Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Miniature Optical Particle Counter for In Situ Aircraft Aerosol Research  

Science Conference Proceedings (OSTI)

Modification of a commercial Met One 237A optical sensor to accept custom electronics consisting of a single logarithmic amplifier providing 256 size bins over the 0.3–14-?m diameter range is described. Configuration of the optical particle ...

Antony D. Clarke; Norman C. Ahlquist; Steven Howell; Ken Moore

2002-10-01T23:59:59.000Z

2

Scintillator fiber optic long counter  

DOE Patents (OSTI)

A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.

McCollum, T.; Spector, G.B.

1994-03-29T23:59:59.000Z

3

Counter Rotating Open Rotor Animation using Particle Image Velocimetry  

E-Print Network (OSTI)

This article describes the two accompanying fluid dynamics videos for the "Counter rotating open rotor flow field investigation using stereoscopic Particle Image Velocimetry" presented at the 64th Annual Meeting of the APS Division of Fluid Dynamics in Baltimore, Maryland, November 20-22, 2011.

Roosenboom, E W M; Geisler, R; Pallek, D; Agocs, J; Neitzke, K -P

2011-01-01T23:59:59.000Z

4

Cherenkov Counters  

SciTech Connect

When a charged particle passes through an optically transparent medium with a velocity greater than the phase velocity of light in that medium, it emits prompt photons, called Cherenkov radiation, at a characteristic polar angle that depends on the particle velocity. Cherenkov counters are particle detectors that make use of this radiation. Uses include prompt particle counting, the detection of fast particles, the measurement of particle masses, and the tracking or localization of events in very large, natural radiators such as the atmosphere, or natural ice fields, like those at the South Pole in Antarctica. Cherenkov counters are used in a number of different fields, including high energy and nuclear physics detectors at particle accelerators, in nuclear reactors, cosmic ray detectors, particle astrophysics detectors and neutrino astronomy, and in biomedicine for labeling certain biological molecules.

Barbero, Marlon

2012-04-19T23:59:59.000Z

5

Modification of a Commercial Condensation Particle Counter for Boundary Layer Balloon-Borne Aerosol Studies  

Science Conference Proceedings (OSTI)

A commercial battery-driven condensation particle counter (TSI-8020) was modified for use in a lightweight payload for tethered balloons to study new particle formation in the planetary boundary layer. After modifications, the instrument was ...

Jost Heintzenberg; Alfred Wiedensohler; Stefan Kütz

1999-05-01T23:59:59.000Z

6

Coincidence and Dead-Time Corrections for Particle Counters. Part I: A General Mathematical Formalism  

Science Conference Proceedings (OSTI)

Counting loss due to coincidences limit the efficiency of the retriggerable particle counters. When the particle rate increases, the counted rate rapidly reaches a maximum so that it becomes impossible to precisely estimate the actual value. On ...

J. L. Brenguier; L. Amodei

1989-08-01T23:59:59.000Z

7

Development of position sensitive proportional counters for hot particle detection in laundry and portal monitors  

SciTech Connect

This report summarizes research which demonstrates the use of position sensitive proportional counters in contamination monitoring systems. Both laundry monitoring and portal monitoring systems were developed. The laundry monitor was deployed at a nuclear power plant where it was used to monitor clothing during an outage. Position sensitive proportional counter based contamination monitoring systems were shown to have significant advantages over systems using conventional proportional counters. These advantages include the ability to directly measure the area and quantity of contamination. This capability permits identification of hot particles. These systems are also capable of self calibration via internal check sources. Systems deployed with this technology should benefit from reduced complexity, cost and maintenance. The inherent reduction of background that occurs when the counter is electronically divided into numerous detectors permits operation in high background radiation fields and improves detection limits over conventional technology.

Shonka, J.J.; Schwahn, S.O.; Bennett, T.E.; Misko, D.J. (Shonka Research Associates, Inc., Marietta, GA (United States))

1992-09-01T23:59:59.000Z

8

AUTOMATIC COUNTER  

DOE Patents (OSTI)

An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

Robinson, H.P.

1960-06-01T23:59:59.000Z

9

Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm  

Science Conference Proceedings (OSTI)

We report a new scanning mobility particle spectrometer (SMPS) for measuring number size distributions of particles down to {approx}1 nm mobility diameter. This SMPS includes an aerosol charger, a TSI 3085 nano differential mobility analyzer (nanoDMA), an ultrafine condensation particle counter (UCPC) using diethylene glycol (DEG) as the working fluid, and a conventional butanol CPC (the 'booster') to detect the small droplets leaving the DEG UCPC. The response of the DEG UCPC to negatively charged sodium chloride particles with mobility diameters ranging from 1-6 nm was measured. The sensitivity of the DEG UCPC to particle composition was also studied by comparing its response to positively charged 1.47 and 1.70 nm tetra-alkyl ammonium ions, sodium chloride, and silver particles. A high resolution differential mobility analyzer was used to generate the test particles. These results show that the response of this UCPC to sub-2 nm particles is sensitive to particle composition. The applicability of the new SMPS for atmospheric measurement was demonstrated during the Nucleation and Cloud Condensation Nuclei (NCCN) field campaign (Atlanta, Georgia, summer 2009). We operated the instrument at saturator and condenser temperatures that allowed the efficient detection of sodium chloride particles but not of air ions having the same mobility. We found that particles as small as 1 nm were detected during nucleation events but not at other times. Factors affecting size distribution measurements, including aerosol charging in the 1-10 nm size range, are discussed. For the charger used in this study, bipolar charging was found to be more effective for sub-2 nm particles than unipolar charging. No ion induced nucleation inside the charger was observed during the NCCN campaign.

Jiang, J.; Kuang, C.; Chen, M.; Attoui, M.; McMurry, P. H.

2011-02-01T23:59:59.000Z

10

The characterization of particle clouds using optical imaging techniques  

E-Print Network (OSTI)

Optical imaging techniques can be used to provide a better understanding of the physical properties of particle clouds. The purpose of this thesis is to design, perform and evaluate a set of experiments using optical imaging ...

Bruce, Elizabeth J. (Elizabeth Jane), 1972-

1998-01-01T23:59:59.000Z

11

Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei  

SciTech Connect

This paper describes simple modifications to thermally diffusive laminar flow ultrafine condensation particle counters (UCPCs) that allow detection of {approx}1 nm condensation nuclei with much higher efficiencies than have been previously reported. These nondestructive modifications were applied to a commercial butanol based UCPC (TSI 3025A) and to a diethylene glycol-based UCPC (UMN DEG-UCPC). Size and charge dependent detection efficiencies using the modified UCPCs (BNL 3025A and BNL DEGUCPC) were measured with high resolution mobility classified aerosols composed of NaCl, W, molecular ion standards of tetraalkyl ammonium bromide, and neutralizer-generated ions. With negatively charged NaCl aerosol, the BNL 3025A and BNL DEGUCPC achieved detection efficiencies of 37% (90x increase over TSI 3025A) at 1.68 nm mobility diameter (1.39 nm geometric diameter) and 23% (8x increase over UMN DEG-UCPC) at 1.19 nm mobility diameter (0.89 nm geometric diameter), respectively. Operating conditions for both UCPCs were identified that allowed negatively charged NaCl and W particles, but not negative ions of exactly the same mobility size, to be efficiently detected. This serendipitous material dependence, which is not fundamentally understood, suggests that vapor condensation might sometimes allow for the discrimination between air 'ions' and charged 'particles.' As a detector in a scanning mobility particle spectrometer (SMPS), a UCPC with this strong material dependence would allow for more accurate measurements of sub-2 nm aerosol size distributions due to the reduced interference from neutralizer-generated ions and atmospheric ions, and provide increased sensitivity for the determination of nucleation rates and initial particle growth rates.

Kuang, C.; Chen, M.; McMurry, P. H.; Wang, J.

2011-10-01T23:59:59.000Z

12

Air Proportional Counter  

DOE Patents (OSTI)

A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

Simpson, J.A. Jr.

1950-10-31T23:59:59.000Z

13

GASEOUS SCINTILLATION COUNTER  

DOE Patents (OSTI)

A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

Eggler, C.; Huddleston, C.M.

1959-04-28T23:59:59.000Z

14

Optically active biological particle distinguishing apparatus  

SciTech Connect

The disclosure is directed to organic particle sorting and identification. High frequency pulses of circularly polarized light, alternating between left and right, intersect a fast moving stream of organic particles. Circular intensity differential scattering and linear intensity differential scattering are monitored to uniquely identify a variety of organic particles.

Salzman, Gary C. (Los Alamos, NM); Kupperman, Robert H. (Washington, DC)

1989-01-01T23:59:59.000Z

15

Optical double-slit particle measuring system  

DOE Patents (OSTI)

A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3..mu..m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

Tichenor, D.A.; Wang, J.C.F.; Hencken, K.R.

1982-03-25T23:59:59.000Z

16

Optical/electrical particle measurement system  

Science Conference Proceedings (OSTI)

... The microscope is outfitted with fast, computer-controlled cameras (both optical and fluorescence) and with a bright 480 nm light emitting diode(LED ...

2013-09-16T23:59:59.000Z

17

Optically induced electrokinetic patterning and manipulation of particles  

E-Print Network (OSTI)

This fluid dynamics video will illustrate an optically induced electrokinetic technique for non-invasive particle manipulation on the surface of a parallel-plate gold/indium tin oxide (ITO) electrode that is illuminated with near-infrared (1064 nm) optical patterns and biased with an alternating current (AC) signal. This technique generates strong microfluidic vortices that is constructively used to dynamically and rapidly aggregate particle groups at low frequencies.

Williams, Stuart J; Wereley, Steven T

2008-01-01T23:59:59.000Z

18

RADIATION COUNTER  

DOE Patents (OSTI)

This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

Goldsworthy, W.W.

1958-02-01T23:59:59.000Z

19

Multiple particle production processes in the light'' of quantum optics  

Science Conference Proceedings (OSTI)

Ever since the observation that high-energy nuclear active'' cosmic-ray particles create bunches of penetrating particles upon hitting targets, a controversy has raged about whether these secondaries are created in a single act'' or whether many hadrons are just the result of an intra-nuclear cascade, yielding one meson in every step. I cannot escape the impression that: the latter kind of model appeals naturally as a consequence of an innate bio-morphism in our way of thinking and that in one guise or another it has tenaciously survived to this day, also for hadron-hadron collisions, via multi-peripheral models to the modern parton shower approach. Indeed, from the very beginning of theoretical consideration of multiparticle production, the possibility of many particles arising from a single hot'' system has been explored, with many fruitful results, not the least of which are the s{sup 1/4} dependence of the mean produced particle multiplicity and the thermal'' shape of the P{sub T} spectra. An important consequence of the thermodynamical-hydrodynamical models is that particle emission is treated in analogy to black-body radiation, implying for the secondaries a set of specific Quantum-Statistical properties, very similar to those observed in quantum optics. From here on I shall try to review a number of implications and applications of this QS analogy in the study of multiplicity distributions of the produced secondaries. I will touch only in passing another very important topic of this class, the Bose-Einstein two-particle correlations.

Friedlander, E.M.

1990-09-01T23:59:59.000Z

20

Master Thesis Ring Imaging Cerenkov Counter with Aerogel  

E-Print Network (OSTI)

[a4]report #12; i Master Thesis Ring Imaging Cerenkov Counter with Aerogel Radiator for HERMES-inlusive spin asymmetries. In the past, HERMES used a threshold Cerenkov counter as one of its four particle the threshold Cerenkov counter with a Ring Imaging Cerenkov system(RICH) in 1998, so that it can separate #25

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Remote Sensing of Cirrus Cloud Particle Size and Optical Depth Using Polarimetric Sensor Measurements  

Science Conference Proceedings (OSTI)

This paper presents a conceptual approach toward the remote sensing of cirrus cloud particle size and optical depth using the degree of polarization and polarized reflectance associated with the first three Stokes parameters, I, Q, and U, for the ...

S. C. Ou; K. N. Liou; Y. Takano; R. L. Slonaker

2005-12-01T23:59:59.000Z

22

OPTICAL PROPERTIES OF SMALL PARTICLE SUSPENSIONS FOR SOLAR THERMAL COLLECTION  

E-Print Network (OSTI)

of the University of California, nor any of their employees,of the University of California. The views and opinions ofof the University of California. Optical Propert.ies of

Hunt, Arlon J.

2013-01-01T23:59:59.000Z

23

Optical Properties of Aerosol Particles over the Northeast Pacific  

Science Conference Proceedings (OSTI)

In July 2002, atmospheric aerosol measurements were conducted over the northeast Pacific Ocean as part of the Subarctic Ecosystem Response to Iron Enhancement Study (SERIES). The following aerosol quantities were measured: particle number size ...

Julia Marshall; Ulrike Lohmann; W. Richard Leaitch; Nicole Shantz; Lisa Phinney; Desiree Toom-Sauntry; Sangeeta Sharma

2005-08-01T23:59:59.000Z

24

Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory  

Science Conference Proceedings (OSTI)

A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (?c) and ...

