Sample records for optical televiewer neutron

  1. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01T23:59:59.000Z

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  2. Borehole-Wall Imaging with Acoustic and Optical Televiewers for...

    Open Energy Info (EERE)

    and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. Authors John H. Williams...

  3. Borehole-Wall Imaging with Acoustic and Optical Televiewers for

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell 1Fort FairfieldFractured-Bedrock Aquifer

  4. Wolter mirror microscope : novel neutron focussing and imaging optic

    E-Print Network [OSTI]

    Bagdasarova, Yelena S. (Yelena Sergeyevna)

    2010-01-01T23:59:59.000Z

    In this thesis, I investigated the effectiveness of a Wolter Type I neutron microscope as a focusing and imaging device for thermal and cold neutrons sources by simulating the performance of the optics in a standard neutron ...

  5. Neutron Diffraction and Optics of a Noncentrosymmetric Crystal. New Feasibility of a Search for Neutron EDM

    E-Print Network [OSTI]

    V. V. Fedorov; V. V. Voronin

    2005-05-03T23:59:59.000Z

    Recently strong electric fields (up to 10^9 V/cm) have been discovered, which affect the neutrons moving in noncentrosymmetric crystals. Such fields allow new polarization phenomena in neutron diffraction and optics and provide, for instance, a new feasibility of a search for the neutron electric dipole moment (EDM). A series of experiments was carried out in a few last years on study of the dynamical diffraction of polarized neutrons in thick (1-10 cm) quartz crystals, using the forward diffraction beam and Bragg angles close to 90^0. As well new neutron optics phenomena were investigated. The feasibility of experiment on a search for neutron EDM using Laue diffraction in crystals without a center of symmetry was tested at the reactors: WWR-M in Gatchina and HFR in Grenoble. It was shown that the sensitivity can reach (3 - 6)\\cdot 10^{-25}e cm per day for the available quartz crystal and cold neutron beam flux.

  6. ABAREX: A neutron spherical optical-statistical model code

    SciTech Connect (OSTI)

    Lawson, R.D.

    1992-06-01T23:59:59.000Z

    The spherical optical-statistical model is briefly reviewed and the capabilities of the neutron scattering code, ABAREX, are presented. Input files for ten examples, in which neutrons are scattered by various nuclei, are given and the output of each run is discussed in detail.

  7. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect (OSTI)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10T23:59:59.000Z

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  8. Electro-optic Laser-Sampled Neutron Detector

    SciTech Connect (OSTI)

    J. Kenneth Shultis; Douglas McGregor

    2009-11-30T23:59:59.000Z

    A new method of detecting radiation which can allow for long distance measurements is being investigated. The device is primarily for neutrons detection althought it could, in principle, be used for gamma ray detection. The neutron detection medium is a solid, transparent, electro-optical material, such as lithium niobate, lithium tantalite, or barium borate. Crystals of these materials act as optical gates to laser light, allowing light to pass through only when a neutron interaction occurs in the crystal. Typical light detection devices, such as CCD cameras or photomultiplier tubes, can be used to signal when light passes through the crystal. The overall goal of the project is to investigate the feasibility of such devices for the detection of neutron radiation and to quantify their capabilities and limitations.

  9. Jueves 10 de octubre de 2013, de 13:00 a 14:00 h Neutron optics using holographic gratings

    E-Print Network [OSTI]

    Escolano, Francisco

    are being developed at present. Finally we will give an outlook on novel neutron-scattering instrumentationJueves 10 de octubre de 2013, de 13:00 a 14:00 h Neutron optics using holographic gratings Prof. Dr. Martin Fally Holography and Neutron Diffraction Group - Faculty of Physics - University of Vienna

  10. Periodic Optical Outbursts from the Be/Neutron Star Binary AX J0049.4-7323

    E-Print Network [OSTI]

    A. P. Cowley; P. C. Schmidtke

    2003-11-17T23:59:59.000Z

    The optical light curve of the Be/neutron star binary AX J0049.4-7323 has been investigated using data from the MACHO and OGLE-II projects. This X-ray source, whose neutron star has a very slow rotation rate (P_pulse=755.5 sec), shows optical outbursts every 394 days. The regularity of these outbursts suggests that their recurrence time is the orbital period of the system. During the outbursts the system brightens and becomes slightly redder. A possible interpretation is that a portion of the equatorial disk is excited as the neutron star passes through it during periastron passage. In the intervals between outbursts the light curve shows 11-day quasi-periodic varability which may be associated with the rotation of the Be star's extended disk.

  11. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    SciTech Connect (OSTI)

    Young, L [UniversityWashington, Seattle, WA (United States); Yang, F; Sandison, G [University of Washington, Seattle, WA (United States); Woodworth, D [University of California, Santa Barbara, Santa Barbara, CA (United States); McCormick, Z [University of Nevada - Reno, Reno, Nevada (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depth of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron beam calibration is a critical component for achieving comparable accuracy.

  12. A gamma/neutron-discriminating, Cooled, Optically Stimulated Luminescence (COSL) dosemeter

    SciTech Connect (OSTI)

    Eschbach, P.A.; Miller, S.D.

    1992-07-01T23:59:59.000Z

    The Cooled Optically Stimulated Luminescence (COSL) of CaF{sub 2}:Mn (grain sizes from 0.1 to 100 microns) powder embedded in a hydrogenous matrix is reported as a function of fast-neutron dose. When all the CaF{sub 2}:Mn grains are interrogated at once, the COSL plastic dosemeters have a minimum detectable limit of 1 cSv fast neutrons; the gamma component from the bare {sup 252}cf exposure was determined with a separate dosemeter. We report here on a proton-recoil-based dosemeter that generates pulse height spectra, much like the scintillator of Hornyak, (2) to provide information on both the neutron and gamma dose.

  13. A user-friendly, graphical interface for the Monte Carlo neutron optics code MCLIB

    SciTech Connect (OSTI)

    Thelliez, T.; Daemen, L.; Hjelm, R.P. [Los Alamos National Lab., NM (United States); Seeger, P.A. [Seeger (Phil A.), Los Alamos, NM (United States)

    1995-12-01T23:59:59.000Z

    The authors describe a prototype of a new user interface for the Monte Carlo neutron optics simulation program MCLIB. At this point in its development the interface allows the user to define an instrument as a set of predefined instrument elements. The user can specify the intrinsic parameters of each element, its position and orientation. The interface then writes output to the MCLIB package and starts the simulation. The present prototype is an early development stage of a comprehensive Monte Carlo simulations package that will serve as a tool for the design, optimization and assessment of performance of new neutron scattering instruments. It will be an important tool for understanding the efficacy of new source designs in meeting the needs of these instruments.

  14. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    SciTech Connect (OSTI)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01T23:59:59.000Z

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  15. Neutron–proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon–nucleus scattering data within an isospin dependent optical model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; Chen, Lie -Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01T23:59:59.000Z

    The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry ? and normal density is found to be m*n-p?(m*n – m*p)/m = (0.41 ± 0.15)? from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleonmore »isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less

  16. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S.; Mihalczo, John T.

    2006-11-28T23:59:59.000Z

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  17. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOE Patents [OSTI]

    Neal, John S. (Knoxville, TN); Mihalczo, John T (Oak Ridge, TN)

    2007-10-30T23:59:59.000Z

    A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.

  18. Spin exchange optical pumping based polarized {sup 3}He filling station for the Hybrid Spectrometer at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Graves-Brook, M. K. [Research Accelerator Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hagen, M. E. [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lee, W. T. [Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234 (Australia); Winn, B. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-06-15T23:59:59.000Z

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 Degree-Sign horizontal and 15 Degree-Sign vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized {sup 3}He filling station based on the spin exchange optical pumping method. It is designed to supply polarized {sup 3}He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the {sup 3}He pressure with respect to the scattered neutron energies. The depolarized {sup 3}He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  19. Neutrostriction in Neutron stars

    E-Print Network [OSTI]

    V. K. Ignatovich

    2006-06-29T23:59:59.000Z

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  20. EARLY X-RAY AND OPTICAL AFTERGLOW OF GRAVITATIONAL WAVE BURSTS FROM MERGERS OF BINARY NEUTRON STARS

    SciTech Connect (OSTI)

    Zhang Bing [Kavli Institute of Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2013-01-20T23:59:59.000Z

    Double neutron star mergers are strong sources of gravitational waves. The upcoming advanced gravitational wave detectors are expected to make the first detection of gravitational wave bursts (GWBs) associated with these sources. Proposed electromagnetic counterparts of a GWB include a short gamma-ray burst, an optical macronova, and a long-lasting radio afterglow. Here we suggest that at least some GWBs could be followed by an early afterglow lasting for thousands of seconds, if the post-merger product is a highly magnetized, rapidly rotating, massive neutron star rather than a black hole. This afterglow is powered by dissipation of a proto-magnetar wind. The X-ray flux is estimated to be as bright as (10{sup -8}-10{sup -7}) erg s{sup -1} cm{sup -2}. The optical flux is subject to large uncertainties but could be as bright as 17th magnitude in R band. We provide observational hints of such a scenario, and discuss the challenge and strategy to detect these signals.

  1. Candidate isolated neutron stars and other optically blank x-ray fields identified from the rosat all-sky and sloan digital sky surveys

    SciTech Connect (OSTI)

    Agueros, Marcel A.; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Margon, Bruce; /Baltimore, Space Telescope Sci.; Haberl, Frank; Voges, Wolfgang; /Garching,; Annis, James; /Fermilab; Schneider, Donald P.; /Penn State U., Astron. Astrophys.; Brinkmann, Jonathan; /Apache Point Observ.

    2005-11-01T23:59:59.000Z

    Only seven radio-quiet isolated neutron stars (INSs) emitting thermal X rays are known, a sample that has yet to definitively address such fundamental issues as the equation of state of degenerate neutron matter. We describe a selection algorithm based on a cross-correlation of the ROSAT All-Sky Survey (RASS) and the Sloan Digital Sky Survey (SDSS) that identifies X-ray error circles devoid of plausible optical counterparts to the SDSS g {approx} 22 magnitudes limit. We quantitatively characterize these error circles as optically blank; they may host INSs or other similarly exotic X-ray sources such as radio-quiet BL Lacs, obscured AGN, etc. Our search is an order of magnitude more selective than previous searches for optically blank RASS error circles, and excludes the 99.9% of error circles that contain more common X-ray-emitting subclasses. We find 11 candidates, nine of which are new. While our search is designed to find the best INS candidates and not to produce a complete list of INSs in the RASS, it is reassuring that our number of candidates is consistent with predictions from INS population models. Further X-ray observations will obtain pinpoint positions and determine whether these sources are entirely optically blank at g {approx} 22, supporting the presence of likely isolated neutron stars and perhaps enabling detailed follow-up studies of neutron star physics.

  2. Scintillator fiber optic long counter

    DOE Patents [OSTI]

    McCollum, T.; Spector, G.B.

    1994-03-29T23:59:59.000Z

    A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

  3. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    Wielgus, M; S?dowski, A; Narayan, R; Abramowicz, M

    2015-01-01T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  4. Levitating atmospheres of Eddington-luminosity neutron stars I. Optically thin Thomson-scattering atmospheres

    E-Print Network [OSTI]

    M. Wielgus; W. Klu?niak; A. S?dowski; R. Narayan; M. Abramowicz

    2015-05-22T23:59:59.000Z

    In general relativity static gaseous atmospheres may be in hydrostatic balance in the absence of a supporting stellar surface, provided that the luminosity is close to the Eddington value. We construct analytic models of optically thin, spherically symmetric shells supported by the radiation pressure of a luminous central body in the Schwarzschild metric.

  5. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01T23:59:59.000Z

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  6. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04T23:59:59.000Z

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  7. Centrifugal quantum states of neutrons

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; A. K. Petukhov; K. V. Protasov; A. Yu. Voronin

    2008-06-24T23:59:59.000Z

    We propose a method for observation of the quasi-stationary states of neutrons, localized near the curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi-potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that could be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop formalism, which describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  8. Neutron skins and neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2013-11-07T23:59:59.000Z

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  9. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  10. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  11. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05T23:59:59.000Z

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  12. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11T23:59:59.000Z

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  13. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04T23:59:59.000Z

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  14. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  15. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10T23:59:59.000Z

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  16. Neutron Repulsion

    E-Print Network [OSTI]

    Oliver K. Manuel

    2011-02-08T23:59:59.000Z

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding how: a.) The Sun generates and releases neutrinos, energy and solar-wind hydrogen and helium; b.) An inhabitable planet formed and life evolved around an ordinary-looking star; c.) Continuous climate change - induced by cyclic changes in gravitational interactions of the Sun's energetic core with planets - has favored survival by adaptation.

  17. Neutron Repulsion

    E-Print Network [OSTI]

    Manuel, Oliver K

    2011-01-01T23:59:59.000Z

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  18. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24T23:59:59.000Z

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  19. Neutron scattering and models: Titanium

    SciTech Connect (OSTI)

    Smith, A.B.

    1997-07-01T23:59:59.000Z

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  20. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  1. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  2. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    E-Print Network [OSTI]

    Liu, Dazhi

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, ...

  3. SHARP Neutronics Expanded

    Broader source: Energy.gov [DOE]

    The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis.

  4. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15T23:59:59.000Z

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  5. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01T23:59:59.000Z

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  6. Nondispersive neutron focusing method beyond the critical angle of mirrors

    DOE Patents [OSTI]

    Ice, Gene E. (Oak Ridge, TN)

    2008-10-21T23:59:59.000Z

    This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

  7. Method and apparatus for detecting neutrons

    DOE Patents [OSTI]

    Perkins, Richard W. (Richland, WA); Reeder, Paul L. (Richland, WA); Wogman, Ned A. (Richland, WA); Warner, Ray A. (Benton City, WA); Brite, Daniel W. (Richland, WA); Richey, Wayne C. (Richland, WA); Goldman, Don S. (Orangevale, CA)

    1997-01-01T23:59:59.000Z

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.

  8. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  9. Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection

    E-Print Network [OSTI]

    C. D. Bass; E. J. Beise; H. Breuer; C. R. Heimbach; T. Langford; J. S. Nico

    2013-02-07T23:59:59.000Z

    The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6 is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and Cf-252 neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.

  10. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14T23:59:59.000Z

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  11. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10T23:59:59.000Z

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  12. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13T23:59:59.000Z

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  13. Compounds for neutron radiation detectors and systems thereof

    DOE Patents [OSTI]

    Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie

    2013-06-11T23:59:59.000Z

    One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.

  14. Neutron scattering measurements at intermediate energies

    E-Print Network [OSTI]

    N. Olsson; J. Blomgren; E. Ramstrom

    The study of elastic neutron scattering at intermediate energies is essential for the understanding of the isovector term in the nucleon-nucleus interaction, as well as for the development of macroscopic and microscopic optical potentials at these energies. The techniques used for neutron scattering measurements is presented in this paper, as well as the di culties encountered. The few facilities that have been used are reviewed, and a newly installed setup for such measurements in Uppsala is described. Finally, the normalization problem is speci cally addressed. 1

  15. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19T23:59:59.000Z

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  16. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19T23:59:59.000Z

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  17. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01T23:59:59.000Z

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  18. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  19. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  20. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01T23:59:59.000Z

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  1. Bouncing Neutrons and the Neutron Centrifuge

    E-Print Network [OSTI]

    P. J. S. Watson

    2003-02-26T23:59:59.000Z

    The recent observation of the quantum state of the neutron bouncing freely under gravity allows some novel experiments. A method of purifying the ground state is given, and possible applications to the measurement of the electric dipole moment of the neutron and the short distance behaviour of gravity are discussed.

  2. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  3. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28T23:59:59.000Z

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  4. Possibility of s-wave pion condensates in neutron stars revisited

    E-Print Network [OSTI]

    A. Ohnishi; D. Jido; T. Sekihara; K. Tsubakihara

    2009-09-05T23:59:59.000Z

    We examine possibilities of pion condensation with zero momentum (s-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parameterized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. Proton fraction (Y_p) and electron chemical potential (mu_e) in neutron star matter are evaluated in RMF models. We find that the s-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or b_1 parameter in U has density dependence.

  5. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22T23:59:59.000Z

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  6. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  7. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08T23:59:59.000Z

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  8. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11T23:59:59.000Z

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  9. The Neutron Lifetime

    E-Print Network [OSTI]

    F. E. Wietfeldt

    2014-11-13T23:59:59.000Z

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and the simplest example of nuclear beta decay. The nucleon vector and axial vector weak coupling constants G_V and G_A determine the neutron lifetime as well as the strengths of weak interaction processes involving free neutrons and protons that are important in astrophysics, cosmology, solar physics and neutrino detection. In combination with a neutron decay angular correlation measurement, the neutron lifetime can be used to determine the first element of the CKM matrix Vud. Unfortunately the two main experimental methods for measuring the neutron lifetime currently disagree by almost 4 sigma. I will present a brief review of the status of the neutron lifetime and prospects for the future.

  10. Neutron irradiation effects on metal-gallium nitride contacts

    SciTech Connect (OSTI)

    Katz, Evan J.; Lin, Chung-Han; Zhang, Zhichun [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Qiu, Jie; Cao, Lei [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Mishra, Umesh K. [Departments of Electrical and Computer Engineering and Materials Science and Engineering University of California, Santa Barbara, California 93106 (United States); Brillson, Leonard J., E-mail: brillson.1@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Physics and Center for Materials Research, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-03-28T23:59:59.000Z

    We have measured the effect of fast and thermal neutrons on GaN Schottky barriers and ohmic contacts using current–voltage and transmission line method electrical techniques, optical, atomic force and scanning electron microscopy morphological techniques, and X-ray photoemission spectroscopy chemical techniques. These studies reveal a 10{sup 15}?n/cm{sup 2} neutron threshold for Schottky barrier ideality factor increases, a 10{sup 15}?n/cm{sup 2} fast plus thermal neutron threshold for ohmic contact sheet and contact resistance increases, and 10{sup 16}?n/cm{sup 2} neutron fluence threshold for major device degradation identified with thermally driven diffusion of Ga and N into the metal contacts and surface phase changes. These results demonstrate the need for protecting metal-GaN contacts in device applications subject to neutron radiation.

  11. Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection

    E-Print Network [OSTI]

    Bass, C D; Breuer, H; Heimbach, C R; Langford, T; Nico, J S

    2012-01-01T23:59:59.000Z

    We present the characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6. We report on its performance in terms of optical properties and neutron response. We incorporated the scintillator into a spectrometer and measured the light output spectra from 2.5 MeV, 14 MeV, and Cf-252 neutrons using capture-gated coincidence techniques. We operated the spectrometer without coincidence to perform thermal neutron measurements. We discuss possible improvements in spectrometer performance.

  12. Neutron sources and applications

    SciTech Connect (OSTI)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01T23:59:59.000Z

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  13. Compounds for neutron radiation detectors and systems thereof

    DOE Patents [OSTI]

    Payne, Stephen A; Stoeffl, Wolfgang; Zaitseva, Natalia P; Cherepy, Nerine J; Carman, M. Leslie

    2014-05-27T23:59:59.000Z

    A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.

  14. Spallation-neutron sources

    SciTech Connect (OSTI)

    Michaudon, A.

    1997-09-01T23:59:59.000Z

    Of particular interest for neutron-physics studies are spallation-neutron sources (SNSs) using intense proton beams with energies in the GeV range. Some SNSs already provide average fluxes of thermal and cold neutrons comparable with those of high-flux reactors. Most SNSs are pulsed with high peak fluxes that can be used with the powerful time-of-flight (TOF) method. Also, SNSs could be developed to much higher performance.

  15. Neutron Science Forum | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment for discussion, innovation, and dissemination of information within the neutron scattering community as well as engaging closely related disciplines through...

  16. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  17. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect (OSTI)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15T23:59:59.000Z

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  18. HFIR History - ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its...

  19. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  20. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01T23:59:59.000Z

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  1. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  2. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08T23:59:59.000Z

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  3. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21T23:59:59.000Z

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  4. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOE Patents [OSTI]

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12T23:59:59.000Z

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  5. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect (OSTI)

    KOETZLE,T.F.

    2001-03-13T23:59:59.000Z

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  6. A SECOND NEUTRON STAR IN M4?

