:59:59.000Z

391

Selective compensation of voltage harmonics in grid-connected microgrids  

E-Print Network [OSTI]

1 Selective compensation of voltage harmonics in grid-connected microgrids Mehdi Savaghebia , Juan is proposed for selective compensation of main voltage harmonics in a grid- connected microgrid. The aim level. Keywords Distributed Generator (DG); microgrid; grid-connected; voltage harmonics compensation. 1

Vasquez, Juan Carlos

392

Structural Optimization of High Voltage Transmission Line Towers considering  

E-Print Network [OSTI]

Structural Optimization of High Voltage Transmission Line Towers considering Continuum and Discrete/or to common designs largely repeated (e.g. automotive compo- nents), and high voltage transmission towers can than conventional designs of high voltage transmission line towers. The optimization model proposed

Colominas, Ignasi

393

LM2907LM2917FrequencytoVoltageConverter February 1995  

E-Print Network [OSTI]

TL H 7942 LM2907LM2917FrequencytoVoltageConverter February 1995 LM2907 LM2917 Frequency to Voltage Converter General Description The LM2907 LM2917 series are monolithic frequency to voltage converters doubling for low ripple full input protection in two versions (LM2907-8 LM2917-8) and its output swings

Wedeward, Kevin

394

Characterized ideal LC circuit Charge, current and voltage vary sinusoidally  

E-Print Network [OSTI]

resistance to LC circuit Oscillations become damped Charge, current and voltage still vary sinusoidally Oscillations Draw phasors for voltages of R, C and L at same time t Orient VR, VL, & VC phasors relativeReview Characterized ideal LC circuit Charge, current and voltage vary sinusoidally Added

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

395

Accurately measuring current-voltage characteristics of tunnel diodes  

E-Print Network [OSTI]

of the bias voltage range of oscillations in the IV curve.and the bias voltage range of oscillation in the IV curve.or to know the exact voltage range of oscillation in the IV

Bao, Mingqiang; Wang, Kang L

2006-01-01T23:59:59.000Z

396

DCS1800/WCDMA ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR  

E-Print Network [OSTI]

DCS1800/WCDMA ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR Aleksandar Tasi, Wouter A. Serdijn and John R, an adaptive 2G/3G voltage-controlled oscillator (VCO) is described in this paper. For the DCS1800 operation with this reasoning, an adaptive 2G/3G voltage- controlled oscillator, meant for a dual-standard adaptive front

Serdijn, Wouter A.

397

System for increasing corona inception voltage of insulating oils  

DOE Patents [OSTI]

The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil. 5 figs.

Rohwein, G.J.

1998-05-19T23:59:59.000Z

398

Sensors and actuators 1990  

SciTech Connect (OSTI)

This book contains the proceedings on sensors and actuators 1990. Topics covered include: Hot wire air flow meter for engine control systems, A technique for the real-time estimation of air-fuel ratio using molecular weight ratios, combustion knock sensing: Sensor selection and application issues, and An indirect sensing technique for closed-loop diesel fuel quantity control.

Not Available

1990-01-01T23:59:59.000Z

399

Electrically-driven optical antennas  

E-Print Network [OSTI]

Unlike radiowave antennas, optical nanoantennas so far cannot be fed by electrical generators. Instead, they are driven by light or via optically active materials in their proximity. Here, we demonstrate direct electrical driving of an optical nanoantenna featuring an atomic-scale feed gap. Upon applying a voltage, quantum tunneling of electrons across the feed gap creates broadband quantum shot noise. Its optical frequency components are efficiently converted into photons by the antenna. We demonstrate that the properties of the emitted photons are fully controlled by the antenna architecture, and that the antenna improves the quantum efficiency by up to two orders of magnitude with respect to a non-resonant reference system. Our work represents a new paradigm for interfacing electrons and photons at the nanometer scale, e.g. for on-chip wireless data communication, electrically driven single- and multiphoton sources, as well as for background-free linear and nonlinear spectroscopy and sensing with nanometer...