Teruyuki Nakajima; Michael D. King

1990-08-01T23:59:59.000Z

25

Pyrochemical multiplicity counter development  

Science Conference Proceedings (OSTI)

Impure plutonium-bearing materials from pyrochemical processes often display both significant self-multiplication and variable ({alpha},n) reaction rates. Standard neutron coincidence counting techniques usually fail to accurately measure these materials. Neutron multiplicity counters measure the third moment of the neutron multiplicity distribution and thus make it possible to deduce the fertile plutonium mass of a sample even when both the self-multiplication and the ({alpha},n) reaction rate are unknown. A multiplicity counter suitable for measuring pyrochemical materials has been designed and built. This paper describes the results of characterization studies for the new counter. The counter consists of 126 helium-3 tubes arranged in 4 concentric rings in a polyethylene moderator; the average spacing between the tubes is 1.59 cm. The end plugs for the counter are made of graphite, and the 24.1- by 37.5-cm sample cavity is cadmium lined. The counter consists of two distinct halves from which the neutron counts are summed. The counter is capable of operation in either a freestanding mode with the two halves coupled together by an external cabinet or in a glove-box mode with the two halves placed around a glovebox well and then mated. For a {sup 252}Cf source centered in the sample cavity, the measured efficiency of the new multiplicity counter is 57.7% and its die-away time is 47.2{mu}s. 8 refs., 9 figs.

Langner, D.G.; Dytlewski, N.; Krick, M.S.

1991-01-01T23:59:59.000Z

26

Apparatus for preventing particle deposition from process streams on optical access windows  

DOE Patents (OSTI)

An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

Logan, Ronald G. (Fredericksburg, VA); Grimm, Ulrich (Morgantown, WV)

1993-01-01T23:59:59.000Z

27

Optical Investigations of Dust Particles Distribution in RF and DC Discharges  

Science Conference Proceedings (OSTI)

Optical emission spectroscopy is used to study dust particles movement and conditions of a formation of ordered plasma-dust structures in a capacitively coupled RF discharge. 3D binocular diagnostics of plasma-dust structures in dc discharge was made.

Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh. [Al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Filatova, I. I.; Azharonok, V. V. [B. I. Stepanov Institute of Physics NAS of Belarus, Nezavisimosti Ave., 68, 220072, Minsk (Belarus)

2008-09-07T23:59:59.000Z

28

Remote creation of hybrid entanglement between particle-like and wave-like optical qubits  

E-Print Network (OSTI)

The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states, e.g. finite-dimensional quantum systems, or on wave-like continuous-variable states, e.g. infinite-dimensional systems. Here, we demonstrate the first measurement-induced generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables to convert information from one Hilbert space to the other via teleportation and therefore connect remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit opens the promises for heterogeneous network implementations, where discrete and continuous-variable operations and techniques can be efficiently combined.

Olivier Morin; Kun Huang; Jianli Liu; Hanna Le Jeannic; Claude Fabre; Julien Laurat

2013-09-24T23:59:59.000Z

29

Portable multiplicity counter  

DOE Patents (OSTI)

A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

Newell, Matthew R. (Los Alamos, NM); Jones, David Carl (Los Alamos, NM)

2009-09-01T23:59:59.000Z

30

Apparatus for preventing particle deposition from process streams on optical access windows  

DOE Patents (OSTI)

This invention is comprised of an electrostatic precipitator that is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

Logan, R.G.; Grimm, U.

1991-12-31T23:59:59.000Z

31

Particle-hole entanglement of ultracold atoms in an optical lattice  

E-Print Network (OSTI)

We study the ground state of two-component bosonic atoms in a one-dimensional optical lattice. By applying an external field to the atoms at one end of lattice, the atoms are transported and becomes localized at that site. The holes are then created in the remaining sites. The particle-hole superpositions are produced in this process. We investigate the entanglement entropy between the atoms in the two different parts of a lattice. A large degree of particle-hole entanglement is generated in the ground state. The particle-hole quantum correlations can be probed by the two-site parity correlation functions. The transport properties of the low-lying excited states are also discussed.

H. T. Ng

2013-07-05T23:59:59.000Z

32

Counter Current Multiplier Mechanism  

NLE Websites -- All DOE Office Websites (Extended Search)

Counter Current Multiplier Mechanism Counter Current Multiplier Mechanism Name: Stephen Location: N/A Country: N/A Date: N/A Question: Can you please explain to me the counter-current multiplier mechanism. I understand that cholride and sodium ions are filtered out of the ascending loop of Henle into the interstial fluid, however, I'm not sure exactly what happens from there and how this effects osmotic pressure gradients in the nephron. Any help would be greatly appriciated. Replies: This mechanism is very complex when it comes to writing a response. You have to have a strong background in osmotic pressure understanding and the anatomy of the kidney. It involves the cortex, outer and inner medula in relationship to the vasa recta, interstitial fluids at two points, the loop of Henle and the collecting duct. The size of the tubes and the position in relations to the cortex and medulla is an essential part. I can suggest some references.

33

Compressor surge counter  

DOE Patents (OSTI)

A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

Castleberry, Kimberly N. (Harriman, TN)

1983-01-01T23:59:59.000Z

34

Compact fission counter for DANCE  

SciTech Connect

The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

2010-11-06T23:59:59.000Z

35

A Liquid-Hydrogen Cerenkov Counter  

DOE Green Energy (OSTI)

Two models of a liquid-hydrogen (?-illegible) Cherenkov counter (illegible) been constructed (illegible). The first served as a prototype (?-illegible) and was (illegible) to demonstrate the feasibility (?-illegible) of the (illegible) concept (?-illegible) (illegible) liquid hydrogen does not give scintillation (?-illegible) (illegible) that of Cherenkov light. The second, final version (?-illegible), (illegible) in an experiment (?-illegible) in which particles brought to rest (?-illegible) (illegible) (illegible) electrons. In this second counter, the efficiency (?-illegible) (illegible) relativistic (?-illegible) particles (?-illegible) by their Cherenkov radiation in liquid hydrogen (?-illegible) was measured by stopping (illegible) mesons in the hydrogen and detecting their decay electrons outside (?-illegible) of the flask (?-illegible) after a suitable time delay. An average detection (?-illegible) efficiency (?-illegible) of 75% (?-illegible) was (illegible) taken over the volume of the hydrogen (?-illegible).

Zipi, T.F.; Chamberlain, Owen; Kadyk, John A.; York, Carl M.

1963-05-09T23:59:59.000Z

36

The distribution and optical response of particles on the continental shelf and their relationship to cross-isopycnal mixing  

E-Print Network (OSTI)

The relationships of optics, particles, and hydrography to shelf mixing processes were analyzed on a mid-continental shelf south of New England. The objectives were to characterize the types, sizes and sources of particles present in the water column and their effects on optics during conditions of strong stratification (late summer) and weak stratification (spring) and to determine how the particles and optics change over time in response to different forcing functions (wind, surface gravity waves, internal waves, solibors - large scale internal waves- and tides). An unexpected opportunity was presented by the passage of Hurricane Edouard close to the sampling site. Under both strong and weak stratification, surface oaters had high values of fluorescence, particulate organic carbon, and chlorophyll a. Mid-waters contained higher concentrations of particulate organic carbon than bottom oaters, but the optical characteristics of particles more closely resembled those of bottom waters (resuspended and adverted material). Strongly stratified conditions typically exhibited little mixing, with the exception of when extreme forcing events, such as the hurricane, passed through the sampling site. Most of the events sampled during the summer cruise were the result of addiction rather than mixing. Spring conditions included weakly stratified waders with frequent wind events (Nor'easters). Strong forcing events caused surface mixing initially, but solar heating stratified surface waders and gradually inhibited mixing. Particle size distribution changed with stratification. A dramatic increase was observed with the passage of the hurricane, and an initial increase in large particles followed by a substantial increase in smaller particles was observed during a spring phytoplankton bloom. Spring particle settling flux was 3 times higher in the bottom 40 meters than during the previous summer. Relationships between optics and discrete samples generally correlate better under mixed conditions than stratified conditions. During the stratified period, particle distributions were constrained by density layers, where as during weakly stratified periods, the waders were more mixed, leading to a more uniform distribution of particulate matter in the surface and the bottom waters.

Blakey, Joshua C.

1999-01-01T23:59:59.000Z

37

Measurements of the chemical, physical, and optical properties of single aerosol particles  

E-Print Network (OSTI)

composition of ambient aerosol particles, EnvironmentalParticle Measurement of Ambient Aerosol Particles Containingfor quantifying direct aerosol forcing of climate, Bull. Am.

Moffet, Ryan Christopher

2007-01-01T23:59:59.000Z

38

Evaluation of Measurements of Particle Size and Sample Area from Optical Array Probes  

Science Conference Proceedings (OSTI)

The technique of using shadow images of particles, obtained in coherent illumination to measure particle size, is analyzed. The theory of Fresnel diffraction for an opaque disc was used to analyze shadow images of transparent spherical particles. ...

A. V. Korolev; S. V. Kuznetsov; Yu E. Makarov; V. S. Novikov

1991-08-01T23:59:59.000Z

39

Developing new optical imaging techniques for single particle and molecule tracking in live cells  

SciTech Connect

Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information was obtained: (1) during endocytosis, cargoes lost their rotation freedom at the late stage of internalization; (2) cargoes performed train-like motion when they were transported along the microtubule network by motor proteins inside live cells; (3) During the pause stage of fast axonal transport, cargoes were still bound to the microtubule tracks by motor proteins. Total internal reflection fluorescence microscopy (TIRFM) is another non-invasive and far-field optical imaging technique. Because of its near-field illumination mechanism, TIRFM has better axial resolution than epi-fluorescence microscopy and confocal microscopy. In this work, an auto-calibrated, prism type, angle-scanning TIRFM instrument was built. The incident angle can range from subcritical angles to nearly 90{sup o}, with an angle interval less than 0.2{sup o}. The angle precision of the new instrument was demonstrated through the finding of the surface plasmon resonance (SPR) angle of metal film coated glass slide. The new instrument improved significantly the precision in determining the axial position. As a result, the best obtained axial resolution was {approx} 8 nm, which is better than current existing instruments similar in function. The instrument was further modified to function as a pseudo TIRF microscope. The illumination depth can be controlled by changing the incident angle of the excitation laser beam or adjusting the horizontal position of the illumination laser spot on the prism top surface. With the new technique, i.e., variable-illumination-depth pseudo TIRF microscopy, the whole cell body from bottom to top was scanned.

Sun, Wei

2010-12-15T23:59:59.000Z

40

Multiple channel programmable coincidence counter  

DOE Patents (OSTI)

A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the serializer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

Arnone, G.J.

1989-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Velocity-Selecting Cerenkov Counter  

E-Print Network (OSTI)

BAFFLE VELOCITY - SELECTING CERENKOV COUNTER (C 2) FiJI. 1velocity-selectinp: Cerenkov counter. ueaL-31;S CYLINDRICA~

Chamberlain, Owen; Weigand, Clyde

1956-01-01T23:59:59.000Z

42

A Liquid-Hydrogen Cerenkov Counter  

E-Print Network (OSTI)

^•BsêS A LIQUID-HYDROGEN CERENKOV COUNTER t • > f «lf ,«f X'i£ Si -tel A LIQUID-HYDROGEN CERENKOV COUNTER t V« Berkeley,

Zipi, T.F.; Chamberlain, Owen; Kadyk, John A.; York, Carl M.

1963-01-01T23:59:59.000Z

43

Aerosol Size Distribution, Particle Concentration, and Optical Property Variability near Caribbean Trade Cumulus Clouds: Isolating Effects of Vertical Transport and Cloud Processing from Humidification Using Aircraft Measurements  

Science Conference Proceedings (OSTI)

This paper examines the effect of trade wind cumulus clouds on aerosol properties in the near-cloud environment using data from the Rain in Cumulus over the Ocean (RICO) campaign. Aerosol size distributions, particle concentrations, and optical ...

Robert M. Rauber; Guangyu Zhao; Larry Di Girolamo; Marilé Colón-Robles

2013-10-01T23:59:59.000Z

44

Advancements in Techniques for Calibration and Characterization of In Situ Optical Particle Measuring Probes, and Applications to the FSSP-100 Probe  

Science Conference Proceedings (OSTI)

Advancements in techniques for the operational calibration and characterization of instrument performance of the Particle Measuring Systems, Inc. (PMS), forward scattering spectrometer probe (FSSP) and optical array probes (OAPs) are presented, ...

Dagmar Nagel; Uwe Maixner; Walter Strapp; Mohammed Wasey

2007-05-01T23:59:59.000Z

45

Particle injector for fluid systems  

DOE Patents (OSTI)

A particle injector device provides injection of particles into a liquid stream. The device includes a funnel portion comprising a conical member having side walls tapering from a top opening (which receives the particles) down to a relatively smaller exit opening. A funnel inlet receives a portion of the liquid stream and the latter is directed onto the side walls of the conical member so as to create a cushion of liquid against which the particles impact. A main section of the device includes an inlet port in communication with the exit opening of the funnel portion. A main liquid inlet receives the main portion of the liquid stream at high pressure and low velocity and a throat region located downstream of the main liquid inlet accelerates liquid received by this inlet from the low velocity to a higher velocity so as to create a low pressure area at the exit opening of the funnel portion. An outlet opening of the main section enables the particles and liquid stream to exit from the injector device. This invention is particularly concerned with particle injection in connection with the calibration of inline optical particle counters.

Ruch, J.F.

