Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stereoscopic optical viewing system  

DOE Patents (OSTI)

An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

Tallman, C.S.

1986-05-02T23:59:59.000Z

2

Fiber optic geophysical sensors  

DOE Patents (OSTI)

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

3

Fiber optic coupled optical sensor  

DOE Patents (OSTI)

A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

Fleming, Kevin J. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

4

Fiber optic vibration sensor  

DOE Patents (OSTI)

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

1995-01-01T23:59:59.000Z

5

Fiber optic vibration sensor  

DOE Patents (OSTI)

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

1995-01-10T23:59:59.000Z

6

Fiber optic geophysical sensors  

DOE Patents (OSTI)

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

7

Optical displacement sensor  

DOE Patents (OSTI)

An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

Carr, Dustin W. (Albuquerque, NM)

2008-04-08T23:59:59.000Z

8

Fiber optic hydrogen sensor  

DOE Patents (OSTI)

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

9

Fiber optic hydrogen sensor  

DOE Patents (OSTI)

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

10

Fiber optic hydrogen sensor  

DOE Patents (OSTI)

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

11

Fiber optic temperature sensor  

SciTech Connect

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

12

Silicon fiber optic sensors  

DOE Patents (OSTI)

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

13

High pressure fiber optic sensor system  

DOE Patents (OSTI)

The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

2013-11-26T23:59:59.000Z

14

Optical high acidity sensor  

DOE Patents (OSTI)

An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

Jorgensen, Betty S. (Jemez Springs, NM); Nekimken, Howard L. (Los Alamos, NM); Carey, W. Patrick (Lynnwood, WA); O'Rourke, Patrick E. (Martinez, GA)

1997-01-01T23:59:59.000Z

15

Fiber optic moisture sensor  

DOE Patents (OSTI)

A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

Kirkham, R.R.

1984-08-03T23:59:59.000Z

16

Fiber-optic liquid level sensor  

DOE Patents (OSTI)

A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.

Weiss, Jonathan D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

17

Design guidelines for optical resonator biochemical sensors  

E-Print Network (OSTI)

In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

Kimerling, Lionel C.

18

Integrated optical tamper sensor with planar waveguide  

DOE Patents (OSTI)

A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

Carson, R.F.; Casalnuovo, S.A.

1993-01-05T23:59:59.000Z

19

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors  

E-Print Network (OSTI)

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors were developed and tested. The sensor was fabricated in a 0.5 µm CMOS process. The measured reset noise of the sensor is reduced by a factor of 10 compared to conventional active pixel

Maryland at College Park, University of

20

Sandia National Laboratories: Sensors & Optical Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Optical Diagnostics New Polarized-Depolarized Measurement Capability Extends Use of RamanRayleigh Methods to More Flame Types On April 23, 2014, in Capabilities, CRF,...

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optical sensor of magnetic fields  

DOE Patents (OSTI)

An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

Butler, M.A.; Martin, S.J.

1986-03-25T23:59:59.000Z

22

Interferometric fiber optic displacement sensor  

DOE Patents (OSTI)

A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

Farah, J.

1995-05-30T23:59:59.000Z

23

Optical Sensor Technology Development and Deployment  

SciTech Connect

The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

B. G. Parker

2005-01-24T23:59:59.000Z

24

Reactive Grasping Using Optical Proximity Sensors  

E-Print Network (OSTI)

We propose a system for improving grasping using fingertip optical proximity sensors that allows us to perform online grasp adjustments to an initial grasp point without requiring premature object contact or regrasping ...

Nangeroni, Paul

25

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents (OSTI)

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2003-07-22T23:59:59.000Z

26

Low-Cost Fiber Optic Pressure Sensor  

DOE Patents (OSTI)

The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

Sheem, Sang K. (Pleasanton, CA)

2004-05-18T23:59:59.000Z

27

Electro-optic voltage sensor head  

DOE Patents (OSTI)

The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Woods, Gregory K. (Cornelius, OR)

1999-01-01T23:59:59.000Z

28

Microbend fiber-optic chemical sensor  

DOE Patents (OSTI)

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

29

Optical fiber sensor for membrane submicrometer vibration measurement  

Science Journals Connector (OSTI)

This paper presents an optical fiber sensor for membrane submicrometer vibration measurement. The sensor is designed ultimately for low-cost medical audiometric applications such as...

Prokopczuk, Krzysztof; Rozwadowski, Krzysztof; Aleksandra Starzy?ska, M D; Doma?ski, Andrzej W

2014-01-01T23:59:59.000Z

30

Integrated-optic fluid sensor using heat transfer  

Science Journals Connector (OSTI)

An integrated-optic fluid sensor utilizing the heat-transfer phenomenon is proposed. An optical waveguide interferometer is used to convert the temperature of the waveguide surface...

Enokihara, Akira; Izutsu, Masayuki; Sueta, Tadasi

1988-01-01T23:59:59.000Z

31

Flexible Optical Chemical Sensor Platform for BTX  

Science Journals Connector (OSTI)

An in-plane flexible sensor platform for \\{BTXs\\} detection was developed using low-cost patterning techniques and foil-based optical components. The platform was produced by a combination of laser patterning, inkjet printing and capillary filling. Key optical components such as lightguides, optical cladding layers and metallic interconnections were realized on low cost substrates such as paper and PET. The sensing mechanism is based on the change in fluorescence spectra of a reporter dye, supported over a porous matrix. Detection limits down to 1 ppm for benzene, toluene and xylene have been measured. Response times down to a few seconds were observed for different gas concentrations.

Juan Diego Arias Espinoza; Viacheslav Sazhnikov; Sami Sabik; Dmitriy Ionov; Edsger Smits; Sandeep Kalathimekkad; Geert Van Steenberge; Michail Alfimov; Ma?gorzata Po?niak; El?bieta Dobrzy?ska; Ma?gorzata Szewczy?ska; Krzysztof Benczek; Herman Schoo

2012-01-01T23:59:59.000Z

32

Electro-optical voltage sensor head  

DOE Patents (OSTI)

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

33

Phase sensor for solar adaptive-optics  

E-Print Network (OSTI)

Wavefront sensing in solar adaptive-optics is currently done with correlating Shack-Hartmann sensors, although the spatial- and temporal-resolutions of the phase measurements are then limited by the extremely fast computing required to correlate the sensor signals at the frequencies of daytime atmospheric-fluctuations. To avoid this limitation, a new wavefront-sensing technique is presented, that makes use of the solar brightness and is applicable to extended sources. The wavefront is sent through a modified Mach-Zehnder interferometer. A small, central part of the wavefront is used as reference and is made to interfere with the rest of the wavefront. The contrast of two simultaneously measured interference-patterns provides a direct estimate of the wavefront phase, no additional computation being required. The proposed optical layout shows precise initial alignment to be the critical point in implementing the new wavefront-sensing scheme.

Kellerer, Aglae

2011-01-01T23:59:59.000Z

34

Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical  

E-Print Network (OSTI)

Sensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits

Quake, Stephen R.

35

Waveguide-based optical chemical sensor  

DOE Patents (OSTI)

The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

Grace, Karen M. (Ranchos de Taos, NM); Swanson, Basil I. (Los Alamos, NM); Honkanen, Seppo (Tucson, AZ)

2007-03-13T23:59:59.000Z

36

Triangularly phase-modulated optical fiber ring resonator sensor  

Science Journals Connector (OSTI)

An optical fiber ring resonatory sensor system has been demonstrated by applying a triangular phase modulation signal to a fiber loop. The dynamic range for detection of optical phase...

Chien, Pie-Yau; Pan, Ci-Ling

1992-01-01T23:59:59.000Z

37

Excess optical quantum noise in atomic sensors  

E-Print Network (OSTI)

Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

2014-10-14T23:59:59.000Z

38

Side-emitting fiber optic position sensor  

DOE Patents (OSTI)

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

39

Electro-optic high voltage sensor  

DOE Patents (OSTI)

A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

Davidson, James R. (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

40

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence  

E-Print Network (OSTI)

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear molybdenum chloride clusters. Measurements of the probe operating in a 0%­21% gaseous oxygen environment have

Ghosh, Ruby N.

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fiber-Optic Long-Line Position Sensor  

Sandia National Laboratories has developed a side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor.  Non-electrical position sensors like the one developed by Sandia are desirable for use in hazardous environment, e.g., for measuring the liquid level in gasoline or jet fuel tanks.  This sensor is an attractive option because it does not introduce electrical energy, is insensitive to electromagnetic interference,...

2013-03-12T23:59:59.000Z

42

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents (OSTI)

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

43

Large-area fiber-optic chemical sensors  

SciTech Connect

Pacific Northwest Laboratory is developing a large-area chemical sensor that combines chemically selective coatings and optical spectroscopy to detect target compounds. The chemically selective material is incorporated into the cladding of an optical fiber waveguide. The material is interrogated using optical spectroscopic techniques to determine the concentration of target compounds. The optical interrogation method includes two spectroscopies: visible-near infrared absorption spectroscopy and Raman spectroscopy. This work develops the physical and mathematical models of such a sensor and provides a set of tools with which to make design predictions for the large-area chemical sensors. The theoretical relationships derived herein allow the use of bulk absorption parameters and bulk Raman coefficients to predict sensor performance.

Bliss, M.; Craig, R.A.

1995-05-01T23:59:59.000Z

44

Vibration-insensitive fiber-optic current sensor  

Science Journals Connector (OSTI)

The measurement of the electric current with an optical fiber sensor can be made insensitive to external vibrations that act on the leading fiber by using a circuit involving a...

Pistoni, Natale C; Martinelli, Mario

1993-01-01T23:59:59.000Z

45

New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application  

SciTech Connect

Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

2007-12-31T23:59:59.000Z

46

Fiber Optic Temperature Sensor for PEM Fuel Cells  

E-Print Network (OSTI)

Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance Hydrogren and Fuel Cells Merit Review Meeting May 19-22, 2003, Berkeley, California #12;Program Goals

47

Cloaking a sensor for three-dimensional Maxwell's equations: transformation optics approach  

E-Print Network (OSTI)

P. Sheng, “Transformation optics and metamaterials,” Nat.sensor via transformation optics,” Phys. Rev. E 83, 016603 (October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20518 13. G.

Chen, Xudong; Uhlmann, Gunther

2011-01-01T23:59:59.000Z

48

Extrinsic fiber optic displacement sensors and displacement sensing systems  

DOE Patents (OSTI)

An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

1994-01-01T23:59:59.000Z

49

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents (OSTI)

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

50

Fast Illumination-invariant Background Subtraction using Two Views: Error Analysis, Sensor Placement and Applications  

E-Print Network (OSTI)

Fast Illumination-invariant Background Subtraction using Two Views: Error Analysis, Sensor£ Abstract Background modeling and subtraction to detect new or moving objects in a scene is an important a detailed analysis of such errors. Then, we propose a sensor configuration that eliminates false de

Paragios, Nikos

51

Fiber optic hydrophone sensor arrays using low reflectance internal mirrors  

E-Print Network (OSTI)

A new design of fiber optic hydrophone sensor arrays phics. using low reflectance internal mirrors in optical fibers is investigated. The mirrors are produced by fusion arc splicing of two fibers, one of which has a thin film of TiO2 on the end. A...

Lee, Jong-Seo

2012-06-07T23:59:59.000Z

52

NETL: Gasification - Single-Crystal Sapphire Optical Fiber Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems Gasifier Optimization and Plant Supporting Systems Single-Crystal Sapphire Optical Fiber Sensor Instrumentation Virginia Polytechnic Institute and State University Center for Photonics Technology Project Number: DE-FC26-99FT40685 Project Description Phase I - The Photonics Laboratory at Virginia Tech has successfully developed a novel temperature sensor capable of operating at temperatures up to 1600 °C and in harsh conditions. The sensor uses single-crystal sapphire to make an optically-based measurement and will fulfill the need for the real-time monitoring of high temperatures created in gasification processes. Phase II - Based on a successful Phase I laboratory demonstration of a Broadband Polarimetric Differential Interferometric (BPDI) temperature sensor, Virginia Tech's Phase II development objective is to further the development of the sensor for industrial use in slagging coal gasifiers. This will include ruggedizing the design of the sensor and creation of a suitable protective housing such that it can be placed into existing ports of coal gasifiers. The potential industrial use of the sensor will be determined through full-scale testing and development. The sensor design and fabrication has been completed and is undergoing testing. Overall performance and survivability of the sensor will be determined.

53

Optics-less Sensors for Localization of Radiation Sources  

E-Print Network (OSTI)

A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a given number of sources in known positions. The accuracy is found to be dependent only on the sub-sensors noise level, on the number of sub-sensors and on the spacing between radiation sources.

H. J. Caulfield; L. P. Yaroslavsky; Ch. Goerzen; S. Umansky

2008-08-08T23:59:59.000Z

54

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

55

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

56

Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics  

Science Journals Connector (OSTI)

The concept of a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics is proposed. In such a sensor plasmons on the inner surface of...

Hassani, A; Skorobogatiy, M

2006-01-01T23:59:59.000Z

57

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

SciTech Connect

The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

Wang, a.; Pickrell, G.; Xiao, H.; May, r.

2003-02-27T23:59:59.000Z

58

Optical vibration sensor fabricated by femtosecond laser micromachining  

SciTech Connect

We fabricated an optical vibration sensor using a high-repetition rate femtosecond laser oscillator. The sensor consists of a single straight waveguide written across a series of three pieces of glass. The central piece is mounted on a suspended beam to make it sensitive to mechanical vibration, acceleration, or external forces. Displacement of the central piece is detected by measuring the change in optical transmission through the waveguide. The resulting sensor is small, simple, and requires no alignment. The sensor has a linear response over the frequency range 20 Hz-2 kHz, can detect accelerations as small as 0.01 m/s{sup 2}, and is nearly temperature independent.

Kamata, Masanao; Obara, Minoru; Gattass, Rafael R.; Cerami, Loren R.; Mazur, Eric [Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

2005-08-01T23:59:59.000Z

59

Distributed Optical Sensor for CO2 Leak Detection  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Sensor for CO Optical Sensor for CO 2 Leak Detection Opportunity Research is active on the technology "Distributed Optical Sensor for CO 2 Leak Detection," for which a Patent Application has been filed. This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The availability of fossil fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, there are concerns over the impacts of greenhouse gases (GHGs) in the atmosphere-particularly carbon dioxide (CO 2 ). Carbon capture and storage in geologic formations is a promising technology to reduce the impact of CO

60

Fiber-optic Fabry-Perot ultrasound sensor  

E-Print Network (OSTI)

of a novel type of ultrasound fiber-optic sensor was studied theoretically and experimentally. The sensor consists of a continuous length of single mode optical fiber into which two dielectric internal mirrors have been built to form a Fabry...-Perot Interferometer A Fabry-Perot interferometer consists of two parallel partially reflecting mirrors separated by a distance L generally much longer than the wavelength X of the light (see fig. 1) . If a light wave with amplitude A~ and coherence length several...

Alcoz, Jorge Jose

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fiber optic sensors for environmental applications: A brief review  

SciTech Connect

Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface.

Rossabi, J.

1992-04-01T23:59:59.000Z

62

Optical temperature sensor using thermochromic semiconductors  

DOE Patents (OSTI)

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

63

Electro-optic voltage sensor with Multiple Beam Splitting  

DOE Patents (OSTI)

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

64

Electro-optic voltage sensor with beam splitting  

DOE Patents (OSTI)

The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

65

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect

The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.

Nabeel A. Riza

2004-11-10T23:59:59.000Z

66

On-Road Vehicle Detection Using Optical Sensors: A Review  

E-Print Network (OSTI)

1 On-Road Vehicle Detection Using Optical Sensors: A Review Zehang Sun1 , George Bebis2 and Ronald are expected to add up to 1%-3% of the world's gross domestic product [1]. With the aim of reducing injury

Bebis, George

67

Optical fiber sensors for smart materials characterization  

SciTech Connect

Optical and optical fiber methods may be used to characterize materials and structures. Their advantages for such applications include their immunity to electromagnetic interference, high sensitivity, resolution and dynamic range, and ability to operate in harsh environmental conditions. This paper describes the application of such methods to the characterization of smart materials and structures during their fabrication, in-service lifetime, and damage and degradation.

Claus, R.O. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Electrical Engineering Dept.

1994-12-31T23:59:59.000Z

68

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

69

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

Weiss, J.D.

1995-02-07T23:59:59.000Z

70

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers  

E-Print Network (OSTI)

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

Theodorakis, Emmanuel

71

A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-  

E-Print Network (OSTI)

Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication for distributed sensor net- works has been demonstrated. The device digitizes inte- grated sensor signals, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR

Kahn, Joseph M.

72

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Fiber Sensor Technologies for Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery Final Technical Report Reporting Period Start Date: 1 October 1998 Reporting Period End Date: 31 March 2003 Principal Investigator: Anbo Wang Principal Report Authors: Kristie L. Cooper, Gary R. Pickrell, Anbo Wang Report Issued: June 2003 DOE Award Number: DE-FT26-98BC15167 Submitted by: Center for Photonics Technology Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute & State University Blacksburg, VA 24061-0111 ii Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

73

An integrated optical sensor for GMAW feedback control  

SciTech Connect

The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.

Taylor, P.L.; Watkins, A.D.; Larsen, E.D.; Smartt, H.B.

1992-01-01T23:59:59.000Z

74

An integrated optical sensor for GMAW feedback control  

SciTech Connect

The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.

Taylor, P.L.; Watkins, A.D.; Larsen, E.D.; Smartt, H.B.

1992-08-01T23:59:59.000Z

75

6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time  

E-Print Network (OSTI)

transforming system instead, the sensor will allow measurement of rotational vibration without direct6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time in-plane vibration-contact, low-cost optical sensor for real time detection and active vibration control of mechanical devices

76

Performance characterization of an internsity-modulated fiber optic displacement sensor  

SciTech Connect

A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

2010-09-30T23:59:59.000Z

77

Optical High Voltage Sensor with Oil- and Gas-free Insulation  

Science Journals Connector (OSTI)

We present an electro-optic high voltage sensor with novel oil- and gas-free insulation based on capacitive electric field steering. The sensor's accuracy is within ±0.2% in a...

Marchese, Sergio V; Wildermuth, Stephan; Steiger, Olivier; Pascal, Joris; Bohnert, Klaus; Eriksson, Göran; Czyzewski, Jan

78

Theoretical and practical response evaluation of a fiber optic sensor for chlorinated hydrocarbons in water  

Science Journals Connector (OSTI)

The response behavior of a polymer-coated mid-infrared fiber optical sensor for chlorinated hydrocarbons in water is evaluated practically and theoretically. The sensor ... - and tetrachloroethylene obtained in a...

E. Rosenberg; R. Krska; R. Kellner

79

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the broadband polarimetric differential interferometric (BPDI) sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-09-10T23:59:59.000Z

80

SINGLE-CRYSTAL SAPPHIRE OPTICAL FIBER SENSOR INSTRUMENTATION  

SciTech Connect

Accurate measurement of temperature is essential for the safe and efficient operation and control of a wide range of industrial processes. Appropriate techniques and instrumentation are needed depending on the temperature measurement requirements in different industrial processes and working environments. Harsh environments are common in many industrial applications. These harsh environments may involve extreme physical conditions, such as high-temperature, high-pressure, corrosive agents, toxicity, strong electromagnetic interference, and high-energy radiation exposure. Due to these severe environmental conditions, conventional temperature sensors are often difficult to apply. This situation has opened a new but challenging opportunity for the sensor society to provide robust, high-performance, and cost-effective temperature sensors capable of operating in those harsh environments. The focus of this research program has been to develop a temperature measurement system for temperature measurements in the primary and secondary stages of slagging gasifiers. For this application the temperature measurement system must be able to withstand the extremely harsh environment posed by the high temperatures and corrosive agents present in these systems. Real-time, accurate and reliable monitoring of temperature for the coal gasification process is important to realize the full economic potential of these gasification systems. Long life and stability of operation in the high temperature environment is essential for the temperature measurement system to ensure the continuous running of the coal gasification system over the long term. In this high temperature and chemically corrosive environment, rather limited high temperature measurement techniques such as high temperature thermocouples and optical/acoustic pyrometers are available, each with their own limitations. In this research program, five different temperature sensing schemes based on the single crystal sapphire material were thoroughly investigated to determine an optimal approach for on-line, real-time, reliable, long-term monitoring of temperatures inside the coal gasification environment. Among these were a sapphire fiber extrinsic Fabry-Perot interferometric (EFPI) sensor; an intensity-measurement based polarimetric sapphire sensor and a broadband polarimetric differential interferometric (BPDI) sapphire sensor. Based on the current evaluation and analysis of the experimental results, the BPDI sensor system was chosen for further prototype instrumentation development because of it's superior performance compared to the other systems. This approach is based on the self-calibrating measurement of the optical path length differences in a single-crystal sapphire disk, which is a function of both the temperature dependent birefringence and the temperature dependent dimensional changes.