Kern, Johannes; Prangsma, Jord C; Emmerling, Monika; Kamp, Martin; Hecht, Bert

2015-01-01T23:59:59.000Z

400

Finite Element Modeling of Dermally-implanted Enzymatic Microparticle Glucose Sensors  

E-Print Network [OSTI]

recent efforts have focused on the development of optical microscale glucose sensing systems based on the encapsulation of glucose oxidase within microspheres coated with polyelectrolyte multilayer nanofilms. In such sensors, a phosphorescent oxygen...

Ali, Saniya

2011-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor  

E-Print Network [OSTI]

Validation of a Model of a Resonant Optothermoacoustic Trace Gas Sensor N. Petra1, J. Zweck1, S. E optothermoacoustic sensor is validated by comparison with experiments performed with 0.5% acetylene in nitrogen Optical Society of America OCIS codes: 300.6430, 300.6340. 1. Introduction Quartz-Enhanced Photo

Minkoff, Susan E.

402

1292 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006 Optical Detection of Single Nanoparticles and Viruses  

E-Print Network [OSTI]

on a nanoparticle as it passes through a confined optical field, and the other method uses a background, sensor, viruses. I. INTRODUCTION THERE is a high demand for sensors that are able to detect small amounts this threat. Therefore, a broad network of sensors has to be deployed. These sensors must be affordable

Novotny, Lukas

403

Method of Controlling Corona Effects and Breakdown Voltage of Small Air Gaps Stressed by Impulse Voltages  

E-Print Network [OSTI]

This paper investigates the influence of a resistor on the dielectric behavior of an air gap. The resistor is connected in series with the air gap and the latter is stressed by impulse voltage. Air gap arrangements of different geometry with either the rod or the plate grounded are stressed with impulse voltages of both positive and negative polarity. The resistor is connected in series with the air gap in the return circuit connecting the gap with the impulse generator. The method followed involves the investigation of the graphs of the charging time concerning the air gaps capacitances, in connection to the value of the resistor, the geometry of the gap, the effect of grounding and the polarity effect. It is determined that the charging time of the air gap increases, as the value of the resistor increases. It is also determined that the peak voltage value of the fully charged air gap decreases as the value of the resistor increases. The results of the mathematical and simulation analysis are compared with the results of the oscillograms taken from experimental work. In addition and consequently to the above results it is concluded from the experimental work that the in series connection of the resistor in the circuit has significant influence on corona pulses (partial discharges) occurring in the gap and on the breakdown voltage of the gap. A new method of controlling the corona effects and consequently the breakdown voltage of small air gaps stressed by impulse voltage of short duration in connection to the ground effect and the polarity effect has arisen. Furthermore through mathematical analysis of the charging graphs obtained from simulation and experimental oscillograms there was a calculation of the values of the capacitance of the air gaps in relation to their geometry and the results were compared to the values calculated with mathematical analysis.

Athanasios Maglaras; Trifon Kousiouris; Frangiskos Topalis; Dimitrios Katsaros; Leandros A. Maglaras; Konstantina Giannakopoulou

2014-10-15T23:59:59.000Z

404

Transient recovery voltage considerations in the application of medium voltage circuit breakers  

SciTech Connect (OSTI)

Medium Voltage Circuit Breakers can fail to interrupt 3-phase fault currents when power systems have Transient Recovery Voltage (TRV) characteristics which exceed the rating of the circuit breaker. This paper examines the application of 13.8kV generation and load switchgear for an oil refinery in which circuit parameters as originally designed would have exceeded the 13.8kV circuit breakers TRV ratings had corrective measures not been taken. This paper illustrates this case and discusses the basis of TRV, how TRV is assessed, and alternative actions taken to bring circuits to within the 13.8 kV circuit breaker ratings.

Swindler, D.L.; Schwartz, P.; Hamer, P.S.; Lambert, S.R.