1996-12-31T23:59:59.000Z

46

Countering Nuclear Terrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism | National Nuclear Security Administration Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Countering Nuclear Terrorism Home > Our Mission > Countering Nuclear Terrorism Countering Nuclear Terrorism NNSA provides expertise, practical tools, and technically informed policy

47

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

Benjamin, Robert F. (315 Rover Blvd., Los Alamos, NM 87544)

1987-01-01T23:59:59.000Z

48

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

Benjamin, R.F.

1983-10-18T23:59:59.000Z

49

Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles  

DOE Patents (OSTI)

An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

Benjamin, R.F.

1987-03-10T23:59:59.000Z

50

Optical and Physical Properties from Primary On-Road Vehicle ParticleEmissions And Their Implications for Climate Change  

SciTech Connect

During the summers of 2004 and 2006, extinction and scattering coefficients of particle emissions inside a San Francisco Bay Area roadway tunnel were measured using a combined cavity ring-down and nephelometer instrument. Particle size distributions and humidification were also measured, as well as several gas phase species. Vehicles in the tunnel traveled up a 4% grade at a speed of approximately 60 km h{sup -1}. The traffic situation in the tunnel allows the apportionment of emission factors between light duty gasoline vehicles and diesel trucks. Cross-section emission factors for optical properties were determined for the apportioned vehicles to be consistent with gas phase and particulate matter emission factors. The absorption emission factor (the absorption cross-section per mass of fuel burned) for diesel trucks (4.4 {+-} 0.79 m{sup 2} kg{sup -1}) was 22 times larger than for light-duty gasoline vehicles (0.20 {+-} 0.05 m{sup 2} kg{sup -1}). The single scattering albedo of particles - which represents the fraction of incident light that is scattered as opposed to absorbed - was 0.2 for diesel trucks and 0.3 for light duty gasoline vehicles. These facts indicate that particulate matter from motor vehicles exerts a positive (i.e., warming) radiative climate forcing. Average particulate mass absorption efficiencies for diesel trucks and light duty gasoline vehicles were 3.14 {+-} 0.88 m{sup 2} g{sub PM}{sup -1} and 2.9 {+-} 1.07 m{sup 2} g{sub PM}{sup -1}, respectively. Particle size distributions and optical properties were insensitive to increases in relative humidity to values in excess of 90%, reinforcing previous findings that freshly emitted motor vehicle particulate matter is hydrophobic.

Strawa, A.W.; Kirchstetter, T.W.; Hallar, A.G.; Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.

2009-01-23T23:59:59.000Z

51

Optics  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics A computer program to calculate the optical properties of glazing systems and laminates. The program can be used to construct new laminates from existing components and...

52

Basic Research Needs for Countering Terrorism  

SciTech Connect

To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism

Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; David Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

2002-03-01T23:59:59.000Z

53

Work and heat probability distribution of an optically driven Brownian particle: Theory and experiments  

E-Print Network (OSTI)

We analyze the equations governing the evolution of distributions of the work and the heat exchanged with the environment by a manipulated stochastic system, by means of a compact and general derivation. We obtain explicit solutions for these equations for the case of a dragged Brownian particle in a harmonic potential. We successfully compare the resulting predictions with the outcomes of experiments, consisting in dragging a micron-sized colloidal particle through water with a laser trap.

A. Imparato; L. Peliti; G. Pesce; G. Rusciano; A. Sasso

2007-07-03T23:59:59.000Z

54

Countering Nuclear Terrorism | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

55

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

detection efficiencies of aerosol time of flight masscomposition of ambient aerosol particles. Environmentalsize dependent response of aerosol counters, Atmospheric

Shields, Laura Grace

2008-01-01T23:59:59.000Z

56

Shattering and Particle Interarrival Times Measured by Optical Array Probes in Ice Clouds  

Science Conference Proceedings (OSTI)

Optical array probes are one of the most important tools for determining the microphysical structure of clouds. It has been known for some time that the shattering of ice crystals on the housing of these probes can lead to incorrect measurements ...

P. R. Field; A. J. Heymsfield; A. Bansemer

2006-10-01T23:59:59.000Z

57

Boron-10 Lined Proportional Counter Wall Effects  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based system in the configuration of a coincidence counter. This report provides information about how variations in proportional counter radius and gas pressure in a typical coincident counter design might affect the observed signal from boron-lined tubes. A discussion comparing tubes to parallel plate counters is also included.

Siciliano, Edward R.; Kouzes, Richard T.

2012-05-01T23:59:59.000Z

58

A Beta-Particle Hodoscope Constructed Using Scintillating Optical Fibers and Position Sensitive Photomultiplier Tubes  

Science Conference Proceedings (OSTI)

A hodoscopic detector was constructed using a position-sensitive plastic scintillator active area to determine the location of beta-active micron-sized particulates on air filters. The ability to locate beta active particulates on airsample filters is a tool for environmental monitoring of anthropogenic production of radioactive material. A robust, field-deployable instrument can provide localization of radioactive particulate with position resolution of a few millimeters. The detector employs a novel configuration of scintillating plastic elements usually employed at much higher charged particle energies. A filter is placed on this element for assay. The detector is intended to be sensitive to activity greater than 1 Bq. The physical design, position reconstruction method, and expected detector sensitivity are reported.

Orrell, John L.; Aalseth, Craig E.; Day, Anthony R.; Fast, Jim; Hossbach, Todd W.; Lidey, Lance S.; Ripplinger, Mike D.; Schrom, Brian T.

2006-09-19T23:59:59.000Z

59

Optical investigations on indium oxide nano-particles prepared through precipitation method  

Science Conference Proceedings (OSTI)

Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

Seetha, M.; Bharathi, S.; Dhayal Raj, A. [Thin film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore (India); DRDO-BU center for life sciences, Bharathiar University, Coimbatore (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu, 641 046 (India); DRDO-BU center for life sciences, Bharathiar University, Coimbatore (India); Nataraj, D. [Thin film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore (India); DRDO-BU center for life sciences, Bharathiar University, Coimbatore (India)

2009-12-15T23:59:59.000Z

60

Evaluation of waste crate counter  

Science Conference Proceedings (OSTI)

A novel nondestructive measurement system has been developed to perform combined gamma-ray, passive neutron, and active neutron analyses of radioactive waste packaged in large crates. The system will be used to examine low level and transuranic waste at the Waste Receiving and Processing facility at Westinghouse-Hanford Corp. Prior to delivery of the system, an extensive evaluation of its performance characteristics will be conducted. The evaluation is to include an assessment of the mechanical properties of the system, gamma-ray attenuation correction algorithms, instrument response as a function of source positions, performance of the high resolution gamma-ray detector for ``hot spot`` and isotopic analyses, active and passive neutron counter response, instrument sensitivity, matrix effects, and packaging effects. This report will discuss the findings of the evaluation program, to date, and indicate future directions for the program.

Wachter, J.R. [Los Alamos National Lab., NM (United States). Nuclear Materials Measurement and Accountability; Bieri, J.M. [Pajarito Scientific Corp., Los Alamos, NM (United States); Shaw, S.W. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optical  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Optical fiber-based single-shot picosecond transient absorption spectroscopy Andrew R. Cook a͒ and Yuzhen Shen Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA ͑Received 27 January 2009; accepted 29 May 2009; published online 17 July 2009͒ A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving ϳ15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device ͑CCD͒ detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse

62

Counter-ions at single charged wall: Sum rules  

E-Print Network (OSTI)

For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

Ladislav Samaj

2013-04-15T23:59:59.000Z

63

Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators  

Science Conference Proceedings (OSTI)

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N. [Institute of Physics, University of Sao Paulo, CP 66318, 05315-970 Sao Paulo, SP (Brazil)

2012-09-15T23:59:59.000Z

64

GEIGER-MULLER TYPE COUNTER TUBE  

DOE Patents (OSTI)

A single counter tube capable of responding to a wide range of intensities is described. The counter tube comprises a tubular cathode and an anode extending centrally of the cathode. The spacing between the outer surface of the anode and the inner surface of the cathode is varied along the length of the tube to provide different counting volumes in adjacent portions of the tube. A large counting volume in one portion adjacent to a low-energy absorption window gives adequate sensitivity for measuring lowintensity radiation, while a smaller volume with close electrode spacing is provided in the counter to make possible measurement of intense garnma radiation fields.

Fowler, I.L.; Watt, L.A.K.

1959-12-15T23:59:59.000Z

65

Mechanical Properties of Counter-gravity Cast IN718  

Science Conference Proceedings (OSTI)

Key Words: Counter-gravity, investment casting, superalloys, IN718, inert ... using the Counter-gravity Low-pressure Inert-atmosphere (CLI) investment casting ...

66

Turbulent particle deposition in a rectangular chamber: Study of the effect of particle size and ventilation regimes  

SciTech Connect

The interaction of aerosol particles with wall surfaces is important in modeling their behavior. This interaction is usually represented in theoretical models as a loss term. The loss rate is the rate at which particles deposit or react with the surfaces. This loss term is important in many branches of aerosol science including human health and indoor air quality. Increased surface deposition usually means lower concentrations of airborne particles and hence, lower exposure to the inhabitants. If the efficiency of the particle deposition is influenced by factors other than the particle size, such as a natural convection of the air, this has to be taken into account to evaluate the results. In this research, test aerosol sized from 15 nm to 3 {micro}m are produced by several different aerosol generators; the gas burner, the Collison nebulizer, the condensation aerosol generator, the orifice atomizer and the Vibrating Orifice Aerosol Generator (VOAG). A rectangular chamber whose dimensions are 75 x 75 x 180 cm{sup 3} was used in this study. The particles were injected into the chamber, with a known ventilation and the concentration decay was monitored by the Ultrafine Condensation Particle Counter (UCPC) and Optical Particle Counter (OPC). During the measurement, the air inside the chamber is moved by natural convection and ventilation effect. The results shows that the particle loss rate under the higher air exchange rate is larger and this is not only due to air exchange itself but also the wall deposition. The theoretical model presented by Benes and Holub (1996) agree with the experimental data better than the Crump and Seinfield (1981) model with the hypothesis of Plandtl`s mixing length. 118 refs.

Nomura, Yoshio

1996-04-01T23:59:59.000Z

67

COUNTER DISASTER AND RECOVERY PLAN -UNIVERSITY RECORDS  

E-Print Network (OSTI)

...................................................................................10 3.1 Disaster Response and Recovery Team...........................................10 3.2 Emergency Disaster Response.......................................................................23 6.1 AssessingCOUNTER DISASTER AND RECOVERY PLAN - UNIVERSITY RECORDS Records Management & Archives Murdoch

68

Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume  

SciTech Connect

The recently developed particle-resolved aerosol box model PartMC-MOSAIC was used to simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation/evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC) specific absorption cross section increased by 40% over the course of two days as a result of BC aging by condensation and coagulation. Three- and four-fold enhancements in CCN/CN ratios were predicted to occur within 6 hours for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally-mixed particles within each bin. This assumption artificially increased the ensemble BC specific absorption by 14-30% and decreased the single scattering albedo by 0.03-0.07 while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution, and they depended on the chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally-mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally-mixed bins. Errors introduced in the predicted optical and CCN properties by neglecting coagulation were also quantified.

Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.; Riemer, Nicole; West, Matthew

2010-09-11T23:59:59.000Z

69

Effects of volatile coatings on the morphology and optical detection of combustion-generated black carbon particles.  

SciTech Connect

We have measured time-resolved laser-induced incandescence (LII) from combustion-generated mature soot extracted from a burner and (1) coated with oleic acid or (2) coated with oleic acid and then thermally denuded using a thermodenuder. The soot samples were size selected using a differential mobility analyser and characterized with a scanning mobility particle sizer, centrifugal particle mass analyser, and transmission electron microscope. The results demonstrate a strong influence of coatings particle morphology and on the magnitude and temporal evolution of the LII signal. For coated particles higher laser fluences are required to reach LII signal levels comparable to those of uncoated particles. This effect is predominantly attributable to the additional energy needed to vaporize the coating while heating the particle. LII signals are higher and signal decay rates are significantly slower for thermally denuded particles relative to coated or uncoated particles, particularly at low and intermediate laser fluences.

Bambha, Ray P.; Dansson, Mark Alex; Schrader, Paul E.; Michelsen, Hope A.

2013-09-01T23:59:59.000Z

70

Calibration of a long counter for fast neutrons with energies from 2 to 14 MeV  

E-Print Network (OSTI)

To determine if a Hansen and McKibben type shielded long counter has a flat response from 2 MeV to 14 Mev detector efficiency was experimentally measured using a PuBe source. Calculations using the Monte Carlo program, MCNP, were performed to determine the efficiency of the detector for both PuBe and 14 MeV neutrons. The detector used a boron triflouride proportional counter as its counting device. Measurements were made using two 1 0 curie PuBe neutron sources (combined source strength of 4.02E+07 neutrons/second) to determine the detectors efficiency at the mean energy of the source, 4.3 MeV. The detector was found to have an efficiency of 0.85 counts-centimeter2/neutron at a source to detector distance of 1 meter. This compares favorably with previous measurements with long counters of similar configuration. The determination of the counter's effective center indicated that the effective center for the counter is 8.7 + 0.1 centimeters behind the front face of the detector. Attempts to use foil activation to determine the flux at the counter proved unsuccessful as the source strength was insufficient to activate the foils sufficiently. The Monte Carlo code, MCNP, was used to model a 150 KeV neutron generator source for 14 MeV neutrons, and the combined 1 0 Ci PuBe source experiment in order to determine the (n, a) reaction rate in the BF3 detector of the long counter, thereby simulating the long counter's response. For the PuBe source the efficiency of the long counter was computed to be 0.54 counts-centimeter2/particle at a source to detector distance of 60 centimeters. This is slightly less than the 0.6 counts-centimeter2/neutron achieved experimentally with the actual long counter, for a 20 Ci PuBe source prior to applying the correction for the detector's effective center, at the same distance. The MCNP model also was used to determined a long counter efficiency of 0.39 counts-centimeter2/particle for 14.74 MeV neutrons at a source to detector distance of 60 centimeters. This suggests that the long counter response is not flat over the 2 to 14 MeV energy range; however, tests indicated that the long counters efficiency on depends on the BF3 tube position in the long counter and that a flatter response over the energy range of interest may be obtained by adjusting the position of the BF3 tube.