A. Wang; G. Pickrell; R. May

2002-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New IR Fiber-Optic Chemical Sensor for in Situ Measurements of Chlorinated Hydrocarbons in Water  

Science Journals Connector (OSTI)

In this work the development and validation of a new MIR fiber-optic physicochemical sensor system for the continuous in situ analysis of chlorinated hydrocarbons (CHCs) in...

Krska, R; Taga, K; Kellner, R

1993-01-01T23:59:59.000Z

82

An optical fiber Faraday effect current sensor for power system applications  

E-Print Network (OSTI)

Optical fiber sensors have many inherent properties which make them ideal for applications within electric power systems. The dielectric isolation achieved in using optical fiber has fostered research in the areas of communication and sensing...

Short, Shayne Xavier

1995-01-01T23:59:59.000Z

83

Energy conversion in Er3+ doped chalcogenide fibers for gas optical sensor  

Science Journals Connector (OSTI)

Er3+ doped chalcogenide fibers are used to convert a 4.3 µm optical signal into an 800 nm radiation with the aim of developing an all-optical infrared gas sensor with a detection in...

Anne-Laure, Pelé; Doualan, Jean-Louis; Braud, Alain; Nazabal, Virginie; Moncorgé, Richard; Camy, Patrice

84

Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms  

SciTech Connect

The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

Parameswaran, Krishnan R. [Physical Sciences Inc.

2013-12-02T23:59:59.000Z

85

Ultra-High Temperature Sensors Based on Optical Property  

SciTech Connect

In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

Nabeel Riza

2008-09-30T23:59:59.000Z

86

Development of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors  

E-Print Network (OSTI)

to the case of a ball wheel. The system measures surface speed by using two or more optical mouse sensorsDevelopment of a Three-Dimensional Ball Rotation Sensing System using Optical Mouse Sensors Masaaki Kumagai and Ralph L. Hollis Abstract-- Robots using ball(s) as spherical wheels have the advantage

87

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL FIBER ACOUSTIC EMISSION SENSOR  

E-Print Network (OSTI)

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL technology. PZT sensors have been being used as AE sensors. However, because this kind of sensor has bulk

Boyer, Edmond

88

FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR  

SciTech Connect

The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

Michael A. Carpenter

2004-03-30T23:59:59.000Z

89

Design and fabrication of an optical pressure micro sensor for skin mechanics studies  

E-Print Network (OSTI)

The mechanics of skin is as central to touch as optics is to vision and acoustics is to hearing. With the advent of novel imaging technologies such as the Optical Coherence Tomography (OCT), we are now able to view structures ...

Kumar, Siddarth

2006-01-01T23:59:59.000Z

90

Optics-less smart sensors and a possible mechanism of cutaneous vision in nature  

E-Print Network (OSTI)

Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

2008-08-08T23:59:59.000Z

91

Fiber-Optic Sensors: Playing Both Sides of the Energy Equation  

Science Journals Connector (OSTI)

Fiber-optic sensors are playing an emerging role in both new energy-generation technologies-including wind, solar and geothermal-and approaches for improving recovery of our existing...

Sanders, Paul E

2011-01-01T23:59:59.000Z

92

Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors  

E-Print Network (OSTI)

-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff melting patterns and the effects of solar heating on southwest-facing slopes. These proof

Selker, John

93

Fiber Optic Evanescent Field Sensor for Hydrocarbon Monitoring in Air and Water applying UV Absorption  

Science Journals Connector (OSTI)

A fiber optic sensor for the monitoring of organic pollutants in air and water is presented. The UV absorption spectra of hydrocarbon soluble in special polymer fiber claddings are...

Schwotzer, G; Latka, I; Lehmann, H; Willsch, R

94

Multiplexed fiber-optic sensors using a dual-slope frequency-modulated source  

Science Journals Connector (OSTI)

We propose and demonstrate a multiplexed fiber-optic sensor system using a dual-slope (triangular) frequency-modulated laser source. The restrictions in the selection of beat...

Chien, Pie-Yau; Pan, Ci-Ling

1991-01-01T23:59:59.000Z

95

An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor  

E-Print Network (OSTI)

A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby...

Kuppuswamy, Harini

2006-04-12T23:59:59.000Z

96

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change  

E-Print Network (OSTI)

Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Edgewater, Maryland Abstract As the lowest point in the surrounding landscape, lakes act as sensors to respond to changes in air temperature, precipitation, and solar radiation at timescales ranging from

Williamson, Craig E.

97

Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Description Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions like high temperature (1,200-1,600 °C), high pressure (up to 500 pounds per square inch gauge [psig]),

98

NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE  

E-Print Network (OSTI)

NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence of ancillary sensors as part of the ARGO program. The ARGO program, if funded at the level of effort proposed

Boss, Emmanuel S.

99

Compact, low-cost, and high-resolution interrogation unit for optical sensors  

SciTech Connect

Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors.

Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan [Palo Alto Research Center Inc., 3333 Coyote Hill Road, Palo Alto, California 94304 (United States); Max Planck Research Group, Institute of Optics, Information and Photonics, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany)

2006-11-13T23:59:59.000Z

100

High-temperature fiber optic cubic-zirconia pressure sensor - article no. 124402  

SciTech Connect

There is a critical need for pressure sensors that can operate reliably at high temperatures in many industrial segments such as in the combustion section of gas turbine engines for both transportation and power generation, coal gasifiers, coal fired boilers, etc. Optical-based sensors are particularly attractive for the measurement of a wide variety of physical and chemical parameters in high-temperature and high-pressure industrial environments due to their small size and immunity to electromagnetic interference. A fiber optic pressure sensor utilizing single-crystal cubic zirconia as the sensing element is reported. The pressure response of this sensor has been measured at temperatures up to 1000{sup o}C. Additional experimental results show that cubic zirconia could be used for pressure sensing at temperatures over 1000{sup o}C. This study demonstrates the feasibility of using a novel cubic-zirconia sensor for pressure measurement at high temperatures.

Peng, W.; Pickrell, G.R.; Wang, A.B. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

2005-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Separation of CO2 Using Ultra-Thin Multi-Layer Polymeric Membranes for Compartmentalized Fiber Optic Sensor Applications  

E-Print Network (OSTI)

Optic Sensor Applications by Benjamin Davies B.Eng., University of Guelph, 2011 A Thesis Submitted for Compartmentalized Fiber Optic Sensor Applications by Benjamin Davies B. Eng., University of Guelph, 2011 Supervisory trapping occurring through mineralization within the first 20-50 years. A fiber optic based monitoring

Victoria, University of

102

Integrated optical sensor platform for multiparameter bio-chemical analysis  

Science Journals Connector (OSTI)

There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security...

Lützow, Peter; Pergande, Daniel; Heidrich, Helmut

2011-01-01T23:59:59.000Z

103

Quantum Measurements: a modern view for quantum optics experimentalists  

E-Print Network (OSTI)

In these notes, based on lectures given as part of the Les Houches summer school on Quantum Optics and Nanophotonics in August, 2013, I have tried to give a brief survey of some important approaches and modern tendencies in quantum measurement. I wish it to be clear from the outset that I shy explicitly away from the "quantum measurement problem," and that the present treatment aims to elucidate the theory and practice of various ways in which measurements can, in light of quantum mechanics, be carried out; and various formalisms for describing them. While the treatment is by necessity largely theoretical, the emphasis is meant to be on an experimental "perspective" on measurement -- that is, to place the priority on the possibility of gaining information through some process, and then attempting to model that process mathematically and consider its ramifications, rather than stressing a particular mathematical definition as the {\\it sine qua non} of measurement. The textbook definition of measurement as being a particular set of mathematical operations carried out on particular sorts of operators has been so well drilled into us that many have the unfortunate tendency of saying "that experiment can't be described by projections onto the eigenstates of a Hermitian operator, so it is not really a measurement," when of course any practitioner of an experimental science such as physics should instead say "that experiment allowed us to measure something, and if the standard theory of measurement does not describe it, the standard theory of measurement is incomplete." Idealisations are important, but when the real world breaks the approximations made in the theory, it is the theory which must be fixed, and not the real world.

Aephraim M. Steinberg

2014-06-20T23:59:59.000Z

104

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents (OSTI)

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

105

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents (OSTI)

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

106

Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants  

Science Journals Connector (OSTI)

A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of...

Shuichi Umezawa

2007-01-01T23:59:59.000Z

107

Fabry-Perot fiber optic sensor using multimode laser diode  

E-Print Network (OSTI)

heating and cooling cycles. Also, a sporadic waveform on top of the periodic waveform is observed. This is due to mechanical drift in the feedback loop between the thermoelectric cooler and the temperature controller as previously mentioned. Fig. 11... fiber and later reaches a transducer, which takes the form of an integrated optics device, bulk optical components or a fiber optic device, placed within the sensing environment. The optical signal is modulated within the sensing region...

Chu, Siu Yi Andrew

1993-01-01T23:59:59.000Z

108

INTRODUCTION Optical sensors have long been used in the Great  

E-Print Network (OSTI)

and 1,200 khz acoustic current profilers could be used to iden- tify episodes of sediment resuspension. The sensors gave similar results when bottom resuspension was the main cause of changes in suspended sediment

109

Signal processing for fiber optic acoustic sensor system  

E-Print Network (OSTI)

phase compensator. Two passive demodulation techniques based on a 3 by 3 output coupler in the Mach-Zehnder interferometer provide a way to eliminate phase fading suffered inside the interferometric sensors. System measurements utilizing the two...

Zhu, Juhong

2012-06-07T23:59:59.000Z

110

Fast Pump-Power-Independent Brillouin Fiber Optic Sensor  

Science Journals Connector (OSTI)

A fast and distributed Brillouin sensor, which is immune to pump power variations is presented. 120Hz strain vibrations are measured over 50m fiber with >1kHz sampling rate,...

Motil, Avi; Danon, Orr; Peled, Yair; Tur, Moshe

111

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect

The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology.

Nabeel A. Riza

2004-04-01T23:59:59.000Z

112

Optical position sensor for determining the interface between a clear and an opaque fluid  

DOE Patents (OSTI)

An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

Weiss, Jonathan D. (Albuquerque, NM)

2006-05-23T23:59:59.000Z

113

Simulated impact of sensor field of view and distance on field measurements of bidirectional reflectance factors for row crops  

Science Journals Connector (OSTI)

Abstract It is well established that a natural surface exhibits anisotropic reflectance properties that depend on the characteristics of the surface. Spectral measurements of the bidirectional reflectance factor (BRF) at ground level provide us a method to capture the directional characteristics of the observed surface. Various spectro-radiometers with different field of views (FOVs) were used under different mounting conditions to measure crop reflectance. The impact and uncertainty of sensor FOV and distance from the target have rarely been considered. The issue can be compounded with the characteristic reflectance of heterogeneous row crops. Because of the difficulty of accurately obtaining field measurements of crop reflectance under natural environments, a method of computer simulation was proposed to study the impact of sensor FOV and distance on field measured BRFs. A Monte Carlo model was built to combine the photon spread method and the weight reduction concept to develop the weighted photon spread (WPS) model to simulate radiation transfer in architecturally realistic canopies. Comparisons of the Monte Carlo model with both field BRF measurements and the RAMI Online Model Checker (ROMC) showed good agreement. \\{BRFs\\} were then simulated for a range of sensor FOV and distance combinations and compared with the reference values (distance at infinity) for two typical row canopy scenes. Sensors with a finite FOV and distance from the target approximate the reflectance anisotropy and yield average values over FOV. Moreover, the perspective projection of the sensor causes a proportional distortion in the sensor FOV from the ideal directional observations. Though such factors inducing the measurement error exist, it was found that the BRF can be obtained with a tolerable bias on ground level with a proper combination of sensor FOV and distance, except for the hotspot direction and the directions around it. Recommendations for the choice of sensor FOV and distance are also made to reduce the bias from the real angular signatures in field BRF measurement for row crops.

Feng Zhao; Yuguang Li; Xu Dai; Wout Verhoef; Yiqing Guo; Hong Shang; Xingfa Gu; Yanbo Huang; Tao Yu; Jianxi Huang

2015-01-01T23:59:59.000Z

114

Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors  

SciTech Connect

This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

Nabeel Riza

2010-09-01T23:59:59.000Z

115

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

116

Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors  

E-Print Network (OSTI)

A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

Chin B Su; Jun Kameoka

2007-09-21T23:59:59.000Z

117

Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System  

SciTech Connect

This report summarizes work done in pursuit of an absolute readout system for Fabry-Perot optics sensors such as those built both by FISO and LLNL. The use of white light results in a short coherence length reducing the ambiguity of the Fabry-Perot gap measurement which is required to readout the sensor. The light source coherence length is the critical parameter in determining the ability to build a relative or an absolute system. Optical sources such as lasers and LEDs are rather narrow in optical spectral bandwidth and have long coherence length. Thus, when used in interferometric sensor measurements, one fringe looks much like another and it is difficult to make an absolute measurement. In contrast, white light sources are much broader in spectral bandwidth and have very short coherence lengths making interferometry possible only over the coherence length, which can be 1 or 2 microns. The small number of fringes in the interferogram make it easier to calculate the centroid and to unambiguously determine the sensor gap. However, unlike LEDs and Lasers, white light sources have very low optical power when coupled into optical fibers. Although, the overall light output of a white light source can be hundreds of milliwatts to watts, it is difficult to couple more than microwatts into a 50-micron core optical fiber. In addition, white light sources have a large amount of optical power in spectrum that is not necessarily useful in terms of sensor measurements. The reflectivity of a quarter wave of Titanium Oxide is depicted in Figure 2. This coating of Titanium Oxide is used in the fabrication of the sensor. This figure shows that any light emitted at wavelengths shorter than 600 nm is not too useful for the readout system. A white light LED spectrum is depicted in Figure 3 and shows much of the spectrum below 600 nm. In addition Silicon photodiodes are usually used in the readout system limiting the longest wavelength to about 1100 nm. Tungsten filament sources may have much of their optical power at wavelengths longer than 1100 nm, which is outside the wavelength range of interest. An incandescent spectrum from a tungsten filament is depicted in Figure 4. None of this is to say that other types of readout systems couldn't be built with IR detectors and broadband coatings for the sensors. However, without reengineering the sensors, the wavelength restrictions must be tolerated.

McConaghy, C F

2003-10-10T23:59:59.000Z

118

A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber  

SciTech Connect

We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

Candiani, A. [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece); Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Argyros, A.; Leon-Saval, S. G.; Lwin, R. [Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney (Australia); Selleri, S. [Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Pissadakis, S., E-mail: pissas@iesl.forth.gr [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece)

2014-03-17T23:59:59.000Z

119

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents (OSTI)

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

120

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents (OSTI)

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optical Current Sensors for Electric Power Grid Modernization  

Science Journals Connector (OSTI)

Optical current transducers will advance the modernization of the power grid, because of the economic cost, environmental cost, safety, reliability, and metrology performance...

Rose, Allen H; Blake, Jim

122

Progress of the ITER equatorial vis/IR wide angle viewing system optical design  

SciTech Connect

The equatorial vis/IR wide angle viewing system is present in four ITER diagnostic equatorial ports. This instrument will cover a large field of view with high spatial and temporal resolutions, to provide real time temperature measurements of plasma facing components, spectral data in the visible range, information on runaway electrons, and pellet tracking. This diagnostic needs to be reliable, precise, and long lasting. Its design is driven by both the tokamak severe environment and the high performances required for machine protection. The preliminary design phase is ongoing. Paramount issues are being tackled, relative to wide spectral band optical design, material choice, and optomechanical difficulties due to the limited space available for this instrument in the ports, since many other diagnostics and services are also present. Recent progress of the diagnostic optical design and status of associated R and D are presented.

Davi, M.; Corre, Y.; Guilhem, D.; Jullien, F.; Reichle, R.; Salasca, S.; Travere, J. M. [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, 13108 Saint-Paul-lez-Durance (France); Cal, E. de la; Manzanares, A.; Pablos, J. L. de [Association Euratom CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Migozzi, J. B. [JBM Optique, 11 Av. de la division Leclerc, 92310 Sevres (France)

2008-10-15T23:59:59.000Z

123

ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY  

SciTech Connect

The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2005-07-22T23:59:59.000Z

124

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav G. Chushak*  

E-Print Network (OSTI)

Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background-4 These RNA-based sensors bind to a ligand and alter the gene expression of downstream genes. Riboswitches

125

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid  

E-Print Network (OSTI)

Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero-Cadavid Mech electrolyte membrane fuel cells (PEMFCs), and the presence and formation of this peroxide has been associated

Victoria, University of

126

Achieving Full View Coverage with Randomly-Deployed Heterogeneous Camera Sensors  

E-Print Network (OSTI)

: {iceworld0324, xwang8}@sjtu.edu.cn Abstract--A brand-new concept about the coverage problem of camera sensor to be captured. It is specially significant for camera networks since image shot at the frontal viewpoint to this topic. The image or video provided by camera sensors great- ly enriches the information retrieved from

Wang, Xinbing

127

Manufacturing challenges of optical current and voltage sensors for utility applications  

SciTech Connect

Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

1997-12-01T23:59:59.000Z

128

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect

The goals of the second six months of the Phase 2 of this project were to conduct first time experimental studies using optical designs and some initial hardware developed in the first 6 months of Phase 2. One focus is to modify the SiC chip optical properties to enable gas species sensing with a specific gas species under high temperature and pressure. The goal was to acquire sensing test data using two example inert and safe gases and show gas discrimination abilities. A high pressure gas mixing chamber was to be designed and assembled to achieve the mentioned gas sensing needs. Another goal was to initiate high temperature probe design by developing and testing a probe design that leads to accurately measuring the thickness of the deployed SiC sensor chip to enable accurate overall sensor system design. The third goal of this phase of the project was to test the SiC chip under high pressure conditions using the earlier designed calibration cell to enable it to act as a pressure sensor when doing gas detection. In this case, experiments using a controlled pressure system were to deliver repeatable pressure measurement data. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs or schematics of the fabricated hardware are provided. Experimental data from the three optical sensor systems (i.e., Thickness, pressure, and gas species) is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2006-01-26T23:59:59.000Z

129

Fiber optic sensors for nuclear power plant applications  

SciTech Connect

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

130

Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors  

E-Print Network (OSTI)

Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

David Moya; Iván Vila

2012-03-01T23:59:59.000Z

131

Electro-optic voltage sensor for sensing voltage in an E-field  

DOE Patents (OSTI)

A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

Woods, Gregory K. (Idaho Falls, ID); Renak, Todd W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

132

Fibre optic sensor for the detection of adulterant traces in coconut oil  

Science Journals Connector (OSTI)

The design and development of a fibre optic evanescent wave refractometer for the detection of trace amounts of paraffin oil and palm oil in coconut oil is presented. This sensor is based on a side-polished plastic optical fibre. At the sensing region, the cladding and a small portion of the core are removed and the fibre nicely polished. The sensing region is fabricated in such a manner that it sits perfectly within a bent mould. This bending of the sensing region enhances its sensitivity. The oil mixture of different mix ratios is introduced into the sensing region and we observed a sharp decrease in the output intensity. The observed variation in the intensity is found to be linear and the detection limit is 2% (by volume) paraffin oil/palm oil in coconut oil. The resolution of this refractometric sensor is of the order of 10?3. Since coconut oil is consumed in large volumes as edible oil in south India, this fibre optic sensor finds great relevance for the detection of adulterants such as paraffin oil or palm oil which are readily miscible in coconut oil. The advantage of this type of sensor is that it is inexpensive and easy to set up. Another attraction of the side-polished fibre is that only a very small amount of analyte is needed and its response time is only 7 s.

M Sheeba; M Rajesh; C P G Vallabhan; V P N Nampoori; P Radhakrishnan

2005-01-01T23:59:59.000Z

133

An Optical Backscatter Sensor for Particulate Matter Measurement  

SciTech Connect

Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

2009-01-01T23:59:59.000Z

134

Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor  

Science Journals Connector (OSTI)

A fiber optic sensing system for the detection of adulteration of virgin olive oil by less expensive sunflower oil is presented. The fundamental principle of detection is the sensitive dependence of the resonance peaks of a long period grating (LPG) on the changes in the refractive index of the environmental medium surrounding the cladding surface of the grating. The performance of the sensor has been tested by monitoring the amplitude changes of the attenuation bands of the LPG in response to variation of adulteration level. With good repeatability, the detection limit of adulteration is 4% and the sensor sensitivity is around 0.07 dB vol%?1 of adulterant in the measurement range. The developed sensor is user-friendly, reusable and allows instantaneous measurement of the amount of adulteration without involving any reagents.