1995-12-31T23:59:59.000Z

405

Short-wavelength upconversion emissions in codoped glass ceramic and the optical  

E-Print Network [OSTI]

of electrical engineering, Yanshan University, Qinhuangdao, 066004, China 3 Laboratory of Sono- and photo. In addition, an optical temperature sensor based on the blue upconversion emissions from 5 F2,3/3 K85 I8 and 5 ceramic be a promising candidate for sensitive optical temperature sensor with high resolution and good

Cao, Wenwu

406

A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration  

SciTech Connect (OSTI)

A novel fiber optic macro-bend based gas flowmeter for low flow rates is presented. Theoretical analysis of the sensor working principle, design, and static calibration were performed. The measuring system consists of: an optical fiber, a light emitting diode (LED), a Quadrant position sensitive Detector (QD), and an analog electronic circuit for signal processing. The fiber tip undergoes a deflection in the flow, acting like a cantilever. The consequent displacement of light spot center is monitored by the QD generating four unbalanced photocurrents which are function of fiber tip position. The analog electronic circuit processes the photocurrents providing voltage signal proportional to light spot position. A circular target was placed on the fiber in order to increase the sensing surface. Sensor, tested in the measurement range up to 10 l min{sup -1}, shows a discrimination threshold of 2 l min{sup -1}, extremely low fluid dynamic resistance (0.17 Pa min l{sup -1}), and high sensitivity, also at low flow rates (i.e., 33 mV min l{sup -1} up to 4 l min{sup -1} and 98 mV min l{sup -1} from 4 l min{sup -1} up to 10 l min{sup -1}). Experimental results agree with the theoretical predictions. The high sensitivity, along with the reduced dimension and negligible pressure drop, makes the proposed transducer suitable for medical applications in neonatal ventilation.

Schena, Emiliano; Saccomandi, Paola; Silvestri, Sergio [Center for Integrated Research, Unit of Measurements and Biomedical Instrumentation, Universita Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome (Italy)

2013-02-15T23:59:59.000Z

407

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

408

Electrochemical micro sensor  

DOE Patents [OSTI]

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

409

Wireless passive radiation sensor  

DOE Patents [OSTI]

A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

2013-12-03T23:59:59.000Z

410

A microcomputer control system for a fiber optic spectrophotometer  

E-Print Network [OSTI]

SENSOR LICH'I SOURCE OPTICAL F I BER ~SAMPLE PHOTODE'IECTOR o r D o o n o 0 ~ o r Figure lb. Block Diagram of a Fiber Optic Spectrophotometer Fiber optic spectrophotometry uses the light conducting properties of tiny optical fibers... to carry the light to and from a remote sensor, as shown in Figure lb, page 2. At the tip of the fibers, a small chamber contains either the sample itself or an indicator for the sample, whose spectrophotometric properties change with the concentration...

Spar, Steven Matthew

1986-01-01T23:59:59.000Z

411

Optical state-of-charge monitor for batteries  

DOE Patents [OSTI]

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

412

Aircraft as a meteorological sensor  

E-Print Network [OSTI]

Meteorological Institute 2 | The aircraft as a meteorological sensor Photo cover: A KLM Airbus A330-200 landsAircraft as a meteorological sensor Using Mode-S Enhanced Surveillance data to derive upper air Meteorological Institute 3 | The aircraft as a meteorological sensor Aircraft as a meteorological sensor Using

Haak, Hein

413

Safe epoxy encapsulant for high voltage magnetics  

SciTech Connect (OSTI)

This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

Sanchez, R.O.; Archer, W.E.

1998-01-01T23:59:59.000Z

414

Geographically distributed environmental sensor system  

DOE Patents [OSTI]

The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

French, Patrick; Veatch, Brad; O'Connor, Mike

2006-10-03T23:59:59.000Z

415

Sensor for detecting and differentiating chemical analytes  

DOE Patents [OSTI]

A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

2011-07-05T23:59:59.000Z

416

Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating  

DOE Patents [OSTI]

An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

2006-05-02T23:59:59.000Z

417

Voltage sensing based built-in current sensor for IDDQ test  

E-Print Network [OSTI]

Quiescent current leakage test of the VDD supply (IDDQ Test) has been proven an effective way to screen out defective chips in manufacturing of Integrated Circuits (IC). As technology advances, the traditional IDDQ test is facing more and more...