Orr, Michael Lee

1993-01-01T23:59:59.000Z

71

Nonlocal, grating-coupled scattering-type near-field scanning optical microscopy of individual gold nano-particles  

E-Print Network (OSTI)

nano-particles D. Sadiq, J. Shirdel*, and C. Lienau Institut für Physik, Carl von Ossietzky Universität nano-particles. We demonstrate sub-30-nm-resolution imaging of localized SPP fields. By comparison onto a photodetector. When imaging small individual gold nano-particles with

Park, Namkyoo

72

From Hydrogen Fuel Stations to Bean Counters, NIST Weights ...  

Science Conference Proceedings (OSTI)

From Hydrogen Fuel Stations to Bean Counters, NIST Weights and Measures Works to Meet Market Needs. ...

2010-08-23T23:59:59.000Z

73

Side-by-Side Comparison of Particle Count and Mass Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

Side-by-Side Comparison of Particle Count and Mass Concentration Side-by-Side Comparison of Particle Count and Mass Concentration Measurements in a Residence Title Side-by-Side Comparison of Particle Count and Mass Concentration Measurements in a Residence Publication Type Report Year of Publication 2011 Authors Chan, Wanyu R., and Federico Noris Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords energy analysis and environmental impacts department Abstract Particulate matter (PM) is a contaminant of concern in many indoor environments, including residential and commercial buildings. Health guidelines for exposure to particles are in units of mass concentrations. Relative to time-integrated mass measurements collected on filters, real-time particle counters are less time-consuming to operate. Studies found reasonable correlation between these two measurement techniques, but agreement may vary in different sampling environments, and depends on the instruments used. We performed a side-by-side comparison of particle counts and mass concentrations estimated by three types of real-time instruments: MetOne BT-637 optical particle counter (OPC), TSI DustTrak aerosol monitor, and TSI aerodynamic particle sizer (APS) spectrometer. In addition to these real-time instruments, time-integrated particle mass was also collected using PM2.5 and PM10 Personal Environmental Monitors (PEMs) manufactured by SKC. Sampling was conducted for two consecutive days in an occupied single-family house in Berkeley, California. Concentration profiles had similar trends, with DustTraks reporting higher particle mass concentrations, partially explained by the density value assumed in the calibration. We made assumptions for particle size and density to calculate the PM2.5 and PM10 mass concentrations for the MetOne and APS, and compared with the filter-based measurements. Despite uncertainties and assumptions, there was generally good agreement for the different methods.

74

The AMS-01 Aerogel Threshold ?Cerenkov counter.  

E-Print Network (OSTI)

The Alpha Magnetic Spectrometer in a precursor version (AMS-01), was flown in June 1998 on a 51.6 ? orbit and at altitudes ranging between 320 and 390 km, on board of the space shuttle Discovery (flight STS-91). AMS-01 included an Aerogel Threshold ? Cerenkov counter (ATC) to separate ¯p from e ? and e + from p, for momenta below 3.5 GeV/c. This paper presents a description of the ATC counter and reports on its performances during the flight STS-91.

D. Barancourt A; F. Barao B; G. Barbier A; G. Barreira C; M. Buénerd A; G. Castellini D; E. Choumilov E; J. Favier B; N. Fouque B; A. Gougas F; V. Hermel B; R. Kossakowski B; G. Laborie A; G. Laurenti G; S. -c. Lee F; F. Mayet A; B. Meillon A; Y. -t. Oyang F; V. Plyaskin E; V. Pojidaev E; C. Rossin A; D. Santos A; F. Vezzu A; J. P. Vialle B

2000-01-01T23:59:59.000Z

75

A Four Channel 250 MHz Visual Counter  

Science Conference Proceedings (OSTI)

A visual counter rated at 250 mhz. with a pulse-pair resolution of 2.6 nanoseconds for nuclear instrument module (NIM) signals has been designed. Pulse widths for NIM signals must be equal to or greater than 2 ns. The counter has a separate input for transistor-transistor logic (TTL) signals and for this logic level it operates at rates equal to or less than 190 mhz. TTL pulses must be greater than 4 ns. The design was implemented on a printed circuit card. Four of these cards were packaged into a single unit resulting in a four channel device that can be mounted into a 19 inch rack. Seven units were built; they are presently used in the experimental area and in the Main Control Room of the Bevalac. The counter accepts well defined NIM or TTL signals internally terminated with 50 ohms. All the controls and the signal input connectors are located on the front panel. An Overflow output, Gate, and Reset inputs are located on the back panel. The counters have 8 Light Emitting Diode digit displays which are 20.3 mm high with a viewing distance rating of 10 meters. Light filters are used for the LED displays greatly enhancing their visibility.

Flores, I.; Blando, P.; Crawford, H.; Engelage, J.; Greiner, L.; Ko, S.; Krebs, G.; Visser, G.

1992-04-01T23:59:59.000Z

76

Determination of the Relative Amount of Fluorine in Uranium Oxyfluoride Particles using Secondary Ion Mass Spectrometry and Optical Spectroscopy  

Science Conference Proceedings (OSTI)

Both nuclear forensics and environmental sampling depend upon laboratory analysis of nuclear material that has often been exposed to the environment after it has been produced. It is therefore important to understand how those environmental conditions might have changed the chemical composition of the material over time, particularly for chemically sensitive compounds. In the specific case of uranium enrichment facilities, uranium-bearing particles stem from small releases of uranium hexafluoride, a highly reactive gas that hydrolyzes upon contact with moisture from the air to form uranium oxyfluoride (UO{sub 2}F{sub 2}) particles. The uranium isotopic composition of those particles is used by the International Atomic Energy Agency (IAEA) to verify whether a facility is compliant with its declarations. The present study, however, aims to demonstrate how knowledge of time-dependent changes in chemical composition, particle morphology and molecular structure can contribute to an even more reliable interpretation of the analytical results. We prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (IRMM, European Commission, Belgium) and followed changes in their composition, morphology and structure with time to see if we could use these properties to place boundaries on the particle exposure time in the environment. Because the rate of change is affected by exposure to UV-light, humidity levels and elevated temperatures, the samples were subjected to varying conditions of those three parameters. The NanoSIMS at LLNL was found to be the optimal tool to measure the relative amount of fluorine in individual uranium oxyfluoride particles. At PNNL, cryogenic laser-induced time-resolved U(VI) fluorescence microspectroscopy (CLIFS) was used to monitor changes in the molecular structure.

Kips, R; Kristo, M J; Hutcheon, I D; Amonette, J; Wang, Z; Johnson, T; Gerlach, D; Olsen, K B

2009-05-29T23:59:59.000Z

77

///COUNTER : an artistic system for the transmission of cultural energy  

E-Print Network (OSTI)

My thesis introduces ///COUNTER as an artistic system for the transmission of cultural energy. The underlying concepts of ///COUNTER are derived directly from my work on energy access as developed through the eWheel and ...

Vincent de Paul, Jegan Joyston

2009-01-01T23:59:59.000Z

78

Real-Counter automata and their decision problems  

Science Conference Proceedings (OSTI)

We introduce real-counter automata, which are two-way finite automata augmented with counters that take real values. In contrast to traditional word automata that accept sequences of symbols, real-counter automata accept real words that are bounded and ...

Zhe Dang; Oscar H. Ibarra; Pierluigi San Pietro; Gaoyan Xie

2004-12-01T23:59:59.000Z

79

Boron-10 Lined Proportional Counter Model Validation  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project “Coincidence Counting With Boron-Based Alternative Neutron Detection Technology” at Pacific Northwest National Laboratory (PNNL) for the development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube-based alternative system in the configuration of a coincidence counter. This report discusses the validation studies performed to establish the degree of accuracy of the computer modeling methods current used to simulate the response of boron-lined tubes. This is the precursor to developing models for the uranium neutron coincidence collar under Task 2 of this project.

Lintereur, Azaree T.; Siciliano, Edward R.; Kouzes, Richard T.

2012-06-30T23:59:59.000Z

80

Hardware support for software controlled fast multiplexing of performance counters  

DOE Patents (OSTI)

Performance counters may be operable to collect one or more counts of one or more selected activities, and registers may be operable to store a set of performance counter configurations. A state machine may be operable to automatically select a register from the registers for reconfiguring the one or more performance counters in response to receiving a first signal. The state machine may be further operable to reconfigure the one or more performance counters based on a configuration specified in the selected register. The state machine yet further may be operable to copy data in selected one or more of the performance counters to a memory location, or to copy data from the memory location to the counters, in response to receiving a second signal. The state machine may be operable to store or restore the counter values and state machine configuration in response to a context switch event.

Salapura, Valentina; Wisniewski, Robert W.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Self-regulating neutron coincidence counter  

DOE Patents (OSTI)

A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

Baron, N.

1980-06-16T23:59:59.000Z

82

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

83

Boundary geometric control of a counter-current heat exchanger  

E-Print Network (OSTI)

Boundary geometric control of a counter-current heat exchanger Ahmed MAIDIa , Moussa DIAFb , Jean control of a counter-current heat exchanger whose control is designed considering a model based on two. The objective consists in controlling the internal fluid temperature, at the heat exchanger outlet

84

AIR ALPHA PROPORTIONAL COUNTER INSENSITIVE TO ATMOSPHERIC HUMIDITY  

SciTech Connect

A conventional alpha proportional counter which uses air as the counter gas is sensitive to high relative humidity and generates spurious pulses that cannot be distinguished from actual alpha pulses. It was found possible to operate such a counter satisfactorily at high relative humidity by passing a small current ( approximates 15 ma) through the center wire. In this manner the center wire is heated and the relative humidity of the surrounding sheath of air is reduced sufficiently so that operation of the counter at high relative humidity is comparable to operation with dry air, Two different mechanisms are proposed for the formation of spurious pulses in such a counter at high relative humidity. (auth)

Ferrari, A.M.R.; Borkowski, C.J.

1962-10-01T23:59:59.000Z

85

Laser particle sorter  

DOE Patents (OSTI)

Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

Martin, J.C.; Buican, T.N.

1987-11-30T23:59:59.000Z

86

An Improved Airborne Aitken Nucleus Counter  

Science Conference Proceedings (OSTI)

An instrument has been designed for measuring with high accuracy and resolution the size and concentration of atmospheric particles ?0.005 ?m. It is pressure compensated for aircraft use and can take five readings per second with a system ...

C. G. Michael

1986-06-01T23:59:59.000Z

87

Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams  

SciTech Connect

Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

2001-08-30T23:59:59.000Z

88

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

89

Aerodynamic performance measurements in a counter-rotating aspirated compressor.  

E-Print Network (OSTI)

??This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives… (more)

Onnée, Jean-François

2005-01-01T23:59:59.000Z

90

Aerodynamic performance measurements in a counter-rotating aspirated compressor  

E-Print Network (OSTI)

This thesis is an experimental investigation of the aerodynamic performances of a counter-rotating aspirated compressor. This compressor is implemented in a blow-down facility, which gives rigorous simulation of the ...

Onnée, Jean-François

2005-01-01T23:59:59.000Z

91

Surface Mounted Under Counter Dimmable LED Strip-STR8  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technologya controllable, surface mounted under-counter light emitting diode (LED) strip lighting system that is designed to provide various levels of direct and indirect white light.

2008-06-12T23:59:59.000Z

92

On fitting planetary systems in counter-revolving configurations  

E-Print Network (OSTI)

In Gayon & Bois (2008) and Gayon etal (2009), (i) we studied the theoretical feasibility and efficiency of retrograde mean motion resonances (i.e. two planets are both in orbital resonance and in counter-revolving configuration), (ii) we showed that retrograde resonances can generate interesting mechanisms of stability, and (iii) we obtained a dynamical fit involving a counter-revolving configuration that is consistent with the observations of the HD73526 planetary system. In the present paper, we present and analyze data reductions assuming counter-revolving configurations for eight compact multi-planetary systems detected through the radial velocity method. In each case, we select the best fit leading to a dynamically stable solution. The resulting data reductions obtained in rms and chi values for counter-revolving configurations are of the same order, and sometimes slightly better, than for prograde configurations. In the end, these fits tend to show that, over the eight studied multi-planetary system...

Gayon-Markt, Julie

2009-01-01T23:59:59.000Z

93

Multianode cylindrical proportional counter for high count rates  

DOE Patents (OSTI)

A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

Hanson, James A. (Madison, WI); Kopp, Manfred K. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

94

Multianode cylindrical proportional counter for high count rates  

DOE Patents (OSTI)

A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

Hanson, J.A.; Kopp, M.K.