T M Libish; M C Bobby; J Linesh; S Mathew; C Pradeep; V P N Nampoori; P Biswas; S Bandyopadhyay; K Dasgupta; P Radhakrishnan

2013-01-01T23:59:59.000Z

135

Doppler Effect in Flexible and Expandable Light Waveguide and Development of New Fiber-Optic Vibration/Acoustic Sensor  

Science Journals Connector (OSTI)

New principle and a geometrical arrangement of an optical fiber for a vibration/acoustic measurement are proposed in the present paper. The sensor is based on a new finding that a...

Kageyama, Kazuro; Murayama, Hideaki; Uzawa, Kiyoshi; Ohsawa, Isamu; Kanai, Makoto; Akematsu, Yoshiaki; Nagata, Keiich; Ogawa, Tetsu

2006-01-01T23:59:59.000Z

136

One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements  

SciTech Connect

We demonstrate the working principle of a one-dimensional intensity-based fiber-optic displacement sensor. The sensor consists of one receiving fiber, which is moved laterally in the optical field emitted by an emitting fiber. It is shown numerically that the sensor response is highly linear (nonlinearity error of 0.1 to 2%) for a wide range of travel (2.24 to 860 {mu}m). The sensor response is also simulated experimentally using a highly precise robot, the results of which correspond very closely to numerical ones. Linearity, travel, and sensitivity are experimentally determined for different gaps between the emitting and the receiving fibers (10 {mu}m to 10 mm). A design chart that includes the nonlinearity error (0.5% to 2%), the travel (2.78 to 860 {mu}m), the sensitivity (0.032 to 0.37 dB/{mu}m), and the gap distance (1 to 10 mm) is finally proposed.

Trudel, Vincent; St-Amant, Yves

2009-09-10T23:59:59.000Z

137

Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN  

E-Print Network (OSTI)

The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

2014-01-01T23:59:59.000Z

138

Optical humidity sensors based on titania films fabricated by sol?gel and thermal evaporation methods  

Science Journals Connector (OSTI)

This paper reports a comparative study of an optical humidity sensor based on titania films fabricated by sol?gel and thermal evaporation methods. As semiconducting oxides are known for their n-type conduction because of the presence of oxygen vacancies, therefore they prove to be very good sensors for humidity. Sensing elements of the optical humidity sensor presented here consist of a rutile structured one-layered TiO2 thin film deposited on the base of an isosceles glass prism of thickness 1000 ?. This TiO2 film is porous and sensitive to humidity. The other sensing element consists of a film of the same material deposited by the thermal evaporation method on the base of a prism of the same thickness. Light from a He?Ne laser enters the prism from one of the isosceles faces of the prism and gets reflected from the glass?film interface, before emerging out from its other isosceles face. The emergent beam is collected through an optical fibre, which is connected to an optical power meter for measurement. Variations in the intensity of light caused by changes in humidity lying in the range of 5% RH to 95% RH have been recorded. A sensor fabricated by the thermal evaporation method shows better sensitivity than the sol?gel method. Scanning electron micrographs of both the films show that the film prepared by the thermal evaporation method is more porous and continuous than the film prepared by the sol?gel method, resulting in more sensitivity to humidity.

B C Yadav; N K Pandey; Amit K Srivastava; Preeti Sharma

2007-01-01T23:59:59.000Z

139

Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project  

SciTech Connect

This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

P. E. Klingsporn

2005-11-14T23:59:59.000Z

140

Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location  

DOE Patents (OSTI)

A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High frequency current sensors using the Faraday effect in optical fibers  

SciTech Connect

This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.

Cernosek, R.W. [Sandia National Labs., Albuquerque, NM (United States). Microsensor Research and Development Dept.] [Sandia National Labs., Albuquerque, NM (United States). Microsensor Research and Development Dept.

1994-09-01T23:59:59.000Z

142

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect

The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

Nabeel A. Riza

2006-09-30T23:59:59.000Z

143

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

Wood, C.B.

1992-12-15T23:59:59.000Z

144

Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection  

DOE Patents (OSTI)

A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

Wood, Charles B. (Lakewood, CO)

1992-01-01T23:59:59.000Z

145

Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry  

SciTech Connect

The goals of the this part of the Continuation Phase 2 period (Oct. 1, 06 to March 31, 07) of this project were to (a) fabricate laser-doped SiC wafers and start testing the SiC chips for individual gas species sensing under high temperature and pressure conditions and (b) demonstrate the designs and workings of a temperature probe suited for industrial power generation turbine environment. A focus of the reported work done via Kar UCF LAMP lab. is to fabricate the embedded optical phase or doped microstructures based SiC chips, namely, Chromium (C), Boron (B) and Aluminum (Al) doped 4H-SiC, and to eventually deploy such laser-doped chips to enable gas species sensing under high temperature and pressure. Experimental data is provided from SiC chip optical response for various gas species such as pure N2 and mixtures of N2 and H{sub 2}, N{sub 2} and CO, N{sub 2} and CO{sub 2}, and N{sub 2} and CH{sub 4}. Another main focus of the reported work was a temperature sensor probe assembly design and initial testing. The probe transmit-receive fiber optics were designed and tested for electrically controlled alignment. This probe design was provided to overcome mechanical vibrations in typical industrial scenarios. All these goals have been achieved and are described in detail in the report.

Nabeel A. Riza

2007-03-31T23:59:59.000Z

146

Optical glass and glass ceramic historical aspects and recent developments: a Schott view  

Science Journals Connector (OSTI)

Since the time of Galilei 400 years ago the progress of optical systems was restricted due to the lack of optical glass types with different dispersion properties and due to poor...

Hartmann, Peter; Jedamzik, Ralf; Reichel, Steffen; Schreder, Bianca

2010-01-01T23:59:59.000Z

147

Integrated optic chemical sensor for the simultaneous detection and quantification of multiple ions. Final report, March--September 1995  

SciTech Connect

This final report summarizes the work performed by Physical Optics Corporation (POC) on the DOE contract entitled {open_quotes}Integrated Optic Chemical Sensor for the Simultaneous Detection and Quantification of Multiple Metal Ions{close_quotes}. This project successfully demonstrated a multi-element integrated optic chemical sensor (IOCS) system capable of simultaneous detection and quantification of metal ions in a water flow stream. POC`s innovative integrated optic chemical sensor technology uses an array of chemically active optical waveguides integrated in parallel in a single small IOCS chip. The IOCS technique uses commonly available materials and straightforward processing to produce channel waveguides in porous glass, each channel treated with a chemical indicator that responds optically to heavy metal ions in a water flow stream. The porosity of the glass allows metal ions present in the water to diffuse into the glass and interact with the immobilized indicators, producing a measurable optical chance. For the {open_quotes}proof-of-concept{close_quotes} demonstration, POC designed and fabricated two types of IOCS chips. Type I uses an array of four straight channel waveguides, three of which are doped with a metal sensitive indicator, an ionophore. The undoped fourth channel is used as the reference channel. Type II uses a 1 x 4 star coupler structure with three sensing channels and a reference channel. Successful implementation of the IOCS technology is expected to have a broad impact on water quality control as well as in the commercial environmental monitoring market. Because of the self-referenced, multidetection capability of the IOCS technique, POC`s water quality sensors are expected to find markets in environmental monitoring and protection, ground water monitoring, and in-line process control. Specific applications include monitoring of chromium, copper, and iron ions in water discharged by the metal plating industry.

Mendoza, E.

1995-09-01T23:59:59.000Z

148

Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes  

SciTech Connect

Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).

Susan J. Foulk

2012-07-24T23:59:59.000Z

149

Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence  

SciTech Connect

Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress.

Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

1998-11-01T23:59:59.000Z

150

An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique  

SciTech Connect

In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.

Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

2013-03-15T23:59:59.000Z

151

Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines  

E-Print Network (OSTI)

A new design for an in-cylinder fiber Fabry-Perot interferometer (FFPI) pressure sensor suitable for automotive engines has been investigated experimentally. The FFPI sensor consists of a single mode fiber containing two internal mirrors which form...

Bae, Taehan

2012-06-07T23:59:59.000Z

152

Extreme temperature robust optical sensor designs and fault-tolerant signal processing  

DOE Patents (OSTI)

Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2012-01-17T23:59:59.000Z

153

Sensor Data Processing for Tracking Underwater Threats Using Terascale Optical Core Devices  

SciTech Connect

A critical aspect of littoral surveillance (including port protection) involves the localization and tracking of underwater threats such as manned or unmanned autonomous underwater vehicles. In this article, we present a methodology for locating underwater threat sources from uncertain sensor network data, and illustrate the threat tracking aspects using active sonars in a matched filter framework. The novelty of the latter paradigm lies in its implementation on a tera-scale optical core processor, EnLight , recently introduced by Lenslet Laboratories. This processor is optimized for array operations, which it performs in a fixed point arithmetic architecture at tera-scale throughput. Using the EnLight 64 prototype processor, our results (i) illustrate the ability to reach a robust tracking accuracy, and (ii) demonstrate that a considerable speed-up (a factor of over 13,000) can be achieved when compared to an Intel XeonTM processor in the computation of sets of 80K-sample complex Fourier transforms that are associated with our matched filter techniques.

Barhen, Jacob [ORNL; Imam, Neena [ORNL

2009-01-01T23:59:59.000Z

154

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents (OSTI)

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

155

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

SciTech Connect

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

156

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers  

DOE Patents (OSTI)

An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

2009-06-02T23:59:59.000Z

157

A study of semiconductor laser noise and its effect on fiber optic sensor performance  

E-Print Network (OSTI)

with internal mirrors separated by a length L of single-mode fiber. This sensor, which was introduced by the research group at Texas A8cM University [34], has been used to measure temperature, strain, and acoustic pressure [35]. Two beams, one reflected from... or the length L of FFPI sensors. If the reflectance of the mirrors is equal to R with R (& I, the reflected power P? is related to the incident power P; according to P, = 2RP&(1+ cos P) (2. 30) with 4=4~/c. Because the FFPI sensor will act like two beam...

Lee, Wanku

2012-06-07T23:59:59.000Z

158

Optical Fiber Gas Sensors using UV and MidIR Spectroscopy for Exhaust Gas Monitoring  

Science Journals Connector (OSTI)

Results are presented for on-board and on-line sensing of vehicle exhaust Gases. The sensor was located downstream of the Diesel Particle Filter of a Fiat Croma and data were...

Lewis, Elfed

159

Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring  

DOE Patents (OSTI)

A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

2011-03-15T23:59:59.000Z

160

Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report  

SciTech Connect

Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

Duncan, Paul Grems

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Adaptive Optics Views of the Hubble Deep Fields Final report on LLNL LDRD Project 03-ERD-002  

SciTech Connect

We used laser guide star adaptive optics at the Lick and Keck Observatories to study active galactic nuclei and galaxies, with emphasis on those in the early Universe. The goals were to observe large galaxies like our own Milky Way in the process of their initial assembly from sub-components, to identify central active galactic nuclei due to accreting black holes in galaxy cores, and to measure rates of star formation and evolution in galaxies. In the distant universe our focus was on the GOODS and GEMS fields (regions in the Northern and Southern sky that include the Hubble Deep Fields) as well as the Extended Groth Strip and COSMOS fields. Each of these parts of the sky has been intensively studied at multiple wavelengths by the Hubble Space Telescope, the Chandra X-Ray Observatory, the XMM Space Telescope, the Spitzer Space Telescope, and several ground-based telescopes including the Very Large Array radio interferometer, in order to gain an unbiased view of a significant statistical sample of galaxies in the early universe.

Max, C E; Gavel, D; Pennington, D; Gibbard, S; van Dam, M; Larkin, J; Koo, D; Raschke, L; Melbourne, J

2007-02-17T23:59:59.000Z

162

The monitoring and multiplexing of fiber optic sensors using chirped laser sources  

E-Print Network (OSTI)

. Linearization of the chirp rate has been achieved using feedback from a fiber Fabry-Perot interferometer (FFPI) to adjust the voltage ramp which drives the rotating mirror. In a demonstration of monitoring an array of two fiber Bragg grating (FBG) sensors, a...

Wan, Xiaoke

2004-09-30T23:59:59.000Z

163

Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index  

E-Print Network (OSTI)

Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India c Laser Technology Program of its cladding is shown to sense refractive index of a liquid in which the uncladded sensing region of the fiber. The sensitivity of the sensor to refractive index change is dependent on cladding thickness

164

Remote Sensing of Cirrus Cloud Particle Size and Optical Depth Using Polarimetric Sensor Measurements  

Science Journals Connector (OSTI)

This paper presents a conceptual approach toward the remote sensing of cirrus cloud particle size and optical depth using the degree of polarization and polarized reflectance associated with the first three Stokes parameters, I, Q, and U, for the ...

S. C. Ou; K. N. Liou; Y. Takano; R. L. Slonaker

2005-12-01T23:59:59.000Z

165

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network (OSTI)

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J. Janata, "Principles of Chemical Sensors", 2010 Springer NOTE: GT Library purchased an e

Sherrill, David

166

Real time perfusion and oxygenation monitoring in an implantable optical sensor  

E-Print Network (OSTI)

in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

Subramanian, Hariharan

2006-04-12T23:59:59.000Z

167

Fiber optic sensors for monitoring sodium circuits and power grid cables  

SciTech Connect

At Kalpakkam, India, a programme on development of Raman Distributed Temperature sensor (RDTS) for Fast Breeder Reactors (FBR) application is undertaken. Leak detection in sodium circuits of FBR is critical for the safety and performance of the reactors. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. A second application demonstrates the suitability of using RDTS to monitor this transmission cable for any defect. (authors)

Kasinathan, M.; Sosamma, S.; Pandian, C.; Vijayakumar, V.; Chandramouli, S.; Nashine, B. K.; Rao, C. B.; Murali, N.; Rajan, K. K.; Jayakumar, T. [IGCAR, Kalpakkam (India)

2011-07-01T23:59:59.000Z

168

In Vitro and In Vivo Comparison of Optics and Performance of a Distal Sensor Ureteroscope Versus a Standard Fiberoptic Ureteroscope  

E-Print Network (OSTI)

characteristics and optics of the X C with a stan- dardand In Vivo Comparison of Optics and Performance of a Distalperformance characteristics and optics of a new generation

2013-01-01T23:59:59.000Z

169

How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment  

SciTech Connect

We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

2014-01-16T23:59:59.000Z

170

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network (OSTI)

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

171

Perception of Optical Flow and Geometric Field of View Charles Adetiloye, Qiong Wu and Ronald R. Mourant  

E-Print Network (OSTI)

in the first presentation. In all presentations the velocity of the autonomous vehicles was the same, 30 mph on subjects' perception of vehicle velocity. Subjects perceived velocity as being faster when viewing large. The Ecological Approach to Visual Perception. Houghton Mifflin: Boston, MA. Tan, D.S., Czerwinski, M., Robertson

172

Use of sensors in monitoring civil structures  

E-Print Network (OSTI)

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

173

Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris  

DOE Patents (OSTI)

An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

2009-06-02T23:59:59.000Z

174

Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158  

SciTech Connect

NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

Ringer, M.

2010-07-01T23:59:59.000Z

175

A Laser Metrology/Viewing System for ITER In-Vessel Inspection  

SciTech Connect

This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10{sup 7} Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway.

Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M. [Oak Ridge National Lab., TN (United States); Dagher, M.A. [Boeing Rocketdyne Div., Canoga Park, CA (United States); Slotwinski, A. [Coleman Research Corp., Springfield, VA (United States)

1997-12-31T23:59:59.000Z

176

A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing  

E-Print Network (OSTI)

sensor platform for optical metrology and chemical sensing.Platform with Application to Optical Metrology and ChemicalPlatform with Application to Optical Metrology and Chemical

Gerling, John

2012-01-01T23:59:59.000Z

177

Flight Measurements of the Aero-Optical Environment Around a Flat-Windowed Turret  

E-Print Network (OSTI)

be acquired; this provided statistical data over a large range of viewing angles between looking- forward directed-energy system's field of regard. To verify wind-tunnel experiments [5] and computational-front sensor providing an extensive aero-optical mapping. The primary data were acquired at Mach 0

Gordeyev, Stanislav

178

Optical  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Optical fiber-based single-shot picosecond transient absorption spectroscopy Andrew R. Cook a͒ and Yuzhen Shen Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA ͑Received 27 January 2009; accepted 29 May 2009; published online 17 July 2009͒ A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving ϳ15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device ͑CCD͒ detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse

179

Optics  

Science Journals Connector (OSTI)

Optical components such as lenses, mirrors and diffraction gratings are widely used in many inspection systems. These include not only those for visual inspection with CCD cameras, but also in areas of distanc...

C. Loughlin

1993-01-01T23:59:59.000Z

180

In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor  

SciTech Connect

This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532  

SciTech Connect

Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

2013-07-01T23:59:59.000Z

182

Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe  

Science Journals Connector (OSTI)

Abstract The knowledge of bubble behaviors is of considerable significance for a proper understanding and modeling of two-phase flows. To obtain the information on the bubble motion, a novel model was developed, by which the bubble velocity vector can be directly calculated from six time intervals measured with a four-sensor probe. The measurements of local bubble velocity vector and void fraction were performed in both upward and downward bubbly flows by using a four-sensor optical probe. The area-averaged void fraction and bubble velocity obtained from the probe agree well with those measured by other cross-calibration methods, and the measurement errors are within 15% under various flow conditions. Experimental results of the bubble velocity vector reveal that the bubble lateral migration may be suppressed in upward flows, but be strengthened in downward flows as the liquid flow rate increases. Also, with an increase in gas flow rate, the bubble velocity distribution varies into the power–law profile in upward flows, but into an off-center peak profile in downward flows. In addition, the void fraction shows a core peak distribution at low void fraction for downward flows, but a wall peak distribution for upward flows. However, when the void fraction is relatively high, it displays an off-center peak distribution for downward flows but a core peak distribution for upward flows.

Daogui Tian; Changqi Yan; Licheng Sun

2015-01-01T23:59:59.000Z

183

Sensors 2007, 7, 3428-3441 ISSN 1424-8220  

E-Print Network (OSTI)

Sensors 2007, 7, 3428-3441 sensors ISSN 1424-8220 © 2007 by MDPI www.mdpi.org/sensors Full Research-of-view Sensor (SeaWiFS, 7 bands), the Moderate-Resolution Imaging Spectrometer (MODIS, 8 bands), and the Medium sensors. Recently, Lee and Carder (2002) demonstrated that for adequate derivation of major properties

Lee, Zhongping

184

Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor  

SciTech Connect

The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

2013-08-31T23:59:59.000Z

185

Innovational radiation sensor by integrating AL2O3:C optically stimulated luminescent dosemeter and GaN detectors  

Science Journals Connector (OSTI)

......dosimetry (i.e. an active dosemeter) or one...detectable dose and the active performance of the...various applications. MATERIALS AND METHODS alpha-Al2O3...by the ratio of cathode current to optical...could be operated in active mode. | Department...radiation effects Light Materials Testing Photochemistry......

Tai-Chang Chen; Kunakorn Poochinda; Thomas G. Stoebe

2006-09-01T23:59:59.000Z

186

Microscale autonomous sensor and communications module  

DOE Patents (OSTI)

Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

Okandan, Murat; Nielson, Gregory N

2014-03-25T23:59:59.000Z

187

Most Viewed Documents - Physics | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Physics Most Viewed Documents - Physics Computational procedures for determining parameters in Ramberg-Osgood elastoplastic model based on modulus and damping versus strain Ueng, Tzou-Shin; Chen, Jian-Chu. (1992) Analysis of Lithium-Ion Battery Degradation During Thermal Aging JUNGST,RUDOLPH G.; NAGASUBRAMANIAN,GANESAN; CRAFTS,CHRIS C.; et al. (2000) Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) Lithium literature review: lithium's properties and interactions Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; et al. (1978) Fire protection system operating experience review for fusion applications Cadwallader, L.C. (1995) Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors Cai, Yuankun (2010)

188

April 2013 Most Viewed Documents for Physics | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Physics April 2013 Most Viewed Documents for Physics Lithium literature review: lithium's properties and interactions Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E. (1978) 123 Plastic Gamma Sensors: An Application in Detection of Radioisotopes S. Mukhopadhyay (2003) 85 Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors Cai, Yuankun (2010) 83 White LED with High Package Extraction Efficiency Yi Zheng; Matthew Stough (2008) 79 Analysis of Lithium-Ion Battery Degradation During Thermal Aging JUNGST,RUDOLPH G.; NAGASUBRAMANIAN,GANESAN; CRAFTS,CHRIS C.; INGERSOLL,DAVID; DOUGHTY,DANIEL H. (2000) 74 Cathodic arc plasma deposition Anders, Andre (2002) 73 Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF/sub 3/. [Tables, diagrams]

189

"Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors  

E-Print Network (OSTI)

"Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors Remote sensing requires that a sensor be constructed and then attached to a platform that provides an aerial view of the landscape. "Whiskbrooms" and"Pushbrooms" Remote Sensing Platforms and Sensors Remote sensing requires that a sensor

Frank, Thomas D.