Xue, Bin

2006-04-12T23:59:59.000Z

418

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network [OSTI]

modem and an optical mo- dem implemented using green light. The system of sensor nodes communicates communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Farritor, Shane

419

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network [OSTI]

and an optical mo- dem implemented using green light. The system of sensor nodes communicates with a TDMA communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Zhou, Shengli

420

A CAPACITIVELY BASED MEMS AFFINITY GLUCOSE SENSOR Xian Huang1*  

E-Print Network [OSTI]

sensors, based on MEMS technology, allow low-cost non-invasive or minimally-invasive glucose monitoring on a magnetically actuated cantilever whose vibration was detected optically, represented our initial effort towards the feasibility for stable and potentially implantable CGM. DEVICE DESIGN AND FABRICATION The device consists

Lin, Qiao

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tactile measurement with a GelSight sensor  

E-Print Network [OSTI]

This thesis introduces a method of measuring contact force with GelSight. GelSight is an optical-based tactile sensor that uses a piece of coated elastomer as the contact medium. A camera records the distortion of the ...

Yuan, Wenzhen, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

422

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

423

Remote Sensor Placement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developed to place the sensor nodes in the field. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

424

Capacitance pressure sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

425

Magnetic infrasound sensor  

DOE Patents [OSTI]

A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

2006-11-14T23:59:59.000Z

426

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

needed to meet emission targets and enable widespread use of diesel vehicles with better fuel economies: We are developing a novel sensor with the potential to meet OEM cost and...

427

Sensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees  

E-Print Network [OSTI]

in such a way that the total energy usage of the active sensor nodes in the tree is minimized. However whenSensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees Ling Shi , Agostino Capponi , Karl H. Johansson and Richard M. Murray Abstract

Johansson, Karl Henrik

428

Wavelength-tunable optical ring resonators  

DOE Patents [OSTI]

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

429

Wavelength-tunable optical ring resonators  

DOE Patents [OSTI]

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2011-07-19T23:59:59.000Z

430

Development of Combined Opto-Acoustical Sensor Modules  

E-Print Network [OSTI]

The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriat...

Enzenhfer, A; Graf, K; Hl, J; Katz, U; Lahmann, R; Neff, M; Richardt, C

2011-01-01T23:59:59.000Z

431

Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof  

DOE Patents [OSTI]

A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

2014-05-27T23:59:59.000Z

432

Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC  

E-Print Network [OSTI]

Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of $1.4\\times10^{16}n_{eq}/cm^{2}$.

S. Terzo; A. Macchiolo; R. Nisius; B. Paschen

2014-11-20T23:59:59.000Z

433

High voltage photo switch package module  

DOE Patents [OSTI]

A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

2014-02-18T23:59:59.000Z

434

Design and applications of a flicker voltage generator  

SciTech Connect (OSTI)

In this paper, a 200W flicker voltage generator is made by using microcomputers and linear amplification circuits. The modulation amplitudes and frequencies based on the UIE {Delta}V{sub 10} evaluation can be arbitrarily assigned by software with high accuracy. The flicker voltage signals measured at the customer side also can be re-generated. Some applications, such as evaluating the effects of flicker voltage on incandescent and compact fluorescent lamps (CFLs), are also made. From experimental tests by use of the flicker voltage generator, the properties of some compact fluorescent lamps and incandescent lamps are compared. Those properties describe the relation between input voltage variation and output flux of lamps, such that there is direct description of influences of flicker voltages on lamps.

Chang, W.N.; Wu, C.J. [National Taiwan Inst. of Tech., Peitow-Taipei (Taiwan, Province of China). Dept. of Electrical Engineering

1995-12-31T23:59:59.000Z

435

Adaptive Optics for Large Telescopes  

SciTech Connect (OSTI)

The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

Olivier, S

2008-06-27T23:59:59.000Z

436

Phase Shifting Prior to Spatial Filtering Enhances Optical Recordings of Cardiac Action Potential Propagation  

E-Print Network [OSTI]

of electrical activity in the heart using a voltage-sensitive dye has proven to be a useful tool; accepted 7 July 2001) Abstract--Optical imaging of cardiac electrical activity using a voltage-sensitive dye provides high spatial resolution maps of action potential propagation and repolarization. Charge

Cosman, Pamela C.