    SciTech Connect (OSTI)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W. [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Thompson, Ian B. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2012-05-01T23:59:59.000Z

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  7. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect (OSTI)

    Liu, D.; Khaykovich, B. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States)] [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States); Hussey, D.; Jacobson, D.; Arif, M. [Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899-8461 (United States)] [Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899-8461 (United States); Gubarev, M. V.; Ramsey, B. D. [Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812 (United States)] [Marshall Space Flight Center, NASA, VP62, Huntsville, Alabama 35812 (United States); Moncton, D. E. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States) [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany St., Cambridge, Massachusetts 02139 (United States); Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2013-05-06T23:59:59.000Z

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  8. Hypernuclear Physics for Neutron Stars

    E-Print Network [OSTI]

    Jurgen Schaffner-Bielich

    2008-01-24T23:59:59.000Z

    The role of hypernuclear physics for the physics of neutron stars is delineated. Hypernuclear potentials in dense matter control the hyperon composition of dense neutron star matter. The three-body interactions of nucleons and hyperons determine the stiffness of the neutron star equation of state and thereby the maximum neutron star mass. Two-body hyperon-nucleon and hyperon-hyperon interactions give rise to hyperon pairing which exponentially suppresses cooling of neutron stars via the direct hyperon URCA processes. Non-mesonic weak reactions with hyperons in dense neutron star matter govern the gravitational wave emissions due to the r-mode instability of rotating neutron stars.

  9. Neutron Cross-Section Evaluations for {sup 238}U up to 150 MeV

    SciTech Connect (OSTI)

    Ignatyuk, A.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Lunev, V.P. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Shubin, Yu.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Gai, E.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Titarenko, N.N. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Ventura, A. [ENEA (Italy); Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)

    2000-11-15T23:59:59.000Z

    Investigations aimed at the development of neutron cross-section evaluations for {sup 238}U at intermediate energies are briefly described. The coupled-channels optical model is used to calculate the neutron total, the elastic and reaction cross sections, and the elastic-scattering angular distributions. Evaluations of the neutron and charged particle emission cross sections and of the fission cross sections are obtained on the basis of the statistical description that includes direct, preequilibrium, and equilibrium mechanisms of nuclear reactions. The Kalbach parameterization of angular distributions is used to describe the double-differential cross sections of emitted neutrons and charged particles in ENDF/B-VI format.

  10. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06T23:59:59.000Z

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  11. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Boyar, Robert E. (La Grange, IL); DeVolpi, Alexander (Bolingbrook, IL); Stanford, George S. (Downers Grove, IL); Rhodes, Edgar A. (Woodridge, IL)

    1989-01-01T23:59:59.000Z

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  12. Magnetized Atmospheres around Accreting Neutron Stars

    E-Print Network [OSTI]

    S. Zane; R. Turolla; A. Treves

    2000-02-01T23:59:59.000Z

    We present a detailed investigation of atmospheres around accreting neutron stars with high magnetic field ($B\\gtrsim 10^{12}$ G) and low luminosity ($L\\lesssim 10^{33}$ erg/s). We compute the atmospheric structure, intensity and emergent spectrum for a plane-parallel, pure hydrogen medium by solving the transfer equations for the normal modes coupled to the hydrostatic and energy balance equations. The hard tail found in previous investigations for accreting, non-magnetic neutron stars with comparable luminosity is suppressed and the X-ray spectrum, although still harder than a blackbody at the star effective temperature, is nearly planckian in shape. Spectra from accreting atmospheres, both with high and low fields, are found to exhibit a significant excess at optical wavelengths above the Rayleigh-Jeans tail of the X-ray continuum.

  13. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  14. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  15. Strangeness in Neutron Stars

    E-Print Network [OSTI]

    Fridolin Weber; Alexander Ho; Rodrigo P. Negreiros; Philip Rosenfield

    2006-04-20T23:59:59.000Z

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.

  16. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  17. Neutrons from multifragmentation reactions

    E-Print Network [OSTI]

    W. Trautmann; A. S. Botvina; J. Brzychczyk; N. Buyukcizmeci; I. N. Mishustin; P. Pawlowski; ALADIN2000 Collaboration

    2011-08-29T23:59:59.000Z

    The neutron emission in the fragmentation of stable and radioactive Sn and La projectiles of 600 MeV per nucleon has been studied with the Large Neutron Detector LAND coupled to the ALADIN forward spectrometer at SIS. A cluster-recognition algorithm is used to identify individual particles within the hit distributions registered with LAND. The obtained momentum distributions are extrapolated over the full phase space occupied by the neutrons from the projectile-spectator source. The mean multiplicities of spectator neutrons reach values of up to 12 and depend strongly on the isotopic composition of the projectile. An effective source temperature of T approx. 3 - 4 MeV is deduced from the transverse momentum distributions. For the interpretation of the data, calculations with the Statistical Multifragmentation Model for a properly chosen ensemble of excited sources were performed. The possible modification of the liquid-drop parameters of the fragment description in the hot environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to simultaneously reproduce the neutron multiplicities and the mean neutron-to-proton ratios /Z of Z <= 10 fragments. Because of the similarity of the freeze-out conditions with those encountered in supernova scenarios, this is of astrophysical interest.

  18. Cross sections of neutron-induced reactions

    SciTech Connect (OSTI)

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India)

    2010-10-15T23:59:59.000Z

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  19. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    E-Print Network [OSTI]

    Bao-An Li; Lie-Wen Chen

    2015-04-13T23:59:59.000Z

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the space-time nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of protoneutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent yeas in addressing these issues. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  20. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15T23:59:59.000Z

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  1. Strangeness in Neutron Stars

    E-Print Network [OSTI]

    Fridolin Weber

    2000-08-23T23:59:59.000Z

    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which numerous novel particles processes are likely to compete with each other. These processes range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, iron. In the latter event, neutron stars would be largely composed of pure quark matter, eventually enveloped in a thin nuclear crust. No matter which physical processes are actually realized inside neutron stars, each one leads to fingerprints, some more pronounced than others though, in the observable stellar quantities. This feature combined with the unprecedented progress in observational astronomy, which allows us to see vistas with remarkable clarity that previously were only imagined, renders neutron stars to nearly ideal probes for a wide range of physical studies, including the role of strangeness in dense matter.

  2. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Maurer, R., Detweiler, R.

    2012-06-22T23:59:59.000Z

    This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

  3. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect (OSTI)

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01T23:59:59.000Z

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  4. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    E-Print Network [OSTI]

    P. -N. Seo; L. Barron-Palos; J. D. Bowman; T. E. Chupp; C. Crawford; M. Dabaghyan; M. Dawkins; S. J. Freedman; T. Gentile; M. T. Gericke; R. C. Gillis; G. L. Greene; F. W. Hersman; G. L. Jones; M. Kandes; S. Lamoreaux; B. Lauss; M. B. Leuschner; R. Mahurin; M. Mason; J. Mei; G. S. Mitchell; H. Nann; S. A. Page; S. I. Penttila; W. D. Ramsay; A. Salas Bacci; S. Santra; M. Sharma; T. B. Smith; W. M. Snow; W. S. Wilburn; H. Zhu

    2007-10-15T23:59:59.000Z

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE.

  5. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21T23:59:59.000Z

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  6. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  7. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18T23:59:59.000Z

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  8. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03T23:59:59.000Z

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  9. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering Tutorials SHARE

  10. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29T23:59:59.000Z

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Neutron Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering3 Neutron Science

  13. {sup 16}O neutron cross section evaluation

    SciTech Connect (OSTI)

    Caro, E. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-06-01T23:59:59.000Z

    This work has resulted from a need to compute more accurately the neutron scattering cross sections and angular distributions for {sup 16}O. Several oxygen evaluations have been performed in the past with R-Matrix theory, including ENDF/B-V and ENDF/B-VI. ENDF/B-VI is an improvement over ENDF/B-V, but still underpredicts in general the forward scattering of neutrons below 2.5 MeV. R-Matrix theory is used in describing cross sections at and near the resonance energies; but may not always be adequate in describing cross sections between resonances, especially when they are widely spaced. The optical (potential well) model of the nucleus is very good in representing cross sections that vary smoothly with energy, but not at describing all of the detailed resonance cross sections. A combination of the potential well model and R-Matrix theory was used for this work to represent cross sections with isolated resonances with large spacings between them. The total neutron cross section of oxygen-16 below 3.0 MeV has widely separated resonances and a dip in the cross section at 2.35 MeV. In the vicinity of resonances, where cross sections vary rapidly with energy, R-Matrix theory has been successful in fitting experimental data. In the region between resonances, an analytical procedure with physical basis is needed that agrees with data over a wide range of energies bracketing regions where experimental measurements are lacking.

  14. NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    1999-09-10T23:59:59.000Z

    NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

  15. Combined microstructure x-ray optics

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.

    1989-02-01T23:59:59.000Z

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  16. The tokamak as a neutron source

    SciTech Connect (OSTI)

    Hendel, H.W.; Jassby, D.L.

    1989-11-01T23:59:59.000Z

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.

  17. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04T23:59:59.000Z

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  18. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07T23:59:59.000Z

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  19. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  20. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01T23:59:59.000Z

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  1. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

    2001-01-01T23:59:59.000Z

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  2. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  3. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Kasprzak, M

    2004-01-01T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for t...

  4. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Malgorzata Kasprzak

    2004-07-26T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for the investigated deuterium samples.

  5. Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars

    E-Print Network [OSTI]

    C. J. Horowitz; J. Piekarewicz

    2002-01-08T23:59:59.000Z

    Parity violating electron scattering can measure the neutron density of a heavy nucleus accurately and model independently. This is because the weak charge of the neutron is much larger then that of the proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to measure the root mean square neutron radius of $^{208}$Pb with an absolute accuracy of 1% ($\\pm 0.05$ Fm). This is more accurate then past measurements with hadronic probes, which all suffer from controversial strong interaction uncertainties. PREX should clearly resolve the neutron-rich skin. Furthermore, this benchmark value for $^{208}$Pb will provide a calibration for hadronic probes, such as proton scattering, which can then be used to measure neutron densities of many exotic nuclei. The PREX result will also have many implications for neutron stars. The neutron radius of Pb depends on the pressure of neutron-rich matter: the greater the pressure, the larger the radius as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity. The Pb radius is sensitive to the equation of state at normal densities while the radius of a 1.4 solar mass neutron star also depends on the equation of state at higher densities. Measurements of the radii of a number of isolated neutron stars such as Geminga and RX J185635-3754 should soon improve significantly. By comparing the equation of state information from the radii of both Pb and neutron stars one can search for a softening of the high density equation of state from a phase transition to an exotic state. Possibilities include kaon condensates, strange quark matter or color superconductors.

  6. Upper bound on parity-violating neutron spin rotation in {sup 4}He

    SciTech Connect (OSTI)

    Snow, W. M.; Luo, D.; Walbridge, S. B. [Indiana University/CEEM, 2401 Milo B. Sampson Lane, Bloomington, Indiana 47408 (United States); Bass, C. D.; Bass, T. D.; Mumm, H. P.; Nico, J. S. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Crawford, B. E. [Gettysburg College, 300 North Washington Street, Gettysburg, Pennsylvania 17325 (United States); Gan, K.; Micherdzinska, A. M.; Opper, A. K. [The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Heckel, B. R.; Swanson, H. E. [University of Washington/CENPA, Box 354290, Seattle, Washington 98195 (United States); Markoff, D. M. [North Carolina Central University/TUNL, 1801 Fayetteville Street, Durham, North Carolina 27707 (United States); Sarsour, M. [Georgia State University, 29 Peachtree Center Avenue, Atlanta, Georgia 30303-4106 (United States); Sharapov, E. I. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-02-15T23:59:59.000Z

    We report an upper bound on parity-violating neutron spin rotation in {sup 4}He. This experiment is the most sensitive search for neutron-weak optical activity yet performed and represents a significant advance in precision in comparison to past measurements in heavy nuclei. The experiment was performed at the NG-6 slow-neutron beamline at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Our result for the neutron spin rotation angle per unit length in {sup 4}He is d{phi}/dz=[+1.7{+-}9.1(stat.){+-}1.4(sys.)]x10{sup -7} rad/m. The statistical uncertainty is smaller than current estimates of the range of possible values of d{phi}/dz in n+{sup 4}He.

  7. Neutron density distributions from antiprotonic 208Pb and 209Bi atoms

    E-Print Network [OSTI]

    Klos, B; Czosnyka, T; Gulda, K; Hartmann, F J; Jastrzebski, J J; Ketzer, B; Kisielinski, M; Kurcewicz, W; Lubinski, P; Napiorkowski, P J; Pienkowski, L; Ring, P; Schmidt, R; Smolanczuk, R; Trzcinska, A; Von Egidy, T; Widmann, E; Wycech, S

    2007-01-01T23:59:59.000Z

    The X-ray cascade from antiprotonic atoms was studied for 208Pb and 209Bi. Widths and shifts of the levels due to the strong interaction were determined. Using modern antiproton-nucleus optical potentials the neutron densities in the nuclear periphery were deduced. Assuming two parameter Fermi distributions (2pF) describing the proton and neutron densities the neutron rms radii were deduced for both nuclei. The difference of neutron and proton rms radii /\\r_np equal to 0.16 +-(0.02)_{stat} +- (0.04)_{syst} fm for 208Pb and 0.14 +- (0.04)_{stat} +- (0.04)_{syst} fm for 209Bi were determined and the assigned systematic errors are discussed. The /\\r_np values and the deduced shapes of the neutron distributions are compared with mean field model calculations.

  8. Nucleon semimagic numbers and low-energy neutron scattering

    E-Print Network [OSTI]

    D. A. Zaikin; I. V. Surkova

    2010-04-09T23:59:59.000Z

    It is shown that experimental values of the cross sections of inelastic low-energy neutron scattering on even-even nuclei together with the description of these cross sections in the framework of the coupled channel optical model may be considered as a reliable method for finding nuclei with a semimagic number (or numbers) of nucleons. Some examples of the application of this method are considered.

  9. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect (OSTI)

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng, E-mail: mphyszf@qq.com [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)

    2014-04-15T23:59:59.000Z

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  10. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  11. Neutron Scattering Stiudies

    SciTech Connect (OSTI)

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18T23:59:59.000Z

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  12. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11T23:59:59.000Z

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  13. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01T23:59:59.000Z

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  14. Composite solid-state scintillators for neutron detection

    DOE Patents [OSTI]

    Dai, Sheng; Im, Hee-Jung; Pawel, Michelle D.

    2006-09-12T23:59:59.000Z

    Applicant's present invention is a composite scintillator for neutron detection comprising a matrix material fabricated from an inorganic sol-gel precursor solution homogeneously doped with a liquid scintillating material and a neutron absorbing material. The neutron absorbing material yields at least one of an electron, a proton, a triton, an alpha particle or a fission fragment when the neutron absorbing material absorbs a neutron. The composite scintillator further comprises a liquid scintillating material in a self-assembled micelle formation homogeneously doped in the matrix material through the formation of surfactant-silica composites. The scintillating material is provided to scintillate when traversed by at least one of an electron, a proton, a triton, an alpha particle or a fission fragment. The scintillating material is configured such that the matrix material surrounds the micelle formation of the scintillating material. The composite scintillator is fabricated and applied as a thin film on substrate surfaces, a coating on optical fibers or as a glass material.

  15. Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering

  16. Why Use Neutrons For Research? | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    better understand how biomass can be efficiently converted into fuel. Neutrons have many properties that make them ideal for certain types of research. Because of their unique...

  17. REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.

    SciTech Connect (OSTI)

    HOLDEN, N.E.

    2004-09-26T23:59:59.000Z

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  18. Review of Non-Neutron and Neutron Nuclear Data, 2004

    SciTech Connect (OSTI)

    Holden, Norman E. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2005-05-24T23:59:59.000Z

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  19. Neutron cameras for ITER

    SciTech Connect (OSTI)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P. [ITER San Diego Joint Work Site, La Jolla, CA (United States)] [and others

    1998-12-31T23:59:59.000Z

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from {sup 16}N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with {sup 16}N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins.

  20. Development of a compact in situ polarized {sup 3}He neutron spin filter at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Jiang, C. Y.; Tong, X., E-mail: tongx@ornl.gov; Brown, D. R.; Kadron, B. J.; Robertson, J. L. [Instrument and Source Design Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Chi, S.; Christianson, A. D.; Winn, B. L. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-07-15T23:59:59.000Z

    We constructed a compact in situ polarized {sup 3}He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the {sup 3}He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% {sup 3}He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.

  1. EC 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas

    E-Print Network [OSTI]

    of Radiation for Crystal Diffraction (X-Rays, electrons, neutrons) - Scattering of X-Rays by an Atom Conductivity - Scattering of X-Rays, Neutrons and Light by Phonons - Microwave Untrasonic - Lattice Optical - Scattering of X-Rays by a Crystal - The Reciprocal Lattice and its Properties. - Diffraction Condition

  2. Neutron Detector Gamma Insensitivity Criteria

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Stephens, Daniel L.

    2009-10-21T23:59:59.000Z

    The shortage of 3He has triggered the search for an effective alternative neutron detection technology for radiation portal monitor applications. Any new detection technology must satisfy two basic criteria: 1) it must meet the neutron detection efficiency requirement, and 2) it must be insensitive to gamma ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this document to define this latter criterion.

  3. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  4. CHRPR Neutron Board Replacement Manual

    SciTech Connect (OSTI)

    Erikson, Rebecca L.; Myjak, Mitchell J.

    2013-03-31T23:59:59.000Z

    This document will walk through the steps to exchange the neutron channel boards with gamma channel boards in the CHRPR box.

  5. Analytical applications for delayed neutrons

    SciTech Connect (OSTI)

    Eccleston, G.W.

    1983-01-01T23:59:59.000Z

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes.

  6. Neutron-deuteron breakup and quasielastic scattering

    E-Print Network [OSTI]

    Ohlson, Alice Elisabeth

    2009-01-01T23:59:59.000Z

    Quasielastic scattering and deuteron breakup in the 200 MeV region is studied by impinging a pulsed neutron beam on a deuterium target at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center. The ...

  7. Requirements, possible alternatives & international NEUTRON SCATTERING

    E-Print Network [OSTI]

    Dimeo, Robert M.

    Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

  8. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

  9. New neutron physics using spallation sources

    SciTech Connect (OSTI)

    Bowman, C.D.

    1988-01-01T23:59:59.000Z

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. The energy range of neutron research which is being explored with these sources extends from thermal energies to almost 800 MeV. The emphasis here is on prospective experiments below 100 keV neutron energy using the intense neutron bursts produced by the Proton Storage Ring (PSR) at Los Alamos. 30 refs., 10 figs.

  10. Measuring the Neutron's Mean Square Charge Radius Using Neutron Interferometry

    E-Print Network [OSTI]

    F. E. Wietfeldt; M. Huber; T. C. Black; H. Kaiser; M. Arif; D. L. Jacobson; S. A. Werner

    2005-09-14T23:59:59.000Z

    The neutron is electrically neutral, but its substructure consists of charged quarks so it may have an internal charge distribution. In fact it is known to have a negative mean square charge radius (MSCR), the second moment of the radial charge density. In other words the neutron has a positive core and negative skin. In the first Born approximation the neutron MSCR can be simply related to the neutron-electron scattering length b_ne. In the past this important quantity has been extracted from the energy dependence of the total transmission cross-section of neutrons on high-Z targets, a very difficult and complicated process. A few years ago S.A. Werner proposed a novel approach to measuring b_ne from the neutron's dynamical phase shift in a perfect crystal close to the Bragg condition. We are conducting an experiment based on this method at the NIST neutron interferometer which may lead to a five-fold improvement in precision of b_ne and hence the neutron MSCR.

  11. Neutron Multiplicity Measurements With 3He Alternative: Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy

    2015-01-01T23:59:59.000Z

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  12. Time-resolved neutron imaging at ANTARES cold neutron beamline

    E-Print Network [OSTI]

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01T23:59:59.000Z

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  13. HFIR Experiment Facilities | ORNL Neutron Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Neutron Scattering Facilities at HFIR The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be...

  14. Search for: "neutron scattering" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Advanced Search All Fields: "neutron scattering" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search...

  15. 11th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th LANSCE School on Neutron Scattering LANSCE 11th LANSCE School on Neutron Scattering Home Abstract Lecturers Lecturer Abstracts Hands-On Experiments Free Day About the...

  16. LANSCE | International Collaboration on Advanced Neutron Sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LINAC Outreach Affiliations Visiting LANSCE Facilities Isotope Production Facility Lujan Neutron Scattering Center Materials Test Station Proton Radiography Ultra-Cold Neutrons...

  17. Measurement of the elastic scattering cross section of neutrons from argon and neon

    E-Print Network [OSTI]

    S. MacMullin; M. Kidd; R. Henning; W. Tornow; C. R. Howell; M. Brown

    2012-12-12T23:59:59.000Z

    Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detector's sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argon and neon, which are target materials of interest to the dark matter community, were previously unavailable. Purpose: Measure the differential cross section for elastic scattering of neutrons from argon and neon in the energy range relevant to backgrounds from (alpha,n) reactions in direct dark matter searches. Method: Cross-section data were taken at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. These data were fit using the spherical optical model. Results: The differential cross section for elastic scatting of neutrons from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model parameters for the elastic scattering reactions were determined from the best fit to these data. The total elastic scattering cross section for neon was found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model predictions. Compared to a local optical-model for 40Ar, the elastic scattering cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions: These new data are important for improving Monte-Carlo simulations and background estimates for direct dark matter searches and for benchmarking optical models of neutron elastic scattering from these nuclei.