190

Sandia National Laboratories: Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors Sensors Sandia's Microsensor and Sensor Microsystem effort develops sensors and sensor arrays for chemical, physical, and biological detection Custom Solutions Microsensors...

191

Wide field of view telescope  

DOE Patents (OSTI)

A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

2008-01-15T23:59:59.000Z

192

Gamma-insensitive optical sensor  

DOE Patents (OSTI)

An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

Kruger, Hans W. (Walnut Creek, CA)

1994-01-01T23:59:59.000Z

193

Gamma-insensitive optical sensor  

DOE Patents (OSTI)

An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

Kruger, H.W.

1994-03-15T23:59:59.000Z

194

Fluorescent temperature sensor  

DOE Patents (OSTI)

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

195

A laser scanning system for metrology and viewing in ITER  

SciTech Connect

The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.

Spampinato, P.T.; Barry, R.E.; Menon, M.M.; Herndon, J.N. [Oak Ridge National Lab., TN (United States); Dagher, M.A.; Maslakowski, J.E. [Rockwell Rocketdyne Div., Canoga Park, CA (United States)

1996-05-01T23:59:59.000Z

196

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network (OSTI)

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

197

OPTICS 5  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTICS (Version 5.1.02) OPTICS (Version 5.1.02) Release notes NOTE: See the Optics Knowledge Base for how to run this version of Optics on the Microsoft Vista and Microsoft Windows 7 operating systems March 5, 2003: Release Maintenance Pack 2 New ! January 7, 2003: Release Maintenance Pack 1 October 23, 2002: Release Optics 5.1.01 September 27, 2002: Release Optics 5.1.00 (only released on CDs at NFRC Annual Fall Meeting) Release notes Maintenance Pack 2 Bug fixes: New features: bullet Applied films that were created could not be saved or exported. This has been fixed. bullet Exporting glazing systems generated a message that the operation failed because the glazing system type is unknown. Glazing systems can now be exported to file (e.g. to view the spectral data), but the structure information will be lost.

198

Electrical Metering Equipment and Sensors Appendix D -Electrical Metering Equipment and Sensors  

E-Print Network (OSTI)

Appendix D ­ Electrical Metering Equipment and Sensors #12;D.1 Appendix D - Electrical Metering schedules, and view system status from the convenience of a standard web-browser. D.2 Metering Data Logger

199

Thermal sensor with an improved coating  

DOE Patents (OSTI)

The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

200

Optical caliper with compensation for specimen deflection and method  

DOE Patents (OSTI)

An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

Bernacki, Bruce E. (Knoxville, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Optical contact micrometer  

SciTech Connect

Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

Jacobson, Steven D.

2014-08-19T23:59:59.000Z

202

Category:Active Sensors | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Active Sensors page? For detailed information on exploration techniques, click here. Category:Active Sensors Add.png Add a new Active Sensors Technique Subcategories This category has only the following subcategory. R [×] Radar‎ 5 pages Pages in category "Active Sensors" The following 2 pages are in this category, out of 2 total. L LiDAR R Radar Retrieved from "http://en.openei.org/w/index.php?title=Category:Active_Sensors&oldid=689848"

203

Multidimensional Architectures for Functional Optical By Kevin A. Arpin, Agustin Mihi, Harley T. Johnson, Alfred J. Baca,  

E-Print Network (OSTI)

efficient solar cells, and unique sensors. Significant challenges remain including discovery of methods circuitry, enhancement of optical absorption processes in solar cells, and sensors.[1] Since the pioneering

Lewis, Jennifer

204

Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.  

DOE Patents (OSTI)

A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

Pipino, Andrew C. R. (Gaithersburg, MD)

2003-02-04T23:59:59.000Z

205

New Platforms for Chemical, Biological and Radiation Sensing based on Emerging Micro and Nanostructured Optical Fibres  

Science Journals Connector (OSTI)

Emerging optical materials and structures are driving the development of new optical fibre sensors, with applications ranging from new radiation dosimeters to in-vivo biosensors....

Monro, Tanya M

206

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS  

E-Print Network (OSTI)

Sensors 2008, 8, 3903-3931; DOI: 10.3390/s8063903 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.org/sensors to readers with a background in SAR. Keywords: Microscopy, Interferometric, Synthetic Aperture, Radar, Optical Coherence To- mography. #12;Sensors 2008, 8 3904 1. Introduction Traditional sensing modalities

Bhargava, Rohit

207

Optimized Tapered Optical Fiber for Ethanol (C $_{\\bf 2}$ H $_{\\bf 5}$ OH) Concentration Sensing  

Science Journals Connector (OSTI)

An optimized study of biconical tapered multi-mode plastic optical fiber sensor for concentration sensing of ethanol (C $_{2}$ ...

Yang, Hang-Zhou; Qiao, Xue-Guang; Ali, M Mahmood; Islam, Md Rajibul; Lim, Kok-Sing

2014-01-01T23:59:59.000Z

208

High Temperature Optical Gas Sensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

209

Optical microphone  

DOE Patents (OSTI)

An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

Veligdan, James T. (Manorville, NY)

2000-01-11T23:59:59.000Z

210

Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams  

SciTech Connect

An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

2006-12-31T23:59:59.000Z

211

Transpiration purged optical probe  

DOE Patents (OSTI)

An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

2004-01-06T23:59:59.000Z

212

User_ViewRecords  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

User Records User Records © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Viewing User Records Purpose The purpose of this job aid is to guide users through the step-by-step process of viewing their records. Each task demonstrates viewing of different records. Task A. View To-Do List Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. View To-Do List (filter, view) 7 Steps Task A View Completed Work 8 Steps Task B View Curriculum Status and Details 11 Steps Task C 3 3 1 2 2 1 SuccessFactors Learning v 6.4 User Job Aid Viewing User Records

213

A cantilever optical-fiber accelerometer  

Science Journals Connector (OSTI)

A simple fiber-optic acceleration sensor has been designed and evaluated. It is an amplitude-modulation sensor, which employs inexpensive electronic instrumentation. The construction and technology of the sensor are presented. The influence of some construction parameters on sensor characteristics has been considered and measured. It is proved that simple construction modifications allow some sensor parameters to be tuned. The sensor characteristic is nonlinear. The amplitude-modulation depth reaches 50% at an acceleration of 250 m/s2 for a cantilever length of 40 mm. The maximum operating frequency is dependent on cantilever length and for length 20 mm is 125 Hz.

Jerzy Kalenik; Ryszard Paj?k

1998-01-01T23:59:59.000Z

214

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

215

Fabrication of thermal microphotonic sensors and sensor arrays  

DOE Patents (OSTI)

A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

Shaw, Michael J. (Tijeras, NM); Watts, Michael R. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2010-10-26T23:59:59.000Z

216

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network (OSTI)

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

217

Digital Sun Sensor Using Multiple Pinholes Charlie Hersom  

E-Print Network (OSTI)

Digital Sun Sensor Using Multiple Pinholes Charlie Hersom President Spectral Applied Research (905 with CRESTech and the University of Waterloo, has developed a low-cost digital sun sensor for satellite attitude each field-of-view. The Sun is a nearly collimated source and produces a spot on the array via

Hornsey, Richard

218

Handbook of actuators and edge alignment sensors  

SciTech Connect

This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

Krulewich, D A

1992-11-01T23:59:59.000Z

219

Systems and methods for optically measuring properties of hydrocarbon fuel gases  

DOE Patents (OSTI)

A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution. 14 figs.

Adler-Golden, S.; Bernstein, L.S.; Bien, F.; Gersh, M.E.; Goldstein, N.

1998-10-13T23:59:59.000Z

220

Systems and methods for optically measuring properties of hydrocarbon fuel gases  

DOE Patents (OSTI)

A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

Adler-Golden, Steven (Newtonville, MA); Bernstein, Lawrence S. (Lexington, MA); Bien, Fritz (Concord, MA); Gersh, Michael E. (Bedford, MA); Goldstein, Neil (Belmont, MA)

1998-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The design of an optical sensor arrangement for the detection of oil contamination in an adhesively bonded structure of a liquefied natural gas (LNG) ship  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) has been widely used as a substitute fuel for commercial purposes. It is transported mainly by LNG ships which have primary and secondary leakage barriers. The former is composed of welded thin stainless steel or invar plates, while the latter is composed of adhesively bonded glass composite or aluminum foil sheets. The role of the secondary barrier is to maintain fluid tightness when the primary barrier fails during the transport of LNG. The tightness of the secondary barrier is dependent on the wetting characteristics between the adhesive and adherend of the bonded structure during bonding operation, which depends much on the contamination on the adherend surface. Therefore, in this work, an optical measuring device of oil contamination on the aluminum surface for the secondary barrier was developed. A transparent oil was used as the contaminant and its effect on the bonding strength was investigated. From the experiments, it has been found that the developed measuring device for oil contamination can be used to detect oil contamination on a large bonding area of the secondary barrier in ship building yards.

Bu Gi Kim; Dai Gil Lee

2009-01-01T23:59:59.000Z

222

LSST Camera Optics Design  

SciTech Connect

The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

2012-05-24T23:59:59.000Z

223

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

224

Sensors Handbook, 2 edition  

Science Journals Connector (OSTI)

Complete, State-of-the-Art Coverage of Sensor Technologies and Applications Fully revised with the latest breakthroughs in integrated sensors and control systems, Sensors Handbook, Second Edition provides all of the information needed ...

Sabrie Soloman

2009-11-01T23:59:59.000Z

225

Optical system for high-speed Atomic Force Microscope  

E-Print Network (OSTI)

This thesis presents the design and development of an optical cantilever deflection sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system is able to track a small cantilever while the X-Y scanner ...

Lim, Kwang Yong, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

226

Views on Automation  

Science Journals Connector (OSTI)

Views on Automation ... Industrial managements, he feels, must allay workers' fears by showing how they can take pride in the greater accomplishment of automated plants. ...

1957-07-29T23:59:59.000Z

227

Universal signal processing method for multimode reflective sensors  

E-Print Network (OSTI)

sensitivity, but the sensor configuration is complicated and requires the use of expensive lasers and single mode fibers. Amplitude modulation trades sensitivity for low cost and ease of configuration by using light emitting diodes and multimode fibers. A... method for reflective sensors using optical fibers as the data transmission media. The proposed transmitter - receiver unit was based on the amplitude modulation of reflected optical signals. This involves the use of an light emitting diode (LED...

Larson, Robert Eugene

2012-06-07T23:59:59.000Z

228

NEWS & VIEWS Glass dynamics  

E-Print Network (OSTI)

NEWS & VIEWS Glass dynamics Diverging views on glass transition Gregory B. mc.mckenna@ttu.edu T he glass transition is one of the most intriguing phenomena in the world of soft condensed matter. Despite decades of study, many aspects of the behaviour of glass-forming liquids remain elusive

Weeks, Eric R.

229

News and Views  

Science Journals Connector (OSTI)

......Model 8600 and 8700 gas chromatographs to...untended operation of the gas chromatograph under...0325) 311044. 133 News and Views Macintosh-compatible...speed of the Apple drives and a software incompatibility...for a corporate 134 News and Views licence...that Chem-X was the natural choice: 'Chem-X......

Alan H. Fielding

1990-04-01T23:59:59.000Z

230

Ris-PhD-15(EN) Metal-Clad Waveguide Sensors  

E-Print Network (OSTI)

Risø-PhD-15(EN) Metal-Clad Waveguide Sensors Nina Skivesen Risø National Laboratory Roskilde Denmark September 2005 #12;Author: Nina Skivesen Title: Metal-Clad Waveguide Sensors Department: OPL Risø: 77 Abstract (max. 2000 char.): This work concerns planar optical waveguide sensors for biosensing

231

Micro-position sensor using faraday effect  

DOE Patents (OSTI)

A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

McElfresh, Michael (Livermore, CA); Lucas, Matthew (Pittsburgh, PA); Silveira, Joseph P. (Tracy, CA); Groves, Scott E. (Brentwood, CA)

2007-02-27T23:59:59.000Z

232

Sensor response rate accelerator  

SciTech Connect

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

233

Remotely Deployed Virtual Sensors  

E-Print Network (OSTI)

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

234

SixDOF position sensor: enabling manufacturing flexibility  

SciTech Connect

A small, non-contact optical sensor invented by the author attaches to a robot (or other machines), enabling the robot to detect objects, adjust its alignment in all six degrees of freedom (SixDOF), and read a task from a code on the part. Thus, the SixDOF sensor provides robots more intelligence to operate autonomously and adapt to changes without human intervention. A description of the sensor is provided. Also, an operating arrangement of a robot using the SixDOF sensor is presented with performance results described.

Vann, C.S.

1998-03-24T23:59:59.000Z

235

Fiber-optic displacement sensor system  

E-Print Network (OSTI)

. Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a.... Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a...

Cava, Norayda Nora

2012-06-07T23:59:59.000Z

236

Fluorescent Optical Position Sensor - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

from the waveguide Does not introduce electrical energy Insensitive to electromagnetic interference Provides continuous measurements Has few moving parts Applications and...

237

Vision based navigation using novel optical sensors  

E-Print Network (OSTI)

~ O g M ~ R o 3j a o g O o 4k o + 6go O ) + A O L g A 0 ~O VJ A 'tS A oo A M A O O I4 8 'C el CC + C O C O ~O L 0 A V C C4 . 8 M C5 0 'C 0 C4 8 'C CC . 5 0 27 ~Sl R*Bt Experimental Setup 2 In a first.... Additionally, we define the following quantities: I: Inertia of the robot about G. M: Mass of the robot. Let's calculate the equations of inofion of G. Projecting the thrusters forces: MX ' VU~ cos 8 + VU2 cos 8 VUi sin 8 ? VU4 sin 8 MY = VU, sin 8+ VU...

Wazni, Karim Patrick

2012-06-07T23:59:59.000Z

238

AIAA 2001-0787 INTERPRETATION OF OPTICAL  

E-Print Network (OSTI)

aircraft and power generation gas turbine engines, together with the extraordinary growth in microproces-wavelength system intended to mimic the response of a practical sensor. The goal was to develop signal interpretation strategies that would allow an optical sensor system to monitor needed properties in liquid

Seitzman, Jerry M.

239

Taking the long view  

NLE Websites -- All DOE Office Websites (Extended Search)

Taking the long view Taking the long view Taking the long view on environmental stewardship A newly articulated mission for environmental stewardship at the Laboratory can be summed up in a simple phrase: clean up the past, control current operations, and create a sustainable future. March 20, 2012 Los Alamos Aerial Aerial view of a canyon in Los Alamos, New Mexico. Contact Environmental Communication & Public Outreach P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The future viability of the Lab hinges on demonstrating to public that we protect human health and the environment." Environmental stewardship strategy looks 50 years into the future As a way of integrating environmental protection activities into a comprehensive strategy, Kevin Smith, manager of the U.S. Department of

240

Evaluation of Coarse Sun Sensor in a Miniaturized Distributed Relative Navigation System: An Experimental and Analytical Investigation  

E-Print Network (OSTI)

Coupled Device CSS Coarse Sun Sensor CTA Characterization Test Apparatus DSC Digital Signal Controller DSP Digital Signal Processor ESA European Space Agency FOV Field of View HHL Hand Held Laser HTV H-II Transfer Vehicle IR-LED Infrared Light... . . . . . . . . . . . . . . . . . . . . . . . . 50 B. Northstar Sensor Overview . . . . . . . . . . . . . . . . . . 51 C. Sensor Functionality and Interface . . . . . . . . . . . . . . 54 D. Overview of Test Apparatus . . . . . . . . . . . . . . . . . 57 1. Infrared LED Array...

Maeland, Lasse

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Types of Optical Glass  

Science Journals Connector (OSTI)

... IN view of the interest shown in new optical glasses recently produced in Great Britain and in the United States, we wish to summarize ... probable lines of development. Advances in lens design have led to a demand for new glasses with optical properties different from those available hitherto as outlined in a recent paper by ...

W. M. HAMPTON; R. E. BASTICK; W. N. WHEAT

1944-03-04T23:59:59.000Z

242

Optically stimulated differential impedance spectroscopy  

DOE Patents (OSTI)

Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

2014-02-18T23:59:59.000Z

243

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical  

E-Print Network (OSTI)

7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical spatial fi ltering-crossing detection algorithm for arrays of compact low-cost optical sensors for measuring e.g. minor fl uctuations-to-noise ratio, and delivers a "real time" output (0-1 kHz). The sensors use optical spatial-fi ltering

244

Full spectrum optical safeguard  

DOE Patents (OSTI)

An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

Ackerman, Mark R. (Albuquerque, NM)

2008-12-02T23:59:59.000Z

245

High temperature, minimally invasive optical sensing modules  

DOE Patents (OSTI)

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

246

A View from home  

Science Journals Connector (OSTI)

... being studied by means of their nonlinear excitation through optical mixing of laser beams; and synchroton radiation is being employed, along with low energy electron diffraction (LEED), to ascertain ...

Andrew M. Sessler

1976-10-21T23:59:59.000Z

247

Prarie View RDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRAIRIE VIEW RDF PRAIRIE VIEW RDF 2 Prairie View RDF  Located at JAAP (approx. 40 miles southwest of Chicago), 223 acres on 455 Acre Parcel  Will County Owner; Waste Management, Operator  Maximum 23-Year Life WM/Will County Methane to Energy Plant  Landfill Contract Signed w/WM in 1997 w/Gas-to- Energy Plant Clause  County Retains Gas Rights &WM Installs Gas Collection System  WM owns Methane to Energy Plant &Tax Credits 3 CONTRACT PHASE  DOE Grant Applied 6/09  County Board Approves DOE EECBG Strategy 11/09  1 Million DOE Funds to Methane to Energy Plant  Schiff Harden Hired to Negotiate Gas to Energy Contract  February 2010 County Board Authorizes Contract Execution 4 5 METHANE TO ENERGY PLANT DETAILS  Waste Management Required To

248

View dependent fluid dynamics  

E-Print Network (OSTI)

VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Visualization... Sciences VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Donald...

Barran, Brian Arthur

2006-08-16T23:59:59.000Z

249

Building Adaptable Sensor Networks with Sensor Cubes  

E-Print Network (OSTI)

of layers allows easy experiments, upgrades and extensions Small-scale sensor network Example sensor module- world network algorithm and power management behavior · Results from small scale tests can be compared (short packets and high bit rate reduce collision probability); Transmitter's MAC table logic: Small

Roussos, George

250

Giant magnetoresistive sensor  

DOE Patents (OSTI)

A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

1999-01-01T23:59:59.000Z

251

Sensor system scaling issues  

SciTech Connect

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

252

Sensor readout detector circuit  

DOE Patents (OSTI)

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

Chu, D.D.; Thelen, D.C. Jr.

1998-08-11T23:59:59.000Z

253

Sensor readout detector circuit  

DOE Patents (OSTI)

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT)

1998-01-01T23:59:59.000Z

254

Sensors for Environmental Observatories  

E-Print Network (OSTI)

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

255

News and Views  

Science Journals Connector (OSTI)

... -16. The discussions on road lighting, from the point of view both of the pedestrian and the car driver, were valuable, as they show how complex the problem is ... problem is, depending as it does on difficult questions of physiology and psychology. The pedestrian wants to see small obstructions on the road and the numbers on the houses; ...

1928-07-28T23:59:59.000Z

256

ParaView at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

ParaView ParaView ParaView Introduction ParaView is an open-source, multi-platform data analysis and visualization application. ParaView users can quickly build visualizations to analyze their data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D or programmatically using ParaView's batch processing capabilities. ParaView was developed to analyze extremely large datasets using distributed memory computing resources. It can be run on supercomputers to analyze datasets of terascale as well as on laptops for smaller data. Remote Visualization with ParaView ParaView is a client-server application. The ParaView client (or simply paraview) will run on your desktop while the server will run at the remote supercomputing site. The following describes the steps you will take to

257

Fiber optic refractive index monitor  

DOE Patents (OSTI)

A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

Weiss, Jonathan David (Albuquerque, NM)

2002-01-01T23:59:59.000Z

258

SensorTran | Open Energy Information  

Open Energy Info (EERE)

SensorTran SensorTran Jump to: navigation, search Name SensorTran Place Austin, Texas Zip 78701 Product Austin, Texas-based designer of fibre optic-based Distributed Temperature Sensing (DTS) systems and solutions for the energy industry, with applications in asset and environmental monitoring. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Optical Fibers Optics and Photonics  

E-Print Network (OSTI)

Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

Palffy-Muhoray, Peter

260

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

Sopori, Bhushan L. (Denver, CO)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Adaptive optics for ophthalmic applications using a pyramid wavefront  

E-Print Network (OSTI)

Adaptive optics for ophthalmic applications using a pyramid wavefront sensor St´ephane R. Chamot and Chris Dainty Applied Optics, Experimental Physics Department National University of Ireland Galway, University Road Galway, Ireland stephane.chamot@nuigalway.ie http://optics.nuigalway.ie/index.html Simone

Dainty, Chris

262

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents (OSTI)

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

263

Tests gauge LED sensors for fuel-dye measurements  

SciTech Connect

The goal of this work was to develop a low cost, robust sensor to allow direct measurement of Solvent Red 164 dye concentration in off-road fuel at refineries and fuel terminals. Optical absorption sensors based on light emitting diodes (LEDs) are rugged, low-cost, have low power consumption, and can be designed to be intrinsically safe.LED-based systems have been used in a variety of chemical detection applications including heavy metals, pH, CO2, and O2. The approach for this work was to develop a sensor that could be mounted on a pipeline sight glass, precluding the need for direct contact of the sensor with the fuel. Below is described the design and testing of three different LED/photodiode sensors utilizing reflectance spectrometry for the measurement of dye concentration.