437

Voltage and pressure scaling of streamer dynamics in a helium plasma jet with N{sub 2} co-flow  

SciTech Connect (OSTI)

Positive polarity applied voltage and gas pressure dependent scaling of cathode directed streamer propagation properties in helium gas flow guided capillary dielectric barrier discharge have been quantified from streamer velocity, streamer current, and streamer optical diameter measurements. All measurements of the non-stochastic streamer properties have been performed in a variable gas pressure glass cell with N{sub 2} co-flow and under self-consistent Poisson electric field dominated conditions to permit data comparison with 2-D streamer dynamics models in air/nitrogen. The streamer optical diameter was found to be nearly independent of both gas pressures, from 170?Torr up to 760?Torr, and also for applied voltages from 6 to 11?kV at 520?Torr. The streamer velocity was found to increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in helium flow channel with N{sub 2} annular co-flow compared to the streamer propagation in air or nitrogen have been shown to be caused by the remnant ionization distribution due to large differences in the dissociative recombination rates of He{sub 2}{sup +} versus N{sub 4}{sup +} ions, for this 5?kHz repetition rate applied voltage pulse generated streamers.

Leiweke, Robert J. [UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432 (United States); Ganguly, Biswa N.; Scofield, James D. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919 (United States)

2014-08-15T23:59:59.000Z

438

Sequential circuit design for radiation hardened multiple voltage integrated circuits  

DOE Patents [OSTI]

The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

Clark, Lawrence T. (Phoenix, AZ); McIver, III, John K. (Albuquerque, NM)

2009-11-24T23:59:59.000Z

439

A near infrared organic photodiode with gain at low bias voltage  

SciTech Connect (OSTI)

We demonstrate an organic photodiode with near infrared optical response out to about 1100 run with a gain of {approx}10 at 1000 run under 5V reverse bias. The diodes employ a soluble naphthalocyanine with a peak absorption coefficient of {approx}10{sup 5} cm{sup -1} at 1000 nm. In contrast to most organic photodiodes, no exciton dissociating material is used. At zero bias, the diodes are inefficient with an external quantum efficiency of {approx} 10{sup -2}. In reverse bias, large gain occurs and is linear with bias voltage above 4V. The observed gain is consistent with a photoconductive gain mechanism.

Campbell, Ian H [Los Alamos National Laboratory; Crone, Brian K [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

440

Method for voltage-gated protein fractionation  

DOE Patents [OSTI]

We report unique findings on the voltage dependence of protein exclusion from the pores of nanoporous polymer exclusion membranes. The pores are small enough that proteins are excluded from passage with low applied electric fields, but increasing the field enables proteins to pass through. The requisite field necessary for a change in exclusion is protein-specific with a correlation to protein size. The field-dependence of exclusion is important to consider for preconcentration applications. The ability to selectively gate proteins at exclusion membranes is also a promising means for manipulating and characterizing proteins. We show that field-gated exclusion can be used to selectively remove proteins from a mixture, or to selectively trap protein at one exclusion membrane in a series.

Hatch, Anson (Tracy, CA); Singh, Anup K. (Danville, CA)

2012-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Integrating fiber optic radiation dosimeter  

SciTech Connect (OSTI)

The purpose of this research effort was to determine the feasibility of forming a radiation sensor coupled to an optical fiber capable of measuring gamma photon, x-ray, and beta particle dose rates and integrated dose, and to construct a prototype dosimeter read-out system utilizing the fiber optic sensor. The key component of the prototype dosimeter system is a newly developed radiation sensitive storage phosphor. When this phosphor is excited by energetic radiation, a proportionate population of electron-hole pairs are created which become trapped at specific impurities within the phosphor. Trapped electrons can subsequently be stimulated optically with near-infrared at approximately 1 micrometer wavelength; the electrons can recombine with holes at luminescent centers to produce a luminescence which is directly proportional to the trapped electron population, and thus to the radiation exposure. By attaching the phosphor to the end of an optical fiber, it is possible to transmit both the IR optical stimulation and the characteristic phosphor luminescence through the fiber to and from the read-out instrument, which can be located far (e.g., kilometers) from the radiation field. This document reports on the specific design of the prototype system and its operating characteristics, including its sensitivity to various radiation dose rates and energies, its dynamic range, signal-to-noise ratio at various radiation intensities, and other system characteristics. Additionally, the radiation hardness of the phosphor and fiber are evaluated. 17 refs., 29 figs., 5 tabs.