  18. Physics of Neutron Star Crusts

    E-Print Network [OSTI]

    N. Chamel; P. Haensel

    2008-12-20T23:59:59.000Z

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  19. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01T23:59:59.000Z

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  20. Bundled monocapillary optics

    DOE Patents [OSTI]

    Hirsch, Gregory (1277 Linds Mar Center, Suite 128, Pacifica, CA 94044)

    2002-01-01T23:59:59.000Z

    A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.

  1. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  2. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect (OSTI)

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06T23:59:59.000Z

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  3. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

  4. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA)

    1997-01-01T23:59:59.000Z

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  5. Neutron Beta-Decay Jeff Martin

    E-Print Network [OSTI]

    Martin, Jeff

    : ­ superthermal sources for UCN, SNS's for CN #12;Example Experiment: The most precise measurements of neutron

  6. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27T23:59:59.000Z

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  7. Ultra-High Energy Cosmic Rays and Neutron-Decay Halos from Gamma Ray Bursts

    E-Print Network [OSTI]

    C. D. Dermer

    2001-03-20T23:59:59.000Z

    Simple arguments concerning power and acceleration efficiency show that ultra-high energy cosmic rays (UHECRS) with energies >~ 10^{19} eV could originate from GRBs. Neutrons formed through photo-pion production processes in GRB blast waves leave the acceleration site and travel through intergalactic space, where they decay and inject a very energetic proton and electron component into intergalactic space. The neutron-decay protons form a component of the UHECRs, whereas the neutron-decay electrons produce optical/X-ray synchrotron and gamma radiation from Compton-scattered background radiation. A significant fraction of galaxies with GRB activity should be surrounded by neutron-decay halos of characteristic size ~ 100 kpc.

  8. The Magnetism of Neutron States

    E-Print Network [OSTI]

    B. G. Sidharth

    2003-10-01T23:59:59.000Z

    The recent measurement by Bignami and co-workers of the magnetic field of a neutron star for the first time gives a value that differs by about two orders of magnitude from the expected value. The speculation has been that the nuclear matter in the neutron stars exhibits some exotic behaviour. In this note we argue that this exotic behaviour is an anomalous statistics obeyed by the neutrons, and moreover these considerations lead to a value of the magnetic field that agrees with the observation. The same considerations also correctly give the magnetic fields of the earth and Jupiter.

  9. Scattered neutron tomography based on a neutron transport problem 

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01T23:59:59.000Z

    scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

  10. Scattered neutron tomography based on a neutron transport problem

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01T23:59:59.000Z

    scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

  11. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect (OSTI)

    Ryutov, D D

    2011-09-01T23:59:59.000Z

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  12. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, David M. (Voorheesville, NY); Downing, Robert G. (Albany, NY)

    1997-01-01T23:59:59.000Z

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  13. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, D.M.; Downing, R.G.

    1997-02-18T23:59:59.000Z

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  14. The nuclear physics of neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2014-05-09T23:59:59.000Z

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  15. Los Alamos Neutron Science Center The Los Alamos Neutron Science Center (LANSCE) is a

    E-Print Network [OSTI]

    a target of tungsten metal, neutrons are produced. These neutrons and protons are used to investigate, high explosives used to initiate weapons detonations, and radioisotope production for medical the Isotope Production Facility, Lujan Center, Proton Radiography Facility, Ultracold Neutrons Facility

  16. Distribution of neutron resonance widths

    E-Print Network [OSTI]

    Hans A. Weidenmueller

    2011-10-28T23:59:59.000Z

    Recent data on neutron resonance widths indicate disagreement with the Porter-Thomas distribution (PTD). I discuss the theoretical arguments for the PTD, possible theoretical modifications, and I summarize the experimantal evidence.

  17. Coherent control of neutron interferometry

    E-Print Network [OSTI]

    Pushin, Dmitry A

    2007-01-01T23:59:59.000Z

    In this thesis, several novel techniques are proposed and demonstrated for measuring the coherent properties of materials and testing aspects of quantum information processing using a single crystal neutron interferometer. ...

  18. Materials for spallation neutron sources

    SciTech Connect (OSTI)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01T23:59:59.000Z

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  19. Ion chamber based neutron detectors

    DOE Patents [OSTI]

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16T23:59:59.000Z

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  20. acp safeguards neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29 Supercool Neutrons (Ultracold Neutrons) Physics Websites Summary: . Korobkina, NCSU Neutron scattering is a valuable tool to study the structure of materials. Because Helium...

  1. Neutron Scattering: Condensed Matter and Magnetic Science, MPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Neutron Scattering Capability description: Neutron scattering is a powerful probe of structure and collective modes of condensed matter. We are focused on direct...

  2. Application of neutron computed tomography in the geosciences

    E-Print Network [OSTI]

    Wilding, M.; Shields, K.; Lesher, C. E.

    2005-01-01T23:59:59.000Z

    of neutron computed tomography in the geosciences Martinthat applies neutron computed tomography (CT) to geologicalthe use of neutron computed tomography (CT) in the analy-

  3. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students calculate results About the LANSCE School on Neutron Scattering The annual Los Alamos Neutron Science Center (LANSCE) School on Neutron Scattering is 9- to 10-day school...

  4. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21T23:59:59.000Z

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  5. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  6. Fast-neutron interaction with collective cadmium nuclei

    SciTech Connect (OSTI)

    Smith, A.B.; Guenther, P.T.

    1992-11-01T23:59:59.000Z

    Differential neutron elastic-scattering cross sections of elemental cadmium are measured from [approx] 1.5 to 10 MeV. From [approx] 1.5 to 3.0 MeV the measurements are made at [approx] 100 keV incident-neutron energy intervals and at 10 scattering angles distributed between [approx] 200 and 160[degree]. From 3 to 4 MeV the measurements are made at [approx] 200 MeV intervals and at 20 angles. Above 4 MeV the incident-energy interval is [approx] 0.5 MeV with [ge] 40 differential values at each incident energy, distributed between [approx] 18 and 160[degree]. Concurrently, differential cross sections for the excitation of observed levels'' at 0.589 [plus minus] 0.047, 1.291 [plus minus] 0.066 and 1.839 [plus minus] 0.57 MeV are determined, with attention to the direct excitation of the yrast 2[sup +] levels of the even isotopes ([approx] 75% abundant) and of the 3/2[sup +] and 5/2[sup +] levels of the odd isotopes ([approx] 75% abundant). Optical-statistical, dispersive-optical and coupled-channels interpretations are carried out and comparisons made with regional'' and global'' parameters. Consideration is given to the fundamental nature of the real potential in the vicinity of the Fermi Surface with implications on the equation of state and the reduced mass, in the context of the dispersive optical model.

  7. Optical coupler

    DOE Patents [OSTI]

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15T23:59:59.000Z

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  8. Optical analyzer

    DOE Patents [OSTI]

    Hansen, A.D.

    1987-09-28T23:59:59.000Z

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  9. Optical memory

    DOE Patents [OSTI]

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02T23:59:59.000Z

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  10. Optical switch

    DOE Patents [OSTI]

    Reedy, R.P.

    1987-11-10T23:59:59.000Z

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  11. Numerical wave optics and the lensing of gravitational waves by globular clusters

    E-Print Network [OSTI]

    Andrew J. Moylan; David E. McClelland; Susan M. Scott; Antony C. Searle; G. V. Bicknell

    2007-10-16T23:59:59.000Z

    We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability is insignificantly small.

  12. System and apparatus for neutron radiography

    SciTech Connect (OSTI)

    Whittemore, W.L.

    1991-07-02T23:59:59.000Z

    This patent describes a neutron radiography apparatus. It comprises an imaging plane; a neutron moderator having a cavity defining a convergent collimator, the cavity having a base and converging walls of neutron moderating material terminating at an aperture; a divergent collimator coaxially joined to the cavity at the aperture, the divergent collimator having diverging walls of radiation- absorbing material extending from the aperture to an expanded distal opening for irradiating the imaging plane; sources of neutrons disposed symmetrically about the base of the cavity; a neutron moderating material disposed for maximum neutron thermalization between the sources and the base of the cavity; and means for substantially shielding the plane from electromagnetic energy.

  13. atomic bomb neutrons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the neutron density. Finally, in the case of neutron stars, where again the neutron-neutron scattering length is negative and fixed, we determine the condensate fraction as a...

  14. 2013 Review of Neutron and Non-Neutron Nuclear Data

    SciTech Connect (OSTI)

    Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-05-23T23:59:59.000Z

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature over the past three years since the ISRD-14 Symposium has been performed and the highlights are presented. Included in the data review are the status of new chemical elements, new measurements of the isotopic composition for many chemical elements and the resulting change in the atomic weight values. New half-life measurements for both short-lived and longlived nuclides, some alpha decay and double beta decay measurements for quasistable nuclides are discussed. The latest evaluation of atomic masses has been published. Data from new measurements on the very heavy (trans-meitnerium) elements are discussed and tabulated. Data on various recent neutron cross section and resonance integral measurements are discussed and tabulated.

  15. - and -delayed neutron- decay of neutron-rich copper isotopes

    SciTech Connect (OSTI)

    Korgul, A. [University of Warsaw; Rykaczewski, Krzysztof Piotr [ORNL; Winger, J. A. [Oak Ridge Associated Universities (ORAU); Ilyushkin, S. [Mississippi State University (MSU); Gross, Carl J [ORNL; Batchelder, J. C. [Oak Ridge Associated Universities (ORAU); Bingham, C. R. [University of Tennessee, Knoxville (UTK); Borzov, Ivan N [ORNL; Goodin, C. [Vanderbilt University; Grzywacz, Robert Kazimierz [ORNL; Hamilton, Joseph H [ORNL; Krolas, W. [Joint Institute for Heavy Ion Research, Oak Ridge; Liddick, S. N. [Oak Ridge Associated Universities (ORAU); Mazzocchi, C. [University of Warsaw; Nelson, C. [Vanderbilt University; Nowacki, F. [Institut Pluridisciplinaire Hubert Curien, Strasbourg, France; Padgett, Stephen [University of Tennessee, Knoxville (UTK); Piechaczek, A. [Louisiana State University; Rajabali, M. M. [University of Tennessee, Knoxville (UTK); Shapira, Dan [ORNL; Sieja, K. [Technische Universitat Darmstadt, Germany; Zganjar, E. F. [Louisiana State University

    2012-01-01T23:59:59.000Z

    The {beta}-decay properties of neutron-rich Cu isotopes produced in proton-induced fission of {sup 238}U were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The data were collected using high-resolution online mass separation, reacceleration, and digital {beta}-{gamma} spectroscopy methods. An improved decay scheme of N = 49 {sup 78}Cu and the first observation of N = 50 {sup 79}Cu {beta}-delayed neutron decay followed by a gamma transition are reported. Spin and parity (5{sup -}) are deduced for {sup 78gs}Cu. The {beta}-delayed neutron branching ratios (P{sub {beta}n}) for the {sup 77}Cu and {sup 79}Cu precursors are analyzed with the help of nuclear structure models.

  16. Sandia Energy - Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Optics Home Energy Research EFRCs Solid-State Lighting Science EFRC Quantum Optics Quantum OpticsTara Camacho-Lopez2015-03-30T16:37:03+00:00 Quantum Optics with a Single...

  17. Old and new neutron stars

    SciTech Connect (OSTI)

    Ruderman, M.

    1984-09-01T23:59:59.000Z

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  18. BF3 Neutron Detector Tests

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Woodring, Mitchell L.

    2009-12-09T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world; thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and detection capabilities are being investigated. Reported here are the results of tests of the efficiency of BF3 tubes at a pressure of 800 torr. These measurements were made partially to validate models of the RPM system that have been modified to simulate the performance of BF3-filled tubes. While BF3 could be a potential replacement for 3He, there are limitations to its use in deployed systems.

  19. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  20. Main challenges for ITER optical diagnostics

    SciTech Connect (OSTI)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S. [Tokamak Physics Institute, NRC Kurchatov Institute, 123182 Moscow (Russian Federation)

    2014-08-21T23:59:59.000Z

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  1. Neutron Imaging of Diesel Particulate Filters

    Broader source: Energy.gov (indexed) [DOE]

    August 3 2009 Non-invasive, non-destructive technique based on attenuation of the neutron beam. Neutrons interact with nuclei and their scattering power does not vary in...

  2. 10th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10th LANSCE School on Neutron Scattering LANSCE 10th LANSCE School on Neutron Scattering Home Abstract Lecturers Hands-On Experiments Free Day About the School Sponsors FAQ's...

  3. SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY A Thesis Presented to explain the baryon asymmetry of the universe. In this thesis, a limit on the neutron anti-neutron (nnbar is sampled from the three phases of the SNO experiment to construct a three-phase blind analysis. The profile

  4. LAT and Solar Neutrons: Preliminary estimates

    SciTech Connect (OSTI)

    Longo, Francesco [Department of Physics, University of Trieste, Trieste, via Valerio 2, 34127 Trieste (Italy)]|[INFN, Trieste, via Valerio 2, 34127 Trieste (Italy)

    2007-07-12T23:59:59.000Z

    GLAST LAT will detect several solar flares in gamma rays. Motivated by the CGRO results on neutrons emitted during a solar flare, we try to estimate the possibility of the LAT to detect solar neutrons. Besides gamma rays, neutrons could indeed interact in the LAT instrument and mimic a gamma-ray signal. An estimate of the contamination of gamma-ray detection in solar flares by the neutron component is given.

  5. Parallel optical sampler

    DOE Patents [OSTI]

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20T23:59:59.000Z

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  6. Nuclear Physics of Neutron Stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2009-01-28T23:59:59.000Z

    Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

  7. CHINA SPALLATION NEUTRON SOURCE DESIGN.

    SciTech Connect (OSTI)

    WEI,J.

    2007-01-29T23:59:59.000Z

    The China Spallation Neutron Source (CSNS) is an accelerator-based high-power project currently in preparation under the direction of the Chinese Academy of Sciences (CAS). The complex is based on an H- linear accelerator, a rapid cycling proton synchrotron accelerating the beam to 1.6 GeV, a solid tungsten target station, and five initial instruments for spallation neutron applications. The facility will operate at 25 Hz repetition rate with a phase-I beam power of about 120 kW. The major challenge is to build a robust and reliable user's facility with upgrade potential at a fractional of ''world standard'' cost.

  8. High-pressure neutron diffraction

    SciTech Connect (OSTI)

    Xu, Hongwu [Los Alamos National Laboratory

    2011-01-10T23:59:59.000Z

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  9. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  10. Neutron Science | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering3 Neutron

  11. A neutron transmission study of environmental Gd

    E-Print Network [OSTI]

    Cristiana Oprea; Ioan Alexandru Oprea; Alexandru Mihul

    2014-06-02T23:59:59.000Z

    A new method for the determination of environmental Gd by neutron transmission (NT) experiments is proposed. The NT method is based on the measurements of neutron spectra passing through a target. From the attenuation neutron spectra new data as concentration, width, resonance energies and cross section have been obtained.

  12. Neutron Scattering Studies of Correlated Electron Systems

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron Scattering Studies of Correlated Electron Systems Lucy Helme Thesis submitted submitted for the Degree of Doctor of Philosophy, Trinity Term 2006 This thesis presents neutron scatteringO2, through inelastic neutron scattering studies of the crystal field transitions above and below

  13. RisR1125(EN) Neutron Scattering

    E-Print Network [OSTI]

    Risø­R­1125(EN) Neutron Scattering Studies of Modulated Magnetic Structures Steen Aagaard Sørensen investigations of the magnetic systems DyFe4Al8 and MnSi by neutron scattering and in the former case also by X and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering

  14. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  15. The bound coherent neutron scattering length of the oxygen isotopes

    SciTech Connect (OSTI)

    Fischer, Henry E [Institut Laue-Langevin (ILL); Simonson, J Michael {Mike} [ORNL; Neuefeind, Joerg C [ORNL; Lemmel, Hartmut [Technical University Vienna; Rauch, Helmut [E141 Atominstitut der Österreichischen Universitäten,; Zeidler, Anita [University of Bath; Salmon, Phil [University of Bath

    2012-01-01T23:59:59.000Z

    The technique of neutron interferometry was used to measure the bound coherent neutron scattering length bcoh of the oxygen isotopes 17O and 18O. From the measured difference in optical path between two water samples, either H2 17O or H2 18O versus H2 natO, where nat denotes the natural isotopic composition, we obtain bcoh , 17O = 5.867(4) fm and bcoh , 18O = 6.009(5) fm, based on the accurately known value of bcoh , natO = 5.805(4) fm which is equal to bcoh , 16O within the experimental uncertainty. Our results for bcoh , 17O and bcoh , 18O differ appreciably from the standard tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured scattering length contrast of 0.204(3) fm between 18O and natO is nearly a factor of 6 greater than the tabulated value, which renders feasible neutron diffraction experiments using 18O isotope substitution and thereby offers new possibilites for measuring the partial structure factors of oxygen-containing compounds, such as water.

  16. X-Ray spectra from protons illuminating a neutron star

    E-Print Network [OSTI]

    B. Deufel; C. P. Dullemond; H. C. Spruit

    2001-08-28T23:59:59.000Z

    We consider the interaction of a slowly rotating unmagnetized neutron star with a hot (ion supported, ADAF) accretion flow. The virialized protons of the ADAF penetrate into the neutron star atmosphere, heating a surface layer. Detailed calculations are presented of the equilibrium between heating by the protons, electron thermal conduction, bremsstrahlung and multiple Compton scattering in this layer. Its temperature is of the order 40-70 keV. Its optical depth increases with the incident proton energy flux, and is of the order unity for accretion at $10^{-2}$--$10^{-1}$ of the Eddington rate. At these rates, the X-ray spectrum produced by the layer has a hard tail extending to 100 keV, and is similar to the observed spectra of accreting neutron stars in their hard states. The steep gradient at the base of the heated layer gives rise to an excess of photons at the soft end of the spectrum (compared to a blackbody) through an `inverse photosphere effect'. The differences with respect to previous studies of similar problems are discussed, they are due mostly to a more accurate treatment of the proton penetration process and the vertical structure of the heated layer.

  17. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01T23:59:59.000Z

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  18. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect (OSTI)

    Iverson, E. B.

    1999-01-04T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  19. 2002 REVIEW OF NEUTRON AND NON NEUTRON NUCLEAR DATA.

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    2002-08-18T23:59:59.000Z

    Review articles are in preparation for the 2003 edition of the CRC's Handbook of Chemistry and Physics dealing with both non-neutron and neutron nuclear data. Highlights include: withdrawal of the claim for discovery of element 118; new measurements of isotopic abundances have led to changes for many elements; a new set of recommended standards for calibration of {gamma}-ray energies have been published for many nuclides; new half-life measurements reported for very short lived isotopes, many long-lived nuclides and {beta}{beta} decay measurements for quasi-stable nuclides; a new reassessment of spontaneous fission (sf) half-lives for ground state nuclides, distinguishing half-lives from sf decay and cluster decay half-lives and the new cluster-fission decay; charged particle cross sections, (n,p) and (n,{alpha}) measurements for thermal neutrons incident on light nuclides; new thermal (n,{gamma}) cross sections and neutron resonance integrals measured. Details are presented.

  20. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    SciTech Connect (OSTI)

    William Charlton

    2007-07-01T23:59:59.000Z

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  1. Neutron producing target for accelerator based neutron source for

    E-Print Network [OSTI]

    Taskaev, Sergey Yur'evich

    therapy [1, 2]. Lithium targets for two modes of neutron beam production are developed. The first one. Target will be created as a 2 ­ 3 µm thick lithium layer on the surface of tungsten disk cooled by liquidW cm­2 . ii) Production of target with lithium layer thickness of 2 ­ 3 µm. #12;248 iii) Evaporation

  2. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, A.J.