Ozanich, Richard M.; Lucke, Richard B.; Melville, Angela M.; Wright, Bob W.

2009-10-19T23:59:59.000Z

264

Electro-Mechanical Resonant Magnetic Field Sensor  

E-Print Network (OSTI)

We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

2002-01-01T23:59:59.000Z

265

Capacitive chemical sensor  

DOE Patents (OSTI)

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

266

Working Group Report: Sensors  

SciTech Connect

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

267

Contact stress sensor  

DOE Patents (OSTI)

A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

Kotovsky, Jack

2014-02-11T23:59:59.000Z

268

The View from HQ  

National Nuclear Security Administration (NNSA)

A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs A publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs NA-ASC-500-07-Issue 3 May 2007 The View from HQ by Dimitri Kusnezov I have been spending much of my time these days thinking about science, technology and engineering and the role of the laboratories and how that will be reflected in the Complex of the future. This is on my mind for two reasons: one is my responsibility to

269

MTDC Safety Sensor Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

MTDC Safety Sensor Technology MTDC Safety Sensor Technology Background Beyond the standard duty cycle data collection system used in the Department of Energy's Medium Truck Duty Cycle program, additional sensors were installed on three test vehicles to collect several safety-related signals of interest to the Federal Motor Carrier Safety Administration. The real-time brake stroke, tire pressure, and weight information obtained from these sensors is expected to make possible a number of safety-related analyses such as determining the frequency and severity of braking events and tracking tire pressure changes over time. Because these signals are posted to the vehicle's databus, they also have the potential to be

270

Sensors, Electronics & Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors, Electronics & Instrumentation Sensors, Electronics & Instrumentation Sensors, Electronics & Instrumentation Express Licensing Acoustic Concentration Of Particles In Fluid Flow Express Licensing Apparatus And Method For Hydrogen And Oxygen Mass Spectrometry Of The Terrestrial Magnetosphere Express Licensing Apparatus And Method For Temperature Correction And Expanded Count Rate Of Inorganic Scintillation Detectors Express Licensing Composition and method for removing photoresist materials from electronic components Express Licensing Corrosion Test Cell For Bipolar Plates Express Licensing Cylindrical Acoustic Levitator/Concentrator Negotiable Licensing Electrochemical Apparatus with Disposable and Modifiable Parts Express Licensing Foil electron multiplier Express Licensing Hydrogen Sensor

271

NUPlans Budgeting Grant Input View  

E-Print Network (OSTI)

NUPlans Budgeting Grant Input View FMS704 NUPlansGrantInputViewV2 Last updated 4/7/2014 - rb © 2014 Northwestern University FMS704 NUPlans Contributor Budgeting 1 of 5 NUPlans Grant Input View NUPlans enables schools and units with grant projects to input grant expense estimates per project for the next fiscal

Shull, Kenneth R.

272

R&D 100: Smart Sensors Mean Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D 100: Smart Sensors Mean Energy Savings R&D 100: Smart Sensors Mean Energy Savings R&D 100: Smart Sensors Mean Energy Savings July 23, 2013 - 3:04pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what had only been a motion detection before. The new sensor combines an inexpensive camera with a high-speed microprocessor and algorithms to detect movement and human presence in a room with an accuracy of more than 90 percent -- an advancement that could lead to enormous energy savings in commercial buildings. | Photo courtesy of Dennis Schroeder, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what

273

R&D 100: Smart Sensors Mean Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Sensors Mean Energy Savings Smart Sensors Mean Energy Savings R&D 100: Smart Sensors Mean Energy Savings July 23, 2013 - 3:04pm Addthis Researchers at the Energy Department's National Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what had only been a motion detection before. The new sensor combines an inexpensive camera with a high-speed microprocessor and algorithms to detect movement and human presence in a room with an accuracy of more than 90 percent -- an advancement that could lead to enormous energy savings in commercial buildings. | Photo courtesy of Dennis Schroeder, NREL. Researchers at the Energy Department's National Renewable Energy Laboratory recently developed a new smart occupancy sensor that adds optics to what

274

Energy Conservation in Sensor and  

E-Print Network (OSTI)

Chapter 4 Energy Conservation in Sensor and Sensor-Actuator Networks Ivan Stojmenovic 4 wireless network, and must work unattended. The limited energy budget at the individual sensor level

Stojmenovic, Ivan

275

Protective laser beam viewing device  

DOE Patents (OSTI)

A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

Neil, George R.; Jordan, Kevin Carl

2012-12-18T23:59:59.000Z

276

1292 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006 Optical Detection of Single Nanoparticles and Viruses  

E-Print Network (OSTI)

on a nanoparticle as it passes through a confined optical field, and the other method uses a background, sensor, viruses. I. INTRODUCTION THERE is a high demand for sensors that are able to detect small amounts this threat. Therefore, a broad network of sensors has to be deployed. These sensors must be affordable

Novotny, Lukas

277

A Diode Laser Chemical Sensor Utilizing an Oxidized Lower Cladding Layer for High Sensitivity  

E-Print Network (OSTI)

A Diode Laser Chemical Sensor Utilizing an Oxidized Lower Cladding Layer for High Sensitivity Chad@engineering.ucsb.edu Tel: 805.893.7065 Abstract: We demonstrate a novel chemical sensor incorporating a symmetrically-clad clad, and have tight optical confinement [4]. Symmetrically clad dielectric waveguides have been

Coldren, Larry A.

278

Sensors and actuators 1990  

SciTech Connect

This book contains the proceedings on sensors and actuators 1990. Topics covered include: Hot wire air flow meter for engine control systems, A technique for the real-time estimation of air-fuel ratio using molecular weight ratios, combustion knock sensing: Sensor selection and application issues, and An indirect sensing technique for closed-loop diesel fuel quantity control.

Not Available

1990-01-01T23:59:59.000Z

279

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

280

Progress in Fiber Optical Acoustic and Seismic Sensing  

Science Journals Connector (OSTI)

A review of the progress in fiber optic acoustic and seismic sensor systems is presented. Common advancements in areas such as multiplexing are covered as well as specific progress in...

Kirkendall, Clay; Cole, James H; Tveten, Alan B; Dandridge, Anthony

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The View from HQ  

National Nuclear Security Administration (NNSA)

  NA-ASC-500-07 Issue 2 January 2007 The View from HQ Sitting in airports and planes is risky beyond the obvious dangers now in the news. Uninter- rupted time to think may lead to new ideas. Instinct instructs us that when we hear Wash- ington has some new ideas, the result must be bad. After all, ideas suggest change, which is inherently disruptive. Today the notion of predictivity is on my mind as I am leaving the V&V 2007 meeting in Los Alamos. Predictivity is on my short list of overused, ill-defined words. Washington main- tains a full lexicon of such words-a fair number of which find their way into common usage.

282

False color viewing device  

DOE Patents (OSTI)

This invention consists of a viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching, the user`s eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage.

Kronberg, J.W.

1991-05-08T23:59:59.000Z

283

4 - Mobile Robot Sensors  

Science Journals Connector (OSTI)

The use of sensors is of paramount importance for closing the feedback control loops that secure efficient and automated/autonomous operation of mobile robots in real-life applications. Sensing methods provide higher level and intelligence capabilities that go far beyond the “preprogrammed” style of operation. This chapter provides a conceptual introduction to a number of important sensors for mobile robot operation and control. Specifically, the objectives of the chapter are (i) to provide a popular classification of sensors, along with their operational features, (ii) to discuss sonar, laser, and infrared sensors, (iii) to present an outline of robotic vision and its principal functions (including omnidirectional vision), (iv) to list the operation principles of gyroscope, compass, and force/tactile sensors, and (v) to give a brief introduction to the global positioning system.

Spyros G. Tzafestas

2014-01-01T23:59:59.000Z

284

Learning to Associate Faces across Views in Vector Space of Similarities to Prototypes  

E-Print Network (OSTI)

the view-sphere. We describe an automatic face data acquisition system based on a magnetic sensor and a calibrated camera. The system enabled us to obtain systematically a database of face images with labelled 3D poses across a view-sphere of £¥¤§¦§¨ yaw and £¥©¦ ¨ tilt at intervals of ¦ ¨ . The database was used

Gong, Shaogang

285

Adaptive Optics and Lucky Imager (AOLI): presentation and first light  

E-Print Network (OSTI)

In this paper we present the Adaptive Optics Lucky Imager (AOLI), a state-of-the-art instrument which makes use of two well proved techniques for extremely high spatial resolution with ground-based telescopes: Lucky Imaging (LI) and Adaptive Optics (AO). AOLI comprises an AO system, including a low order non-linear curvature wavefront sensor together with a 241 actuators deformable mirror, a science array of four 1024x1024 EMCCDs, allowing a 120x120 down to 36x36 arcseconds field of view, a calibration subsystem and a powerful LI software. Thanks to the revolutionary WFS, AOLI shall have the capability of using faint reference stars ({\\it I\\/} $\\sim$ 16.5-17.5), enabling it to be used over a much wider part of the sky than with common Shack-Hartmann AO systems. This instrument saw first light in September 2013 at William Herschel Telescope. Although the instrument was not complete, these commissioning demonstrated its feasibility, obtaining a FWHM for the best PSF of 0.151$\\pm$0.005 arcsec and a plate scale o...

Velasco, S; Mackay, C; Oscoz, A; King, D L; Crass, J; Díaz-Sánchez, A; Femenía, B; González-Escalera, V; Labadie, L; López, R L; Garrido, A Pérez; Puga, M; Rodríguez-Ramos, L F; Zuther, J

2015-01-01T23:59:59.000Z

286

Leak Detection and H2 Sensor Development for Hydrogen Applications  

SciTech Connect

The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

Brosha, Eric L. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

287

OPTICS5  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics5 (5.1.02) Knowledge Base Optics5 (5.1.02) Knowledge Base Last Updated: 09/11/13 Table of Contents INSTALLATION EXECUTION bullet ** Operating Systems -- Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista 64 bit ** Optics5 may not work correctly with regional/locale settings using "," as a decimal separator. bullet Which Windows operating systems can be used to run Optics? "Class Does Not Support Automation or Expected Interface" error message bullet How much hard disk space should be available to install Optics? Optics user manual bullet I receive a virus warning (nimda-virus) when installing Optics. What should I do? NFRC Procedure for Applied Films bullet I have installed Optics but I can't find the program or the icon.

288

Wavelength-tunable optical ring resonators  

DOE Patents (OSTI)

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

289

Wavelength-tunable optical ring resonators  

DOE Patents (OSTI)

Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

Watts, Michael R. (Albuquerque, NM); Trotter, Douglas C. (Albuquerque, NM); Young, Ralph W. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

2011-07-19T23:59:59.000Z

290

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network (OSTI)

modem and an optical mo- dem implemented using green light. The system of sensor nodes communicates communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Farritor, Shane

291

AquaNodes: An Underwater Sensor Network Iuliu Vasilescu  

E-Print Network (OSTI)

and an optical mo- dem implemented using green light. The system of sensor nodes communicates with a TDMA communication and support for sensing and mobil- ity. The nodes in the system are connected acoustically for broadcast communication using an acoustic modem we de- veloped. For higher point to point communication

Zhou, Shengli

292

Electrochemical micro sensor  

DOE Patents (OSTI)

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

293

RADIOACTIVE MATERIALS SENSORS  

SciTech Connect

Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

Mayo, Robert M.; Stephens, Daniel L.

2009-09-15T23:59:59.000Z

294

RF current sensor  

DOE Patents (OSTI)

An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

Moore, James A. (Powell, TN); Sparks, Dennis O. (Maryville, TN)

1998-11-10T23:59:59.000Z

295

Future Directions for Magnetic Sensors  

E-Print Network (OSTI)

Future Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors effectiveness in developing new and improved magnetic sensors. By quantifying the improvement in sensor

296

Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources  

Science Journals Connector (OSTI)

We present a novel design for an optical see-through augmented reality display that offers a wide field of view and supports a compact form factor approaching ordinary eyeglasses. Instead of conventional optics, our design uses only two simple hardware ...

Andrew Maimone; Douglas Lanman; Kishore Rathinavel; Kurtis Keller; David Luebke; Henry Fuchs

2014-07-01T23:59:59.000Z

297

Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof  

DOE Patents (OSTI)

A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

2014-05-27T23:59:59.000Z

298

Optical Approach to Gravitational Redshift  

E-Print Network (OSTI)

An optical approach begins by interpreting the gravitational redshift resulting to a change in the relative velocity of light due to the medium of propagation in the gravitational field. The discussion continues by pointing out an agreement in structure between the equation for rays in geometrical optics and the geodesic equation of general relativity. From their comparison we learn that the path of rays should be given by the relation $ds^2=n^2(r)dr^2+r^2d\\theta^2$, not by $ds^2=dr^2+r^2d\\theta^2$, in a medium with spherical symmetry of refractive index $n(r)$. The development of an optical analogy suggests introducing $n^2(r)$ in place of $g_{rr}$ as an optical version of the Schwarzschild metric. In form and content, $n^2(r)$ is different from $g_{rr}$. The optical point of view replaces the general-relativity explanations in terms of time and gravitation.

Y. G. Yi

2012-04-12T23:59:59.000Z

299

Development of Combined Opto-Acoustical Sensor Modules  

E-Print Network (OSTI)

The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriat...

Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Neff, M; Richardt, C

2011-01-01T23:59:59.000Z

300

3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials  

Science Journals Connector (OSTI)

ACS ActiveView PDFHi-Res Print, Annotate, Reference QuickView ... Here we demonstrate that efficient piezoelectric nanoparticle–polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. ...

Kanguk Kim; Wei Zhu; Xin Qu; Chase Aaronson; William R. McCall; Shaochen Chen; Donald J. Sirbuly

2014-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

302

NOx Sensor Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

needed to meet emission targets and enable widespread use of diesel vehicles with better fuel economies: We are developing a novel sensor with the potential to meet OEM cost and...

303

Sensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees  

E-Print Network (OSTI)

in such a way that the total energy usage of the active sensor nodes in the tree is minimized. However whenSensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees Ling Shi , Agostino Capponi , Karl H. Johansson and Richard M. Murray Abstract

Johansson, Karl Henrik

304

Virtual Optical Comparator  

SciTech Connect

The Virtual Optical Comparator, VOC, was conceived as a result of the limitations of conventional optical comparators and vision systems. Piece part designs for mechanisms have started to include precision features on the face of parts that must be viewed using a reflected image rather than a profile shadow. The VOC concept uses a computer generated overlay and a digital camera to measure features on a video screen. The advantage of this system is superior edge detection compared to traditional systems. No vinyl charts are procured or inspected. The part size and expensive fixtures are no longer a concern because of the range of the X-Y table of the Virtual Optical Comparator. Product redesigns require only changes to the CAD image overlays; new vinyl charts are not required. The inspection process is more ergonomic by allowing the operator to view the part sitting at a desk rather than standing over a 30 inch screen. The procurement cost for the VOC will be less than a traditional comparator with a much smaller footprint with less maintenance and energy requirements.

Thompson, Greg

2008-10-20T23:59:59.000Z

305

Nonimaging Optics  

Science Journals Connector (OSTI)

The nonimaging optical system, by definition, does not produce an image of the light source. Instead, it is designed to concentrate radiation at a density as high as theoretically possible. Nonimaging optics h...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

306

Optical Switch  

NLE Websites -- All DOE Office Websites (Extended Search)

seven wonders Optical Switch A key component in the laser chain, an optical switch called a plasma electrode Pockels cell (PEPC), was invented and developed at LLNL. A Pockels cell...

307

Mapping higher-order brain function and resting-state networks with diffuse optical tomography  

Science Journals Connector (OSTI)

We present integrative advances in high-density diffuse optical tomography imaging arrays, large field-of-view instrumentation, and anatomical head modeling. The system was tested by...

Eggebrecht, Adam T; Ferradal, Silvina L; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S; Dehghani, Hamid; Snyder, Abraham; Hershey, Tamara; Culver, Joseph P

308

Concept development for the ITER equatorial port visible/infrared wide angle viewing system  

SciTech Connect

The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); and others

2012-10-15T23:59:59.000Z

309

Metrology/viewing system for next generation fusion reactors  

SciTech Connect

Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M. [Oak Ridge National Lab., TN (United States); Dagher, M.A. [Boeing Rocketdyne Div., Canoga Park, CA (United States)

1997-02-01T23:59:59.000Z

310

Narrow Field of View Zenith Radiometer (NFOV) Handbook  

SciTech Connect

The two-channel narrow field-of-view radiometer (NFOV2) is a ground-based radiometer that looks straight up and measures radiance directly above the instrument at wavelengths of 673 and 870 nm. The field-of-view of the instrument is 1.2 degrees, and the sampling time resolution is one second. Measurements of the NFOV2 have been used to retrieve optical properties for overhead clouds that range from patchy to overcast. With a one-second sampling rate of the NFOV2, faster than almost any other ARM Climate Research Facility (ACRF) instrument, we are able, for the first time, to capture changes in cloud optical properties at the natural time scale of cloud evolution.

Chiu, C; Marshak, A; Hodges, G; Barnard, JC; Schmelzer, J

2008-11-01T23:59:59.000Z

311

Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function  

Science Journals Connector (OSTI)

In this paper, a sensor system for measuring continuous Bragg wavelength distribution in a long-length fiber Bragg grating is newly proposed, using synthesis of optical coherence...

Hotate, Kazuo; Kajiwara, Koji

2008-01-01T23:59:59.000Z

312

ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES  

E-Print Network (OSTI)

of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1 theoretical background. Then, in Section 3, we discuss measurement methods followed by the experimental tests and results in Section 4, before concluding in Section 5. 2. THEORETICAL BACKGROUND Consider an FBG fabricated

Park, Yong-Lae

313

Passive Sensors | Open Energy Information  

Open Energy Info (EERE)

Passive Sensors Passive Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Mineral maps can be used to show the presence of hydrothermal minerals and mineral assemblages Stratigraphic/Structural: Map structures/faults and regional strain rates Hydrological: Map surface water features Thermal: Map surface temperatures Dictionary.png Passive Sensors: Sensors that measure energy which is naturally available in the environment. Other definitions:Wikipedia Reegle

314

Sensor Characteristics Reference Guide  

SciTech Connect

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

315

Specimen illumination apparatus with optical cavity for dark field illumination  

DOE Patents (OSTI)

An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

Pinkel, Daniel (Walnut Creek, CA); Sudar, Damir (Walnut Creek, CA); Albertson, Donna (Lafayette, CA)

1999-01-01T23:59:59.000Z

316

Active Control Strategies for Chemical Sensors and Sensor Arrays  

E-Print Network (OSTI)

validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider...

Gosangi, Rakesh

2013-07-17T23:59:59.000Z

317

Chisolm View | Open Energy Information  

Open Energy Info (EERE)

Chisolm View Chisolm View Jump to: navigation, search Name Chisolm View Facility Chisolm View Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GE Energy Financial Service / Enel Green Power North America Developer TradeWind Energy Energy Purchaser Alabama Power Company Location Hunter OK Coordinates 36.59527057°, -97.54501104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.59527057,"lon":-97.54501104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Mid-Infrared Trace Gas Analysis with Single-Pass Fourier Transform Infrared Hollow Waveguide Gas Sensors  

Science Journals Connector (OSTI)

A hollow core optical fiber gas sensor has been developed in combination with a Fourier transform infrared (FT-IR) spectrometer operating in the spectral range of 4000–500...

Kim, Seong-Soo; Menegazzo, Nicola; Young, Christina; Chan, James; Carter, Chance; Mizaikoff, Boris

2009-01-01T23:59:59.000Z

319

The rational design of nitric oxide selectivity in single-walled carbon nanotube near infrared fluorescence sensors for biological detection  

E-Print Network (OSTI)

A major challenge in the synthesis of nanotube or nanowire sensors is imparting selective analyte binding through means other than covalent linkages which compromise electronic and optical properties. We synthesize a ...