1980-05-23T23:59:59.000Z

95

MHK Technologies/Sub Surface Counter Rotation Current Generator | Open  

Open Energy Info (EERE)

Sub Surface Counter Rotation Current Generator Sub Surface Counter Rotation Current Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sub Surface Counter Rotation Current Generator.jpg Technology Profile Primary Organization Cyclocean LLC Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Self regulated sub surface current generators that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology Dimensions Device Testing Date Submitted 20:10.1 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sub_Surface_Counter_Rotation_Current_Generator&oldid=681657

96

Introduction to Neutron Coincidence Counter Design Based on Boron-10  

SciTech Connect

The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-01-22T23:59:59.000Z

97

Using DMA for copying performance counter data to memory  

SciTech Connect

A device for copying performance counter data includes hardware path that connects a direct memory access (DMA) unit to a plurality of hardware performance counters and a memory device. Software prepares an injection packet for the DMA unit to perform copying, while the software can perform other tasks. In one aspect, the software that prepares the injection packet runs on a processing core other than the core that gathers the hardware performance data.

Gara, Alan; Salapura, Valentina; Wisniewski, Robert W

2013-12-31T23:59:59.000Z

98

Adhesive particle shielding  

DOE Patents (OSTI)

An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

Klebanoff, Leonard Elliott (Dublin, CA); Rader, Daniel John (Albuquerque, NM); Walton, Christopher (Berkeley, CA); Folta, James (Livermore, CA)

2009-01-06T23:59:59.000Z

99

Optical forces and optical torques on various materials arising from optical lattices in the Lorentz-Mie regime  

E-Print Network (OSTI)

By combining the Maxwell stress tensor with the finite-difference time-domain (FDTD) method, we calculate the optical force and optical torque on particles from optical lattices. We compare our method to the two-component ...

Jia, Lin

100

Evolution of the Pinatubo Aerosol: Raman Lidar Observations of Particle Optical Depth, Effective Radius, Mass, and Surface Area over Central Europe at 53.4°N  

Science Conference Proceedings (OSTI)

The Raman lidar technique has been applied to document the evolution and dissipation of the Pinatubo aerosol between 1991 and 1995. For the first time, profiles of the particle extinction coefficient have been determined with lidar in the ...

A. Ansmann; I. Mattis; U. Wandinger; F. Wagner; J. Reichardt; T. Deshler

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Particle Impact and Breakup in Aircraft Measurement  

Science Conference Proceedings (OSTI)

Measurements of cloud particle properties from aircraft by optical and impact techniques are subject to artifacts following particle breakup prior to detection. The impact kinetic energy to surface energy ratio (L) provides a breakup criterion at ...

German Vidaurre; John Hallett

2009-05-01T23:59:59.000Z

102

A Combined Neutron and Gamma-Ray Multiplicity Counter Based on Liquid Scintillation Detectors  

Science Conference Proceedings (OSTI)

Multiplicity counters for neutron assay have been extensively used in materials control and accountability for nonproliferation and nuclear safeguards. Typically, neutron coincidence counters are utilized in these fields. In this work, we present a measurement system that makes use not only of neutron (n) multiplicity counting but also of gamma-ray (g) multiplicity counting and the combined higher-order multiples containing both neutrons and gamma rays. The benefit of this approach is in using both particle types available from the sample, leading to a reduction in measurement times needed when using more measurables. We present measurement results of n, g, nn, ng, gg, nnn, nng, ngg, and ggg multiples emitted by Mixed-Oxide (MOX) samples measured at Idaho National Laboratory (INL). The MOX measurement is compared to initial validation of the detection system done using a 252Cf source. The dual radiation measuring system proposed here uses extra measurables to improve the statistics when compared to a neutron-only system and allows for extended analysis and interpretation of sample parameters. New challenges such as the effect of very high intrinsic gamma-ray sources in the case of MOX samples is discussed. Successful measurements of multiples rates can be performed also when using high-Z shielding.

Andreas Enqvist; Marek Flaska; Jennifer Dolan; David L. Chichester; Sara A. Pozzi

2011-10-01T23:59:59.000Z

103

GAMMA PROPORTIONAL COUNTER CONTAINING HIGH Z GAS AND LOW Z MODERATOR  

DOE Patents (OSTI)

A gamma radiation counter employing a gas proportional counter is described. The radiation counter comprises a cylindrical gas proportional counter which contains a high atomic number gas and is surrounded by a low atomic number gamma radiation moderator material. At least one slit is provided in the moderator to allow accident gamma radiation to enter the moderator in the most favorable manner for moderation, and also to allow low energy gamma radiation to enter the counter without the necessity of passing through the moderator. This radiation counter is capable of detecting and measuring gamma radiation in the energy range of 0.5-5 Mev. (AEC)

Fox, R.

1963-07-23T23:59:59.000Z

104

Production-run software failure diagnosis via hardware performance counters  

Science Conference Proceedings (OSTI)

Sequential and concurrency bugs are widespread in deployed software. They cause severe failures and huge financial loss during production runs. Tools that diagnose production-run failures with low overhead are needed. The state-of-the-art diagnosis techniques ... Keywords: concurrency bugs, failure diagnosis, performance counters, production run

Joy Arulraj; Po-Chun Chang; Guoliang Jin; Shan Lu

2013-04-01T23:59:59.000Z

105

Countering DoS attacks with stateless multipath overlays  

Science Conference Proceedings (OSTI)

Indirection-based overlay networks (IONs) are a promising approach for countering distributed denial of service (DDoS) attacks. Such mechanisms are based on the assumption that attackers will attack a fixed and bounded set of overlay nodes causing service ... Keywords: key agreement, spread-spectrum communications

Angelos Stavrou; Angelos D. Keromytis

2005-11-01T23:59:59.000Z

106

Boron-Lined Multitube Neutron Proportional Counter Test  

Science Conference Proceedings (OSTI)

Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

2010-09-07T23:59:59.000Z

107

Circular, confined distribution for charged particle beams  

DOE Patents (OSTI)

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

Garnett, R.W.; Dobelbower, M.C.

1995-11-21T23:59:59.000Z

108

Circular, confined distribution for charged particle beams  

DOE Patents (OSTI)

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

1995-01-01T23:59:59.000Z

109

Optical properties of a solar-absorbing molten salt heat transfer fluid. [Eutectic mixture of KNO3, NaNO2, and NaNO3 with particle suspensions of cobalt oxides or copper oxides  

DOE Green Energy (OSTI)

The optical absorption properties of a high temperature molten salt heat transfer fluid were measured from 0.35 ..mu..m to 2.5 ..mu..m using both hemispherical transmission and reflection techniques. This fluid has application as a direct-absorbing working fluid in a high temperature central receiver solar energy facility. The absorption spectrum of the pure molten fluid--a eutectic mixture of KNO/sub 3/, NaNO/sub 2/, and NaNO/sub 3/, known as Hitec (Du Pont trade name)--displays a fundamental absorption edge near 410 nm, which was found to shift to longer wavelength linearly with temperature. Throughout the remainder of the visible spectrum, the fluid is transparent. To enhance its solar absorption, particulate metallic oxides of Co or Cu were introduced into the fluid. Absorption spectra of these oxide particle suspensions in the molten salt were determined as a function of dopant concentration ranging from 0 to 0.1 wt% metal nitrate added to the Hitec. These measurements were carried out at 200/sup 0/C under flow conditions to cause a homogeneous suspension of particles. Special transmission and reflection flow cells were designed and constructed to handle 200/sup 0/C fluids. The suspended particles cause an additional optical absorption throughout the visible spectrum which is characteristic of the particular metallic oxide and closely follows a Beer-Lambert concentration dependence. The solar averaged absorption in a fixed layer thickness was calculated for various concentrations of the fluid-oxide mixtures. The fluid without oxide particles absorbs approximately 8% of the solar spectrum per cm of path length. Addition of 0.1 wt% of Co(NO/sub 3/)/sub 2/.6H/sub 2/O increases this absorption to approximately 90% per cm. Of the oxides studied, Co/sub 3/O/sub 4/ particle suspensions offer better solar absorption characteristics than CuO. Effects of particulate scattering on the measurements are discussed.

Drotning, W.D.

1977-06-01T23:59:59.000Z

110

Calibration of an ultra-low-background proportional counter for measuring 37 Ar  

Science Conference Proceedings (OSTI)

An ultra-low-background proportional counter design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials

2013-01-01T23:59:59.000Z

111

ARM - Publications: Science Team Meeting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

(TDM&1;) with Optical Particle Counter (OPC), rapid size distribution by Differential Mobility Analyzer (DMA)*, particle refractive index (OPC+DMA)*, particle hygroscopicity by...

112

Design and operation of a counter-rotating aspirated compressor blowdown test facility; Counter-rotating aspirated compressor blowdown test facility.  

E-Print Network (OSTI)

??A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous… (more)

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

113

Particle separation  

DOE Patents (OSTI)

Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

2011-04-26T23:59:59.000Z

114

Design, construction and implementation of spherical tissue equivalent proportional counter  

E-Print Network (OSTI)

Tissue equivalent proportional counters (TEPC) are used for medical and space activities whenever a combination of high and low LET (lineal energy transfer) radiations are present. With the frequency and duration of space activities increasing, exposure to fast heavy ions from galactic cosmic radiation and solar events is a major concern. The optimum detector geometry is spherical; to obtain an isotropic response, but simple spherical detectors have the disadvantage of a non-uniform electric field. In order to achieve a uniform electric field along the detector axis, spherical tissue equivalent proportional counters have been designed with different structures to modify the electric field. Some detectors use a cylindrical coil that is coaxial with the anode, but they are not reliable because of their sensitivity to microphonic noise and insufficient mechanical strength. In this work a new spherical TEPC was developed. The approach used was to divide the cathode in several rings with different thicknesses, and adjust the potential difference between each ring and the anode to produce an electric field that is nearly constant along the length of the anode. A-150 tissue equivalent plastic is used for the detector walls, the insulator material between the cathode rings is low density polyethylene, and the gas inside the detector is propane. The detector, along with the charge sensitive preamplifier, is encased in a stainless steel vacuum chamber. The gas gain was found to be 497.5 at 782 volts and the response to neutrons as a function of angle was constant ±7%. This spherical tissue equivalent proportional counter detector system will improve the accuracy of dosimetry in space, and as a result improve radiation safety for astronauts.

Perez Nunez, Delia Josefina

2008-05-01T23:59:59.000Z

115

High-level neutron coincidence counter maintenance manual  

Science Conference Proceedings (OSTI)

High-level neutron coincidence counter operational (field) calibration and usage is well known. This manual makes explicit basic (shop) check-out, calibration, and testing of new units and is a guide for repair of failed in-service units. Operational criteria for the major electronic functions are detailed, as are adjustments and calibration procedures, and recurrent mechanical/electromechanical problems are addressed. Some system tests are included for quality assurance. Data on nonstandard large-scale integrated (circuit) components and a schematic set are also included.

Swansen, J.; Collinsworth, P.

1983-05-01T23:59:59.000Z

116

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Crutzen, P. : Atmospheric Aerosols: Biogeochemical sourcesof optically active aerosol particles over the Amazonproperties of Amazonian aerosol particles: Rev. Geophys. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

117

CRC handbook of laser science and technology. Volume 5. Optical materials. Part 3. Applications, coatings, and fabrication  

Science Conference Proceedings (OSTI)

This book describes the uses, coatings, and fabrication of laser materials. Topics considered include: optical waveguide materials; optical storage materials; holographic recording materials; phase conjunction materials; holographic recording materials; phase conjunction materials; laser crystals; laser glasses; quantum counter materials; thin films and coatings; multilayer dielectric coatings; graded-index surfaces and films; optical materials fabrication; fabrication techniques; fabrication procedures for specific materials.

Weber, M.J.

1987-01-01T23:59:59.000Z

118

Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC  

SciTech Connect

Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

2010-11-01T23:59:59.000Z

119

Counter-Top Thermoacoustic Refrigerator- An Experimental Investigation  

SciTech Connect

Thermoacoustic phenomenon is a new alternative refrigeration technology. Though design and fabrication is complex for getting the desired effect, it is environmentally friendly and successful system showed that it is relatively easy to run compared to the traditional vapor compression refrigeration system. Currently, theories supporting the thermoacoustic refrigeration systems are yet to be comprehensive to make them commercially viable. Theoretical, experimental, and numerical studies are being done to address the thermodynamics-acoustics interactions. In this study, experimental investigations were completed to test the feasibility of the practical use of a thermoacoustic refrigerator in its counter-top form for future specific application. The system was designed and fabricated based on linear acoustic theory. Acoustic power was given by a loud speaker and thermoacoustic effects were measured in terms of the cooling effects produced at resonanance. Investigations showed that discrepancies between designed and working resonance frequency exist. Thermoacoutic cooling improved at a certain frequency, achieved when the working frequency was varied away from the design frequency. A cooling effect of 4.8 K below the ambient temperature of 23.3 deg. C was obtained from the counter-top thermoacoustic system. This system uses no refrigerants and no compressor to generate the cooling effect, a potential to be further investigated for a practical system.

Anwar, Mahmood; Ghazali, Normah Mohd [Department of Thermo-Fluids, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia Skudai 81310, Johor (Malaysia)

2010-06-28T23:59:59.000Z

120

Carbon-particle generator  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, A.J.

1982-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Proof Search and Counter-Model Construction for Bi-intuitionistic ...  

Science Conference Proceedings (OSTI)

directly support proof search. To describe a proof search procedure, we develop a more algorithmic version that also allows for counter-model extraction from a ...