    1997-08-19T23:59:59.000Z

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  3. Final Report - Nucelar Astrophysics & Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    Carlton, Robert F

    2009-12-01T23:59:59.000Z

    This enduring research program of 28 years has taken advantage of the excellent research facility of ORELA at Oak Ridge National Laboratory. The fruitful collaborations include a number of scientists from ORNL and some from LASL. This program which has ranged from nuclear structure determinations to astrophysical applications has resulted in the identification and/or the refinement of the nuclear properties of more than 5,000 nuclear energy levels or compound energy states. The nuclei range from 30Si to 250Cf, the probes range from thermal to 50 MeV neutrons, and the studies range from capture gamma ray spectra to total and differential scattering and absorption cross sections. Specific target nuclei studied include the following: 120Sn 124Sn 125Sn 113Sn 115Sn 117Sn 119Sn 249Cf 33S 34S 249Bk 186Os 187Os 188Os 30Si 32S 40Ca 48Ca 60Ni 54Fe 86Kr 88Sr 40Ar 122Sn 90Zr 122Sn(n,?) 208Pb 204Pb 52Cr 54Cr 50Cr 53Cr As can be seen, we have studied, on average, more than one isotope per year of grant funding and have focused on exploiting those elements having multiple isotopes in order to investigate systematic trends in nuclear properties, for the purpose of providing more stringent tests of the nuclear spherical optical model with a surface imaginary potential. We have investigated an l-dependence of the real-well depth of the spherical optical model; we have used these measurements to deduce the existence of doorway states in the compound nucleus; and in the total cross section measurements we have, in addition to resonance energies and widths, obtained values for the level density and neutron strength function. Due to the high neutron energy resolution of the ORELA and in some cases the addition of differential scattering cross section data, we have been able to disaggregate the spin states and provide level spacing and strength function for each partial wave in the neutron-nucleus interaction, in some cases up to d5/2. In the following we will summarize the most recent analyses of neutron total cross section measurements, some of which have not been previously reported.

  4. Ultrafast optics For optics and photonics course,

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    ultrafast and ultrashort generally describe pulses of widths in the nanosecond to femtosecond, or shorterUltrafast optics For optics and photonics course, Spring 2012 By :Alireza Moheghi Ultrafast optics, regimes. · Interest in ultrashort optical pulses began with the invention of the laser, · Ultrashort

  5. Optics and Optical Engineering Program Assessment Plan Program Learning Objectives

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Optics and Optical Engineering Program Assessment Plan Program Learning, and processes that underlie optics and optical engineering. 2. Strong understanding of the fundamental science, mathematics, and processes that underlie optics and optical

  6. Resonant Cyclotron Scattering and Comptonization in Neutron Star Magnetospheres

    E-Print Network [OSTI]

    Maxim Lyutikov; Fotis P. Gavriil

    2006-02-10T23:59:59.000Z

    Resonant cyclotron scattering of the surface radiation in the magnetospheres of neutron stars may considerably modify the emergent spectra and impede efforts to constraint neutron star properties. Resonant cyclotron scattering by a non-relativistic warm plasma in an inhomogeneous magnetic field has a number of unusual characteristics: (i) in the limit of high resonant optical depth, the cyclotron resonant layer is half opaque, in sharp contrast to the case of non-resonant scattering. (ii) The transmitted flux is on average Compton up-scattered by ~ $1+ 2 beta_T$, where $\\beta_T$ is the typical thermal velocity in units of the velocity of light; the reflected flux has on average the initial frequency. (iii) For both the transmitted and reflected fluxes the dispersion of intensity decreases with increasing optical depth. (iv) The emergent spectrum is appreciably non-Plankian while narrow spectral features produced at the surface may be erased. We derive semi-analytically modification of the surface Plankian emission due to multiple scattering between the resonant layers and apply the model to anomalous X-ray pulsar 1E 1048.1--5937. Our simple model fits just as well as the ``canonical'' magnetar spectra model of a blackbody plus power-law.

  7. Maximally incompressible neutron star matter

    E-Print Network [OSTI]

    Timothy S. Olson

    2000-12-07T23:59:59.000Z

    Relativistic kinetic theory, based on the Grad method of moments as developed by Israel and Stewart, is used to model viscous and thermal dissipation in neutron star matter and determine an upper limit on the maximum mass of neutron stars. In the context of kinetic theory, the equation of state must satisfy a set of constraints in order for the equilibrium states of the fluid to be thermodynamically stable and for perturbations from equilibrium to propagate causally via hyperbolic equations. Application of these constraints to neutron star matter restricts the stiffness of the most incompressible equation of state compatible with causality to be softer than the maximally incompressible equation of state that results from requiring the adiabatic sound speed to not exceed the speed of light. Using three equations of state based on experimental nucleon-nucleon scattering data and properties of light nuclei up to twice normal nuclear energy density, and the kinetic theory maximally incompressible equation of state at higher density, an upper limit on the maximum mass of neutron stars averaging 2.64 solar masses is derived.

  8. Neutron Detection via Bubble Chambers

    SciTech Connect (OSTI)

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06T23:59:59.000Z

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  9. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect (OSTI)

    Misti A Lillo

    2014-06-01T23:59:59.000Z

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  10. Oxygen as a site specific structural probe in neutron diffraction

    SciTech Connect (OSTI)

    Neuefeind, Joerg C [ORNL; Simonson, J Michael {Mike} [ORNL; Salmon, Phil [University of Bath; Zeidler, Anita [University of Bath; Fischer, Henry E [Institut Laue-Langevin (ILL); Rauch, Helmut [E141 Atominstitut der & #xD6; sterreichischen Universit& #xE4; ten,; Markland, Thomas [Columbia University; Lemmel, Hartmut [Technical University Vienna

    2011-01-01T23:59:59.000Z

    Oxygen is a ubiquitous element, playing an essential role in most scientific and technological disciplines, and is often incorporated within a structurally disordered material where examples include molten silicates in planetary science, glasses used for lasers and optical communication, and water in biological processes. Establishing the structure of a liquid or glassy oxide and thereby its relation to the functional properties of a material is not, however, a trivial task owing to the complexity associated with atomic disorder. Here we approach this challenge by measuring the bound coherent neutron scattering lengths of the oxygen isotopes with the sensitive technique of neutron interferometry. We find that there is a small but finite contrast of 0.204(6) fm between the scattering lengths of the isotope 18O and oxygen of natural isotopic abundance natO, contrary to tables of recommended values. This has enabled us to investigate the structure of both light and heavy water by exploiting, for the first time, the method of oxygen isotope substitution in neutron diffraction, thus circumventing many of the significant problems associated with more traditional methods in which hydrogen is substituted by deuterium. We find a difference of ~0.5% between the O-H and O-D intra-molecular bond distances which is much smaller than recent estimates based on diffraction data and is found to be in excellent agreement with path integral molecular dynamics simulations made with a flexible polarisable water model. Our results demonstrate the potential for using oxygen isotope substitution as a powerful and effective site specific probe in a plethora of materials, of pertinence as instrumentation at next generation neutron sources comes online

  11. Optical microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-01-11T23:59:59.000Z

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  12. Optical devices

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn Jr., William A.

    2010-07-13T23:59:59.000Z

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  13. Optical microfluidics

    SciTech Connect (OSTI)

    Kotz, K.T.; Noble, K.A.; Faris, G.W. [Molecular Physics Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (United States)

    2004-09-27T23:59:59.000Z

    We present a method for the control of small droplets based on the thermal Marangoni effect using laser heating. With this approach, droplets covering five orders of magnitude in volume ({approx}1.7 {mu}L to 14 pL), immersed in decanol, were moved on an unmodified polystyrene surface, with speeds of up to 3 mm/s. When two droplets were brought into contact, they spontaneously fused and rapidly mixed in less than 33 ms. This optically addressed microfluidic approach has many advantages for microfluidic transport, including exceptional reconfigurability, low intersample contamination, large volume range, extremely simple substrates, no electrical connections, and ready scaling to large arrays.

  14. Solid oxygen as converter for the production of ultra-cold neutrons

    E-Print Network [OSTI]

    Frei, A; Bozhanova, R; Gutsmiedl, E; Huber, T; Klenke, J; Paul, S; Wlokka, S

    2010-01-01T23:59:59.000Z

    We have investigated solid oxygen as a converter material for the production of ultra-cold neutrons. In a first series of experiments the crystal preparation was examined. An optically semi-transparent solid alpha-oxygen crystal has been prepared. In a second series of experiments this crystal has been exposed to the cold neutron flux of the MEPHISTO beam line of the FRM II. Ultra-cold neutrons produced inside the oxygen crystal have been extracted and the count rates have been measured at different converter temperatures. The results of these measurements give a clear signal of the superthermal production mechanism due to antiferromagnetic lattice excitations in alpha-oxygen. The mean free loss length of UCN inside the crystal was determined to be approximately 30cm.

  15. Ultracold neutron accumulation in a superfluid-helium converter with magnetic multipole reflector

    E-Print Network [OSTI]

    O. Zimmer; R. Golub

    2015-03-04T23:59:59.000Z

    We analyze accumulation of ultracold neutrons (UCN) in a superfluid-helium converter vessel surrounded by a magnetic multipole reflector. We solved the spin-dependent rate equation, employing formulas valid for adiabatic spin transport of trapped UCN in mechanical equilibrium. Results for saturation UCN densities are obtained in dependence of order and strength of the multipolar field. The addition of magnetic storage to neutron optical potentials can increase the density and energy of the low field seeking UCN produced and serves to mitigate the effects of wall losses on the source performance. It also can provide a highly polarized sample of UCN without need to polarize the neutron beam incident on the converter. This work was performed in preparation of the UCN source project SuperSUN at the ILL.

  16. Solid oxygen as converter for the production of ultra-cold neutrons

    E-Print Network [OSTI]

    A. Frei; F. Böhle; R. Bozhanova; E. Gutsmiedl; T. Huber; J. Klenke; S. Paul; S. Wlokka

    2011-07-11T23:59:59.000Z

    We have investigated solid oxygen as a converter material for the production of ultra-cold neutrons. In a first series of experiments the crystal preparation was examined. An optically semi-transparent solid $\\alpha$-oxygen crystal has been prepared. In a second series of experiments such a crystal prepared indentically as in the first series of experiments has been exposed to the cold neutron flux of the MEPHISTO beam line of the FRM II. Ultra-cold neutrons produced inside the oxygen crystal have been extracted and the count rates have been measured at different converter temperatures. The results of these measurements give a clear signal of the superthermal UCN production mechanism in $\\alpha$-oxygen. The mean free loss length of UCN inside the crystal at a temperature of 5\\,K was determined to be in the order of $20\\,\\mathrm{cm}$.

  17. Neutron sources: Present practice and future potential

    SciTech Connect (OSTI)

    Cierjacks, S.; Smith, A.B.

    1988-01-01T23:59:59.000Z

    The present capability and future potential of accelerator-based monoenergetic and white neutron sources are outlined in the context of fundamental and applied neutron-nuclear research. The neutron energy range extends from thermal to 500 MeV, and the time domain from steady-state to pico-second pulsed sources. Accelerator technology is summarized, including the production of intense light-ion, heavy-ion and electron beams. Target capabilities are discussed with attention to neutron-producing efficiency and power-handling capabilities. The status of underlying neutron-producing reactions is summarized. The present and future use of neutron sources in: fundamental neutron-nuclear research, nuclear data acquisition, materials damage studies, engineering tests, and biomedical applications are discussed. Emphasis is given to current status, near-term advances well within current technology, and to long-range projections. 90 refs., 4 figs.

  18. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01T23:59:59.000Z

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  19. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30T23:59:59.000Z

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.

  20. Delayed neutron yield from fast neutron induced fission of sup 2 sup 3 sup 8 U

    E-Print Network [OSTI]

    Piksaikin, V M; Isaev, S G; Kazakov, L E; Roshchenko, V A; Tertytchnyi, R G

    2001-01-01T23:59:59.000Z

    The measurements of the total delayed neutron yield from fast neutron induced fission of sup 2 sup 3 sup 8 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of sup 2 sup 3 sup 8 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant.

  1. Fast-neutron interaction with collective cadmium nuclei

    SciTech Connect (OSTI)

    Smith, A.B.; Guenther, P.T.

    1992-11-01T23:59:59.000Z

    Differential neutron elastic-scattering cross sections of elemental cadmium are measured from {approx} 1.5 to 10 MeV. From {approx} 1.5 to 3.0 MeV the measurements are made at {approx} 100 keV incident-neutron energy intervals and at 10 scattering angles distributed between {approx} 200 and 160{degree}. From 3 to 4 MeV the measurements are made at {approx} 200 MeV intervals and at 20 angles. Above 4 MeV the incident-energy interval is {approx} 0.5 MeV with {ge} 40 differential values at each incident energy, distributed between {approx} 18 and 160{degree}. Concurrently, differential cross sections for the excitation of observed ``levels`` at 0.589 {plus_minus} 0.047, 1.291 {plus_minus} 0.066 and 1.839 {plus_minus} 0.57 MeV are determined, with attention to the direct excitation of the yrast 2{sup +} levels of the even isotopes ({approx} 75% abundant) and of the 3/2{sup +} and 5/2{sup +} levels of the odd isotopes ({approx} 75% abundant). Optical-statistical, dispersive-optical and coupled-channels interpretations are carried out and comparisons made with ``regional`` and ``global`` parameters. Consideration is given to the fundamental nature of the real potential in the vicinity of the Fermi Surface with implications on the equation of state and the reduced mass, in the context of the dispersive optical model.

  2. Cyclotron-based neutron source for BNCT

    SciTech Connect (OSTI)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19T23:59:59.000Z

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  3. SURFACE NONLINEAR OPTICS

    E-Print Network [OSTI]

    Shen, Y.R.

    2010-01-01T23:59:59.000Z

    B. de Castro, and Y. R. Shen, Optics Lett. i, 393 See, for3, 1980 SURFACE NONLINEAR OPTICS Y.R. Shen, C.K. Chen, andde Janiero SURFRACE NONLINEAR OPTICS Y. R. Shen, C. K. Chen,

  4. NONLINEAR OPTICS AT INTERFACES

    E-Print Network [OSTI]

    Chen, Chenson K.

    2010-01-01T23:59:59.000Z

    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1977) p.Research Division NONLINEAR OPTICS AT INTERFACES Chenson K.ED LBL-12084 NONLINEAR OPTICS AT INTERFACES Chenson K. Chen

  5. The SLS optics beamline

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    The SLS Optics Beamline U. Flechsig ? , R. Abela ? , R.in the ?eld of x-ray optics and synchrotron radiation in-radiation, beamline optics, channel cut monochromator,

  6. Optical manifold

    DOE Patents [OSTI]

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23T23:59:59.000Z

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  7. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    E-Print Network [OSTI]

    Bao-Guo Dong

    2014-09-22T23:59:59.000Z

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results will confirm our prediction that is in the whole interacting region or distance of nuclear force in all energy region from zero to infinite, Only repulsive nuclear force exists among identical nucleons and only among different nucleons exists attractive nuclear force.

  8. Workshop on neutron capture therapy

    SciTech Connect (OSTI)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01T23:59:59.000Z

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  9. Optical absorption measurement system

    DOE Patents [OSTI]

    Draggoo, Vaughn G. (Livermore, CA); Morton, Richard G. (San Diego, CA); Sawicki, Richard H. (Pleasanton, CA); Bissinger, Horst D. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  10. General Electric PETtrace cyclotron as a neutron source for boron neutron capture therapy 

    E-Print Network [OSTI]

    Bosko, Andrey

    2005-11-01T23:59:59.000Z

    This research investigates the use of a PETtrace cyclotron produced by General Electric (GE) as a neutron source for boron neutron capture therapy (BNCT). The GE PETtrace was chosen for this investigation because this type of cyclotron is popular...

  11. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect (OSTI)

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B., E-mail: plb@nf.jinr.ru; Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I. [Joint Institute for Nuclear Research (Russian Federation)

    2007-06-15T23:59:59.000Z

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  12. Ion sources for sealed neutron tubes

    SciTech Connect (OSTI)

    Burns, E.J.T. [Sandia National Labs., Albuquerque, NM (United States). Neutron Tube Dept.; Bischoff, G.C. [Lockheed Martin Specialty Components, Largo, FL (United States)

    1996-11-01T23:59:59.000Z

    Fast and thermal neutron activation analysis with sealed neutron generators has been used to detect oil (oil logging), hazardous waste, fissile material, explosives, and contraband (drugs). Sealed neutron generators, used in the above applications, must be small and portable, have good electrical efficiency and long life. The ion sources used in the sealed neutron tubes require high gas utilization efficiencies or low pressure operation with high ionization efficiencies. In this paper, the authors compare a number of gas ion sources that can be used in sealed neutron tubes. The characteristics of the most popular ion source, the axial Penning discharge will be discussed as part of the zetatron neutron generator. Other sources to be discussed include the SAMIS source and RF ion source.

  13. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect (OSTI)

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17T23:59:59.000Z

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  14. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    SciTech Connect (OSTI)

    Diener, J. P. W. [Institute of Theoretical Physics, Stellenbosch University, P.O. Box X1, Matieland, 7602 (South Africa); Scholtz, F. G. [Institute of Theoretical Physics, Stellenbosch University, P.O. Box X1, Matieland, 7602 (South Africa); National Institute for Theoretical Physics, P.O. Box X1, Matieland, 7602 (South Africa)

    2011-09-21T23:59:59.000Z

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  15. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30T23:59:59.000Z

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  16. Information from leading neutrons at HERA

    E-Print Network [OSTI]

    V. A. Khoze; A. D. Martin; M. G. Ryskin

    2006-06-20T23:59:59.000Z

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the x_L and p_t spectra of leading neutrons, and the Q^2 dependence of the cross section, with the existing ZEUS data.

  17. Imaging techniques utilizing optical fibers and tomography

    SciTech Connect (OSTI)

    Wilke, M.; King, N.S.P.; Gray, N.; Johnson, D.; Esquibel, D.; Nedrow, P.; Ishiwata, S.

    1985-01-01T23:59:59.000Z

    Two-dimensional, time-dependent images generated by neutrons, gamma rays, and x-rays incident on fast scintillators are relayed to streak and video cameras over optical fibers. Three dimensions, two spatial and one temporal, have been reduced to two, one in space and time utilizing sampling methods permitting reconstruction of a time-dependent, two-dimensional image subsequent to data recording. The manner in which the sampling is done optimized the ability to reconstruct the image via a maximization of entropy algorithm. This method uses four linear fiber optic arrays typically 30 meters long and up to 35 elements each. A further refinement of this technique collapses the linear array information into four single fibers by wavelength multiplexing. This permits economical transmission of the data over kilometer distances to the recording equipment.

  18. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the endothelial cells and the supporting substrate. In what may be the first use of neutron scattering to study complex bio-medical systems under dynamic conditions, Los...

  19. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08T23:59:59.000Z

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  20. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Science Division Hassina Z. Bilheux & Sophie Voisin Oak Ridge National Laboratory Neutron Scattering Science Division Jens Gregor University of Tennessee - Knoxville Dept....

  1. The Neutron Imaging Diagnostic at NIF

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherly, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-10-01T23:59:59.000Z

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of ICF implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  2. Neutronic Characterization of the Megapie Target

    E-Print Network [OSTI]

    Stefano Panebianco; Olivier Bringer; Pavel Bokov; Sebastien Chabod; Frederic Chartier; Emmeric Dupont; Diane Dore; Xavier Ledoux; Alain Letourneau; Ludovic Oriol; Aurelien Prevost; Danas Ridikas; Jean-Christian Toussaint

    2007-10-31T23:59:59.000Z

    The MEGAPIE project is one of the key experiments towards the feasibility of Accelerator Driven Systems. On-line operation and post-irradiation analysis will provide the scientific community with unique data on the behavior of a liquid spallation target under realistic irradiation conditions. A good neutronics performance of such a target is of primary importance towards an intense neutron source, where an extended liquid metal loop requires some dedicated verifications related to the delayed neutron activity of the irradiated PbBi. In this paper we report on the experimental characterization of the MEGAPIE neutronics in terms of the prompt neutron (PN) flux inside the target and the delayed neutron (DN) flux on the top of it. For the PN measurements, a complex detector, made of 8 microscopic fission chambers, has been built and installed in the central part of the target to measure the absolute neutron flux and its spatial distribution. Moreover, integral information on the neutron energy distribution as a function of the position along the beam axis could be extracted, providing integral constraints on the neutron production models implemented in transport codes such as MCNPX. For the DN measurement, we used a standard 3He counter and we acquired data during the start-up phase of the target irradiation in order to take sufficient statistics at variable beam power. Experimental results obtained on the PN flux characteristics and their comparison with MCNPX simulations are presented, together with a preliminary analysis of the DN decay time spectrum.

  3. Compound Refractive Lenses for Thermal Neutron Applications

    SciTech Connect (OSTI)

    Gary, Charles K.

    2013-11-12T23:59:59.000Z

    This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

  4. LANSCE | Lujan Center | Highlights | Neutron Reflectometry (NR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the crystallinity of the sample (single crystal, polycrystalline, or amorphous). Neutron scattering is a unique tool to study such nanolayered composites because the...

  5. Data Analysis & Visualization | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis and Visualization As the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities'...

  6. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

  7. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27T23:59:59.000Z

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  8. Neutron Data Analysis & Visualization | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis and Visualization As the data sets generated by the increasingly powerful neutron scattering instruments at HFIR and SNS grow ever more massive, the facilities'...

  9. Ultracold Neutrons at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the decay electrons. UCNb UCNb measures the potential distortion of the neutron beta-decay energy spectrum due to physics beyond the Standard Model. Nab The Nab...