Kim, Jong-Ho

320

LSST Camera Optics  

SciTech Connect

The Large Synoptic Survey Telescope (LSST) is a unique, three-mirror, modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary feeding a camera system that includes corrector optics to produce a 3.5 degree field of view with excellent image quality (<0.3 arcsecond 80% encircled diffracted energy) over the entire field from blue to near infra-red wavelengths. We describe the design of the LSST camera optics, consisting of three refractive lenses with diameters of 1.6m, 1.0m and 0.7m, along with a set of interchangeable, broad-band, interference filters with diameters of 0.75m. We also describe current plans for fabricating, coating, mounting and testing these lenses and filters.

Olivier, S S; Seppala, L; Gilmore, K; Hale, L; Whistler, W

2006-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wireless Sensor Network Fundamentals  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Sensor Network Fundamentals Wireless Sensor Network Fundamentals Speaker(s): Steven Lanzisera Date: February 8, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Kevin Kircher Wireless sensor networks have been promising to provide easy data collection and control capability to applications ranging from scientific data collection, disaster recover, national security, and more. The user experience, however, has been filled with confusing terminology, complicated systems, and a lack of interoperability between vendors. Users with a background in the technology and fundamentals are better able to understand system capabilities, make decisions, and end up with a network that meets their needs. Although a sufficient coverage of this topic is at least a semester course, the goal of this talk is to give a brief

322

Chemiresistor urea sensor  

DOE Patents (OSTI)

A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

Glass, Robert S. (Livermore, CA)

1997-01-01T23:59:59.000Z

323

Capacitive proximity sensor  

DOE Patents (OSTI)

A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

324

Magnetic differential torque sensor  

SciTech Connect

A new torque sensor structure is presented. The basic idea is a simple torque sensor with a variable magnetic circuit excited by an axially magnetized permanent magnet ring. The circuit is constituted by iron toothed rings, whose teeth relative position changes whenever an applied torque twists the rotating shaft. A Hall probe measures the induction in an airgap where the induction is uniform. The new structure is an association of two previous ones, thus creating a differential system with the related advantages: diminution of thermal drifts, zero mean value for the signal. The new magnetic circuit is studied by calculating equivalent reluctances through energy calculations and by using electrical analogies.

Lemarquand, V.; Lemarquand, G. [Univ. de Savoie, Annecy-le-Vieux (France)] [Univ. de Savoie, Annecy-le-Vieux (France)

1995-11-01T23:59:59.000Z

325

Sensors as Information Transducers  

E-Print Network (OSTI)

This chapter reviews the mechanisms by which sensors gather information from the physical world and transform it into the electronic signals that are used in today's information and control systems. It introduces a new methodology for describing sensing mechanisms based on the process of information flow and applies it to the broad spectrum of sensors, instruments and data input devices in current use. We identify four distinct elemental transduction processes: energy conversion, energy dispersion, energy modulation and modulation of a material property. We posit that these four mechanisms form a complete set for describing information transduction in sensing systems.

J. David zook; Norbert Schroeder

2008-04-04T23:59:59.000Z

326

Thin film hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

327

Advanced Sensors and Instrumentation Newsletter  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Sensors and Instrumentation (ASI) newsletter will be released periodically to inform program stakeholders about new developments and achievements in the area of sensors, instrumentation and related technologies across the Office of Nuclear Energy (NE) R&D programs.

328

Controlled mobility in sensor networks  

E-Print Network (OSTI)

K. Gupta. Optimizing energy-latency trade- o? in sensoras “Optimizing Energy-Latency Trade-o? in Sensor NetworksK. Gupta, “Optimizing Energy-Latency Trade-o? in Sensor

Sugihara, Ryo

2009-01-01T23:59:59.000Z

329

Nanotechnology-Based Electrochemical Sensors for Biomonitoring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Abstract:...

330

Lighting Controls/Sensors | Open Energy Information  

Open Energy Info (EERE)

Lighting ControlsSensors Incentives Retrieved from "http:en.openei.orgwindex.php?titleLightingControlsSensors&oldid267...

331

Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation  

SciTech Connect

This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

1995-05-01T23:59:59.000Z

332

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

333

Multiplexed Sensor for Synthesis Gas Compsition and Temperature  

SciTech Connect

The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

Steven Buckley; Reza Gharavi; Marco Leon

2007-10-01T23:59:59.000Z

334

Printed 3D Multi-View Images  

Science Journals Connector (OSTI)

The technique to produce full-parallax 3D multi-view still pictures is described. The matrix of source views (from 6x6 to 15x15 views) is built from computer-generated images or...

Kim, Sung-Sik; Son, Kwang-Hun; Saveljev, V V; Son, Jung-Young

2001-01-01T23:59:59.000Z

335

X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection  

SciTech Connect

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S. P.; Lowry, M. E.; Baker, K. L.; Bennett, C. V.; Celeste, J. R.; Cerjan, C.; Haynes, S.; Hernandez, V. J.; Hsing, W. W.; LaCaille, G. A.; London, R. A.; Moran, B.; Schach von Wittenau, A.; Steele, P. T.; Stewart, R. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

336

X-ray bang-time and fusion reaction history at ~ps resolution using RadOptic detection  

SciTech Connect

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility. This technology will enable x-ray bang-time and fusion burn-history measurements with {approx} ps resolution.

Vernon, S P; Lowry, M E; Baker, K L; Bennett, C V; Celeste, J R; Cerjan, C; Haynes, S; Hernandez, V J; Hsing, W W; London, R A; Moran, B; von Wittenau, A S; Steele, P T; Stewart, R E

2012-05-01T23:59:59.000Z

337

Ultrafast Graphene Oxide Humidity Sensors  

Science Journals Connector (OSTI)

Ultrafast Graphene Oxide Humidity Sensors ... Graphene oxide can be exploited in humidity and temperature sensors with a number of convenient features such as flexibility, transparency and suitability for large-scale manufacturing. ... Here we show that the two-dimensional nature of graphene oxide and its superpermeability to water combine to enable humidity sensors with unprecedented response speed (?30 ms response and recovery times). ...

Stefano Borini; Richard White; Di Wei; Michael Astley; Samiul Haque; Elisabetta Spigone; Nadine Harris; Jani Kivioja; Tapani Ryhänen

2013-11-09T23:59:59.000Z

338

Sensor network algorithms and applications  

Science Journals Connector (OSTI)

...range-based localization methods for wireless sensor networks. They review...compression techniques for wireless sensor networks. They pay...consuming hundreds of megawatts of electricity. Careful monitoring of large...of the state of the art in wireless sensor networks. The articles...

2012-01-01T23:59:59.000Z

339

Shape memory alloy thaw sensors  

DOE Patents (OSTI)

A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

Shahinpoor, Mohsen (Albuquerque, NM); Martinez, David R. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

340

Wireless sensor node localization  

Science Journals Connector (OSTI)

...need to be asymmetrical, with small, passive sensor nodes listening for signals from one or more larger transmitters. The fact...is dropping. For example, the $600 MEMS-based analogue device ADIS16360 unit has a tri-axis accelerometer and a tri-axis...

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Precision liquid level sensor  

DOE Patents (OSTI)

A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

342

Thick film hydrogen sensor  

DOE Patents (OSTI)

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

Hoffheins, B.S.; Lauf, R.J.

1995-09-19T23:59:59.000Z

343

Optical Magnetism  

Science Journals Connector (OSTI)

Magnetic dipole radiation one fourth as intense as electric dipole radiation, as well as a novel nonlinear magneto-optical effect are reported in dielectric media.

Oliveira, Samuel L; Rand, Stephen C

344

Optical assembly of a visible through thermal infrared multispectral imaging system  

SciTech Connect

The Optical Assembly (OA) for the Multispectral Thermal Imager (MTI) program has been fabricated, assembled, and successfully tested for its performance. It represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. Along with its wide-field-of-view (WFOV), 1.82{degree} along-track and 1.38{degree} cross-track, and comprehensive on-board calibration system, the pushbroom imaging sensor employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 {micro}m. The OA has an off-axis three-mirror anastigmatic (TMA) telescope with a 36-cm unobscured clear aperture. The two key performance criteria, 80% enpixeled energy in the visible and radiometric stability of 1% 1{sigma} in the visible/near-infrared (VNIR) and short wavelength infrared (SWIR), of 1.45% 1{sigma} in the medium wavelength infrared (MWIR), and of 0.53% 1{sigma} long wavelength infrared (LWIR), as well as its low weight (less than 49 kg) and volume constraint (89 cm x 44 cm x 127 cm) drive the overall design configuration of the OA and fabrication requirements.

Henson, T. [Sandia National Labs., Albuquerque, NM (United States); Bender, S.; Byrd, D. [Los Alamos National Labs., NM (United States). NIS Div.; Rappoport, W.; Shen, G.Y. [Raytheon Optical Systems, Inc., Danbury, CT (United States)

1998-06-01T23:59:59.000Z

345

Intelligent Sensor Validation and Fusion with distributed "MEMS Dust" Sensors Shijun Qiu*  

E-Print Network (OSTI)

Intelligent Sensor Validation and Fusion with distributed "MEMS Dust" Sensors (Abstract) Shijun Qiu, Berkeley aagogino@euler.berkeley.edu Key Words : sensor networks, sensor fusion, sensor validation, micro-electromechanical systems, MEMS MEMS sensors make a rich design space of networked sensors viable. They can be deeply

Agogino, Alice M.

346

Active Sensors | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Active Sensors Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Sensors Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Active Sensors Parent Exploration Technique: Remote Sensing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Detect fault and ground movement, delineate faults, create high-resolution DEMS, quantify fault kinemaics, develop lineament maps, Geophysical Monitoring Hydrological: Can give indications about subsurface geothermal fluid flow Thermal: Dictionary.png Active Sensors: Sensors that emit their own source of energy then measure the

347

Optical Expanders with Applications in Optical Computing  

E-Print Network (OSTI)

Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

Reif, John H.

348

List View | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

List View List View Safety Data/Tools Apps Challenges Resources Blogs Let's Talk Safety You are here Data.gov » Communities » Safety List View Interactive applications that visually display large datasets provide a portal to explore data and make discoveries. Federal agencies collect information on energy production, use, natural resources, and energy infrastructure logistics and this data can be used to create calculators, interactive maps, and other applications that leverage this data. These applications provide user communities the ability to highlight the energy issues that are occurring within their communities, aid businesses plan and analyze their proposed projects, and provide a baseline for analyzing how energy resources can be most optimally and efficiently used. This page

349

Hydrocarbon sensors and materials therefor  

DOE Patents (OSTI)

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

350

Nuclear sensor signal processing circuit  

DOE Patents (OSTI)

An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

Kallenbach, Gene A. (Bosque Farms, NM); Noda, Frank T. (Albuquerque, NM); Mitchell, Dean J. (Tijeras, NM); Etzkin, Joshua L. (Albuquerque, NM)

2007-02-20T23:59:59.000Z

351

Multi-dimensional position sensor using range detectors  

DOE Patents (OSTI)

A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

Vann, Charles S. (Fremont, CA)

2000-01-01T23:59:59.000Z

352

Optical Glass  

Science Journals Connector (OSTI)

... space of time. In the forefront of such vital industries is the manufacture of optical glass. However great the other resources in men and material may be, it would be ... be, it would be quite impossible to wage successful warfare without adequate supplies of optical glass ior binocular field- ...

1919-03-27T23:59:59.000Z

353

Fiber optic D dimer biosensor  

DOE Patents (OSTI)

A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

Glass, Robert S. (Livermore, CA); Grant, Sheila A. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

354

Limited View Angle Iterative CT Reconstruction  

E-Print Network (OSTI)

;Some Prior Literature in Limited View Tomography CT with limited-angle data and few views IRR algorithm Iterative Reconstruction-Reprojection (IRR) : An Algorithm for Limited Data Cardiac- Computed-views and limited-angle data in divergent-beam CT by E. Y. Sidky, CM Kao, and X. Pan (2006) Few-View Projection

355

Census and viewing of organisms  

NLE Websites -- All DOE Office Websites (Extended Search)

Census and viewing of organisms Census and viewing of organisms Name: m hariaczyi Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How many organisms exist in the world today? What is the most powerful microscope that could be used for viewing organism? Replies: The most powerful microscope is called an electron microscope, which can be used for viewing entire organisms, although few organisms are small enough to see all of them at high magnifications allowed by this microscope. So most often its used to look at fixed sections of organisms. Since the electron microscope only works in a vacuum, with no air, you cannot look at live organisms. To do that, probably the most powerful microscope is called a Nomarski, or in technical terms, a "differential interference contrast" microscope. This is a modification of a normal light microscope that allows better contrast in living tissue. It is not any more powerful than a light microscope, and is much less powerful than an electron microscope, but it allows you to see living things much better.

356

GoddardView Welcome Home!  

E-Print Network (OSTI)

GoddardView Welcome Home! Pg 2 - 3 History's Greatest Comet Hunter Pg 8 Employee Spotlight: Ernest Program Ends Amid Kudos - 6 Engineers Organize With A Desire To Inspire - 7 History's Greatest Comet on the runway at Edwards Air Force Base, California, after a safe landing August 9, 2005. Photo Credit: NASA 02

Christian, Eric

357

View  

Science Journals Connector (OSTI)

Mn, the concentration gradient that drives the diffusion is maintained by the precipitation of insoluble oxides. In the case of Cd, ... Cientifica e Tecnologica (

2000-10-07T23:59:59.000Z

358

View  

E-Print Network (OSTI)

May 18, 2012 ... bottleneck, long-time production simulations will be severely hampered ...... t ¼ 0.975, (g) t ¼ 1.0, (h) t ¼ 1.025, (i) t ¼ 1.275, (j) t ¼ 1.525, (k) t ¼ ...

S. Dong

2012-06-21T23:59:59.000Z

359

View  

E-Print Network (OSTI)

In order to increase the search capability of MBH, a population framework has been proposed ... The key idea is to avoid new individuals to enter the population if someone similar (in a ..... We measure the efficiency in terms of number of (two-.

andrea,,,

360

View  

E-Print Network (OSTI)

May 31, 2005 ... Robert M. Freund: MIT Sloan School of Management, 50 Memorial Drive, Cambridge, Massachusetts 02139-4307, ...... the transition kernel.

2005-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

View  

Science Journals Connector (OSTI)

89-l 1268) ran the carbon analysis of the sediment trap material ..... vehicle camera system were analyzed with a ... tribution of distances with the computer pro-.

1999-12-21T23:59:59.000Z

362

View  

E-Print Network (OSTI)

obtained by using different uncertainty sets estimated using simulated and ... Given a fixed mix of electric power plants (nuclear, thermal, hydroelectric, and ...

2011-01-28T23:59:59.000Z

363

View  

E-Print Network (OSTI)

Aug 19, 2009 ... linear-algebraic and graph theoretic properties of this matrix class. The con- ..... The MatLab solvers linprog and quadprog were used.

2010-03-14T23:59:59.000Z

364

View  

E-Print Network (OSTI)

Mar 14, 2006 ... ... of the paper is devoted to the development of background material for ..... Note that the optimization problem in the correction phase is solved over ...... In Phase I

2006-03-31T23:59:59.000Z

365

View  

E-Print Network (OSTI)

Mar 1, 2007 ... 2The logarithmic barrier for the half space {u ? Rn | a · u ? b} is ..... in the Uncapacitated Falicity Location Library (UflLib) [Hoe06]. .... For our test we use 36 unsolved UFL instances that come from two public sets of instances.

2007-03-01T23:59:59.000Z

366

View  

E-Print Network (OSTI)

cT w tj (cj z) + o (1) = wti (z) + o (1), since c-Ow(cz) = w(z) for any w E W and c > 0. We have obtained a contradiction with (2.29), which proves (2.28). If w t = w(' ...

2004-12-25T23:59:59.000Z

367

View  

Science Journals Connector (OSTI)

Apr 15, 1976 ... terms of Hairston's hypothesis, to find that only the ... be a component of the search by grazers .... to stop searching and to enter into a state.

2000-01-05T23:59:59.000Z

368

View  

E-Print Network (OSTI)

which has a 0 infimum, but does not attain it. Here the certificates of the bad behavior of the system in (3.32) are. Z = (. 1 0. 0 0. ) , V = (. 0 1. 1 0. ) . Example 2.

2014-05-14T23:59:59.000Z

369

View  

E-Print Network (OSTI)

1. Introduction. The purpose of the present paper is to develop some new directions of investigation in ..... For each i = 1, ..., m, and g = (x1, ..., xr,mr ), we have.

2003-09-25T23:59:59.000Z

370

View  

E-Print Network (OSTI)

Definition 1 The persistency of a variable xi is defined to be the probability that xi = 1 in the ..... i , we know a limited set of marginal moments mr i . We let ? ...

2005-04-19T23:59:59.000Z

371

View  

E-Print Network (OSTI)

In [4], Devinatz, Hopkins, and Smith proved the nilpotence theorem, a remark- able result which provides algebraic means for detecting nilpotence in the ...

1997-12-15T23:59:59.000Z

372

View  

Science Journals Connector (OSTI)

carbon (C) and increased mixing energies, making CO, limitation less likely. .... Verde Reef (Vera Cruz, Mexico). ..... solar energy is more important in deter-.

2000-03-03T23:59:59.000Z

373

View  

E-Print Network (OSTI)

Sep 3, 2003 ... Superconductors are able to carry equilibrium currents without resistance. .... by an Ohm's law where ? is the electric conductivity and b1 is a ...

1910-31-00T23:59:59.000Z

374

Viewed  

Science Journals Connector (OSTI)

Oct 27, 1982 ... study area does not contain indigenous io- .... Zn Handbook ofgeochemistry. V. 7, part 4. Spring ... Lakes-physics, chemistry, geology. Springer.

2000-02-09T23:59:59.000Z

375

View  

Science Journals Connector (OSTI)

This lake is in the Kigezi Highlands, western Uganda, in a narrow steep-sided branching river valley about 20 km long that has been dammed and drowned by a.

Orcas

376

View  

Science Journals Connector (OSTI)

1943. Treatment of experimental data. Wiley,. New York, N.Y. 344 p. ZIIIN-ELDIN, Z. P. 1961. Plankton pigments in. East Lagoon, Galveston, Texas. Trans. Am.

Orcas

377

View  

E-Print Network (OSTI)

GLEV train, a new bullet train under development in Japan, is formulated as the ... conservation law and v ? c represents a constraint on the maximum capacity at each ... Railways Technical Research Institute, Kokubunji, Tokyo 185-8540 Japan ... optimization since 1984 when Karmarkar proposed the projective scaling ...

2002-10-31T23:59:59.000Z

378

View  

E-Print Network (OSTI)

the random consequences of the chosen action, h(x, ?), are preferred to those of a baseline random variable Z for all utility ...... Ground truth. Envelope. Figure 3: ...

2012-06-29T23:59:59.000Z

379

View  

E-Print Network (OSTI)

A major challenge in using optimization to make risk-averse decisions in the face of uncertainty is how to specify an acceptable level of risk. Recently, Dentcheva ...

2011-06-22T23:59:59.000Z

380

View  

E-Print Network (OSTI)

maximum acceptable risk that one is willing to take. ... of initial wealth allocated to the assets, CVaR?(?T x) measures the risk of a given allocation x, b. 1 ...

2009-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

View  

E-Print Network (OSTI)

acceptable level of risk. As shown in [2], Problem (3) is a difficult, in fact NP-hard, combinatorial problem. Following [17] and [21], we choose to tackle it by ...

2010-02-08T23:59:59.000Z

382

View  

E-Print Network (OSTI)

allowed to be violated an “acceptable” amount of time. There are no ... optimal investment strategies with a certain level of risk [10]. Up to this point most research ...

2008-05-24T23:59:59.000Z

383

View  

E-Print Network (OSTI)

in the primal problem. As it can be seen by the number of floating point operations needed to generate the approximation to the set of efficient points, the strategy.

384

View  

E-Print Network (OSTI)

Oct 29, 2008 ... serial machine in floating point is well below our needs. 3 Notation. We are given an m × d design matrix P of floating point numbers and an.

2008-10-28T23:59:59.000Z

385

View  

E-Print Network (OSTI)

function, and the nuclear norm. The support function is based on the graph of the product of a matrix with its transpose. Closed form expressions for the support ...

2014-08-28T23:59:59.000Z

386

View  

E-Print Network (OSTI)

the results of [8] to obtain, for each natural number n, a simple nuclear C?- algebra An whose ordered K0-group is order isomorphic to Zn. This result was further ...

2008-02-01T23:59:59.000Z

387

View  

E-Print Network (OSTI)

the UCT and reproves Huaxin Lin's theorem on the classification of nuclear tracially AF ... A deep conjecture of Elliott asserts that the simple separable nuclear ...

2004-06-29T23:59:59.000Z

388

View  

E-Print Network (OSTI)

Q we have yi = Gdi and the G–orthogonality condition of vectors si, si+1 can be written as ?isT i Gsi+1 = yT i si+1 = 0 (we assume that ?i = 0). This together with ...