122

AN ENGINE EXHAUST PARTICLE SIZERTM SPECTROMETER FOR TRANSIENT EMISSION PARTICLE MEASUREMENTS  

DOE Green Energy (OSTI)

There has been increased interest in obtaining size distribution data during transient engine operation where both particle size and total number concentrations can change dramatically. Traditionally, the measurement of particle emissions from vehicles has been a compromise based on choosing between the conflicting needs of high time resolution or high particle size resolution for a particular measurement. Currently the most common technique for measuring submicrometer particle sizes is the Scanning Mobility Particle Sizer (SMPSTM) system. The SMPS system gives high size resolution but requires an aerosol to be stable over a long time period to make a particle size distribution measurement. A Condensation Particle Counter (CPC) is commonly used for fast time response measurements but is limited to measuring total concentration only. This paper describes a new instrument, the Engine Exhaust Particle SizerTM (EEPSTM) spectrometer, which has high time resolution and a reasonable size resolution. The EEPS was designed specifically for measuring engine exhaust and, like the SMPS system, uses a measurement based on electrical mobility. Particles entering the instrument are charged to a predictable level, then passed through an annular space where they are repelled outward by the voltage from a central column. When the particles reach electrodes on the outer cylindrical (a column of rings), they create a current that is measured by an electrometer on one or more of the rings. The electrometer currents are measured multiple times per second to give high time resolution. A sophisticated realtime inversion algorithm converts the currents to particle size and concentration for immediate display.

Johnson, T; Caldow, R; Pucher, A; Mirme, A; Kittelson, D

2003-08-24T23:59:59.000Z

123

AN ENGINE EXHAUST PARTICLE SIZER{trademark} SPECTROMETER FOR TRANSIENT EMISSION PARTICLE MEASUREMENTS  

DOE Green Energy (OSTI)

There has been increased interest in obtaining size distribution data during transient engine operation where both particle size and total number concentrations can change dramatically. Traditionally, the measurement of particle emissions from vehicles has been a compromise based on choosing between the conflicting needs of high time resolution or high particle size resolution for a particular measurement. Currently the most common technique for measuring submicrometer particle sizes is the Scanning Mobility Particle Sizer (SMPSTM) system. The SMPS system gives high size resolution but requires an aerosol to be stable over a long time period to make a particle size distribution measurement. A Condensation Particle Counter (CPC) is commonly used for fast time response measurements but is limited to measuring total concentration only. This paper describes a new instrument, the Engine Exhaust Particle SizerTM (EEPSTM) spectrometer, which has high time resolution and a reasonable size resolution. The EEPS was designed specifically for measuring engine exhaust and, like the SMPS system, uses a measurement based on electrical mobility. Particles entering the instrument are charged to a predictable level, then passed through an annular space where they are repelled outward by the voltage from a central column. When the particles reach electrodes on the outer cylindrical (a column of rings), they create a current that is measured by an electrometer on one or more of the rings. The electrometer currents are measured multiple times per second to give high time resolution. A sophisticated realtime inversion algorithm converts the currents to particle size and concentration for immediate display.

Johnson, T: Caldow, R; Pucher, A Mirme, A Kittelson, D

2003-08-24T23:59:59.000Z

124

Particle Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Reviewing Particle Lifetimes Reviewing Particle Lifetimes The lifetimes of elementary particles are statistical in nature. In a given sample, one particle might decay immediately, another in 1 nanosecond, yet another after 10 milliseconds, and still another in 50 years. What we call the lifetime is the time it takes for a sample to decay so 1/e (~30%) of the sample is left; after 2 lifetimes, 1/e2 of the sample is left, and so on. Take, for example, a sample of cosmic ray muons produced in the upper atmosphere. These muons, when observed at (relative) rest in the laboratory, have a mean lifetime T. Now, since particle decay is statistical in nature, the number of undecayed particles after a given time is a negative exponential function: N(t) = No e-t/T where N(t) is the number of muons at time t, No is the initial number of

125

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

126

EC777: NANO-OPTICS Instructor: Prof. Luca Dal Negro  

E-Print Network (OSTI)

EC777: NANO-OPTICS Instructor: Prof. Luca Dal Negro Spring 2011 -Course Syllabus 1. Fundamentals 1 optics 1.5. Nano-optical fields 1.6. Optics below the diffraction limit? 2. Light Scattering-particle scattering theories (hints) 2.5. Computational methods in nano-optics (overview) 2.6. Spontaneous

Goldberg, Bennett

127

THE EFFECTS OF BETA-SPECTROMETER FOCUSING POWER ON THE END-WINDOW COUNTER EFFICIENCY  

SciTech Connect

The efficency dependence of end-window counters on specimen surface density at a relative solid angle 0.111 was determined with the aid of a 4 pi counter. The isotopes S/sup 35/, Cas/sup 45/, Co/sup 60/, Ce/sup 141/Tl/sup 204/ , and Y/sup 91/ were studied. (tr-auth)

Vasil' ev, I.A.; Petrazhak, K.A.

1959-01-01T23:59:59.000Z

128

Optimizing counter-terror operations: Should one fight fire with "fire" or "water"?  

Science Conference Proceedings (OSTI)

This paper deals dynamically with the question of how recruitment to terror organizations is influenced by counter-terror operations. This is done within an optimal control model, where the key state is the (relative) number of terrorists and the key ... Keywords: Counter-terror, Epidemic modeling, Optimal dynamic control, Terrorism

Jonathan P. Caulkins; Dieter Grass; Gustav Feichtinger; Gernot Tragler

2008-06-01T23:59:59.000Z

129

Single-ended counter-rotating radial turbine for space application  

DOE Patents (OSTI)

A single-ended turbine with counter-rotating blades operating with sodium as the working fluid. The single-ended, counter-rotating feature of the turbine results in zero torque application to a space platform. Thus, maneuvering of the platform is not adversely affected by the turbine. 4 figs.

Coomes, E.P.; Wilson, D.G.; Webb, B.J.; McCabe, S.J.

1987-05-13T23:59:59.000Z

130

Possibilistic clustering approach to trackless ring Pattern Recognition in RICH counters  

Science Conference Proceedings (OSTI)

The pattern recognition problem in Ring Imaging CHerenkov (RICH) counters concerns the identification of an unknown number of rings whose centers and radii are assumed to be unknown. In this paper we present an algorithm based on the possibilistic approach ... Keywords: 07.05.Mh, 29.40.Ka, 29.85.+c, Pattern recognition, Possibilistic clustering, RICH counters

A. M. Massone; L. Studer; F. Masulli

2006-02-01T23:59:59.000Z

131

Performance confirmation of the Belle II imaging Time Of Propogation (iTOP) prototype counter  

SciTech Connect

The Bell Detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider performed extremely well, logging an integrated luminosity an order of magnitude higher than the design baseline. With this inverse attobarn of integrated luminosity, time-dependent CP-violation inn the 3rd generation beauty quarks was firmly established, and is now a precision measurement. Going beyond this to explore if the Kobayashi-Maskawa mechanism is the only contributor to quark-mixing, and to interrogate the flavor sector for non-standard model enhancements, requires a detector and accelerator capable of topping this world-record luminosity by more than an order of magnitude. The Belle II detector at the upgraded Super-KEKB accelerator has been designed to meet this highly ambitious goal of operating at a luminosity approaching 10{sup 36} cm{sup -2} s{sup -1}. Such higher event rates and backgrounds require upgrade of essentially all detector subsystems, as well as their readout. Comparing the Belle composite (threshold Aerogel + Time of Flight) particle identification (PID) system with the DIRC employed by BaBar, quartz radiator internal Cherenkov photon detection proved to have higher kaon efficiency and lower pion fake rates. However, because the detector structure and CsI calorimeter will be retained, an improved barrel PID must fit within a very narrow envelope, as indicated in Figure 1. To effectively utilize this space, a more compact detector concept based on the same quartz radiators, but primarily using photon arrival time was proposed. This Time Of Propagation (TOP) counter was studied in a number of earlier prototype tests. Key to the necessary 10's of picosecond single-photon timing has been the development of the so-called SL-10 Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT), which has demonstrated sub-40 ps single photon Transit Time Spread TTS. Further simulation study of this detector concept indicated that a focusing mirror in the forward direction, as well as a modest image expansion volume and more highly pixelated image plane improve the theoretical detector performance, since timing alone is limited by chromatic dispersion of the Cherenkov photons. This imaging-TOP (or iTOP) counter is the basis of Belle II barrel PID upgrade. However, a number of critical performance parameters must be demonstrated prior to releasing this prototype design for production manufacture.

Schwartz, Alan; Liu, Yang; Belhorn, Matt; /Cincinnati U.; Browder, Thomas; Varner, Gary; Andrew, Matt; Rosen, Marc; Barrett, Matthew; Nishimura, Kurtis; Anderson, Eric /Hawaii U.; Iijima, Toru; /Nagoya U. /PNL, Richland

2011-10-17T23:59:59.000Z

132

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

virtual particles. Virtual particles do not violate the conservation of energy. The kinetic energy plus mass of the initial decaying particle and the final decay products is...

133

The Particle Adventure | Accelerators and Particle Detectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Waves and particles The world's meterstick Mass and energy Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles Accelerating...

134

Online Particle Physics Information - Particles & Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles & Properties Data Review of Particle Physics (RPP) A biennial comprehensive review summarizing much of the known data about the field of particle physics produced by the...

135

Review of Particle Physics  

E-Print Network (OSTI)

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

136

Real-time multi-mode neutron multiplicity counter  

DOE Patents (OSTI)

Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

Rowland, Mark S; Alvarez, Raymond A

2013-02-26T23:59:59.000Z

137

Counter flow cooling drier with integrated heat recovery  

DOE Patents (OSTI)

A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

Shivvers, Steve D. (Prole, IA)

2009-08-18T23:59:59.000Z

138

Elementary Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Elementary Particles Elementary Particles Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people Electric Forces & Fields For Children The Electric Force For Children Electric Force Fields For Children Charges and Fields For Children Vibrating Charges and Electromagnetic Waves Electrons For Older People The Discovery of the Electron Traveling Waves For Older People Waves and Wave-Like Motion For Children Catch the Wave For Children Vibrating Charges and Electromagnetic Waves For Children Electromagnetic Waves Standing Waves For Older People Physics 128 Lecture Standing Waves For Older People Resonance in Strings and Springs For Older People Standing Wave - 1st Harmonic For Older People Standing Wave - 2nd Harmonic Atom For Older People Bohr Atom

139

Trillion Particles,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

140

Optical forces due to spherical microresonators and their manifestation in optically induced orbital motion of nanoparticles  

SciTech Connect

By considering the interaction between whispering-gallery modes of a spherical resonator and a subwavelength polarizable particle, we demonstrate that spatial confinement of the electromagnetic field dramatically changes the character of the optical forces exerted. We show that this phenomenon can be experimentally observed in the optically induced orbital motion of the particle.

Rubin, J. T.; Deych, L. I. [Department of Physics, Queens College of the City University of New York, Flushing, New York 11367 (United States) and Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, New York 10016 (United States)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Particle Adventure | How do we experiment with tiny particles? | What  

NLE Websites -- All DOE Office Websites (Extended Search)

What makes particles go in a circle? What makes particles go in a circle? What makes particles go in a circle? To keep any object going in a circle, there needs to be a constant force on that object towards the center of the circle. In a circular accelerator, an electric field makes the charged particle accelerate, while large magnets provide the necessary inward force to bend the particle's path in a circle. (In the image to the left, the particle's velocity is represented by the white arrow, while the inward force supplied by the magnet is the yellow arrow.) The presence of a magnetic field does not add or subtract energy from the particles. The magnetic field only bends the particles' paths along the arc of the accelerator. Magnets are also used to direct charged particle beams toward targets and to "focus" the beams, just as optical lenses focus light.

142

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

143

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network (OSTI)

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

144

Optimal design and observation of counter-current autothermal reactors for the production of hydrogen  

Science Conference Proceedings (OSTI)

Autothermal reactors, coupling endothermic and exothermic reactions in parallel channels, represent one of the most promising technologies for hydrogen production. Building our prior results, the present work focuses on hydrogen generation in counter-current ...

Michael Baldea; Monica Zanfir; Prodromos Daoutidis

2009-06-01T23:59:59.000Z

145

Electro-optical switching and memory display device  

DOE Patents (OSTI)

An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

Skotheim, T.A.; O' Grady, W.E.; Linkous, C.A.

1983-12-29T23:59:59.000Z

146

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

147

OPTICS5  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics5 (5.1.02) Knowledge Base Optics5 (5.1.02) Knowledge Base Last Updated: 09/11/13 Table of Contents INSTALLATION EXECUTION bullet ** Operating Systems -- Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista 64 bit ** Optics5 may not work correctly with regional/locale settings using "," as a decimal separator. bullet Which Windows operating systems can be used to run Optics? "Class Does Not Support Automation or Expected Interface" error message bullet How much hard disk space should be available to install Optics? Optics user manual bullet I receive a virus warning (nimda-virus) when installing Optics. What should I do? NFRC Procedure for Applied Films bullet I have installed Optics but I can't find the program or the icon.

148

The Role of Ice Particle Shapes and Size Distributions in the Single Scattering Properties of Cirrus Clouds  

Science Conference Proceedings (OSTI)

The roles of ice particle size distributions (SDs) and particle shapes in cirrus cloud solar radiative transfer are investigated by analyzing SDs obtained from optical array probe measurements (particle sizes larger than 20–40 ?m) during ...