  10. Dynamic Fiber Optic Sensors Under Intense Radioactive Environments

    SciTech Connect (OSTI)

    Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

    1998-10-15T23:59:59.000Z

    A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

  11. World record neutron beam at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    World record neutron beam at LANL World record neutron beam at Los Alamos National Laboratory Scientists have created the largest neutron beam ever made by a short-pulse laser,...

  12. 22.05 Neutron Science and Reactor Physics, Fall 2006

    E-Print Network [OSTI]

    Bernard, John A.

    This course introduces fundamental properties of the neutron. It covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point ...

  13. UNIVERSITY OF CALIFORNIA Inelastic Neutron Scattering Study of the

    E-Print Network [OSTI]

    Lawrence, Jon

    UNIVERSITY OF CALIFORNIA IRVINE Inelastic Neutron Scattering Study of the Intermediate Valence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Inelastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.a Neutron Scattering Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.b

  14. Fully portable, highly flexible dilution refrigerator systems for neutron scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    775 Fully portable, highly flexible dilution refrigerator systems for neutron scattering P. A systems developed specifically for neutron scattering environ- ments. The refrigerators are completely relatively recently however, the lowest temperatures available in almost all neutron scattering laboratories

  15. EIS-0247: Construction and Operation of the Spallation Neutron Source

    Broader source: Energy.gov [DOE]

    The United States needs a high-flux, short- pulsed neutron source to provide its scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron...

  16. Precision neutron interferometric measurements of the n-p, n-d, and n-3He zero-energy coherent neutron scattering amplitudes

    E-Print Network [OSTI]

    P. R. Huffman; M. Arif; T. C. Black; D. L. Jacobson; K. Schoen; W. M. Snow; S. A. Werner

    2005-08-12T23:59:59.000Z

    We have performed high precision measurements of the zero-energy neutron scattering amplitudes of gas phase molecular hydrogen, deuterium, and $^{3}$He using neutron interferometry. We find $b_{\\mathit{np}}=(-3.7384 \\pm 0.0020)$ fm\\cite{Schoen03}, $b_{\\mathit{nd}}=(6.6649 \\pm 0.0040)$ fm\\cite{Black03,Schoen03}, and $b_{n^{3}\\textrm{He}} = (5.8572 \\pm 0.0072)$ fm\\cite{Huffman04}. When combined with the previous world data, properly corrected for small multiple scattering, radiative corrections, and local field effects from the theory of neutron optics and combined by the prescriptions of the Particle Data Group, the zero-energy scattering amplitudes are: $b_{\\mathit{np}}=(-3.7389 \\pm 0.0010)$ fm, $b_{\\mathit{nd}}=(6.6683 \\pm 0.0030)$ fm, and $b_{n^{3}\\textrm{He}} = (5.853 \\pm .007)$ fm. The precision of these measurements is now high enough to severely constrain NN few-body models. The n-d and n-$^{3}$He coherent neutron scattering amplitudes are both now in disagreement with the best current theories. The new values can be used as input for precision calculations of few body processes. This precision data is sensitive to small effects such as nuclear three-body forces, charge-symmetry breaking in the strong interaction, and residual electromagnetic effects not yet fully included in current models.

  17. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  18. Optical XOR gate

    DOE Patents [OSTI]

    Vawter, G. Allen

    2013-11-12T23:59:59.000Z

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  19. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A. [Centro NAST, Universita degli Studi di Roma Tor Vergata (Italy); Gorini, G.; Tardocchi, M. [Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca (Italy); Paccagnella, A.; Gerardin, S. [Dipartimento di Ingegneria dell'Informazione, Universita di Padova (Italy); Frost, C. D.; Ansell, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Platt, S. P. [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, Lancs. PR1 2HE (United Kingdom)

    2008-03-17T23:59:59.000Z

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  20. Investigation of delayed neutron emission through neutron and gamma- ray spectroscopy

    E-Print Network [OSTI]

    Kratz, K L; Ohm, H; Franz, H; Ristori, C; Zendel, M; Herrmann, G; Nuh, F M; Slaughter, D R; Shihab-Eldin, A A; Prussin, S G

    1976-01-01T23:59:59.000Z

    Fast radiochemical separations have permitted detailed and high resolution measurements of neutron and gamma -ray spectra from several delayed neutron emitting systems. The apparent discrete line structure in delayed neutron spectra, high intensity neutron branching to excited states in decay of intermediate levels in the emitter, and the peaking in the beta /sup -/-decay intensity to regions well above the neutron binding energy, indicate persistence of distinct nuclear structure effects at excitation energies of 5-7 MeV in the emitter nuclides.

  1. Calibration of the JET neutron yield monitors using the delayed neutron counting technique

    SciTech Connect (OSTI)

    van Belle, P.; Jarvis, O.N.; Sadler, G. (JET Joint Undertaking, Abingdon, Oxfordshire OX14 3EA (Great Britain)); de Leeuw, S.; D'Hondt, P. (C.E.N./S.C.K., B-2400 Mol (Belgium)); Pillon, M. (Associazione EURATOM-ENEA, CRE Frascati (Italy))

    1990-10-01T23:59:59.000Z

    The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET.

  2. accelerator based neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of suitable neutron sources that are compactible with installation in a hospital enviroment. A low-energy accelerator-based neutron source has the potential for meeting...

  3. ans advanced neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    readout using discriminators have the advantage of being able to treat several neutron impacts partially overlapping in time, hence reducing global dead time. A single neutron...

  4. alternative neutron sources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of suitable neutron sources that are compactible with installation in a hospital enviroment. A low-energy accelerator-based neutron source has the potential for meeting...

  5. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  6. Joint Institute for Neutron Sciences | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Institute for Neutron Sciences SHARE Joint Institute for Neutron Sciences JINS is located on Chestnut Ridge within the 80-acre SNS site, part of Oak Ridge National...

  7. Non-Destructive Neutron Imaging to Analyze Particulate Filters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutron Imaging to Analyze Particulate Filters Non-Destructive Neutron Imaging to Analyze Particulate Filters Non-destructive, non-invasive imaging is being employed in the...

  8. axis neutron spectrometer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other hand, interact with nuclei mapped and measured via neutron imaging. N5: Small Angle Neutron Scattering, HFIR CG2 General Purpose Pennycook, Steve 3 Parabolic versus elliptic...

  9. advanced spallation neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  10. advanced neutron transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    section in different regions 1 12; any order of spherical Kurien, Susan 2 Electron-neutron scattering and transport properties of neutron stars Nuclear Theory (arXiv)...

  11. arsinde neutron imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross...

  12. absorber neutronics performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  13. Boron-10 Neutron Detectors for Helium-3 Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland Security & Defense Boron-10 Neutron Detectors for Helium-3 Replacement Boron-10 Neutron Detectors for Helium-3 Replacement As part of the Laboratory's national security...

  14. Neutron Imaging Explored as Complementary Technique for Improving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

  15. Neutron Sciences Staff Give Back, Teach US Particle Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Sciences Staff Give Back, Teach US Particle Accelerator School Courses Katie Bethea - March 13, 2014 Neutron Science Directorate staff hosted students from the US Particle...

  16. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study. Abstract: Hydrogen...

  17. Thermal Neutron Computed Tomography of Soil Water and Plant Roots

    E-Print Network [OSTI]

    Leanne G. Tumlinson; Hungyuan Liu; Wendy K. Silk; Jan W. Hopmans

    2007-01-01T23:59:59.000Z

    2000. 3D neutron computed tomography: Requirements and2002. Using x-ray computed tomography in hydrology: Systems,of neutron computed tomography in the geosciences. Nucl.

  18. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Neutron Scattering School LANSCE 2012 LANSCE Neutron Scattering School Home About the School Hands-On Experiments Quick Links Application - Closed Schedule Poster...

  19. Proton Angular Distribution for 90 Mev Neutron-proton Scattering

    E-Print Network [OSTI]

    Hadley, James

    2010-01-01T23:59:59.000Z

    recoil protons in neutron -proton scattering at 90 Mev hasFOR 90 lWEV NEUTRON-PROTON SCATTERING James Hadley, Cecil E.

  20. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  1. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Rex Hjelm Rex P. Hjelm is the Instrument Scientist for the small-angle neutron scattering instrument, LQD, at the Lujan Neutron Scattering Center of LANSCE at...

  2. Paul Langan to lead ORNL's Neutron Sciences Directorate | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science activities, which include two leading DOE Office of Science user facilities for neutron scattering analysis: The Spallation Neutron Source (SNS) and the High Flux Isotope...

  3. International Conference on Neutron Scattering 2005 Darling Harbour. Sydney. Australia

    E-Print Network [OSTI]

    International Conference on Neutron Scattering 2005 Darling Harbour. Sydney. Australia 27 November, Hillerød, Denmark Combined application of small-angle neutron scattering and oscillatory shear

  4. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions in Extremes Planning and logistic support is provided by: Los Alamos Neutron Science Center New Mexico State University Los Alamos Neutron Science Center New...

  5. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 LANSCE Neutron Scattering School LANSCE 2011 LANSCE Neutron Scattering School Home NSS 2011 About the School Lecturers Hands-On Experiments Quick Links Application Schedule...

  6. Neutron Star Properties with Hyperons

    E-Print Network [OSTI]

    Whittenbury, D L; Thomas, A W; Tsushima, K; Stone, J R

    2012-01-01T23:59:59.000Z

    In the light of the recent discovery of a neutron star with a mass accurately determined to be almost two solar masses, it has been suggested that hyperons cannot play a role in the equation of state of dense matter in $\\beta$-equilibrium. We re-examine this issue in the most recent development of the quark-meson coupling model. Within a relativistic Hartree-Fock approach and including the full tensor structure at the vector-meson-baryon vertices, we find that not only must hyperons appear in matter at the densities relevant to such a massive star but that the maximum mass predicted is completely consistent with the observation.

  7. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, D.C.

    1987-11-20T23:59:59.000Z

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

  8. Porcelain enamel neutron absorbing material

    DOE Patents [OSTI]

    Iverson, Daniel C. (Aiken, SC)

    1990-01-01T23:59:59.000Z

    A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

  9. Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel Wind Power ProjectNeutron Log Jump to:

  10. Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection

    SciTech Connect (OSTI)

    Koehler, William E [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

  11. Neutron Interactions: Q-Equation, Elastic Scattering

    E-Print Network [OSTI]

    unknown authors

    Since a neutron has no charge it can easily enter into a nucleus and cause a reaction. Neutrons interact primarily with the nucleus of an atom, except in the special case of magnetic scattering where the interaction involves the neutron spin and the magnetic moment of the atom. Because magnetic scattering is of no interest in this class, we can neglect the interaction between neutrons and electrons and think of atoms and nuclei interchangeably. Neutron reactions can take place at any energy, so one has to pay particular attention to the energy variation of the interaction cross section. In a nuclear reactor neutrons can have energies ranging from 10-3 ev (1 mev) to 10 7 ev (10 Mev). This means our study of neutron interactions, in principle, will have to cover an energy range of 10 ten orders of magnitude. In practice we will limit ourselves to two energy ranges, the slowing down region (ev to Kev) and the thermal region (around 0.025 ev). For a given energy region – thermal, epithermal, resonance, fast – not all the possible reactions are equally important. Which reaction is important depends on the target nucleus and the neutron energy. Generally speaking the important types of interactions, in the order of increasing complexity from the standpoint of theoretical

  12. From Neutron Stars to Strange Stars

    E-Print Network [OSTI]

    Fridolin Weber

    2001-12-04T23:59:59.000Z

    This paper discusses several most intruigung astrophysical implications connected with the possible absolute stability of strange quark matter.This is followed by a discussion of two astrophysical signals that may point at the existence of quark matter in both isolated neutron stars as well as in neutron stars in low-mass x-ray binaries (LMXBs).

  13. Coated semiconductor devices for neutron detection

    DOE Patents [OSTI]

    Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

    2002-01-01T23:59:59.000Z

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  14. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04T23:59:59.000Z

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  15. Thermal neutron shield and method of manufacture

    DOE Patents [OSTI]

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28T23:59:59.000Z

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  16. Benchmark Results for Delayed Neutron Data

    SciTech Connect (OSTI)

    Marck, S.C. van der; Meulekamp, R. Klein; Hogenbirk, A.; Koning, A.J. [Nuclear Research and Consultancy Group NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2005-05-24T23:59:59.000Z

    We have calculated the effective delayed neutron fraction {beta}eff for 32 benchmark configurations for which measurements have been reported. We use these results to test the delayed neutron data of JEFF-3.0, ENDF/B-VI.8, and JENDL-3.3.

  17. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  18. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.; Woodring, Mitchell L.

    2010-03-07T23:59:59.000Z

    PNNL-18938 Revision Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of two successive prototypes of a system manufactured by GE Reuter Stokes.

  19. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  20. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.

    2009-11-02T23:59:59.000Z

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Reuter Stokes.

  1. Binderless composite scintillator for neutron detection

    DOE Patents [OSTI]

    Hodges, Jason P [Knoxville, TN; Crow, Jr; Lowell, M [Oak Ridge, TN; Cooper, Ronald G [Oak Ridge, TN

    2009-03-10T23:59:59.000Z

    Composite scintillator material consisting of a binderless sintered mixture of a Lithium (Li) compound containing .sup.6Li as the neutron converter and Y.sub.2SiO.sub.5:Ce as the scintillation phosphor, and the use of this material as a method for neutron detection. Other embodiments of the invention include various other Li compounds.

  2. The Maximum Mass of a Neutron Star

    E-Print Network [OSTI]

    Vassiliki Kalogera; Gordon Baym

    1996-08-11T23:59:59.000Z

    Observational identification of black holes as members of binary systems requires the knowledge of the upper limit on the gravitational mass of a neutron star. We use modern equations of state for neutron star matter, fitted to experimental nucleon-nucleon scattering data and the properties of light nuclei, to calculate, within the framework of Rhoades & Ruffini (1974), the minimum upper limit on a neutron star mass. Regarding the equation of state as valid up to twice nuclear matter saturation density, rho_{nm}, we obtain a secure upper bound on the neutron star mass equal to 2.9 solar masses. We also find that in order to reach the lowest possible upper bound of 2.2 solar masses, we need understand the physical properties of neutron matter up to a density of about 4 times rho_{nm}.

  3. An Accelerator Neutron Source for BNCT

    SciTech Connect (OSTI)

    Blue, Thomas, E

    2006-03-14T23:59:59.000Z

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  4. Compact neutron imaging system using axisymmetric mirrors

    DOE Patents [OSTI]

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27T23:59:59.000Z

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  5. Axion emission from a magnetized neutron gas

    SciTech Connect (OSTI)

    Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

    2011-01-15T23:59:59.000Z

    By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.

  6. Safety control circuit for a neutronic reactor

    DOE Patents [OSTI]

    Ellsworth, Howard C. (Richland, WA)

    2004-04-27T23:59:59.000Z

    A neutronic reactor comprising an active portion containing material fissionable by neutrons of thermal energy, means to control a neutronic chain reaction within the reactor comprising a safety device and a regulating device, a safety device including means defining a vertical channel extending into the reactor from an aperture in the upper surface of the reactor, a rod containing neutron-absorbing materials slidably disposed within the channel, means for maintaining the safety rod in a withdrawn position relative to the active portion of the reactor including means for releasing said rod on actuation thereof, a hopper mounted above the active portion of the reactor having a door disposed at the bottom of the hopper opening into the vertical channel, a plurality of bodies of neutron-absorbing materials disposed within the hopper, and means responsive to the failure of the safety rod on actuation thereof to enter the active portion of the reactor for opening the door in the hopper.

  7. Experimental approach to neutron stars

    SciTech Connect (OSTI)

    Leifels, Yvonne [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2014-05-09T23:59:59.000Z

    The equation of state (EOS) of nuclear matter is of fundamental importance in many areas of nuclear physics and astrophysics In the laboratory, there are different means to study the nuclearmatter equation of state and its density dependence in particular: nuclear masses, neutron skins, pygmy resonance, and nuclear structure at the drip line give access to nuclear matter properties at densities lower than and at saturation density ?0. Heavy ion reactions at energies above 0.1 AGeV are the only means to study nuclear matter at densities larger than normal nuclear matter density ?0. In the beamenergy range of 0.1 to 2A GeV nuclear matter is compressed upto three times ?0. Access to nuclear matter properties is achieved by simulating nuclear collisions by means of microscopic transport codes, or statistical or hydrodynamicalmodels. Characteristics of heavy-ion collisions are discussed, and experimental observables which allow to constrain nuclear matter properties by comparing experimental results with those of transport codes are presented. Special emphasis will be given to the density dependence of the symmetry energy which is the most relevant connection between neutron stars and heavy ion collisions.

  8. Magnetic fields in Neutron Stars

    E-Print Network [OSTI]

    Viganò, Daniele; Miralles, Juan A; Rea, Nanda

    2015-01-01T23:59:59.000Z

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  9. Optical and mechanical behavior of the optical fiber infrasound sensor

    E-Print Network [OSTI]

    DeWolf, Scott

    2009-01-01T23:59:59.000Z

    1.2 The Optical Fiber Infrasound Sensor . . . . . . .Fiber Infrasound Sensor Optical fibers are well known forSchnidrig. An optical fiber infrasound sensor: A new lower

  10. Neutrino, Neutron, and Cosmic Ray Production in the External Shock Model of Gamma Ray Bursts

    E-Print Network [OSTI]

    Charles D. Dermer

    2002-04-16T23:59:59.000Z

    The hypothesis that ultra-high energy (>~ 10^19 eV) cosmic rays (UHECRs) are accelerated by gamma-ray burst (GRB) blast waves is assumed to be correct. Implications of this assumption are then derived for the external shock model of gamma-ray bursts. The evolving synchrotron radiation spectrum in GRB blast waves provides target photons for the photomeson production of neutrinos and neutrons. Decay characteristics and radiative efficiencies of the neutral particles that escape from the blast wave are calculated. The diffuse high-energy GRB neutrino background and the distribution of high-energy GRB neutrino events are calculated for specific parameter sets, and a scaling relation for the photomeson production efficiency in surroundings with different densities is derived. GRBs provide an intense flux of high-energy neutrons, with neutron-production efficiencies exceeding ~ 1% of the total energy release. The radiative characteristics of the neutron beta-decay electrons from the GRB "neutron bomb" are solved in a special case. Galaxies with GRB activity should be surrounded by radiation halos of ~ 100 kpc extent from the outflowing neutrons, consisting of a nonthermal optical/X-ray synchrotron component and a high-energy gamma-ray component from Compton-scattered microwave background radiation. The luminosity of sources of GRBs and relativistic outflows in L* galaxies such as the Milky Way is at the level of ~10^40+-1 ergs/s. This is sufficient to account for UHECR generation by GRBs. We briefly speculate on the possibility that hadronic cosmic rays originate from the subset of supernovae that collapse to form relativistic outflows and GRBs. (abridged)

  11. Latching micro optical switch

    DOE Patents [OSTI]

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21T23:59:59.000Z

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  12. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOE Patents [OSTI]

    Vagelatos, Nicholas (San Diego, CA); Steinman, Donald K. (San Diego, CA); John, Joseph (San Diego, CA); Young, Jack C. (Escondido, CA)

    1981-01-01T23:59:59.000Z

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  13. New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    E-Print Network [OSTI]

    K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P. E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn

    2014-12-12T23:59:59.000Z

    Slow neutron scattering provides quantitative information on the structure and dynamics of materials of interest in physics, chemistry, materials science, biology, geology, and other fields. Liquid hydrogen is a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. In particular the rapid drop of the slow neutron scattering cross section of liquid parahydrogen below 14.5~meV is especially interesting and important. We have measured the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. At 1~meV this measurement is a factor of 3 below the data from previous work which has been used in the design of liquid hydrogen moderators at slow neutron sources. We describe our measurements, compare them with previous work, and discuss the implications for designing more intense slow neutron sources.

  14. Sandia National Laboratories: Quantum Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateQuantum Optics Quantum Optics videobanner Quantum Optics with a Single Semiconductor Quantum Dot Speaker: Weng Chow, EFRC Scientist Date: September 14, 2011 Event:...

  15. Optical observations of Be/X-ray transient system KS 1947+300

    E-Print Network [OSTI]

    U. Kiziloglu; A. Baykal; N. Kiziloglu

    2006-08-05T23:59:59.000Z

    ROTSE-IIId observations of the Be/X-ray transient system KS 1947+300 obtained between September 2004 and December 2005 make it possible to study the correlation between optical and X-ray activity. The optical outburst of 0.1 mag was accompanied by an increase in X-ray flux in 2004 observations. Strong correlation between the optical and X-ray light curves suggests that neutron star directly accretes from the outflowing material of Be star. The nearly zero time lag between X-ray and optical light curves suggests a heating of the disk of Be star by X-rays. No optical brightening and X-ray enhancement was seen in 2005 observations. There is no indication of the orbital modulation in the optical light curve.