2009-03-10T23:59:59.000Z

389

View  

E-Print Network (OSTI)

job Ji is a function of its completion time, usually denoted by Ci. ..... For any t > max(P, d), there exists a value ? > 0 and a job index i? ? {1,...,n} such that, for any ...

2006-03-29T23:59:59.000Z

390

View  

E-Print Network (OSTI)

Feb 28, 2006 ... Abstract. The major focus of this work is to compare several methods for computing the proximal point of a nonconvex function via numerical ...

2006-02-28T23:59:59.000Z

391

View  

E-Print Network (OSTI)

Our original motivating application is in Electronics and arises in the development of pulse ...... In 8th International Symposium on Fundamentals of Computa-.

Christoph Buchheim,,,

392

View  

E-Print Network (OSTI)

Feb 28, 2012 ... and P. Dorta-González. Departamento de Métodos Cuantitativos en Econom?a y Gestión. Universidad de Las Palmas de Gran Canaria (Spain).

2012-02-28T23:59:59.000Z

393

An Inexpensive CO Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 An Inexpensive CO Sensor A schematic of the prototype CO passive sensor. Carbon moNOxide is a colorless, odorless, toxic gas whose primary source indoor is the incomplete combustion of fossil fuels. This gas can be a potential problem in any house that uses combustion appliances for space or water heating, cooking, or idling an automobile in an attached garage. Although most appliances work correctly, a problem can exist in houses when the appliance is unventilated or its ventilation system does not properly eliminate exhaust gases from the house. Since Americans spend 90% of their time indoors and 65 to 70% in their residences, understanding how and when CO builds up indoors could save lives. We have very little systematic data on how CO hazards are distrubuted in the indoor environment, but mortality

394

Evaluating fusion techniques for multi-sensor satellite image data  

SciTech Connect

Satellite image data fusion is a topic of interest in many areas including environmental monitoring, emergency response, and defense. Typically any single satellite sensor cannot provide all of the benefits offered by a combination of different sensors (e.g., high-spatial but low spectral resolution vs. low-spatial but high spectral, optical vs. SAR). Given the respective strengths and weaknesses of the different types of image data, it is beneficial to fuse many types of image data to extract as much information as possible from the data. Our work focuses on the fusion of multi-sensor image data into a unified representation that incorporates the potential strengths of a sensor in order to minimize classification error. Of particular interest is the fusion of optical and synthetic aperture radar (SAR) images into a single, multispectral image of the best possible spatial resolution. We explore various methods to optimally fuse these images and evaluate the quality of the image fusion by using K-means clustering to categorize regions in the fused images and comparing the accuracies of the resulting categorization maps.

Martin, Benjamin W [ORNL] [ORNL; Vatsavai, Raju [ORNL] [ORNL

2013-01-01T23:59:59.000Z

395

Ultra-wideband impedance sensor  

DOE Patents (OSTI)

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

McEwan, Thomas E. (Livermore, CA)

1999-01-01T23:59:59.000Z

396

Ultra-wideband impedance sensor  

DOE Patents (OSTI)

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

McEwan, T.E.

1999-03-16T23:59:59.000Z

397

Optical fiber inspection system  

DOE Patents (OSTI)

A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

Moore, F.W.

1985-04-05T23:59:59.000Z

398

Proximity field nanopatterning (PnP) employs a 2D grating to create a 3D optical interferogram within an underlying photore-  

E-Print Network (OSTI)

bandgaps, metamaterials, optical cloaking, highly efficient solar cells, and unique sensors. Significant of optical absorption processes in solar cells, and sensors.[1] Since the pioneering work of Yablonovitch[3 cloaking, solar energy harvesting, and sensing. Central image design by Huigang Zhang. #12;Multidimensional

Rogers, John A.

399

Nonlinear optics  

E-Print Network (OSTI)

Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

Bloembergen, Nicolaas

1996-01-01T23:59:59.000Z

400

Sensor Fusion - Applying sensor fusion in a district heating substation.  

E-Print Network (OSTI)

??Many machines in these days have sensors to collect information from the world they inhabit. The correctness of this information is crucial for the correct… (more)

Kangerud, Jim

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Sensor Web Middleware with Stateful Services for Heterogeneous Sensor Networks  

E-Print Network (OSTI)

and measurement. 3. Sensor Collection Service (SCS) [15] ­ Service to fetch observations, which conform to the O&M information model, from a single sensor or a collection of sensors. It is also used to describe the sensors

Buyya, Rajkumar

402

Optical Expanders with Applications in Optical Computing  

E-Print Network (OSTI)

Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

Reif, John H.

403

Molecular oxygen sensors based on photoluminescent silica aerogels  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular oxygen sensors based on photoluminescent silica aerogels Molecular oxygen sensors based on photoluminescent silica aerogels Title Molecular oxygen sensors based on photoluminescent silica aerogels Publication Type Journal Article Year of Publication 1998 Authors Ayers, Michael R., and Arlon J. Hunt Journal Journal of Non-Crystalline Solids Volume 225 Pagination 343-347 Keywords aerogel, air pressure, oxygen concentration, oxygen molecules, photoluminescence Abstract Photoluminescent silica aerogel acts as the active element of an optical sensor for molecular oxygen. The luminescent aerogel is prepared by the action of energized reducing gases on a standard silica aerogel. Intensity of aerogel photoluminescence decreases as the collision frequency between oxygen molecules and the luminescent carriers in the aerogel matrix increases. This behavior is a characteristic of many photoluminescent materials and arises from a transfer of energy from the aerogel to surrounding oxygen molecules. A sensor for oxygen concentration or air pressure can therefore be simply constructed utilizing an ultraviolet source for excitation and a suitable detector for the emitted visible signal. Stern-Volmer quenching constants for the aerogel sensing element are 1.55×10-2 Torr-1 for hydrophilic aerogel and 2.4×10-3 Torr-1 for hydrophobic aerogel.

404

HOMOLOGICAL SENSOR Vin de Silva 1  

E-Print Network (OSTI)

HOMOLOGICAL SENSOR NETWORKS Vin de Silva 1 and Robert Ghrist 2 Sensors and sense-ability A sensor) as well as vast networks of local sensors (for touch). 1Department of Mathematics, Pomona College. 2 possibilities lie in the domain of the small. Swarms of local sensors at micro- or nano- scale have

Ghrist, Robert W.

405

a Wireless Sensor Network for Environmental Monitoring  

E-Print Network (OSTI)

transmitters #12;Sample sensors: #12;Sample sensors: PAR: Photosynthetically Active (solar) Radiation sensora Wireless Sensor Network for Environmental Monitoring a Wireless Sensor Network for Environmental technology: a truly self configurable, low-cost, maintenance-free, ad-hoc sensor network (not based on Zig

Gburzynski, Pawel

406

Platforms: Where the sensors are mounted.  

E-Print Network (OSTI)

over the Sahara On September 18, 1994. #12;14 The sensor detects solar radiation that has been absorbed1 Platforms: Where the sensors are mounted. Sensors: Instruments on the platforms. ETM+ AVIRIS GER 1500 #12;2 Passive Sensors · Aerial Cameras · Visible or Thermal Active Sensors · Microwave (Radar

Gilbes, Fernando

407

Eye of the beholder: Inside this experimental camera, a stretchable sensor  

E-Print Network (OSTI)

Siemens Wind Power and the NI Graphical System Design Platform > Click here for more National Instruments--analogous to the curved retina of the eye--has certain advantages over one with a flat sensor. Its field of view is wider Videos Wind Turbine Condition Monitoring Due to environmental conditions, the remote

Rogers, John A.

408

An approach combining SysML and modelica for modelling and validate wireless sensor networks  

Science Journals Connector (OSTI)

Wireless Sensor Networks (WSN) have large industrial applications, however the modelling is still a very complex task in view of the nature of these networks, namely because they are distributed, embedded and have strong interactions between the hardware ... Keywords: SysML, modelica, MDE, WSN, modelling, simulation, virtual verification

Ahmed Hammad; Hassan Mountassir; Samir Chouali

2013-07-01T23:59:59.000Z

409

Directional Sensor Control: Heuristic Approaches  

E-Print Network (OSTI)

sensors are fused to form global estimates of target locations. ... We assume that there is a notional fusion center, which ...... a string-submodular type property.

2014-05-03T23:59:59.000Z

410

Borehole-Wall Imaging with Acoustic and Optical Televiewers for  

Open Energy Info (EERE)

Borehole-Wall Imaging with Acoustic and Optical Televiewers for Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Abstract Imaging with acoustic and optical televiewers results in continuous and oriented 360 degree views of the borehole wall from which the character and orientation of lithologic and structural features can be defined for fractured-bedrock aquifer investigations. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing

411

Fluorescent sensor for mercury  

DOE Patents (OSTI)

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

412

Microfabricated AC impedance sensor  

DOE Patents (OSTI)

A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

Krulevitch, Peter (Pleasanton, CA); Ackler, Harold D. (Sunnyvale, CA); Becker, Frederick (Houston, TX); Boser, Bernhard E. (Berkeley, CA); Eldredge, Adam B. (Austin, TX); Fuller, Christopher K. (Livermore, CA); Gascoyne, Peter R. C. (Bellaire, TX); Hamilton, Julie K. (Tracy, CA); Swierkowski, Stefan P. (Livermore, CA); Wang, Xiao-Bo (San Diego, CA)

2002-01-01T23:59:59.000Z

413

Chemoresistive gas sensor  

DOE Patents (OSTI)

A chemoresistive gas sensor is provided which has improved sensitivity. A layer of organic semiconductor is disposed between two electrodes which, in turn, are connected to a voltage source. High conductivity material is dispersed within the layer of organic semiconductor in the form of very small particles, or islands. The average interisland spacing is selected so that the predominant mode of current flow is by way of electron funneling. Adsorption of gaseous contaminant onto the layer of organic semiconductor modulates the tunneling current in a quantitative manner. 2 figs.

Hirschfeld, T.B.

1987-06-23T23:59:59.000Z

414

Thin film hydrogen sensor  

DOE Patents (OSTI)

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

415

Thin film hydrogen sensor  

DOE Patents (OSTI)

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

416

On the robustness of clustered sensor networks  

E-Print Network (OSTI)

or fault tolerance capability of a sensor system. The redundancy degree of sensors plays two important roles pertaining to the robustness of a sensor network. First, the redundancy degree provides proper parameter values for robust estimator; second, we can...

Cho, Jung Jin

2009-05-15T23:59:59.000Z

417

Mutual information based tracking with mobile sensors  

E-Print Network (OSTI)

In order to utilize mobile sensor nodes in a sensing and estimation problem, one must carefully consider the optimal placement of those sensor nodes and simultaneously account for the cost incurred in moving the sensor ...

Russ, John A., S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

418

Prospects for Bandit Solutions in Sensor Management  

Science Journals Connector (OSTI)

......Applications of Sensor Management. Springer. [2...Solutions in Sensor Management 1383 [3] Robbins...allocation. Computing Science and Statistics, 23...Learning and Geometric Approaches. 36th ACM Symp. Theory...2002) Multi-sensor management for information fusion......

Nicos G. Pavlidis; Niall M. Adams; David Nicholson; David J. Hand

2010-11-01T23:59:59.000Z

419

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS  

E-Print Network (OSTI)

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS Martin Molina and Javier generation of geographic descriptions in natural language for geographically distributed sensors. We describe generation of geographic descriptions in natural language for geographically distributed sensors. We describe

Molina, Martín

420

Hydrogen Sensor Workshop Agenda | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Workshop Agenda Hydrogen Sensor Workshop Agenda Agenda for the Hydrogen Sensor Workshop held June 8, 2011, in Chicago, Illinois.The workshop was hosted by the U.S....

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Laser-based Sensors for Chemical Detection  

SciTech Connect

Stand-off detection of hazardous materials ensures that the responder is located at a safe distance from the suspected source. Remote detection and identification of hazardous materials can be accomplished using a highly sensitive and portable device, at significant distances downwind from the source or the threat. Optical sensing methods, in particular infrared absorption spectroscopy combined with quantum cascade lasers (QCLs), are highly suited for the detection of chemical substances since they enable rapid detection and are amenable for autonomous operation in a compact and rugged package. This talk will discuss the sensor systems developed at Pacific Northwest National Laboratory and will discuss the progress to reduce the size and power while maintaining sensitivity to enable stand-off detection of multiple chemicals.

Myers, Tanya L.; Phillips, Mark C.; Taubman, Matthew S.; Bernacki, Bruce E.; Schiffern, John T.; Cannon, Bret D.

2010-05-10T23:59:59.000Z

422

Miniature Chemical Sensor  

SciTech Connect

A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

Andrew C. R. Pipino

2004-12-13T23:59:59.000Z

423

Quantum Interferometric Sensors  

E-Print Network (OSTI)

Quantum entanglement has the potential to revolutionize the entire field of interferometric sensing by providing many orders of magnitude improvement in interferometer sensitivity. The quantum-entangled particle interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like $1/\\sqrt{N}$, where $N$ is the number of particles passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of $\\sqrt{N}$ to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. This effect can translate into a tremendous science pay-off for space missions. For example, one application of this new effect is to fiber optical gyroscopes for deep-space inertial guidance and tests of General Relativity (Gravity Probe B). Another application is to ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively. Other applications are to Satellite-to-Satellite laser Interferometry (SSI) proposed for the next generation Gravity Recovery And Climate Experiment (GRACE II).

Kishore T. Kapale; Leo D. Didomenico; Hwang Lee; Pieter Kok; Jonathan P. Dowling

2005-07-15T23:59:59.000Z

424

Optical Fibre Dosimeter for SASE FEL Undulators  

E-Print Network (OSTI)

Single pass Free Electron Lasers (FELs) based on self-amplified spontaneous emission (SASE) are developed for high brightness and short wavelength applications. They use permanent magnet undulators which are radiation sensitive devices. During accelerator commissioning beam losses can appear anywhere along the undulator line. To avoid damage of the permanent magnets due to radiation, an optical fibre dosimeter system can be used. The increase of absorption caused by ionizing radiation is measured in radiation sensitive optical fibers. The dose system enables relatively fast particle loss tuning during accelerator operation and allows the monitoring of the accumulated dose. Dose measurements in narrow gaps which are inaccessible for any other (online) dosimeter type become possible. The electromagnetic insensitivity of optical fibre sensor is an advantage of applications in strong magnetic undulator fields. At each location the light absorption is measured by using an optical power-meter. The dynamic range is ...

Körfer, M

2003-01-01T23:59:59.000Z

425

Concentric core optical fiber with multiple-mode signal transmission  

DOE Patents (OSTI)

A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

Muhs, Jeffrey D. (Lenoir City, TN)

1997-01-01T23:59:59.000Z

426

Hydrogen Sensor Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Workshop Agenda Participants Workshop participants included: Affiliated Engineers Air Products Apollo Sensor Technology Argonne National Laboratory CenturyLink CSA...

427

Flexible Pressure Sensors: Modeling and Experimental Characterization  

E-Print Network (OSTI)

Flexible capacitive pressure sensors fabricated with nanocomposites were experimentally characterized and results compared with simulations from analytical modeling. Unlike traditional diaphragm silicon pressure sensors, ...

Viana, J.C.

428

Gas sensor incorporating a porous framework  

DOE Patents (OSTI)

The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

2014-05-27T23:59:59.000Z

429

Compact Potentiometric NOx Sensor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potentiometric NOx Sensor Compact Potentiometric NOx Sensor 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

430

Building Technologies Office: Sensors and Controls Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Controls Sensors and Controls Research to someone by E-mail Share Building Technologies Office: Sensors and Controls Research on Facebook Tweet about Building Technologies Office: Sensors and Controls Research on Twitter Bookmark Building Technologies Office: Sensors and Controls Research on Google Bookmark Building Technologies Office: Sensors and Controls Research on Delicious Rank Building Technologies Office: Sensors and Controls Research on Digg Find More places to share Building Technologies Office: Sensors and Controls Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

431

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network (OSTI)

Long - Lived Sensor Networks through Solar Energy Harvestingsolar energy harvesting and storage device for sensor

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

432

Optical Payload for the STARE Mission  

SciTech Connect

Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

2011-03-13T23:59:59.000Z

433

Optical memory  

DOE Patents (OSTI)

Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

Mao, Samuel S; Zhang, Yanfeng

2013-07-02T23:59:59.000Z

434

Better Buildings Network View | November 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

435

Better Buildings Network View | October 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

436

Better Buildings Network View | September 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

437

Better Buildings Network View | January 2015  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

438

Better Buildings Network View | December 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

439

The Better Buildings Neighborhood View- Fall 2011  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings Neighborhood View, from the Better Buildings Neighborhood Program of the U.S. Department of Energy.

440

Better Buildings Network View | February 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

Energy Future - The View to 2050 Bin Biofuel Technology Hydrogen Ethanol from sugar and starch (e.g. , corn,

2011-01-01T23:59:59.000Z

442

The Better Buildings Neighborhood View- July 2012  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Neighborhood View monthly newsletter from the U.S. Department of Energy's Better Buildings Neighborhood Program.

443

Better Buildings Network View | April 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

444

Better Buildings Network View | May 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

445

Better Buildings Network View | March 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

446

Better Buildings Network View | June 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings Residential Network.

447

Hadamard multimode optical imaging transceiver  

DOE Patents (OSTI)

Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

2012-10-30T23:59:59.000Z

448

Microfabricated Optical Sensor Probe for the Detection of Esophageal Cancer  

E-Print Network (OSTI)

Cancer is a class of diseases in which a group of cells grow uncontrollably, destroy surrounding tissue and eventually spread to other parts of the body, often leading to death. According to the American Cancer Society cancer causes accounts for 13...

Chinna Balareddy, Karthik Reddy

2012-10-19T23:59:59.000Z

449

INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS  

E-Print Network (OSTI)

is to study those mechanisms affecting the stability of the films with respect to these environmental factors with respect to the dissociation of hydrogen. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL of light. All four of these configurations have the potential for degradation in their performance over

450

Optical proximity sensor and orientation control of autonomous, underwater robot  

E-Print Network (OSTI)

Autonomous mobile robots need a reliable means of navigation to reach their target while avoiding collisions. This requires continuous knowledge of the vehicle's position, orientation, and motion as well as a way to identify ...

Lozano, Martin, Jr

2014-01-01T23:59:59.000Z

451

Fabrication of miniature fiber-optic temperature sensors  

DOE Patents (OSTI)

A method of coupling a silica fiber and a sapphire fiber includes providing a silica fiber having a doped core and a cladding layer, with the doped core having a prescribed diameter, providing a sapphire fiber having a diameter less than the doped core, placing an end of the sapphire fiber in close proximity to an end of the silica fiber, applying a heat source to the end of silica fiber and introducing the end of sapphire fiber into the heated doped core of the silica fiber to produce a coupling between the silica and sapphire fibers.

Zhu, Yizheng (Durham, NC); Wang, Anbo (Blacksburg, VA)

2010-07-27T23:59:59.000Z

452

Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence  

E-Print Network (OSTI)

in oxygen atmospheres 0%­21% were obtained with a signal to noise ratio better than 150. Photobleaching physical principles, electrochemistry or luminescence. Electrochemical devices result in analyte

Ghosh, Ruby N.

453

Experimental verification of a model describing the intensity distribution from a single mode optical fiber  

SciTech Connect

The intensity distribution of a transmission from a single mode optical fiber is often approximated using a Gaussian-shaped curve. While this approximation is useful for some applications such as fiber alignment, it does not accurately describe transmission behavior off the axis of propagation. In this paper, another model is presented, which describes the intensity distribution of the transmission from a single mode optical fiber. A simple experimental setup is used to verify the model's accuracy, and agreement between model and experiment is established both on and off the axis of propagation. Displacement sensor designs based on the extrinsic optical lever architecture are presented. The behavior of the transmission off the axis of propagation dictates the performance of sensor architectures where large lateral offsets (25-1500 {micro}m) exist between transmitting and receiving fibers. The practical implications of modeling accuracy over this lateral offset region are discussed as they relate to the development of high-performance intensity modulated optical displacement sensors. In particular, the sensitivity, linearity, resolution, and displacement range of a sensor are functions of the relative positioning of the sensor's transmitting and receiving fibers. Sensor architectures with high combinations of sensitivity and displacement range are discussed. It is concluded that the utility of the accurate model is in its predicative capability and that this research could lead to an improved methodology for high-performance sensor design.

Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Todd, Michael D [UCSD

2011-01-24T23:59:59.000Z

454

Ion mobility sensor system  

DOE Patents (OSTI)

An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

Xu, Jun; Watson, David B.; Whitten, William B.