Soltani, P.K.; Wrigley, C.Y.; Storti, G.M.; Creager, R.E.

1989-03-01T23:59:59.000Z

442

Electrochemical Characterization of Voltage Fade in LMR-NMC cells  

Broader source: Energy.gov (indexed) [DOE]

the extent of Voltage Fade December 2012 * Establish baseline data on standard materials to facilitate comparison of various datasets March 2013 * Obtain data to determine...

443

Vehicle Technologies Office Merit Review 2014: Voltage Fade,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Voltage Fade, an ABR Deep Dive Project: Status and Outcomes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

444

Nanoscale Morphological and Chemical Changes of High Voltage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the...

445

active capacitive voltage: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Khoman 5 Discrete Steps in the Capacitance-Voltage Characteristics of GaInNGaN Light Emitting Diode Structures Materials Science Websites Summary: Discrete Steps in the...

446

High Voltage Electrolytes for Li-ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information High Voltage Electrolytes for Li-ion Batteries Vehicle Technologies Program 2 Overview * Start: Sep 2008 * End: Sep 2011 * 20 %...

447

Electrochemical Characterization of Voltage Fade in LMR-NMC cells...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrochemical Characterization of Voltage Fade in LMR-NMC cells 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

448

Triple voltage dc-to-dc converter and method  

DOE Patents [OSTI]

A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

Su, Gui-Jia (Knoxville, TN)

2008-08-05T23:59:59.000Z

449

Full-wave receiver architecture for the homodyne motion sensor  

DOE Patents [OSTI]

A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.

Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E

2013-11-19T23:59:59.000Z

450

Fiber Optic Based Thermometry System for Superconducting RF Cavities  

SciTech Connect (OSTI)

Thermometry is recognized as the best technique to identify and characterize losses in SRF cavities. The most widely used and reliable apparatus for temperature mapping at cryogenic temperatures is based on carbon resistors (RTDs). The use of this technology on multi-cell cavities is inconvenient due to the very large number of sensors required to obtain sufficient spatial resolution. Recent developments make feasible the use of multiplexible fiber optic sensors for highly distributed temperature measurements. However, sensitivity of multiplexible cryogenic temperature sensors was found extending only to 12K at best and thus was not sufficient for SRF cavity thermometry. During the course of the project the team of MicroXact, JLab and Virginia Tech developed and demonstrated the multiplexible fiber optic sensor with adequate response below 20K. The demonstrated temperature resolution is by at least a factor of 60 better than that of the best multiplexible fiber optic temperature sensors reported to date. The clear path toward at least 10times better temperature resolution is shown. The first to date temperature distribution measurements with ~2.5mm spatial resolution was done with fiber optic sensors at 2K to4K temperatures. The repeatability and accuracy of the sensors were verified only at 183K, but at this temperature both parameters significantly exceeded the state of the art. The results of this work are expected to find a wide range of applications, since the results are enabling the whole new testing capabilities, not accessible before.

Dr. Kochergin, Vladimir [Microxact Inc.] [Microxact Inc.

2013-05-06T23:59:59.000Z

451

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

452

Local Dynamic Reactive Power for Correction of System Voltage Problems  

SciTech Connect (OSTI)

Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results are also provided and discussed. The simulations and testing show that local voltage control from DER can prevent local voltage collapse. The results also show that the control can be provided so quickly, within 0.5 seconds, that is does not interfere with conventional utility methods.

Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL

2008-12-01T23:59:59.000Z

453

Active Control Strategies for Chemical Sensors and Sensor Arrays  

E-Print Network [OSTI]

validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider...