  16. Active optical zoom system

    DOE Patents [OSTI]

    Wick, David V.

    2005-12-20T23:59:59.000Z

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  17. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  18. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25T23:59:59.000Z

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  19. The Neutron Scattering Society www.neutronscattering.org

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    The Neutron Scattering Society of America www.neutronscattering.org Press Release, February 4, 2008 The Neutron Scattering Society of America is pleased to announce the 2008 recipients of its 3 major prizes. The Neutron Scattering Society of America (NSSA) established the Clifford G. Shull Prize in Neutron Science

  20. On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields

    E-Print Network [OSTI]

    M. A. Alpar

    2000-05-10T23:59:59.000Z

    The similarity of rotation periods of, the anomalous X-ray pulsars (AXPs), the soft gamma ray repeaters (SGRs) and the dim thermal neutron stars (DTNs) suggests a common mechanism with an asymptotic spindown phase through the propeller and early accretion stages. The DTNs are in the propeller stage. Their luminosities arise from frictional heating in the neutron star. If the 8.4 s rotation period of the DTN RXJ 0720.4-3125 is close to its rotational equilibrium period, the propeller torque indicates a magnetic field in the 10$^{12}$ Gauss range. The mass inflow rate onto the propeller is of the order of the AXP accretion rates. The limited range of rotation periods, taken to be close to equilibrium periods, and magnetic fields in the range 5 E11- 5 E12 Gauss correspond to mass inflow rates 3.2 E14 gm/s neutron stars that do not become radio pulsars. For the highest mass inflow rates the propeller action may support enough circumstellar material so that the optical thickness to electron scattering destroys the X-ray beaming, and the rotation period is not observable. These are the radio quiet neutron stars (RQNSs) at the centers of supernova remnants Cas A, Puppis A, RCW 103 and 296.5+10.

  1. Fast-neutron interactions with /sup 182/W, /sup 184/W and /sup 186/W

    SciTech Connect (OSTI)

    Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-06-01T23:59:59.000Z

    Neutron total cross sections of /sup 182/W, /sup 184/W and /sup 186/W are measured from approx. = 0.3 to 5.0 MeV at intervals of less than or equal to 50 keV to accuracies of 1 to 3%. Differential neutron elastic- and inelastic-scattering cross sections of the same three isotopes are measured at scattering angles in the range 20 to 160/sup 0/ and at incident-neutron energy intervals of approx. = 100 keV from 1.5 to 4.0 MeV. Approximately thirty scattered-neutron groups are observed for each of the isotopes. Prominent of these are excitations attributed to collective rotational and vibrational bands. The experimental results are interpreted in terms of optical-statistical and coupled-channels models with particular attention to the direct excitation of ground-state-rotational and ..beta..- and ..gamma..-vibrational bands. The strengths of the direct interactions and the magnitudes of the collective deformations are inferred from the interpretations and compared with similar values previously reported elsewhere. The experimental results are used to deduce experimentally-based evaluated data sets for /sup 182/W, /sup 184/W and /sup 186/W over the energy range 0.1 - approx. = 5.0 MeV.

  2. Delayed outflows from black hole accretion tori following neutron star binary coalescence

    E-Print Network [OSTI]

    Rodrigo Fernández; Brian D. Metzger

    2013-07-16T23:59:59.000Z

    Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Over several viscous times (~1s), a fraction ~10% of the initial disk mass is ejected as a moderately neutron-rich wind (Y_e ~ 0.2) powered by viscous heating and nuclear recombination, with neutrino self-irradiation playing a sub-dominant role. Although the properties of the outflow vary in time and direction, their mean values in the heavy-element production region are relatively robust to variations in the initial conditions of the disk and the magnitude of its viscosity. The outflow is sufficiently neutron-rich that most of the ejecta forms heavy r-process elements with mass number A >130, thus representing a new astrophysical source of r-process nucleosynthesis, distinct from that produced in the dynamical ejecta. Due to its moderately high entropy, disk outflows contain a small residual fraction ~1% of helium, which could produce a unique spectroscopic signature.

  3. High-efficiency scintillation detector for combined detection of thermal and fast neutrons and gamma radiation

    DOE Patents [OSTI]

    Chiles, M.M.; Mihalczo, J.T.; Blakeman, E.D.

    1987-02-27T23:59:59.000Z

    A scintillation based radiation detector for the combined detection of thermal neutrons, high-energy neutrons and gamma rays in a single detecting unit. The detector consists of a pair of scintillators sandwiched together and optically coupled to the light sensitive face of a photomultiplier tube. A light tight radiation pervious housing is disposed about the scintillators and a portion of the photomultiplier tube to hold the arrangement in assembly and provides a radiation window adjacent the outer scintillator through which the radiation to be detected enters the detector. The outer scintillator is formed of a material in which scintillations are produced by thermal-neutrons and the inner scintillator is formed of a material in which scintillations are produced by high-energy neutrons and gamma rays. The light pulses produced by events detected in both scintillators are coupled to the photomultiplier tube which produces a current pulse in response to each detected event. These current pulses may be processed in a conventional manner to produce a count rate output indicative of the total detected radiation event count rate. Pulse discrimination techniques may be used to distinguish the different radiations and their energy distribution.

  4. Reduced neutron spectroscopic factors when using potential geometries constrained by Hartree-Fock calculations

    E-Print Network [OSTI]

    Jenny Lee; J. A. Tostevin; B. A. Brown; F. Delaunay; W. G. Lynch; M. J. Saelim; M. B. Tsang

    2006-01-27T23:59:59.000Z

    We carry out a systematic analysis of angular distribution measurements for selected ground-state to ground-state (d,p) and (p,d) neutron transfer reactions, including the calcium isotopes. We propose a consistent three-body model reaction methodology in which we constrain the transferred-neutron bound state and nucleon-target optical potential geometries using modern Hartree-Fock calculations. Our deduced neutron spectroscopic factors are found to be suppressed by ~30% relative to independent-particle shell-model values, from 40Ca through 49Ca. The other nuclei studied, ranging from B to Ti, show similar average suppressions with respect to large-basis shell-model expectations. Our results are consistent with deduced spectroscopic strengths for neutrons and protons from intermediate energy nucleon knockout reactions, and for protons from (e,e'p) reactions, on well-bound nuclei. PACS: 24.50.+g, 24.10.Eq, 25.40.-h, 25.45.-z

  5. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    SciTech Connect (OSTI)

    Reginatto, M.; Zimbal, A. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2011-03-14T23:59:59.000Z

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  6. Neutron counter based on beryllium activation

    SciTech Connect (OSTI)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21T23:59:59.000Z

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, ?){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting ?{sup ?} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of ?–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known ?–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of ?{sup ?} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  7. The 35-day cycle in Her X-1 as observational appearance of freely precessing neutron star and forcedly precessing accretion disk

    E-Print Network [OSTI]

    N. A. Ketsaris; M. Kuster; K. A. Postnov; M. E. Prokhorov; N. I. Shakura; R. Staubert; J. Wilms

    2000-10-02T23:59:59.000Z

    A careful analysis of X-ray light curves and pulse profiles of Her X-1 obtained over more than 20 years strongly evidences for free precession of a magnetized neutron star with rotational axis inclined to the orbital plane as a central clock underlying the observed 35-day period. Strong asymmetric X-ray illumination of the optical star atmosphere leads to the formation of gaseous streams coming out of the orbital plane and forming a tilted accretion disk around the neutron star. Such a disk precesses due to tidal forces and dynamical action of gaseous streams from the secondary companion. The locking of these torques with neutron star precession makes the net disk precession period to be very close to that of the neutron star free precession.

  8. Variable control of neutron albedo in toroidal fusion devices

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ); Micklich, Bradley J. (Princeton, NJ)

    1986-01-01T23:59:59.000Z

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  9. Neutron beam testing of triblades

    SciTech Connect (OSTI)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16T23:59:59.000Z

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  10. High bandwidth optical mount

    SciTech Connect (OSTI)

    Bender, D.A.; Kuklo, T.

    1994-11-08T23:59:59.000Z

    An optical mount, which directs a laser beam to a point by controlling the position of a light-transmitting optic, is stiffened so that a lowest resonant frequency of the mount is approximately one kilohertz. The optical mount, which is cylindrically-shaped, positions the optic by individually moving a plurality of carriages which are positioned longitudinally within a sidewall of the mount. The optical mount is stiffened by allowing each carriage, which is attached to the optic, to move only in a direction which is substantially parallel to a center axis of the optic. The carriage is limited to an axial movement by flexures or linear bearings which connect the carriage to the mount. The carriage is moved by a piezoelectric transducer. By limiting the carriage to axial movement, the optic can be kinematically clamped to a carriage. 5 figs.

  11. Angular distributions of neutron-nucleus collisions

    SciTech Connect (OSTI)

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

    2011-06-15T23:59:59.000Z

    We derive the total and the differential cross sections with respect to angle for neutron-induced reactions from an analytical model having a simple functional form to demonstrate the quantitative agreement with the measured cross sections. The energy dependence of the neutron-nucleus interaction cross sections are estimated successfully for energies ranging from 5 to 600 MeV. In this work, the effect of the imaginary part of the nuclear potential is treated more appropriately compared to our earlier work. The angular distributions for neutron scattering also agree reasonably well with the experimental data at forward angles.

  12. Characterization of a neutron calibration range

    E-Print Network [OSTI]

    Menchaca, Daniel Isidoro

    1995-01-01T23:59:59.000Z

    , Mr. R. Kim Piper for the loan of the AN/PDR-70rsi neutron instrument, Mr. R. B. Schwartz for help with neutron scattering information, and lastly the Office of Radiological Safety, particularly Mr. C. M. Meyer. TABLE OF CONTENTS Page ABSTRACT al.... Even in (ct, n) reactions, in which the alpha particle is emitted with discrete energies, the neutrons are not. This is due to the fact that alpha particle energy is lost in the material and that the beryllium target is subject to various alpha...

  13. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect (OSTI)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01T23:59:59.000Z

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  14. Uncertainty Quantification on Prompt Fission Neutrons Spectra

    SciTech Connect (OSTI)

    Talou, P. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)], E-mail: talou@lanl.gov; Madland, D.G.; Kawano, T. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)

    2008-12-15T23:59:59.000Z

    Uncertainties in the evaluated prompt fission neutrons spectra present in ENDF/B-VII.0 are assessed in the framework of the Los Alamos model. The methodology used to quantify the uncertainties on an evaluated spectrum is introduced. We also briefly review the Los Alamos model and single out the parameters that have the largest influence on the calculated results. Using a Kalman filter, experimental data and uncertainties are introduced to constrain model parameters, and construct an evaluated covariance matrix for the prompt neutrons spectrum. Preliminary results are shown in the case of neutron-induced fission of {sup 235}U from thermal up to 15 MeV incident energies.

  15. Neutron detector using sol-gel absorber

    DOE Patents [OSTI]

    Hiller, John M. (Oak Ridge, TN); Wallace, Steven A. (Oak Ridge, TN); Dai, Sheng (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  16. Neutron Interferometry constrains dark energy chameleon fields

    E-Print Network [OSTI]

    H. Lemmel; Ph. Brax; A. N. Ivanov; T. Jenke; G. Pignol; M. Pitschmann; T. Potocar; M. Wellenzohn; M. Zawisky; H. Abele

    2015-02-20T23:59:59.000Z

    We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.

  17. Self-regulating neutron coincidence counter

    DOE Patents [OSTI]

    Baron, N.

    1980-06-16T23:59:59.000Z

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  18. Neutron Interferometry constrains dark energy chameleon fields

    E-Print Network [OSTI]

    Lemmel, H; Ivanov, A N; Jenke, T; Pignol, G; Pitschmann, M; Potocar, T; Wellenzohn, M; Zawisky, M; Abele, H

    2015-01-01T23:59:59.000Z

    We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.

  19. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20T23:59:59.000Z

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  20. Cold neutron scattering in imperfect deuterium crystals

    E-Print Network [OSTI]

    Andrzej Adamczak

    2010-12-10T23:59:59.000Z

    The differential cross sections for cold neutron scattering in mosaic deuterium crystals have been calculated for various target temperatures. The theoretical results are compared with the recent experimental data for the neutron wavelengths $\\lambda\\approx$~1--9~\\AA. It is shown that the structures of observed Bragg peaks can be explained by the mosaic spread of about $3^{\\circ}$ and contributions from a~limited number of crystal orientations. Such a~crystal structure should be also taken into account in ultracold neutron upscattering due to the coherent phonon annihilation in solid deuterium.

  1. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  2. Forward Helion Scattering and Neutron Polarization

    SciTech Connect (OSTI)

    Buttimore, N. H. [Trinity College Dublin (Ireland)

    2009-03-23T23:59:59.000Z

    The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently large analyzing power to enable the level of helion polarization to be evaluated. As the helion to a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion collisions can be transformed into a measurement of the polarization of its constituent neutron. Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic and hadronic interactions in the region of interference where there is an optimal analyzing power.

  3. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect (OSTI)

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22T23:59:59.000Z

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  4. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    E-Print Network [OSTI]

    Mor, I; Bar, D; Feldman, G; Goldberg, M B; Katz, D; Sayag, E; Shmueli, I; Cohen, Y; Tal, A; Vagish, Z; Bromberger, B; Dangendorf, V; Mugai, D; Tittelmeier, K; Weierganz, M

    2009-01-01T23:59:59.000Z

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  5. ''Atomic Optics'': Nonimaging Optics on the Nanoscale

    SciTech Connect (OSTI)

    Roland Winston Joseph O'Gallagher

    2005-01-15T23:59:59.000Z

    This is the final report for a one year close out extension of our basic research program that was established at the University of Chicago more than sixteen years ago to explore and develop the optical sub-discipline that has come to be known as ''nonimaging optics''. This program has been extremely fruitful, having both broadened the range of formalism available for workers in this field and led to the discovery of many new families of optical devices. These devices and techniques have applications wherever the efficient transport and transformation of light distributions are important, in particular in illumination, fiber optics, collection and concentration of sunlight, and the detection of faint light signals in physics and astrophysics. Over the past thirty years, Nonimaging Optics (Welford and Winston, 1989) has brought a fresh approach to the analysis of many problems in classical macro-scale optics. Through the application of phase-space concepts, statistical methods, thermodynamic arguments, etc., many previously established performance limits were able to be broken and many technical surprises with exciting practical applications were discovered. The most recent three-year phase of our long-term continuing program ended in late 2002 and emphasized extending our work in geometrical optics and expanding it to include some interesting questions in physical optics as well as in the new field of statistical optics. This report presents a survey of the basic history and concepts of nonimaging optics and reviews highlights and significant accomplishments over the past fifteen years. This is followed by a more detailed summary of recent research directions and accomplishments during the last three years. This most recent phase was marked by the broadening in scope to include a separate project involving a collaboration with an industrial partner, Science Applications International Corporation (SAIC). This effort was proposed and approved in 1998 and was incorporated into this project (September, 1998) with the required additional funding provided through this already existing grant.

  6. Reflective optical imaging system

    DOE Patents [OSTI]

    Shafer, David R. (Fairfield, CT)

    2000-01-01T23:59:59.000Z

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  7. Optical voltage reference

    DOE Patents [OSTI]

    Rankin, R.; Kotter, D.

    1994-04-26T23:59:59.000Z

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  8. Fiber optic micro accelerometer

    DOE Patents [OSTI]

    Swierkowski, Steve P.

    2005-07-26T23:59:59.000Z

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  9. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    by a service oriented architecture for functional implementation. KEY WORDS: Portal, Neutron Scattering, TeraGrid, Science Gateway, Service Architecture, Grid 1. INTRODUCTION Neutron Science: Neutron scattering is used, earth science, and fundamental physics [3]. As a diagnostic tool, neutron scattering provides unique

  10. NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS K. CARNEIRO Physics. - The technique of neutron scattering is well established as a unique tool to investigate the details technique to physisorbed phases is quite natural. But on the other hand since neutron scattering, compared

  11. Yields of delayed-neutron groups in thermal-neutron fission of sup 229 Th

    SciTech Connect (OSTI)

    Gudkov, A.N.; Koldobskii, A.B.; Krivasheev, S.V.; Lebedev, N.A.; Pchelin, V.A. (Moscow Engineering-Physics Institute (SU))

    1989-06-01T23:59:59.000Z

    Absolute yields of five delayed-neutron groups in thermal-neutron fission of {sup 229}Th have been determined for the first time. A significant discrepancy is noted between the experimental yields of delayed neutrons of the fourth group and the corresponding theoretical values. From the results of the experimental studies, corrections have been determined for even--odd effects in the charge distributions of the yields of fragment nuclides.

  12. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    E-Print Network [OSTI]

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01T23:59:59.000Z

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  13. University of Central Florida College of Optics & Photonics Optics

    E-Print Network [OSTI]

    Van Stryland, Eric

    University of Central Florida College of Optics & Photonics Optics Spring 2010 OSE-6432: Principles of guided wave optics; electro -optics, acousto-optics and optoelectronics. Location: CREOL-A-214 or by Appointment Reference Materials: 1. Class Notes. 2. "Fundamentals of Optical Waveguides", K. Okamoto, Academic

  14. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect (OSTI)

    Sadeghi, H.; Roshan, M. V. [Energy Engineering and Physics Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-11-15T23:59:59.000Z

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  15. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    SciTech Connect (OSTI)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  16. Neutron resonance study of a delayed neutron emitter, /sup 87/Kr

    E-Print Network [OSTI]

    Fogelberg, B; Macklin, R L; Raman, S; Stelson, P H

    1981-01-01T23:59:59.000Z

    The unbound levels in /sup 87/Kr have been studied as neutron resonances up to 400 keV neutron energy at the ORELA linear electron accelerator. The observed p-wave resonances, with I/sup pi /=1/2/sup - / and 3/2/sup -/ can also be populated in the beta -decay of the 3/2 /sup -/ ground state of /sup 87/Br. When comparing the present results with previous studies of beta -delayed neutron spectra, the authors find that almost all observed p-wave resonances can be identified with peaks in the delayed neutron spectra. (0 refs).

  17. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    SciTech Connect (OSTI)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-09-20T23:59:59.000Z

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using {sup 3}He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations.

  18. EXTENSIVE SET OF LOW-FIDELITY COVARIANCES IN FAST NEUTRON REGION.

    SciTech Connect (OSTI)

    PIGNI,M.T.; HERMAN, M.; OBLOZINSKY, P.; ROCHMAN, D.

    2007-07-30T23:59:59.000Z

    An extensive set of covariances for neutron cross sections has been developed to provide initial, low-fidelity but consistent uncertainty data for nuclear criticality safety applications. The methodology for the determination of such covariances in fast neutron region is presented. It combines the nuclear reaction code EMPIRE, which calculates sensitivity to nuclear reaction model parameters and the Bayesian code KALMAN to propagate uncertainty of the model parameters onto cross sections. Taking into account the large scale of the project (219 fission products), only partial reference to experimental data has been made. Therefore, the covariances are, to a large extent, derived from the perturbation of several critical model parameters selected through the sensitivity analysis. They define optical potential, level densities and pre-equilibrium emission. This exercise represents the first attempt to generate nuclear data covariances on such a scale.

  19. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  20. Study on collimation and shielding of the back-streaming neutrons at the CSNS target

    E-Print Network [OSTI]

    Han-Tao, Jing; Zheng, Yang

    2013-01-01T23:59:59.000Z

    The back-streaming neutrons from the spallation target at CSNS are very intense, and can pose serious damage problems for the devices in the accelerator-target interface region. To tackle the problems, a possible scheme for this region was studied, namely a specially designed optics for the proton beam line produces two beam waists, and two collimators are placed at the two waist positions to maximize the collimation effect of the back-streaming neutrons. Detailed Monte Carlo simulations with the beams in the two different CSNS phases show the effectiveness of the collimation system, and the radiation dose rate decreases largely in the interface section. This can ensure the use of epoxy coils for the last magnets and other devices in the beam transport line with reasonable lifetimes, e.g. thirty years. The design philosophy for such an accelerator-target interface region can also be applicable to other high-power proton beam applications.

  1. Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Matter ResearchPSI Summer School on Condensed Matter Research

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons

  2. Neutron-driven gamma-ray laser

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A lasing cylinder emits laser radiation at a gamma-ray wavelength of 0.87 .ANG. when subjected to an intense neutron flux of about 400 eV neutrons. A 250 .ANG. thick layer of Be is provided between two layers of 100 .ANG. thick layer of .sup.57 Co and these layers are supported on a foil substrate. The coated foil is coiled to form the lasing cylinder. Under the neutron flux .sup.57 Co becomes .sup.58 Co by neutron absorption. The .sup.58 Co then decays to .sup.57 Fe by 1.6 MeV proton emission. .sup.57 Fe then transitions by mesne decay to a population inversion for lasing action at 14.4 keV. Recoil from the proton emission separates the .sup.57 Fe from the .sup.57 Co and into the Be, where Mossbauer emission occurs at a gamma-ray wavelength.