2013-01-22T23:59:59.000Z

455

Solubility properties of siloxane polymers for chemical sensors  

SciTech Connect

This paper discusses the factors governing the sorption of vapors by organic polymers. The principles have been applied in the past for designing and selecting polymers for acoustic wave sensors; however they apply equally well to sorption of vapors by polymers used on optical chemical sensors. A set of solvation parameters (a table is presented for various organic vapors) have been developed that describe the particular solubility properties of individual solute molecules; they are used in linear solvation energy relationships (LSER) that model the sorption process. LSER coefficients are tabulated for five polysiloxanes; so are individual interaction terms for each of the 5 polymers. Dispersion interactions play a major role in determining overall partition coefficients; the log L{sup 16} (gas-liquid partition coefficient of solute on hexadecane) value of vapors are important in determining overall sorption. For the detection of basic vapors such as organophosphates, a hydrogen-bond acidic polymers will be most effective at sorbing them. Currently, fiber optic sensors are being developed where the cladding serves as a sorbent layer to collect and concentrate analyte vapors, which will be detected and identified spectroscopically. These solubility models will be used to design the polymers for the cladding for particular vapors.

Grate, J.W. [Pacific Northwest Lab., Richland, WA (United States); Abraham, M.H. [University College, London (United Kingdom)

1995-05-01T23:59:59.000Z

456

Street Light View: Enriching Navigable Panoramic Street View Maps with Informative Illumination Thumbnails  

E-Print Network (OSTI)

1 Street Light View: Enriching Navigable Panoramic Street View Maps with Informative Illumination, Stony Brook University ABSTRACT Google Street View is a technology featured in Google Maps and Google Earth that provides panoramic and immersive views of street scenes in many cities around the world

Mueller, Klaus

457

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

458

Using telecommunication technology to develop an optical sensing infrastructure  

Science Journals Connector (OSTI)

To handle the explosion for data capacity in telecommunication systems system designers are turning toward wavelength division multiplexing (WDM) and optical switching to obtain more data capacity. Thus the telecommunication infrastructure is moving from an electrical-optical hybrid to an all-optical infrastructure. The requirement for telecommunication and sensing infrastructures are similar. Both infrastructures need to multiplex information to and from various locations. Thus the optical WDMs switches and specialty fibers being developed for telecommunication can be used to design an optical sensing infrastructure. Sensors can be multiplexed and routed based on wavelength. WDM also allows the gain characteristics of Erbium Doped Fibers (EDF) to be utilized for sensing applications. The large bandwidth of the EDF gain profile provides a medium to design a multi-wavelength laser. The Erbium Doped Fiber Laser (EDFL) wavelengths can be added dropped and routed. This will allow the EDFL to be in a central location and to service other applications. By applying telecommunication devices to mechanical sensing problems an optical sensing infrastructure will be developed. The sensors utilized in the infrastructure will be developed into a network of displacement sensors for the inspection of complex structures.

J. A. Smith

2000-01-01T23:59:59.000Z

459

Miniaturized Paper-Based Gene Sensor for Rapid and Sensitive Identification of Contagious Plant Virus  

Science Journals Connector (OSTI)

The captured colorimetric probes on the test line and control line of the gene sensor produce characteristic red bands, enabling visual detection of the amplified products within minutes without the need for sophisticated instruments or the multiple incubation and washing steps performed in most other assays. ... Quantitative analysis is realized by recording the optical intensity of the test line. ...

Jitao Wei; Hongxing Liu; Fang Liu; Minjun Zhu; Xiaoming Zhou; Da Xing

2014-11-20T23:59:59.000Z

460

Modeling, image processing and attitude estimation of high speed star sensors  

E-Print Network (OSTI)

. The spectral response of the sensor is then used to develop a star catalog generation method that results in a compact on-board star catalog. Finally, the use of a fiber optic faceplate is proposed as an additional means of stray light mitigation for the system...

Katake, Anup Bharat

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

UAV sensor and survivability issues  

SciTech Connect

This report discusses the most significant tradeoffs between the operating altitude and the complexity and cost of UAVs and sensors. Low altitudes allow less complex, smaller sensors and platforms, but are vulnerable to ground fire. High altitudes require more numerous and capable sensors, but provide wider swaths for more rapid coverage and reduced vulnerability to ground fire. It is shown that for mission requirements and air defenses that higher is not necessarily better and that optimal flight altitudes exist that can be determined analytically.

Canavan, G.H.

1996-07-01T23:59:59.000Z

462

Active resonant subwavelength grating for scannerless range imaging sensors.  

SciTech Connect

In this late-start LDRD, we will present a design for a wavelength-agile, high-speed modulator that enables a long-term vision for the THz Scannerless Range Imaging (SRI) sensor. It takes the place of the currently-utilized SRI micro-channel plate which is limited to photocathode sensitive wavelengths (primarily in the visible and near-IR regimes). Two of Sandia's successful technologies--subwavelength diffractive optics and THz sources and detectors--are poised to extend the capabilities of the SRI sensor. The goal is to drastically broaden the SRI's sensing waveband--all the way to the THz regime--so the sensor can see through image-obscuring, scattering environments like smoke and dust. Surface properties, such as reflectivity, emissivity, and scattering roughness, vary greatly with the illuminating wavelength. Thus, objects that are difficult to image at the SRI sensor's present near-IR wavelengths may be imaged more easily at the considerably longer THz wavelengths (0.1 to 1mm). The proposed component is an active Resonant Subwavelength Grating (RSG). Sandia invested considerable effort on a passive RSG two years ago, which resulted in a highly-efficient (reflectivity greater than gold), wavelength-specific reflector. For this late-start LDRD proposal, we will transform the passive RSG design into an active laser-line reflector.

Kemme, Shanalyn A.; Nellums, Robert O.; Boye, Robert R.; Peters, David William

2006-11-01T23:59:59.000Z

463

A PHILOSOPHICAL VIEW OF CIVILIZATION  

Science Journals Connector (OSTI)

Publisher Summary Civilization comprises the dynamic interchange or “transaction” between three open entities—human nature, values and environment, physical and ideal—and can be understood only as their “emergence” or “transcendence.” The scientific and technological age views civilization in East or West largely in the context of man's control and manipulation of nature. The furniture and appurtenances of civilized living, the scaffolding and the frame-work rather than the mansion itself loom larger in the picture. However, the mansion of civilization is represented by the insights, appreciations, values and aspirations of mankind. It is these enduring experiences of the race which embody the essence of civilization and should obtain primary consideration in any adequate treatment. As the philosophy of science and technology makes a tour round the globe, the meanings, appreciations, and values that civilization actually experiences in its orientation to cosmos and to existence as a whole are discounted as metaphysical and religious—irrelevant for modern secular culture.

RADHAKAMAL MUKERJEE

2014-01-01T23:59:59.000Z

464

Sensors for Safety & Performance Stationary Systems  

E-Print Network (OSTI)

for PEM Fuel Cell Vehicles · Interfacial Stability of Thin Film H2 Sensors · Sensors for Automotive Fuel Cell Systems · Micro-Machined Thin Film H2 Gas Sensors · Sensor Development for PEM Fuel Cell Systems for Fuel Cell Monitoring #12;Discussion Points Barriers ·Cost ·Application ·Lifetime ·Flexibility ·Public

465

Proceedings of IEEE Sensors 2003 Fiber Optic Oxygen Sensor for Power Plant Applications  

E-Print Network (OSTI)

is an efficient way to control boiler operation and reduce emissions. Time resolved measurements of oxygen at the far end of a Au clad high temperature silica fiber (continuous operation to 700 °C), as shown in Fig schemes in harsh environments. In this paper we report on the high temperature photophysical parameters

Ghosh, Ruby N.

466

MINIMIZATION OF SENSOR USAGE FOR TARGET TRACKING IN A NETWORK OF IRREGULARLY SPACED SENSORS  

E-Print Network (OSTI)

MINIMIZATION OF SENSOR USAGE FOR TARGET TRACKING IN A NETWORK OF IRREGULARLY SPACED SENSORS Thomas address the following scenario: a single target moves through a field of stationary sensors with known locations. At each time epoch, each sensor is either active or not; each active sensor outputs either target

Morrell, Darryl

467

Optics and Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

2 14 | Next | Last Back to Index Optics Line up of optics after cleaning. Photo Number: 2013-048779...

468

A View from the Bridge - DOE Perspective | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A View from the Bridge - DOE Perspective A View from the Bridge - DOE Perspective Broad view of DOE's approach to addressing transportation sector oil dependence...

469

Better Buildings Network View | April 2014 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Network View | April 2014 Better Buildings Network View | April 2014 The Better Buildings Network View monthly newsletter from the U.S. Department of Energy's Better Buildings...

470

High density array fabrication and readout method for a fiber optic biosensor  

DOE Patents (OSTI)

The invention relates to the fabrication and use of biosensors comprising a plurality of optical fibers each fiber having attached to its ``sensor end`` biological ``binding partners`` (molecules that specifically bind other molecules to form a binding complex such as antibody-antigen, lectin-carbohydrate, nucleic acid-nucleic acid, biotin-avidin, etc.). The biosensor preferably bears two or more different species of biological binding partner. The sensor is fabricated by providing a plurality of groups of optical fibers. Each group is treated as a batch to attach a different species of biological binding partner to the sensor ends of the fibers comprising that bundle. Each fiber, or group of fibers within a bundle, may be uniquely identified so that the fibers, or group of fibers, when later combined in an array of different fibers, can be discretely addressed. Fibers or groups of fibers are then selected and discretely separated from different bundles. The discretely separated fibers are then combined at their sensor ends to produce a high density sensor array of fibers capable of assaying simultaneously the binding of components of a test sample to the various binding partners on the different fibers of the sensor array. The transmission ends of the optical fibers are then discretely addressed to detectors--such as a multiplicity of optical sensors. An optical signal, produced by binding of the binding partner to its substrate to form a binding complex, is conducted through the optical fiber or group of fibers to a detector for each discrete test. By examining the addressed transmission ends of fibers, or groups of fibers, the addressed transmission ends can transmit unique patterns assisting in rapid sample identification by the sensor. 9 figs.

Pinkel, D.; Gray, J.

1997-11-25T23:59:59.000Z

471

Multiple frequency method for operating electrochemical sensors  

DOE Patents (OSTI)

A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

Martin, Louis P. (San Ramon, CA)

2012-05-15T23:59:59.000Z

472

X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detectiona)  

Science Journals Connector (OSTI)

We report recent progress in the development of RadOptic detectors radiation to optical converters that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductorsensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with ? ps resolution.

S. P. Vernon; M. E. Lowry; K. L. Baker; C. V. Bennett; J. R. Celeste; C. Cerjan; S. Haynes; V. J. Hernandez; W. W. Hsing; G. A. LaCaille; R. A. London; B. Moran; A. Schach von Wittenau; P. T. Steele; R. E. Stewart

2012-01-01T23:59:59.000Z

473

Optical Hybrid Quantum Information Processing  

E-Print Network (OSTI)

Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

Shuntaro Takeda; Akira Furusawa

2014-04-09T23:59:59.000Z

474

Aircraft Cabin Environmental Quality Sensors  

NLE Websites -- All DOE Office Websites (Extended Search)

Aircraft Cabin Environmental Quality Sensors Aircraft Cabin Environmental Quality Sensors Title Aircraft Cabin Environmental Quality Sensors Publication Type Report Year of Publication 2004 Authors Gundel, Lara A., Thomas W. Kirchstetter, Michael Spears, and Douglas P. Sullivan Keywords carbon monoxide, ozone Abstract Identification of aircraft cabin environmental quality concerns for which sensors may be useful The highest priority environmental indicators identified are ozone and cabin air pressure, followed by carbon monoxide and carbon dioxide with moderate priority, and then relative humidity, airborne particles, and organic contaminants, including engine oil byproducts and pesticides. This list is based on the Congressional requirements and recent scientific literature, starting with information from recent studies (NAS/NRC, ASHRAE/Battelle), and continuing by seeking input from a variety of stakeholders.

475

Nuclear magnetic resonance readable sensors  

E-Print Network (OSTI)

The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an ...

Ling, Yibo

2010-01-01T23:59:59.000Z

476

Honeywell developing fuel cell sensors  

Science Journals Connector (OSTI)

In the US, four development teams from Honeywell Sensing & Control are collaborating in a DOE project to develop sensors that provide better control in the demanding fuel cell environment.

2004-01-01T23:59:59.000Z

477

Compact orthogonal NMR field sensor  

DOE Patents (OSTI)

A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)

2009-02-03T23:59:59.000Z

478

Downhole Sensor Holds Transformative Potential  

Energy.gov (U.S. Department of Energy (DOE))

Long-term operation of electronics at high temperatures remains a challenge for the geothermal sector; many downhole sensors are prone to failure when deployed in high-temperature wells, which limits the availability and complexity of logging tools av

479

Spinning angle optical calibration apparatus  

DOE Patents (OSTI)

An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

Beer, Stephen K. (Morgantown, WV); Pratt, II, Harold R. (Morgantown, WV)

1991-01-01T23:59:59.000Z

480

Heat-activated Plasmonic Chemical Sensors for Harsh Environments  

NLE Websites -- All DOE Office Websites (Extended Search)

cnse.albany.edu cnse.albany.edu Heat-activated Plasmonic Chemical Sensors for Harsh Environments Dr. Michael A. Carpenter College of NanoScale Science and Engineering Energy & Environmental Technology Applications Center University at Albany - SUNY Dr. Sang-Hyun Oh Department of Electrical and Computer Engineering University of Minnesota-Twin Cities 6/11/13 ! Oh group, University of Minnesota Carpenter Group, CNSE cnse.albany.edu Harsh Environment Chemical Sensors Nanocomposite Materials * Optical analysis of Au SPR bands * YSZ, TiO 2 , CeO 2 matrix materials * 500-800°C operating environment * SOFC, Jet engines, turbines * CO, H 2 , NO x , R x S Goals of Research are Two-Fold 1. Develop prototype nanorod materials for use in next generation sensing devices

Note: This page contains sample records for the topic "optical sensors view" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Parallel optical sampler  

SciTech Connect

An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

2014-05-20T23:59:59.000Z

482

Space sensors for global change  

SciTech Connect

Satellite measurements should contribute to a fuller understanding of the physical processes behind the radiation budget, exchange processes, and global change. Climate engineering requires global observation for early indications of predicted effects, which puts a premium on affordable, distributed constellations of satellites with effective, affordable sensors. Defense has a requirement for continuous global surveillance for warning of aggression, which could evolve from advanced sensors and satellites in development. Many climate engineering needs match those of defense technologies.

Canavan, G.H.

1994-02-15T23:59:59.000Z

483

Battery system with temperature sensors  

SciTech Connect

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

484

Development of a process control sensor for the glass industry  

SciTech Connect

This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

1991-05-01T23:59:59.000Z

485

Calorimetric gas sensor  

DOE Patents (OSTI)

A combustible gas sensor is described that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 {micro}m thick {times} 10{micro}m wide {times} 100, 250, 500, or 1000 {micro}m-long polycrystalline Si; some are overcoated with a 0.25 {micro}m-thick protective CVD Si{sub 3}N{sub 4} layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac){sub 2} onto microfilaments resistively heated to approximately 500 C; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300 C (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H{sub 2} concentrations between 100 ppm and 1% in an 80/20 N{sub 2}/O{sub 2} mixture. Other catalytic materials can also be used. 11 figs.

Ricco, A.J.; Hughes, R.C.; Smith, J.H.; Moreno, D.J.; Manginell, R.P.; Senturia, S.D.; Huber, R.J.

1998-11-10T23:59:59.000Z

486

Calorimetric gas sensor  

DOE Patents (OSTI)

A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. The filaments tested to date are 2 .mu.m thick.times.10 .mu.m wide.times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500.degree. C.; Pt deposits only on the hot filament. Using a constant-resistance-mode feedback circuit, Pt-coated filaments operating at ca. 300.degree. C. (35 mW input power) respond linearly, in terms of the change in supply current required to maintain constant resistance (temperature), to H.sub.2 concentrations between 100 ppm and 1% in an 80/20 N.sub.2 /O.sub.2 mixture. Other catalytic materials can also be used.

Ricco, Antonio J. (Albuquerque, NM); Hughes, Robert C. (Cedar Crest, NM); Smith, James H. (Albuquerque, NM); Moreno, Daniel J. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA); Huber, Robert J. (Bountiful, UT)

1998-01-01T23:59:59.000Z

487

Micromechanical potentiometric sensors  

DOE Patents (OSTI)

A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

Thundat, Thomas G. (Knoxville, TN)

2000-01-01T23:59:59.000Z

488

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

Kuchnir, M.; Mills, F.E.

1984-09-28T23:59:59.000Z

489

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

1987-01-01T23:59:59.000Z

490

Optical Packet Switching -1 Optical Networks  

E-Print Network (OSTI)

Optical Packet Switching - 1 Optical Networks: from fiber transmission to photonic switching Optical Packet Switching Fabio Neri and Marco Mellia TLC Networks Group ­ Electronics Department e.mellia@polito.it ­ tel. 011 564 4173 #12;Optical Packet Switching - 2 · This work is licensed under the Creative Commons

Mellia, Marco

491

The Better Buildings Neighborhood View- October 2012  

Energy.gov (U.S. Department of Energy (DOE))

The Better Buildings Neighborhood View monthly newsletter from the U.S. Department of Energy's Better Buildings Neighborhood Program - October 2012

492

Fibrations and universal view updatability Michael Johnson  

E-Print Network (OSTI)

Fibrations and universal view updatability Michael Johnson Computing Department, Macquarie methods to manage the complexity. Dampney and Johnson [25] first showed how data models based on entity

Johnson, Michael

493

Fibrations and universal view updatability Michael Johnson  

E-Print Network (OSTI)

Fibrations and universal view updatability Michael Johnson Computing Department, Macquarie and Johnson [25] first showed how data models based on entity-relationship (ER) diagrams [10] are enhanced

Rosebrugh, Robert

494

Optical processing furnace with quartz muffle and diffuser plate  

DOE Patents (OSTI)

An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.

Sopori, Bhushan L. (Denver, CO)

1995-01-01T23:59:59.000Z

495

Optics and Optical Engineering Program Assessment Plan Program Learning Objectives  

E-Print Network (OSTI)

Optics and Optical Engineering Program Assessment Plan Program Learning, and processes that underlie optics and optical engineering. 2. Strong understanding of the fundamental science, mathematics, and processes that underlie optics and optical

Cantlon, Jessica F.

496

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

497

Scanner position sensor for an integrated laser/film rangefiner  

SciTech Connect

In an integrated laser/FLIR rangefinder a scanner position sensor comprising an LED of the array of LEDs of a forward looking infrared (FLIR) system, a reticle grating located at the image plane of LED optical path and a silicon detector positioned to receive the light passing through the reticle grating for producing a plurality of signals in response to light passing through each grating slot. One of the signals is selected for the synchronization logic for controlling the charging and firing of the laser. If there is no range return a second signal is selected for adjusting the position of the timing pulse.

Berdanier, B. N.

1985-09-24T23:59:59.000Z

498

Integrated NEMS and optoelectronics for sensor applications.  

SciTech Connect

This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

2008-01-01T23:59:59.000Z

499

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants  

SciTech Connect

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Previously we described a particle-in-binder approach to immobilizing the potassium salt of a molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the tips of optical fibers. Compared to previous methods, the particle-in-binder approach affords fibers with greatly improved mechanical properties. We have extensively characterized two fiber sensors at high temperature. We obtain quenching ratios between pure nitrogen and 21% oxygen as high as 3.9 x at 70 C. For the first sensor at 60 C we obtained a {+-} 1% variation in the quenching ratio over 6 cycles of measurement, and monitored the device performance over 23 days. We were able to operate the second sensor continuously for 14 hours at 70 C, and the sensor quenching ratio was stable to 5% over that time period. These are promising results for a high temperature fiber optical oxygen sensor based on molybdenum chloride clusters.

Gregory L. Baker; Ruby N. Ghosh; D.J. Osborn III; Po Zhang

2006-01-01T23:59:59.000Z

500

Long-gage optical fiber extensometers for dynamic evaluation of structures  

Science Journals Connector (OSTI)

This paper deals with the study of the capacity of continuously attached long-gage fiber optic sensors for a new use: dynamic evaluation of structures. The optical system is first presented, followed by the development of the precise formulation of the measurement data obtained by this sensor when applied to the dynamic analysis of beams, especially under bending oscillations. This sensor allows us to find the curvature mode shapes. Numerical simulations are then performed to estimate the dynamic characteristics of the beam by means of the continuous wavelet transform, using the data obtained with this sensor. Finally, the fiber optic sensors are bonded on a real cantilever beam and experimental data are collected from the optical measurement system, in the case of aftershock free oscillations of the instrumented beam. A similar modal identification procedure as that proposed for numerical simulations is used and the results are compared to those obtained with accelerometers and long strain gauges. This type of sensor, allowing us to find the curvature mode shapes, will be a good candidate for damage detection.

G. Cumunel; S. Delepine-Lesoille; P. Argoul

2012-01-01T23:59:59.000Z