Gosangi, Rakesh

2013-07-17T23:59:59.000Z

454

Solid electrolyte based sensor for monitoring the magnesium level during reclamation of aluminum scrap  

SciTech Connect (OSTI)

Aluminum alloy scrap often contains excess magnesium which must be removed during recycling by a process referred to as demagging. The efficiency of this process could be improved with an in-situ magnesium sensor, which could be used to optimize the process parameters to the changing magnesium content. The sensor developed in this work consists of a galvanic cell with a magnesium fluoride (MgF{sub 2}) solid electrolyte and a molten magnesium reference electrode. The voltage output of the sensor changes by about 100 mV for the change in magnesium content which occurs during the demagging process (5 wt% to 0.1 wt%) and is in excellent agreement with thermodynamic measurements using molten chloride electrolytes. This paper focuses on the effect of silicon, which is a common alloying element in aluminum alloys, on the output of an electrochemical magnesium sensor.

Fergus, J.W.; Hui, S. [Auburn Univ., AL (United States). Materials Research and Education Center

1996-10-01T23:59:59.000Z

455

Method and apparatus for optical temperature measurement  

DOE Patents [OSTI]

A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

1994-09-20T23:59:59.000Z

456

Method and apparatus for optical temperature measurement  

DOE Patents [OSTI]

A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

1994-01-01T23:59:59.000Z

457

Capacitive proximity sensor  

DOE Patents [OSTI]

A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

458

Chemiresistor urea sensor  

DOE Patents [OSTI]

A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

Glass, Robert S. (Livermore, CA)

1997-01-01T23:59:59.000Z

459

Capacitive proximity sensor  

DOE Patents [OSTI]

A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

460

the tuning efficiency is almost constant over the tuning range due to the nearly constant breakthrough voltage, which yields a heat  

E-Print Network [OSTI]

breakthrough voltage, which yields a heat generation proportional to the tuning current. The thermal wavelength the electronic and the thermal tuning mode. Thereby an optical power of more than 1mW can be maintained shift roughly corresponds to a temperature increase of 40K indicating a thermal resistance of -120K

York, Robert A.

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

462

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

463

Measurement of high voltage using Rutherford backscattering spectrometry  

E-Print Network [OSTI]

A novel variation of Rutherford Backscattering Spectrometry (RBS) has been utilized to measure a high voltage collected on an aluminum target by Direct Energy Conversion. The maximum high voltage on the target was measured to be 97.5 kV +/- 2 k...

Abrego, Celestino Pete

2007-04-25T23:59:59.000Z

464

A LOW-VOLTAGE TEMPERATURE-STABLE MICROMECHANICAL PIEZOELECTRIC OSCILLATOR  

E-Print Network [OSTI]

A LOW-VOLTAGE TEMPERATURE-STABLE MICROMECHANICAL PIEZOELECTRIC OSCILLATOR Reza Abdolvand, Hossein polarization voltages (5-20V) for operation, which complicates the design of the oscillator circuit in today reference oscillator that utilizes a temperature-stable thin- film piezoelectric-on-silicon resonator

Ayazi, Farrokh

465

REFINED RFP LOOP VOLTAGE CALCULATION J.C. Sprott  

E-Print Network [OSTI]

is the stored magnetic energy, Up is the plasma energy, and 'E is the global energy confinement time, which-of-merit for RFP devices is the loop voltage. Low loop voltage implies high plasma temperature and long energy is smallest if the loop is as close to the outside of the shell and as far from the primary windings

Sprott, Julien Clinton

466

LOW VOLTAGE ANALOG CIRCUITS USING STANDARD CMOS TECHNOLOGY  

E-Print Network [OSTI]

LOW VOLTAGE ANALOG CIRCUITS USING STANDARD CMOS TECHNOLOGY Phillip E. Allen, Benjamin J. Blalock, and Gabriel A. Rincon School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta supply voltages in CMOS integrated circuits. As the channel lengths of CMOS technology decrease

Rincon-Mora, Gabriel A.