  3. International workshop on cold neutron sources

    SciTech Connect (OSTI)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States)) [comps.; Los Alamos National Lab., NM (United States)

    1991-08-01T23:59:59.000Z

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  4. Neutron Deficient Isotopes of Rhodium and Palladium

    E-Print Network [OSTI]

    Perlman, I.

    2010-01-01T23:59:59.000Z

    r' Contract l~o. W-7405-eng-48 To be published as a letterLaboratory Contract No. W-7405-eng-48 NEUTRON DEFICIEI\\lT I

  5. Computer simulation of neutron capture therapy.

    E-Print Network [OSTI]

    Olson, Arne Peter

    1967-01-01T23:59:59.000Z

    Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

  6. Computer simulation of neutron capture therapy

    E-Print Network [OSTI]

    Olson, Arne Peter

    1967-01-01T23:59:59.000Z

    Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

  7. Simulated liquid argon interactions with neutrons

    E-Print Network [OSTI]

    Harrington, Kathleen M

    2012-01-01T23:59:59.000Z

    The GEANT4 physics simulation program is known to have errors in how hadronic interactions are implemented. This has the potential to cause errors in the Monte Carlos used to determine the expected neutron backgrounds in ...

  8. Neutron absorbing coating for nuclear criticality control

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Wright, Richard N. (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID); Lister, Tedd E. (Idaho Falls, ID); Pinhero, Patrick J. (Idaho Falls, ID)

    2007-10-23T23:59:59.000Z

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  9. ITERATIVE METHODS FOR NEUTRON TRANSPORT EIGENVALUE PROBLEMS

    E-Print Network [OSTI]

    Graham, Ivan

    Abstract. We discuss iterative methods for computing criticality in nuclear reactors. In general as the inner solver. Key words. neutron transport, criticality, generalised eigenvalue problem, symmetry. Reactor criticality problems. Climate change is a challenging problem of great contemporary interest

  10. Delayed neutrons measurement at the MEGAPIE target

    E-Print Network [OSTI]

    Stefano Panebianco; Pavel Bokov; Diane Dore; Xavier Ledoux; Alain Letourneau; Aurelien Prevost; Danas Ridikas

    2007-05-25T23:59:59.000Z

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

  11. Delayed neutrons measurement at the MEGAPIE target

    E-Print Network [OSTI]

    Panebianco, Stefano; Dore, Diane; Ledoux, Xavier; Letourneau, Alain; Prevost, Aurelien; Ridikas, Danas

    2007-01-01T23:59:59.000Z

    In the framework of the Neutronic and Nuclear Assessment Task Group of the MEGAPIE experiment we measured the delayed neutron (DN) flux at the top of the target. The measurement was proposed mainly for radioprotection purposes since the DN flux at the top of the target has been estimated to be of the same order of magnitude as the prompt neutron flux. Given the strong model-dependence of DN predictions, the measurement of DN contribution to the total neutron activity at the top of the target was thus desired. Moreover, this measurement is complementary to the DN experiments performed at PNPI (Gatchina) on solid lead and bismuth targets. The DN measurement at MEGAPIE was performed during the start-up phase of the target. In this paper we present a detailed description of the experimental setup and some preliminary results on decay spectra.

  12. Delayed neutron alignment in sup 117 I

    SciTech Connect (OSTI)

    Paul, E.S.; Waring, M.P.; Clark, R.M.; Forbes, S.A.; Fossan, D.B.; Hughes, J.R.; LaFosse, D.R.; Liang, Y.; Ma, R.; Vaska, P.; Wadsworth, R. (Oliver Lodge Laboratory, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom) Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States) Department of Physics, University of York, Heslington, York YO1 5DD (United Kingdom) Medical Department, Brookhaven National Laboratory, Upton, New York 11973 (United States))

    1992-06-01T23:59:59.000Z

    The rotational alignment of {ital h}{sub 11/2} neutrons is considerably delayed ({Delta}{h bar}{omega}{similar to}0.11 MeV) in the {pi}{ital h}{sub 11/2}(550)1/2{sup {minus}} intruder band in {sup 117}I when compared to bands built on normal-parity states. Comparison with cranked shell-model calculations suggests that this effect may indicate a larger quadrupole deformation for the intruder orbital. A strong neutron-proton interaction between the aligning {ital h}{sub 11/2} neutrons and the {ital h}{sub 11/2} proton intruder may also play a role. In addition, noncollective oblate states at {ital I}{sup {pi}}=39/2{sup {minus}},43/2{sup {minus}}, and 45/2{sup {minus}} compete energetically with rotational states of the intruder band which may also perturb the neutron alignment.

  13. Low energy neutron-proton interactions

    E-Print Network [OSTI]

    Daub, Brian (Brian Hollenberg)

    2012-01-01T23:59:59.000Z

    There have been few measurements of cross sections for neutron-proton scattering and radiative capture below 1 MeV. Those measurements which do exist are at a small number of energies and are often inconsistent with ...

  14. Magnetic Field Evolution in Superconducting Neutron Stars

    E-Print Network [OSTI]

    Graber, Vanessa; Glampedakis, Kostas; Lander, Samuel K

    2015-01-01T23:59:59.000Z

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multi-fluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two timescales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  15. Towards a metallurgy of neutron star crusts

    E-Print Network [OSTI]

    Kobyakov, D

    2013-01-01T23:59:59.000Z

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  16. Towards a metallurgy of neutron star crusts

    E-Print Network [OSTI]

    D. Kobyakov; C. J. Pethick

    2013-09-07T23:59:59.000Z

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic (bcc) lattice of nuclei immersed in an essentially uniform electron gas. We show that at densities above that for neutron drip ($\\sim4\\times10^11$) g cm$^{-3}$ or roughly one thousandth of nuclear matter density, the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO$_3$. As a consequence, properties of matter in the inner crust are expected to be much richer than previously appreciated and we mention consequences for observable neutron star properties.

  17. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect (OSTI)

    Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

    2014-01-29T23:59:59.000Z

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  18. Determination of thermal neutron capture gamma yields.

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  19. Determination of thermal neutron capture gamma yields

    E-Print Network [OSTI]

    Harper, Thomas Lawrence

    1969-01-01T23:59:59.000Z

    A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

  20. Aspects of a high intensity neutron source

    E-Print Network [OSTI]

    Chapman, Peter H. (Peter Henry)

    2010-01-01T23:59:59.000Z

    A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

  1. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Highly sensitive to water and hydrocarbonsfuel * Can image carbon soot layer due to absorption of water and HC - Image is based on absence of neutrons * X-ray imaging relies upon...

  2. Neutron Imaging of Advanced Engine Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Highly sensitive to water and hydrocarbonsfuel * Can image carbon soot layer due to absorption of water and HC - Image is based on absence of neutrons * X-ray absorption increases...

  3. associated-particle sealed-tube neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Supercool Neutrons (Ultracold Neutrons) Physics Websites Summary: . Korobkina, NCSU Neutron scattering is a valuable tool to study the structure of materials. Because Helium...

  4. am-be isotopic neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fast neutrons. Earlier studies characteristic gamma photons through inelastic scattering of an external neutron beam. These stable isotopes canNeutron Stimulated...

  5. Neutrons and Granite: Transport and Activation

    SciTech Connect (OSTI)

    Bedrossian, P J

    2004-04-13T23:59:59.000Z

    In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.

  6. Helium nuclei around the neutron drip line

    E-Print Network [OSTI]

    Madhubrata Bhattacharya; G. Gangopadhyay; Subinit Roy

    2012-03-10T23:59:59.000Z

    Neutron rich He nuclei have been investigated using relativistic mean field approach in co-ordinate space. Elastic partial scattering cross sections for proton scattering in inverse kinematics have been calculated using the theoretically obtained density for $^{6,8}$He and compared with experiment. The energies of the low-lying resonance states in the neutron unstable nuclei $^{5,7}$He have also been calculated and compared with experimental observations.

  7. Improving neutron dosimetry using bubble detector technology

    SciTech Connect (OSTI)

    Buckner, M.A.

    1993-02-01T23:59:59.000Z

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  8. Neutron shielding panels for reactor pressure vessels

    DOE Patents [OSTI]

    Singleton, Norman R. (Murrysville, PA)

    2011-11-22T23:59:59.000Z

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  9. Omnidirectional fiber optic tiltmeter

    DOE Patents [OSTI]

    Benjamin, B.C.; Miller, H.M.

    1983-06-30T23:59:59.000Z

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  10. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  11. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  12. Modular Optical PDV System

    SciTech Connect (OSTI)

    Araceli Rutkowski, David Esquibel

    2008-12-11T23:59:59.000Z

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  13. Shear viscosity in neutron star cores

    E-Print Network [OSTI]

    P. S. Shternin; D. G. Yakovlev

    2008-08-21T23:59:59.000Z

    We calculate the shear viscosity $\\eta = \\eta_{e\\mu}+\\eta_{n}$ in a neutron star core composed of nucleons, electrons and muons ($\\eta_{e\\mu}$ being the electron-muon viscosity, mediated by collisions of electrons and muons with charged particles, and $\\eta_{n}$ the neutron viscosity, mediated by neutron-neutron and neutron-proton collisions). Deriving $\\eta_{e\\mu}$, we take into account the Landau damping in collisions of electrons and muons with charged particles via the exchange of transverse plasmons. It lowers $\\eta_{e\\mu}$ and leads to the non-standard temperature behavior $\\eta_{e\\mu}\\propto T^{-5/3}$. The viscosity $\\eta_{n}$ is calculated taking into account that in-medium effects modify nucleon effective masses in dense matter. Both viscosities, $\\eta_{e\\mu}$ and $\\eta_{n}$, can be important, and both are calculated including the effects of proton superfluidity. They are presented in the form valid for any equation of state of nucleon dense matter. We analyze the density and temperature dependence of $\\eta$ for different equations of state in neutron star cores, and compare $\\eta$ with the bulk viscosity in the core and with the shear viscosity in the crust.

  14. A possible optical counterpart to the old nearby pulsar J0108-1431

    E-Print Network [OSTI]

    R. P. Mignani; G. G. Pavlov; O. Kargaltsev

    2008-05-16T23:59:59.000Z

    The multi-wavelength study of old (>100 Myr) radio pulsars holds the key to understanding the long-term evolution of neutron stars, including the advanced stages of neutron star cooling and the evolution of the magnetosphere. Optical/UV observations are particularly useful for such studies because they allow one to explore both thermal and non-thermal emission processes. In particular, studying the optical/UV emission constrains temperature of the bulk of the neutron star surface, too cold to be measured in X-ray observations.Aim of this work is to identify the optical counterpart of the very old (166 Myr) radio pulsar J0108-1431. We have re-analyzed our original VLT observations (Mignani et al. 2003), where a very faint object was tentatively detected close to the radio position, near the edge of a field galaxy. We found that the backward extrapolation of the PSR J0108-1431 proper motion recently measured by CHANDRA(Pavlov et al. 2008) nicely fits the position of this object. Based on that, we propose it as a viable candidate for the optical counterpart to PSR J0108-1431. The object fluxes (U =26.4+/-0.3; B =27.9; V >27.8) are consistent with a thermal spectrum with a brightness temperature of 9X10^4 K (for R = 13 km at a distance of 130 pc), emitted from the bulk of the neutron star surface. New optical observations are required to confirm the optical identification of PSR J0108-1431 and measure its spectrum.

  15. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    SciTech Connect (OSTI)

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01T23:59:59.000Z

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

  16. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect (OSTI)

    Grazzi, F.; Scherillo, A.; Zoppi, M. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2009-09-15T23:59:59.000Z

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  17. Neutron Diffraction and Neutron Vibrational Spectroscopy Studies of Hydrogen Adsorption in the Prussian Blue Analogue

    E-Print Network [OSTI]

    The transition to an energy infrastructure based upon hydrogen as an energy carrier is critically dependent uponNeutron Diffraction and Neutron Vibrational Spectroscopy Studies of Hydrogen Adsorption, Berkeley, California 94720-1460 ReceiVed April 13, 2006 The adsorption of molecular hydrogen

  18. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11T23:59:59.000Z

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  19. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOE Patents [OSTI]

    Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Nigg, David W. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  20. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01T23:59:59.000Z

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  1. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokol, P. E. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)

    2011-08-15T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  2. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg [ORNL; Podlesnyak, Andrey A [ORNL; Niedziela, Jennifer L [ORNL; Iverson, Erik B [ORNL; Sokol, Paul E [ORNL

    2011-01-01T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  3. Determination of Godiva`s effective delayed neutron fraction using newly calculated delayed neutron spectra

    SciTech Connect (OSTI)

    Spriggs, G.D.; Campbell, J.M. [Los Alamos National Lab., NM (United States); Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-09-01T23:59:59.000Z

    When calculating the effective delayed neutron fraction {beta}{sub eff} for a given reactor system, the assumed delayed neutron group spectra and the assumed number of delayed neutrons born per fission {nu}{sub d} can have a major impact on the final value. Over the years, the recommended values for the delayed neutron spectra and for {nu}{sub d} have slowly changed. To ascertain whether or not these changes have increased the accuracy of {beta}{sub eff} calculations in fast {sup 235}U systems, the authors have reevaluated {beta}{sub eff} for the benchmark system Godiva-I using newly calculated delayed neutron spectra and Tuttle`s recommended values of {nu}{sub d} for both {sup 235}U and {sup 238}U.

  4. Low-energy parameters of neutron-neutron interaction in the effective-range approximation

    SciTech Connect (OSTI)

    Babenko, V. A.; Petrov, N. M. [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine)

    2013-06-15T23:59:59.000Z

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the {sup 1}S{sub 0} state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron systemin the {sup 1}S{sub 0} state, the following values were obtained for the neutron-neutron scattering length and effective range: a{sub nn} = -16.59(117) fm and r{sub nn} = 2.83(11) fm. The calculated values agree well with present-day experimental results.

  5. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    SciTech Connect (OSTI)

    Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

    2013-07-01T23:59:59.000Z

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  6. A Novel Detector for High Neutron Flux Measurements

    SciTech Connect (OSTI)

    Singo, T. D.; Wyngaardt, S. M. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Papka, P. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Nuclear Physics group, iThemba labs, P. O. Box 722, Somerset West 7129 (South Africa); Dobson, R. T. [Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa)

    2010-01-05T23:59:59.000Z

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of {sup 6}Li and {sup 12}C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  7. Neutron Scattering Experiment Automation with Python

    SciTech Connect (OSTI)

    Zolnierczuk, Piotr A [ORNL] [ORNL; Riedel, Richard A [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

  8. Penetrating radiation impact on NIF final optic components

    SciTech Connect (OSTI)

    Marshall, C.D.; Speth, J.A.; DeLoach, L.D.; Payne, S.A.

    1996-10-15T23:59:59.000Z

    Goal of the National Ignition Facility (NIF) is to achieve thermonuclear ignition in a laboratory environment in inertial confinement fusion (ICF). This will enable NIF to service the DOE stockpile stewardship management program, inertial fusion energy goals, and advance scientific frontiers. All of these applications will make use of the extreme conditions that the facility will create in the target chamber. In the case of a prospected 20 MJ yield scenario, NIF will produce 10{sup 19} neutrons with DT fusion 14 MeV energy per neutron. There will also be high-energy x rays as well as solid, liquid, and gaseous target debris produced either directly or indirectly by the inertial confinement fusion process. A critical design issue is the protection of the final optical components as well as sophisticated target diagnostics in such a harsh environment.

  9. Separable Optical Potentials for (d,p) Reactions

    E-Print Network [OSTI]

    Ch. Elster; L. Hlophe; V. Eremenko; F. M. Nunes; G. Arbanas; J. E. Escher; I. J. Thompson

    2014-10-05T23:59:59.000Z

    An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reactions must be used instead. Those (d,p) reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by (d,p) reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion, one needs not only to derive a separable representation of neutron- and proton-nucleus optical potentials, but also compute the Coulomb distorted form factors in this basis.

  10. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10T23:59:59.000Z

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  11. Polarized 3He Gas Circulating Technologies for Neutron Analyzers

    SciTech Connect (OSTI)

    Watt, David; Hersman, Bill

    2014-12-10T23:59:59.000Z

    We describe the development of an integrated system for quasi-continuous operation of a large volume neutron analyzer. The system consists of a non-magnetic diaphragm compressor, a prototype large volume helium polarizer, a surrogate neutron analyzer, a non-depolarizing gas storage reservoir, a non-ferrous valve manifold for handling gas distribution, a custom rubidium-vapor gas return purifier, and wire-wound transfer lines, all of which are immersed in a two-meter external magnetic field. Over the Phase II period we focused on three major tasks required for the successful deployment of these types of systems: 1) design and implementation of gas handling hardware, 2) automation for long-term operation, and 3) improvements in polarizer performance, specifically fabrication of aluminosilicate optical pumping cells. In this report we describe the design, implementation, and testing of the gas handling hardware. We describe improved polarizer performance resulting from improved cell materials and fabrication methods. These improvements yielded valved 8.5 liter cells with relaxation times greater than 12 hours. Pumping this cell with 1500W laser power with 1.25nm linewidth yielded peak polarizations of 60%, measured both inside and outside the polarizer. Fully narrowing this laser to 0.25nm, demonstrated separately on one stack of the four, would have allowed 70% polarization with this cell. We demonstrated the removal of 5 liters of polarized helium from the polarizer with no measured loss of polarization. We circulated the gas through a titanium-clad compressor with polarization loss below 3% per pass. We also prepared for the next phase of development by refining the design of the polarizer so that it can be engineer-certified for pressurized operation. The performance of our system far exceeds comparable efforts elsewhere.

  12. Practical demonstration of Boron Neutron Capture Therapy versus murine tumors via liposomal delivery of boron-rich agents and thermal neutron irradiation

    SciTech Connect (OSTI)

    Peter Kueffler; Charles Maitz; Aslam Khan; Satish Jalisatgi; John Brockman; M. Frederick Hawthorne; David Nigg

    2014-11-01T23:59:59.000Z

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[1-(2’-B10¬H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  13. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA)

    1990-01-01T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  14. Multichannel optical sensing device

    DOE Patents [OSTI]

    Selkowitz, S.E.

    1985-08-16T23:59:59.000Z

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  15. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  16. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  17. Transpiration purged optical probe

    DOE Patents [OSTI]

    2004-01-06T23:59:59.000Z

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  18. Entanglement in Classical Optics

    E-Print Network [OSTI]

    Partha Ghose; Anirban Mukherjee

    2013-09-12T23:59:59.000Z

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  19. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  20. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19T23:59:59.000Z

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  1. Prismatic optical display

    DOE Patents [OSTI]

    Veligdan, James T.; DeSanto, Leonard; Brewster, Calvin

    2004-06-29T23:59:59.000Z

    A spatially modulated light beam is projected, reflected, and redirected through a prismatic optical panel to form a video image for direct viewing thereon.

  2. Optical theorem and unitarity

    E-Print Network [OSTI]

    Valeriy Nazaruk

    2014-03-20T23:59:59.000Z

    It is shown that an application of optical theorem for the non-unitary S-matrix can lead to the qualitative error in the result.

  3. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  4. LSST Camera Optics Design

    SciTech Connect (OSTI)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24T23:59:59.000Z

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  5. Biological effectiveness of neutrons: Research needs

    SciTech Connect (OSTI)

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01T23:59:59.000Z

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  6. Advanced High Temperature Reactor Neutronic Core Design

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Varma, Venugopal Koikal [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

  7. Derivation of a Stochastic Neutron Transport Equation

    E-Print Network [OSTI]

    Edward J. Allen

    2010-04-14T23:59:59.000Z

    Stochastic difference equations and a stochastic partial differential equation (SPDE) are simultaneously derived for the time-dependent neutron angular density in a general three-dimensional medium where the neutron angular density is a function of position, direction, energy, and time. Special cases of the equations are given such as transport in one-dimensional plane geometry with isotropic scattering and transport in a homogeneous medium. The stochastic equations are derived from basic principles, i.e., from the changes that occur in a small time interval. Stochastic difference equations of the neutron angular density are constructed, taking into account the inherent randomness in scatters, absorptions, and source neutrons. As the time interval decreases, the stochastic difference equations lead to a system of Ito stochastic differential equations (SDEs). As the energy, direction, and position intervals decrease, an SPDE is derived for the neutron angular density. Comparisons between numerical solutions of the stochastic difference equations and independently formulated Monte Carlo calculations support the accuracy of the derivations.

  8. Neutron Stars Opacity and Proton Fraction

    E-Print Network [OSTI]

    P. N. Alcain; C. O. Dorso

    2015-02-03T23:59:59.000Z

    Background: In neutron stars the nucleons are submitted to extreme conditions. The study of this natural occurring objects can lead to further understanding of the behaviour of nuclear matter in highly asymmetric nuclei. Among the characteristics of neutron stars, its neutrino absorption - associated to structural inhomoegeneities - stands out as one of the possible magnitudes linked to an observable. Purpose: We have carried out a systematic study of this neutrino absorption for different thermodynamic conditions in order to assess the impact that the structure has on it. Method: We study the dynamics of nucleons in conditions according to the neutron star crust with a semiclassical molecular dynamics model, for different densities, proton fractions and temperature, we calculate the long range opacity and the cluster distribution. Results: The neutrino absorption, the main mechanism for neutron stars cooldown, takes its highest value for temperatures and densities low compared with the inner crust, and a proton fraction is close to the symmetric case $x=0.5$. Conclusions: Within the used model the neutrinos are absorbed mostly close to the surface of the neutron star. Also, for high temperatures, a large cluster still exists, but the appearance of several small-sized clusters smears out the very long range order needed for neutrino absorption.

  9. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  10. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S [ORNL; Horak, Charlie M [ORNL; Counce, Deborah Melinda [ORNL; Ekkebus, Allen E [ORNL

    2008-07-01T23:59:59.000Z

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  11. Beam Characterization at the Neutron Radiography Facility

    SciTech Connect (OSTI)

    Sarah Morgan; Jeffrey King

    2013-01-01T23:59:59.000Z

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  12. The neutron star mass distribution

    SciTech Connect (OSTI)

    Kiziltan, Bülent [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kottas, Athanasios; De Yoreo, Maria [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States); Thorsett, Stephen E., E-mail: bkiziltan@cfa.harvard.edu [Department of Astronomy and Astrophysics, University of California and UCO/Lick Observatory, Santa Cruz, CA 95064 (United States)

    2013-11-20T23:59:59.000Z

    In recent years, the number of pulsars with secure mass measurements has increased to a level that allows us to probe the underlying neutron star (NS) mass distribution in detail. We critically review the radio pulsar mass measurements. For the first time, we are able to analyze a sizable population of NSs with a flexible modeling approach that can effectively accommodate a skewed underlying distribution and asymmetric measurement errors. We find that NSs that have evolved through different evolutionary paths reflect distinctive signatures through dissimilar distribution peak and mass cutoff values. NSs in double NS and NS-white dwarf (WD) systems show consistent respective peaks at 1.33 M {sub ?} and 1.55 M {sub ?}, suggesting significant mass accretion (?m ? 0.22 M {sub ?}) has occurred during the spin-up phase. The width of the mass distribution implied by double NS systems is indicative of a tight initial mass function while the inferred mass range is significantly wider for NSs that have gone through recycling. We find a mass cutoff at ?2.1 M {sub ?} for NSs with WD companions, which establishes a firm lower bound for the maximum NS mass. This rules out the majority of strange quark and soft equation of state models as viable configurations for NS matter. The lack of truncation close to the maximum mass cutoff along with the skewed nature of the inferred mass distribution both enforce the suggestion that the 2.1 M {sub ?} limit is set by evolutionary constraints rather than nuclear physics or general relativity, and the existence of rare supermassive NSs is possible.

  13. AN INTRODUCTION TO QUANTUM OPTICS...

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    AN INTRODUCTION TO QUANTUM OPTICS... ...the light as you've never seen before... Optics:http://science.howstuffworks.com/laser5.htm #12;5 DEFINITION Quantum Optics: "Quantum optics is a field in quantum physics, dealing OPTICS OPERATORS Light is described in terms of field operators for creation and annihilation of photons

  14. Physics design of a cold neutron source for KIPT neutron source facility.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

    2009-02-17T23:59:59.000Z

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The accelerator driven subcritical facility is designed with a provision to add a cryogenically cooled moderator system. This cold neutron source could provide the neutrons beams with lower energy, which could be utilized in scattering experiment and material structures analysis. This study describes the performed physics analyses to define and characterize the cold neutron source of the KIPT neutron source facility. The cold neutron source is designed to optimize the cold neutron brightness to the experimental instruments outside the radial heavy concrete shield of the facility. Liquid hydrogen or solid methane with 20 K temperature is used as a cold moderator. Monte Carlo computer code MCNPX [4], with ENDF/B-VI nuclear data libraries, is utilized to calculate the cold neutron source performance and estimate the nuclear heat load to the cold moderator. The surface source generation capability of MCNPX code has been used to provide the possibility of analyzing different design configurations and perform design optimization analyses with reasonable computer resources. Several design configurations were analyzed and their performance were characterized and optimized.

  15. absolute neutron spectrum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly. Zhang, Jinzhao 2013-01-01 188 New...

  16. accelerator neutron source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly. Zhang, Jinzhao 2013-01-01 37 Detection of...

  17. average neutron total: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Total Cross Sections for Neutron Scattering Nuclear Theory (arXiv) Summary: Measurements of neutron total...

  18. angle neutron diffractometer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    steel Low alloy ferritic steel Alloy 52 L0 L d0 d Bandara, Arosha 6 SANS -Small Angle Neutron Scattering Tcnica de difrao Chemistry Websites Summary: SANS - Small Angle Neutron...

  19. Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on...

  20. Neutron stars and strong-field effects of general relativity

    E-Print Network [OSTI]

    W. Kluzniak

    2000-12-29T23:59:59.000Z

    The basic observed properties of neutron stars are reviewed. I suggest that neutron stars in low-mass X-ray binaries are the best of all known sites for testing strong-field effects of general relativity.

  1. Cryogenic Neutron Protein Crystallography: routine methods and potential benefits

    SciTech Connect (OSTI)

    Weiss, Kevin L [ORNL; Tomanicek, Stephen J [ORNL; NG, Joseph D [ORNL

    2014-01-01T23:59:59.000Z

    The use of cryocooling in neutron diffraction has been hampered by several technical challenges such as the need for specialized equipment and techniques. Recently we have developed and deployed equipment and strategies that allow for routine neutron data collection on cryocooled crystals using off the shelf components. This system has several advantages, compared to a closed displex cooling system such as fast cooling coupled with easier crystal mounting and centering. The ability to routinely collect cryogenic neutron data for analysis will significantly broaden the range of scientific questions that can be examined by neutron protein crystallography. Cryogenic neutron data collection for macromolecules has recently become available at the new Biological Diffractometer BIODIFF at FRM II and the Macromolecular Diffractometer (MaNDi) at the Spallation Neutron Source, Oak Ridge National Laboratory. To evaluate the benefits of a cryocooled neutron structure we collected a full neutron data set on the BIODIFF instrument on a Toho-1 lactamase structure at 100K.

  2. Hand Held Neutron Detector Development for Physics and Security Applications

    E-Print Network [OSTI]

    Campbell, Caitlin E

    2013-10-04T23:59:59.000Z

    neutrons are slowed to thermal using hydrogenous material such as polyethylene where the thermal neutrons are easily captured by either a gadolinium or boron source. Both boron and gadolinium release ionizing radiation in the form of alpha and gammas upon...

  3. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    E-Print Network [OSTI]

    Hurst, Aaron

    2011-01-01T23:59:59.000Z

    FROM NEUTRON CAPTURE ON TUNGSTEN ISOTOPES A. M. HURST ?1,2 ,capture on the stable tungsten isotopes is presented, withknown decay schemes of the tungsten isotopes from neutron

  4. Instrumentation development for neutron scattering at high pressure 

    E-Print Network [OSTI]

    Fang, Junwei

    2012-11-29T23:59:59.000Z

    Neutron scattering at extremes of pressure is a powerful tool for studying the response of structural and magnetic properties of materials on microscopic level to applied stresses. However, experimental neutron studies ...

  5. LANSCE | Lujan Center | Highlights | In situ neutron diffraction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In situ neutron diffraction study of CO clathrate hydrate The structure of a CO clathrate hydrate has been studied for the first time using high-P low-T neutron diffraction....

  6. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect (OSTI)

    David L. Chichester

    2009-11-01T23:59:59.000Z

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  7. accreting neutron stars: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a typical noise of 10-23 Hz-12. S. Bonazzola; E. Gourgoulhon 1996-06-20 13 Thermonuclear Burning on Rapidly Accreting Neutron Stars Astrophysics (arXiv) Summary: Neutron...

  8. accreting neutron star: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a typical noise of 10-23 Hz-12. S. Bonazzola; E. Gourgoulhon 1996-06-20 13 Thermonuclear Burning on Rapidly Accreting Neutron Stars Astrophysics (arXiv) Summary: Neutron...

  9. accreted neutron star: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a typical noise of 10-23 Hz-12. S. Bonazzola; E. Gourgoulhon 1996-06-20 13 Thermonuclear Burning on Rapidly Accreting Neutron Stars Astrophysics (arXiv) Summary: Neutron...

  10. aerial neutron detection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (clutter) using neutron beams from Cf-252 (more) Johll, Mark 2009-01-01 50 An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons...

  11. Systems and methods for detecting neutrons

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09T23:59:59.000Z

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  12. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect (OSTI)

    Raman, S.

    1982-01-01T23:59:59.000Z

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  13. Imprinted spiral structures as neutron polarizers.

    SciTech Connect (OSTI)

    Lohstroh, W.

    1998-10-07T23:59:59.000Z

    Neutron diffraction from magnetic spiral structures is governed by strong selection rules for the polarization of the outgoing beam. When the sample is entirely of one chirality--for instance a right handed spiral--the neutrons diffracted by some Bragg reflections are fully polarized. While the scattering theory has been formulated long ago, attempts to controllably modify the population of left handed and right handed spiral domains in natural magnetic structures (which for instance occur in some rare earth metals) have been largely unsuccessful. In contrast, we have been able to imprint helical magnetic structures in La/Fe multilayers (each layer approximately 30 {angstrom} thick) simply by rotating the growing sample in a weak external field (30e). A first estimate is given of the efficiency of these multilayers as polarizers of neutron beams.

  14. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect (OSTI)

    Warren, Jeffrey [ORNL; Bilheux, Hassina Z [ORNL; Kang, Misun [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-Lin [ORNL; Horita, Jusuke [ORNL; Perfect, Edmund [ORNL

    2013-01-01T23:59:59.000Z

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  15. Neutron shell structure and deformation in neutron-drip-line nuclei

    E-Print Network [OSTI]

    Ikuko Hamamoto

    2012-06-18T23:59:59.000Z

    Neutron shell-structure and the resulting possible deformation in the neighborhood of neutron-drip-line nuclei are systematically discussed, based on both bound and resonant neutron one-particle energies obtained from spherical and deformed Woods-Saxon potentials. Due to the unique behavior of weakly-bound and resonant neutron one-particle levels with smaller orbital angular-momenta $\\ell$, a systematic change of the shell structure and thereby the change of neutron magic-numbers are pointed out, compared with those of stable nuclei expected from the conventional j-j shell-model. For spherical shape with the operator of the spin-orbit potential conventionally used, the $\\ell_{j}$ levels belonging to a given oscillator major shell with parallel spin- and orbital-angular-momenta tend to gather together in the energetically lower half of the major shell, while those levels with anti-parallel spin- and orbital-angular-momenta gather in the upper half. The tendency leads to a unique shell structure and possible deformation when neutrons start to occupy the orbits in the lower half of the major shell. Among others, the neutron magic-number N=28 disappears and N=50 may disappear, while the magic number N=82 may presumably survive due to the large $\\ell =5$ spin-orbit splitting for the $1h_{11/2}$ orbit. On the other hand, an appreciable amount of energy gap may appear at N=16 and 40 for spherical shape, while neutron-drip-line nuclei in the region of neutron number above N=20, 40 and 82, namely N $\\approx$ 21-28, N $\\approx$ 41-54, and N $\\approx$ 83-90, may be quadrupole-deformed though the possible deformation depends also on the proton number of respective nuclei.

  16. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01T23:59:59.000Z

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  17. Accretion Disk Boundary Layers Around Neutron Stars: X-ray Production in Low-Mass X-ray Binaries

    E-Print Network [OSTI]

    Robert Popham; Rashid Sunyaev

    2000-04-03T23:59:59.000Z

    We present solutions for the structure of the boundary layer where the accretion disk meets the neutron star, which is expected to be the dominant source of high-energy radiation in low-mass X-ray binaries which contain weakly magnetized accreting neutron stars. We find that the main portion of the boundary layer gas is hot (> ~10^8 K), low in density, radially and vertically extended, and optically thick to scattering but optically thin to absorption. It will produce large X-ray luminosity by Comptonization. Energy is transported inward by viscosity, concentrating the energy dissipation in the dense, optically thick zone close to the stellar surface. We explore the dependence of the boundary layer structure on the mass accretion rate, the rotation rate of the star, the alpha viscosity parameter and the viscosity prescription. Radiation pressure is the dominant source of pressure in the boundary layer; the flux is close to the Eddington limiting flux even for luminosities well below (~0.01 times) L(Edd). At luminosities near L(Edd), the boundary layer expands radially, and has a radial extent larger than one stellar radius. Based on the temperatures and optical depths which characterize the boundary layer, we expect that Comptonization will produce a power-law spectrum at low source luminosities. At high luminosities, a Planckian spectrum will be produced in the dense region where most of the energy is released, and modified by Comptonization as the radiation propagates outward.

  18. Advanced Neutron Source (ANS) Project progress report FY 1992

    SciTech Connect (OSTI)

    Campbell, J.H. (ed.); Selby, D.L.; Harrington.

    1993-01-01T23:59:59.000Z

    This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

  19. Spallation-Driven Cold Neutron Sources Dr. Bradley J. Micklich

    E-Print Network [OSTI]

    McDonald, Kirk

    Neutrons were produced by spallation/fission by 450MeV protons striking depleted uranium target Proton

  20. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

    E-Print Network [OSTI]

    Dany Page; Madappa Prakash; James M. Lattimer; Andrew W. Steiner

    2011-01-19T23:59:59.000Z

    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for this superfluid transition is ~0.5x10^9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.

  1. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  2. Computing the moments of the neutron population using deterministic neutron transport

    SciTech Connect (OSTI)

    Fichtl, E. D.; Baker, R. S. [Los Alamos National Laboratory, Computational Physics and Methods, CCS-2, PO Box 1663, Los Alamos, NM, 87544 (United States)

    2013-07-01T23:59:59.000Z

    It is important to treat the inherent stochasticity of the fission process in systems where the behavior of the system is stochastic. This occurs when there are few neutrons in the system, or when the neutron source is weak. In order to characterize such systems, the capability to compute the first four moments of the neutron population distribution has been added to the deterministic neutral particle transport code, PARTISN. The moments are then fitted to probability density functions from the Pearson family. PARTISN is compared against MCNP6, with which it agrees well. (authors)

  3. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Y. Arimoto; N. Higashi; Y. Igarashi; Y. Iwashita; T. Ino; R. Katayama; R. Kitahara; M. Kitaguchi; H. Matsumura; K. Mishima; H. Oide; H. Otono; R. Sakakibara; T. Shima; H. M. Shimizu; T. Sugino; N. Sumi; H. Sumino; K. Taketani; G. Tanaka; M. Tanaka; K. Tauchi; A. Toyoda; T. Yamada; S. Yamashita; H. Yokoyama; T. Yoshioka

    2015-03-27T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  4. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    DOE Patents [OSTI]

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02T23:59:59.000Z

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  5. Flexible optical panel

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2001-01-01T23:59:59.000Z

    A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

  6. Multimode optical fiber

    DOE Patents [OSTI]

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04T23:59:59.000Z

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  7. Apollo Ring Optical Switch

    SciTech Connect (OSTI)

    Maestas, J.H.

    1987-03-01T23:59:59.000Z

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  8. Recent advances in neutron capture therapy (NCT)

    SciTech Connect (OSTI)

    Fairchild, R.G.

    1985-01-01T23:59:59.000Z

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  9. Prompt Neutron Lifetime for the NBSR Reactor

    SciTech Connect (OSTI)

    Hanson, A.L.; Diamond, D.

    2012-06-24T23:59:59.000Z

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  10. Method for manufacture of neutron absorbing articles

    SciTech Connect (OSTI)

    Owens, D.

    1980-07-22T23:59:59.000Z

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  11. Neutron single target spin asymmetries in SIDIS

    SciTech Connect (OSTI)

    Evaristo Cisbani

    2010-04-01T23:59:59.000Z

    The experiment E06-010 in Hall A at Jefferson Lab took data between November 2008 and February 2009 to directly measure, for the first time, the pion (and kaon) single "neutron" target-spin asymmetry (SSA) in semi-inclusive DIS from a polarized 3He target. Collins, Sivers (and Pretzelosity) neutron asymmetries are going to be extracted from the measured SSA. Details of the experiment are described together with the preliminary results of the ongoing analysis. Near future Hall A experiments on transverse nucleon spin structure are shorty reviewed.

  12. Neutron activation analysis applied to perspiration electrolytes

    E-Print Network [OSTI]

    McAndrew, Robert Gavin

    1969-01-01T23:59:59.000Z

    . In the choice of the polyethylene sheeting used, nine commercial polyethylene sheets or bags were analyzed for their sodium content by neutron activation analysis. A small sax:. .pie of each material was weighed and then irradiated in the reactor for one... 3. 46 3. 76 4. 2 1. 15 1. 16 . 59 1. 19 1. 82 1. 89 1. 50 . 54 1. 88 . 74 1. 20 1. 29 43 which were irradiated unshielded by cadmium in the center tube of the reactor where the fast neutron flux was much greater than at the reactor...

  13. Neutron Imaging of Diesel Particulate Filters

    SciTech Connect (OSTI)

    Strzelec, Andrea [ORNL; Bilheux, Hassina Z [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Schillinger, Burkhard [FRM-II, Technische Universitaet Munchen; Schulz, Michael [FRM-II, Technische Universitaet Munchen

    2009-01-01T23:59:59.000Z

    This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500rpm, 2.6bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.

  14. Singular perturbation applications in neutron transport

    SciTech Connect (OSTI)

    Losey, D.C. [Westinghouse Savannah River Company, Aiken, SC (United States); Lee, J.C. [University of Michigan, Ann Arbor, MI (United States)

    1996-09-01T23:59:59.000Z

    This is a paper on singular perturbation applications in neutron transport for submission at the next ANS conference. A singular perturbation technique was developed for neutron transport analysis by postulating expansion in terms of a small ordering parameter {eta}. Our perturbation analysis is carried, without approximation, through {Omicron}({eta}{sup 2}) to derive a material interface correction for diffusion theory. Here we present results from an analytical application of the perturbation technique to a fixed source problem and then describe and implementation of the technique in a computational scheme.

  15. Neutron Captures in the r-Process

    E-Print Network [OSTI]

    T. Rauscher

    2004-04-12T23:59:59.000Z

    The r-process involves neutron-rich nuclei far off stability for which no experimental cross sections are known. Therefore, one has to rely on theory. The difficulties in the predictions are briefly addressed. To investigate the impact of altered rates, a comparison of r-process production in hot bubble models with largely varied rates is shown. Due to the (n,gamma)-(gamma,n) equilibrium established at the onset of the r-process, only late-time neutron captures are important which mainly modify the abundances around the third r-process peak.

  16. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors

    E-Print Network [OSTI]

    Wood, Mary. H.; Welbourn, Rebecca J. L.; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M.

    2015-06-07T23:59:59.000Z

    and cosurfactant on the protecting corrosion for nickel. Acta. Phys-Chim. Sin. 2000, 16, 899–905. (22) Vezvaie, M.; Noel, J. J.; Tun, Z.; Shoesmith, D. W. Hydrogen absorption into titanium under cathodic polarisation: an in-situ neutron reflometry and EIS study... , 378 (1), 152–158. (42) Wang, X.; Lee, S. Y.; Miller, K.; Stocker, I.; Clarke, S.; Casford, M.; Gutfreund, P.; Skoda, M. W. A. Cation bridging studied by specular neutron reflection. Langmuir 2013, 29, 5520–5527. (43) Aquino, L. I. A. J. A.; Tunega...

  17. Neutron scattering and extra short range interactions

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; G. Pignol; K. V. Protasov

    2007-11-14T23:59:59.000Z

    The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.

  18. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,NeutronNeutrons provide newATHENA

  19. Neutrons used to study model vascular systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,NeutronNeutrons provide

  20. Separable Representation of Proton-Nucleus Optical Potentials

    E-Print Network [OSTI]

    L. Hlophe; V. Eremenko; Ch. Elster; F. M. Nunes; G. Arbanas; J. E. Escher; I. J. Thompson

    2014-09-14T23:59:59.000Z

    Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton- and neutron-nucleus scattering. We present a generalization of the Ernst-Shakin-Thaler scheme in which a momentum space separable representation of proton-nucleus scattering matrix elements can be calculated in the Coulomb basis. The viability of this method is demonstrated by comparing S-matrix elements obtained for p$+^{48}$Ca and p$+^{208}$Pb for a phenomenological optical potential with corresponding coordinate space calculations.