467

Power Grid Voltage Integrity Verification Department of ECE  

E-Print Network [OSTI]

Power Grid Voltage Integrity Verification Maha Nizam Department of ECE University of Toronto devgan@magma-da.com ABSTRACT Full-chip verification requires one to check if the power grid is safe, i.e., if the voltage drop on the grid does not exceed a cer- tain threshold. The traditional simulation-based solution

Najm, Farid N.

468

Sensors as Information Transducers  

E-Print Network [OSTI]

This chapter reviews the mechanisms by which sensors gather information from the physical world and transform it into the electronic signals that are used in today's information and control systems. It introduces a new methodology for describing sensing mechanisms based on the process of information flow and applies it to the broad spectrum of sensors, instruments and data input devices in current use. We identify four distinct elemental transduction processes: energy conversion, energy dispersion, energy modulation and modulation of a material property. We posit that these four mechanisms form a complete set for describing information transduction in sensing systems.

J. David zook; Norbert Schroeder

2008-04-04T23:59:59.000Z

469

Magnetic differential torque sensor  

SciTech Connect (OSTI)

A new torque sensor structure is presented. The basic idea is a simple torque sensor with a variable magnetic circuit excited by an axially magnetized permanent magnet ring. The circuit is constituted by iron toothed rings, whose teeth relative position changes whenever an applied torque twists the rotating shaft. A Hall probe measures the induction in an airgap where the induction is uniform. The new structure is an association of two previous ones, thus creating a differential system with the related advantages: diminution of thermal drifts, zero mean value for the signal. The new magnetic circuit is studied by calculating equivalent reluctances through energy calculations and by using electrical analogies.

Lemarquand, V.; Lemarquand, G. [Univ. de Savoie, Annecy-le-Vieux (France)] [Univ. de Savoie, Annecy-le-Vieux (France)

1995-11-01T23:59:59.000Z

470

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

471

ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES  

E-Print Network [OSTI]

of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1 theoretical background. Then, in Section 3, we discuss measurement methods followed by the experimental tests and results in Section 4, before concluding in Section 5. 2. THEORETICAL BACKGROUND Consider an FBG fabricated

Park, Yong-Lae

472

Controlled mobility in sensor networks  

E-Print Network [OSTI]

K. Gupta. Optimizing energy-latency trade- o? in sensoras Optimizing Energy-Latency Trade-o? in Sensor NetworksK. Gupta, Optimizing Energy-Latency Trade-o? in Sensor

Sugihara, Ryo

2009-01-01T23:59:59.000Z

473

Nanotechnology-Based Electrochemical Sensors for Biomonitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Abstract:...

474

Living and Working Safely Around High-Voltage Power Lines.  

SciTech Connect (OSTI)

High-voltage transmission lines can be just as safe as the electrical wiring in the homes--or just as dangerous. The crucial factor is ourselves: they must learn to behave safely around them. This booklet is a basic safety guide for those who live and work around power lines. It deals primarily with nuisance shocks due to induced voltages, and with potential electric shock hazards from contact with high-voltage lines. References on possible long-term biological effects of transmission lines are shown. In preparing this booklet, the Bonneville Power Administration has drawn on more than 50 years of experience with high-voltage transmission. BPA operates one of the world`s largest networks of long-distance, high-voltage lines. This system has more than 400 substations and about 15,000 miles of transmission lines, almost 4,400 miles of which are operated at 500,000 volts.

United States. Bonneville Power Administration.

2001-06-01T23:59:59.000Z

475

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

476

Spark-safe low-voltage detonator  

DOE Patents [OSTI]

A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

Lieberman, Morton L. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

477

Bonfire-safe low-voltage detonator  

DOE Patents [OSTI]

A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

Lieberman, Morton L. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

478

Bonfire-safe low-voltage detonator  

DOE Patents [OSTI]

A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

Lieberman, M.L.

1988-07-01T23:59:59.000Z

479

Open Standards for Sensor Information Processing  

SciTech Connect (OSTI)

This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

2009-07-01T23:59:59.000Z

480

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical voltage sensor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.