Andreas Macke; Peter N. Francis; Greg M. McFarquhar; Stefan Kinne

1998-09-01T23:59:59.000Z

149

Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation  

DOE Patents (OSTI)

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

2000-08-29T23:59:59.000Z

150

Particle swarm optimization with opposite particles  

Science Conference Proceedings (OSTI)

The particle swarm optimization algorithm is a kind of intelligent optimization algorithm. This algorithm is prone to be fettered by the local optimization solution when the particle's velocity is small. This paper presents a novel particle swarm ...

Rujing Wang; Xiaoming Zhang

2005-11-01T23:59:59.000Z

151

Optical ionization detector  

DOE Patents (OSTI)

An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

Wuest, Craig R. (Danville, CA); Lowry, Mark E. (Castro Valley, CA)

1994-01-01T23:59:59.000Z

152

Optical ionization detector  

DOE Patents (OSTI)

An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

Wuest, C.R.; Lowry, M.E.

1994-03-29T23:59:59.000Z

153

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Stable Does not decay. A particle is stable if there exist no processes in which a particle disappears and in its place different particles appear...

154

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Event What occurs when two particles collide or a single particle decays. Particle theories predict the probabilities of various possible events occurring when many similar...

155

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge A quantum number carried by a particle. Determines whether the particle can participate in an interaction process. A particle with electric charge has electrical...

156

Optical bistability in artificial composite nanoscale molecules: Towards all optical processing at the nanoscale  

E-Print Network (OSTI)

Optical response of artificial composite nanoscale molecules comprising a closely spaced noble metal nanoparticle and a semiconductor quantum dot have been studied theoretically. We consider a system composed of an Au particle and CdSe or CdSe/ZnSe quantum dot and predict optical bistability and hysteresis in its response, which suggests various applications, in particular, all-optical processing and optical memory.

A. V. Malyshev; V. A. Malyshev

2010-12-28T23:59:59.000Z

157

the Fractional Flotation of Flotation Column Particles Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancing Selectivity and Recovery in Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles Opportunity Although research is currently inactive on the patented technology "Method for Enhancing Selectivity and Recovery in the Fractional Flotation of Flotation Column Particles," the technology is available for licensing from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Disclosed in this patent is a method of particle separation from a feed stream comprised of particles of varying hydrophobicity by injecting the feed stream directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. The current invention allows the height of the feed stream injection and the reflux ratio to be

158

Design and development of a 3He replacement safeguards neutron counter based on 10B-lined proportional detector technology  

SciTech Connect

This presentation represents an overview of the experimental evaluation of a boron-lined proportional technology performed within an NA-241 sponsored project on testing of boron-lined proportional counters for the purpose of replacement of {sup 3}He technologies. The presented boron-lined technology will be utilized in a design of a full scale safeguards neutron coincidence counter. The design considerations and the Monte Carlo performance predictions for the counter are also presented.

Henzlova, Daniela [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Rael, Carlos D. [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

159

Optical keyboard  

DOE Patents (OSTI)

An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

2001-01-01T23:59:59.000Z

160

A TRANSISTORIZED ALPHA COUNTER FOR AN ALPHA GAUGE  

SciTech Connect

A transistorized instrument prototype was designed and constructed to replace a vacuum-tube instrument in an alpha gauge, which measures the thickness density of gases. The instrument amplifies, shapes, discriminates, and counts alpha pulses from a Au-Si surface-barrier detector exposed to an alpha source in a gas-filled chamber. The circuit consists of a charge-sensitive preamplifier, a main amplifier with pulse clipping, a Schmitt trigger, a diode pump, and a count rate meter. Preliminary tests gave results comparable to the vacuum-tube instrument. Accuracy of counting was within 10% for 0.5- to 10-Mev alpha particles emitted at a maximum rate of 10/sup 6 per sec. The instrument was stable at 25 to 55 deg C, is small and portable, and costs less than 0. An infinitely thick, alpha source that will give a high count rate is being constructed for final tests. (auth)

Kopp, M.C.

1962-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanometer Particles: Modern Methods of Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanometer Particles: Modern Methods of Research Nanometer Particles: Modern Methods of Research Speaker(s): Rashid Mavliev Date: August 10, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro "Nanometer particles" (with diameter below 50 - 100 nm) have attracted attention during recent years because of their increasing role in industries such as powder technology and semiconductors. They also play a critical role in atmospheric processes. At this size range the properties of particles are different from those of bulk materials and single molecules. This promises new technological innovations and potential scientific discoveries. At the same time it makes the detection and characterization of such particles imperative. Optical methods, which allow for simultaneous measurement of size and concentration of particles

162

Cross strip microchannel plate imaging photon counters with high time resolution  

SciTech Connect

We have implemented cross strip readout microchannel plate detectors in 18 mm active area format including open face (UV/particle) and sealed tube (optical) configurations. These have been tested with a field programmable gate array based parallel channel electronics for event encoding which can process high input event rates (> 5 MHz) with high spatial resolution. Using small pore MCPs (6 {micro}m) operated in a pair, we achieve gains of >5 x 10{sup 5} which is sufficient to provide spatial resolution of <35 {micro}m FHWM, with self triggered event timing accuracy of {approx}2 ns for sealed tube optical sensors. A peak quantum efficiency of {approx}19% at 500 nm has been achieved with SuperGenII photocathodes that have response over the 400 nm to 900 nm range. Local area counting rates of up to >200 events/mcp pore sec{sup -1} have been attained, along with image linearity and stability to better than 50 {micro}m.

Stonehill, Laura C [Los Alamos National Laboratory; Shirey, Robert [Los Alamos National Laboratory; Rabin, Michael W [Los Alamos National Laboratory; Thompson, David C [Los Alamos National Laboratory; Siegmund, Oswald H W [U.C. BERKELEY; Vallerga, John V [U.C. BERKELEY; Tremsin, Anton S [U.C. BERKELEY

2010-01-01T23:59:59.000Z

163

Mechanism of supporting sub-communicator collectives with O(64) counters as opposed to one counter for each sub-communicator  

DOE Patents (OSTI)

A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal to the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.

Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.; Blocksome, Michael; Miller, Douglas

2013-09-03T23:59:59.000Z

164

U.S., China Partner to Counter Nuclear Smuggling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner to Counter Nuclear Smuggling Partner to Counter Nuclear Smuggling U.S., China Partner to Counter Nuclear Smuggling January 19, 2011 - 12:00am Addthis WASHINGTON D.C. - The Department of Energy's National Nuclear Security Administration (NNSA) today announced the signing of a memorandum of understanding (MOU) with China that paves the way for the establishment of a radiation detection training center in Qinhuangdao, China. Deputy Secretary of Energy Daniel Poneman and Vice Minister SUN Yibiao of the General Administration of China Customs signed the MOU in a ceremony at DOE headquarters in Washington. The signed comes as part of Chinese President Hu Jintao's state visit to Washington, DC. "This agreement represents the shared commitment of both the United States and China to enhance global peace and security by working to prevent

165

COO-3072-119 RESULTS ON THE PERFORMANCE OF A BROAD BAND FOCUSSING CHERENKOV COUNTER*  

NLE Websites -- All DOE Office Websites (Extended Search)

3072-119 3072-119 ^ RESULTS ON THE PERFORMANCE OF A BROAD BAND FOCUSSING CHERENKOV COUNTER* Sherman,"'"'' R. C. W e b b , ' ' ' " ' ' " ' " M. ^.otov-~ S C i i v ^ ^ - - ^ - ^ Cester, V. L. Fitch, A. Montag, S. Sherman, R. C. Webb, M. S. Witherell Department of Physics, Princeton University, Princeton, N. J. 085A4 Abstract The field of ring imaging (broad band differential) Cherenkov detectors-^ has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously report- ed2 on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using stan- dard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters

166

Study of a Threshold Cherenkov Counter Based on Silica Aerogels with Low Refractive Indices ?  

E-Print Network (OSTI)

To identify ? ± and K ± in the region of 1.0 ? 2.5 GeV/c, a threshold Cherenkov counter equipped with silica aerogels has been investigated. Silica aerogels with a low refractive index of 1.013 have been successfully produced using a new technique. By making use of these aerogels as radiators, we have constructed a Cherenkov counter and have checked its properties in a test beam. The obtained results have demonstrated that our aerogel was transparent enough to make up for loss of the Cherenkov photon yield due to a low refractive index. Various configurations for the photon collection system and some types of photomultipliers, such as the fine-mesh type, for a read out were also tested. From these studies, our design of a Cherenkov counter dedicated to ?/K separation up to a few GeV/c with an efficiency greater than 90 % was considered. 1

I. Adachi; T. Sumiyoshi; K. Hayashi; N. Iida; R. Enomoto; K. Tsukada; R. Suda; S. Matsumoto; K. Natori; M. Yokoyama; H. Yokogawa

1994-01-01T23:59:59.000Z

167

D Note 3563 LED Pulser System for the D Muon Upgrade Scintillation Counters  

E-Print Network (OSTI)

We present the technical design for an LED based pulser system for the D Upgrade Muon Scintillation counters. For Run II, accurate timing information from the scintillation counters is imperative for the proper performance of the muon triggers. The LED Pulser System will serve in the commissioning of the counters and for the continuous monitoring of the PMTs ' performances and gains. A detailed description of the system is presented, as well as the results of tests on individual components and integrated system. Proceedures for production, assembly, quality control, installation, and commissioning are presented. Cost estimates and resource needs to complete the system are presented, as well as an estimated schedule. From the test results, the D LED Pulser System performs at a level exceeding speci cations for a fraction of the initial cost estimated for performing the required tasks.

Pierrick Hanlet Matthew Marcus; Al Ito; Bob Jones; Tom Regan; B. S. Acharya; Juan Pablo Negret; Manuel Zanabria

1999-01-01T23:59:59.000Z

168

Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column  

DOE Patents (OSTI)

The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

Klunder, Edgar B. (Bethel Park, PA)

2011-08-09T23:59:59.000Z

169

A Comparison of Lidar and Balloon-Borne Particle Counter Measurements of the Stratospheric Aerosol 1974–1980  

Science Conference Proceedings (OSTI)

We compare a series of 85 dustsonde measurements and 84 lidar measurements made in midlatitude North America during 1974–80. This period includes two major volcanic increases (Fuego in 1974 and St. Helens in 1980), as well as an unusually clean, ...

T. J. Swissler; P. Hamill; M. Osborn; P. B. Russell; M. P. McCormick

1982-04-01T23:59:59.000Z

170

Near-Field Magneto-Optical Microscope  

DOE Patents (OSTI)

A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

2005-12-06T23:59:59.000Z

171

System for testing optical fibers  

SciTech Connect

A system for nondestructively determining the attenuation coefficient, .alpha.(.lambda.), of low-loss optical fiber wave guides. Cerenkov light pulses are generated at a plurality of locations in the fiber by a beam of charged particles. The transit times of selected spectral components and their intensities are utilized to unfold the .alpha.(.lambda.) values over the measured spectrum.

Davies, Terence J. (Santa Barbara, CA); Franks, Larry A. (Santa Barbara, CA); Nelson, Melvin A. (Santa Barbara, CA)

1981-01-01T23:59:59.000Z

172

OPTICS 5  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTICS (Version 5.1.02) OPTICS (Version 5.1.02) Release notes NOTE: See the Optics Knowledge Base for how to run this version of Optics on the Microsoft Vista and Microsoft Windows 7 operating systems March 5, 2003: Release Maintenance Pack 2 New ! January 7, 2003: Release Maintenance Pack 1 October 23, 2002: Release Optics 5.1.01 September 27, 2002: Release Optics 5.1.00 (only released on CDs at NFRC Annual Fall Meeting) Release notes Maintenance Pack 2 Bug fixes: New features: bullet Applied films that were created could not be saved or exported. This has been fixed. bullet Exporting glazing systems generated a message that the operation failed because the glazing system type is unknown. Glazing systems can now be exported to file (e.g. to view the spectral data), but the structure information will be lost.

173

Elementary particle physics---Experimental  

SciTech Connect

We are continuing a research program in high energy experimental particle physics and particle astrophysics. Studies of high energy hadronic interactions were performed using several techniques, in addition, a high energy leptoproduction experiment was continued at the Fermi National Accelerator Laboratory. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators. The data are being collected with ballon-borne emulsion chambers. The properties of nuclear interactions at these high energies will reveal whether new production mechanisms come into play due to the high nuclear densities and temperatures obtained. We carried out closely related studies of hadronic interactions in emulsions exposed to high energy accelerator beams. We are members of a large international collaboration which has exposed emulsion chamber detectors to beams of {sup 32}S and {sup 16}O with energy 60 and 200 GeV/n at CERN and 15 GeV/n at Brookhaven National Laboratory. The primary objectives of this program are to determine the existence and properties of the hypothesized quark-gluon phase of matter, and its possible relation to a variety of anomalous observations. Studies of leptoproduction processes at high energies involve two separate experiments, one using the Tevatron 500 GeV muon beam and the other exploring the >TeV regime. We are participants in Fermilab experiment E665 employing a comprehensive counter/streamer chamber detector system. During the past year we joined the DUMAND Collaboration, and have been assigned responsibility for development and construction of critical components for the deep undersea neutrino detector facility, to be deployed in 1991. In addition, we are making significant contributions to the design of the triggering system to be used.

Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

1990-09-20T23:59:59.000Z

174

Application of the active well coincidence counter to the measurement of uranium  

Science Conference Proceedings (OSTI)

An Active Well Coincidence Counter has been developed to assay uranium fuel material in field inspection applications. The unit is used to measure bulk UO/sub 2/ samples, high enrichment uranium metals, LWR fuel pellets, and /sup 233/U-Th fuel materials which have very high gamma-ray backgrounds.

Menlove, H.O.; Foley, J.E.; Bosler, G.E.

1980-01-01T23:59:59.000Z

175

A study of hardware performance monitoring counter selection in power modeling of computing systems  

Science Conference Proceedings (OSTI)

Power management and energy savings in high-performance computing has become an increasingly important design constraint. The foundation of many power/energy saving methods is based on power consumption models, which commonly rely on hardware performance ... Keywords: energy saving,performance monitoring counters,power modeling

Reza Zamani; Ahmad Afsahi

2012-06-01T23:59:59.000Z

176

Using behavioral measures to assess counter-terrorism training in the field  

Science Conference Proceedings (OSTI)

Development of behavioral pattern recognition and analysis skills is an essential element of counter-terrorism training, particularly in the field. Three classes of behavioral measures were collected in an assessment of skill acquisition during a US ... Keywords: behavioral observations, knowledge-skills-attitudes, profiling, scenarios, situational judgment tests, tracking

V. Alan Spiker; Joan H. Johnston

2011-07-01T23:59:59.000Z

177

Position-sensitive proportional counter with low-resistance metal-wire anode  

DOE Patents (OSTI)

A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

Kopp, Manfred K. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

178

Tag-only aging-counter localization for the R-LIM2 system  

Science Conference Proceedings (OSTI)

With the large number of items stored in present-day libraries, locating the exact position of an item is time-consuming. This is true not only for poorly managed libraries, but also for well maintained libraries. In the former case, the problem is rather ... Keywords: Aging counter, Book retrieval, Library, Localization, R-LIM2, RFID

Jung-Wook Choi; Dong-Ik Oh

2011-03-01T23:59:59.000Z

179

A Vindication of the Twomey-Type Cloud Condensation Nucleus Counter  

Science Conference Proceedings (OSTI)

The performance of the Twomey-type cloud condensation nucleus (CCN) counter is evaluated by a numerical simulation and found to be better than that predicted in an earlier study. Due to a lack of data on CCN spectra at low supersaturations, the ...

D. J. Alofs; Yue-Tung Tue

1986-09-01T23:59:59.000Z

180

A humidity temperature test on the HLNC (high-level neutron coincidence counter) instrument  

SciTech Connect

This paper presents the findings of a laboratory study made to determine the effects of unusual climatic conditions on high-level neutron coincidence counters (HLNCs). The capability of the instrument, when undesirable temperatures and/or humidities are present, the change in count rate as temperature and humidity increase, and the extent of humidity/temperature interaction are examined.

Goldman, A.; Augustson, R.; Karlin, E.W.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SCALING OF COUNTER-CURRENT IMBIBITION PROCESSES IN LOW-PERMEABILITY  

E-Print Network (OSTI)

. Schematic of imbibition cell set up for counter current imbibition. 20 2. Porosity images of diatomite cores, initial heating of a cold reservoir is accompanied by condensation and flow of the resulting hot water tomography (CT) imbibition cell to quantify co-current imbibition rates and saturation profiles as well

182

Calibration of Knollenberg FSSP Light-Scattering Counters for Measurement of Cloud Droplets  

Science Conference Proceedings (OSTI)

Measurement of cloud drop size distributions with the Knollenberg model FSSP-100 light-scattering counter can lead to artificial bumps or knees in the distributions at 0.6 ?m and sometimes 2–4 ?m radius if the manufacturer-supplied calibration ...

R. G. Pinnick; D. M. Garvey; L. D. Duncan

1981-09-01T23:59:59.000Z

183

Optical engineering  

SciTech Connect

The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

Saito, T T

1998-01-01T23:59:59.000Z

184

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

alphabet: (alpha), (beta), and (gamma). Alpha particles are helium nuclei (2 p, 2 n): Beta particles are speedy electrons: Gamma radiation is a high-energy photon: These three...

185

Airspeed Corrections for Optical Array Probe Sample Volumes  

Science Conference Proceedings (OSTI)

The Particle Measuring System’s optical array probes have a sample volume that depends upon the diameter of the particle measured. The sample volume also depends upon the velocity of particles that pass through the probe because of the electronic ...

Darrel Baumgardner; Alexei Korolev

1997-10-01T23:59:59.000Z

186

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson A particle that has integer intrinsic angular momentum (spin) measured in units of h-bar (spin 0, 1, 2, ...). All particles are either fermions or bosons. The particles...

187

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Rest Mass The rest mass (m) of a particle is the mass defined by the energy of the isolated (free) particle at rest, divided by the speed of light squared. When particle physicists...

188

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay A process in which a particle disappears and in its place different particles appear. The sum of the masses of the produced particles is always less than the mass of the...

189

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Is this particle really the Higgs... Is this particle really the Higgs Boson? Does it swim and quack like a duck? While decays of this kind had been observed for the new particle...

190

Boron doping a semiconductor particle  

DOE Patents (OSTI)

A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

Stevens, Gary Don (18912 Ravenglen Ct., Dallas, TX 75287); Reynolds, Jeffrey Scott (703 Horizon, Murphy, TX 75094); Brown, Louanne Kay (2530 Poplar Tr., Garland, TX 75042)

1998-06-09T23:59:59.000Z

191

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

192

Glossary Term - Beta Particle  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay Previous Term (Beta Decay) Glossary Main Index Next Term (Bohr Radius) Bohr Radius Beta Particle Beta particles are either electrons or positrons ejected from the nucleus....

193

Glossary Term - Alpha Particle  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay Previous Term (Alpha Decay) Glossary Main Index Next Term (Atomic Number) Atomic Number Alpha Particle alphaparticle.gif Produced during alpha decay, an alpha particle is a...

194

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Particle A particle that exists only for an extremely brief instant in an intermediary process. Then the Heisenberg Uncertainty Principle allows an apparent violation of...

195

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Annihilation A process in which a particle meets its corresponding antiparticle and both disappear. The energy appears in some other form, perhaps as a different particle and its...

196

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Chamber The outer layers of a particle detector capable of registering tracks of charged particles. Except for the chargeless neutrinos, only muons reach this layer from the...

197

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Hadron A particle made of strongly-interacting constituents (quarks andor gluons). These include the meson and baryons. Such particles participate in residual strong interactions...

198

Particle Physics Booklet 2008  

E-Print Network (OSTI)

212 25. Accelerator physics of colliders ? 26. High-energythe full Review. PARTICLE PHYSICS BOOKLET TABLE OF CONTENTSrev. ) Summary Tables of Particle Physics Gauge and Higgs

et al., C. Amsler

2008-01-01T23:59:59.000Z

199

Small Particles, Big Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Particles, Big Impact Small Particles, Big Impact Small-scale effects of Aerosols Add up Over Time August 24, 2011 | Tags: Climate Research, Earth Sciences, Environmental...

200

Momentum of light scattered from collections of particles  

SciTech Connect

The angular dependence of the momentum flow of a polychromatic plane wave scattered from deterministic and random collections of particles is determined, within the occuracy of the first-order Born approximation, as a function of individual and collective properties of particles. The results are of importance for optimization of optical tweezers.

Tong Zhisong; Korotkova, Olga [Physics Department, University of Miami, Miami, Florida 33146 (United States)

2011-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Particle Physics Booklet 2008  

E-Print Network (OSTI)

transmission bandwidth, absorption length, chromatic dispersion, optical workability (for solids), availability,

et al., C. Amsler

2008-01-01T23:59:59.000Z

202

Physics Out Loud - Particle Resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Accelerator Previous Video (Particle Accelerator) Physics Out Loud Main Index Next Video (Photomultiplier Tube) Photomultiplier Tube Particle Resonance How is a particle...

203

Transverse-structure electrostatic charged particle beam lens  

DOE Patents (OSTI)

Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

Moran, M.J.

1998-10-13T23:59:59.000Z

204

Transverse-structure electrostatic charged particle beam lens  

DOE Patents (OSTI)

Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.

Moran, Michael J. (Pleasanton, CA)

1998-01-01T23:59:59.000Z

205

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

206

COUNTER PROPAGATION OF ELECTRON AND CO2 LASER BEAMS IN A PLASMA CHANNEL.  

SciTech Connect

A high-energy CO{sub 2} laser is channeled in a capillary discharge. Occurrence of guiding conditions at a relatively low plasma density (<10{sup 18} cm{sup -3}) is confirmed by MHD simulations. Divergence of relativistic electron beam changes depending on the plasma density. Counter-propagation of the electron and laser beams inside the plasma channel results in intense x-ray generation.

HIROSE,T.; POGORELSKY,I.V.; BEN ZVI,I.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; KUMITA,T.; KAMIYA,Y.; ZIGLER,A.; GREENBERG,B.; ET AL

2002-11-12T23:59:59.000Z

207

Reporting Prescription Drugs, Over-the-Counter Medications, and Dietary Supplements (ORISE 08-NSEM-0227, 2008)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reporting Reporting Prescription Drugs, Over-the-Counter Medications, and Dietary Supplements Human Reliability Program U.S. Department of Energy Office of Health, Safety and Security Office of Departmental Personnel Security Contents of this brochure are based on 10 CFR Part 712, Human Reliability Program; however, the information presented herein in no way supersedes or has precedence over the provisions of that regulation as published or amended. Table of contents Introduction.......................................................................................................................................1 Prescription drugs .............................................................................................................................1

208

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

First Direct Imaging of Swollen Microgel Particles Print First Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

209

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Imaging of Swollen Microgel Particles Print Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

210

First Direct Imaging of Swollen Microgel Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

First Direct Imaging of Swollen Microgel Particles Print First Direct Imaging of Swollen Microgel Particles Print Microgels are soft-material particles consisting of cross-linked polymer networks, 100 nm to 1 μm in diameter, dispersed in a continuous medium such as water. A useful feature of certain types of microgel particles is that they can swell or shrink with changes in external triggers such as pH and temperature. Thus microgel particles can act like "nanosponges" and offer many potential applications in medicine, environmental science, and industry. Because microgels are usually employed in their swollen state, in situ characterization of these particles under such conditions is desirable for understanding their behavior. However, optical microscopy is inadequate to this task, being limited in resolution and by the very small difference in refractive index (i.e., contrast) between the swollen particles and the continuous phase. Now, an international team of researchers from the U.S. and U.K. have obtained the first images of swollen microgel particles directly in aqueous solution using x-ray microscopy at the ALS, which, together with spectroscopic determination of their chemical state, provides insight into the underlying swelling mechanism.

211

Study of a Threshold Cherenkov Counter Based on Silica Aerogels with Low Refractive Indices  

E-Print Network (OSTI)

To identify $\\pi^{\\pm}$ and $K^{\\pm}$ in the region of $1.0\\sim 2.5$ GeV/c, a threshold Cherenkov counter equipped with silica aerogels has been investigated. Silica aerogels with a low refractive index of 1.013 have been successfully produced using a new technique. By making use of these aerogels as radiators, we have constructed a Cherenkov counter and have checked its properties in a test beam. The obtained results have demonstrated that our aerogel was transparent enough to make up for loss of the Cherenkov photon yield due to a low refractive index. Various configurations for the photon collection system and some types of photomultipliers, such as the fine-mesh type, for a read out were also tested. From these studies, our design of a Cherenkov counter dedicated to $\\pi / K$ separation up to a few GeV/c %in the momentum range of $1.0 \\sim 2.5$ GeV/c with an efficiency greater than $90$ \\% was considered.

I. Adachi et al

1994-12-13T23:59:59.000Z

212

An array of low-background $^3$He proportional counters for the Sudbury Neutrino Observatory  

E-Print Network (OSTI)

An array of Neutral-Current Detectors (NCDs) has been built in order to make a unique measurement of the total active flux of solar neutrinos in the Sudbury Neutrino Observatory (SNO). Data in the third phase of the SNO experiment were collected between November 2004 and November 2006, after the NCD array was added to improve the neutral-current sensitivity of the SNO detector. This array consisted of 36 strings of proportional counters filled with a mixture of $^3$He and CF$_4$ gas capable of detecting the neutrons liberated by the neutrino-deuteron neutral current reaction in the D$_2$O, and four strings filled with a mixture of $^4$He and CF$_4$ gas for background measurements. The proportional counter diameter is 5 cm. The total deployed array length was 398 m. The SNO NCD array is the lowest-radioactivity large array of proportional counters ever produced. This article describes the design, construction, deployment, and characterization of the NCD array, discusses the electronics and data acquisition system, and considers event signatures and backgrounds.

J. F. Amsbaugh; J. M. Anaya; J. Banar; T. J. Bowles; M. C. Browne; T. V. Bullard; T. H. Burritt; G. A. Cox-Mobrand; X. Dai; H. Deng; M. Di Marco; P. J. Doe; M. R. Dragowsky; C. A. Duba; F. A. Duncan; E. D. Earle; S. R. Elliott; E. -I. Esch; H. Fergani; J. A. Formaggio; M. M. Fowler; J. E. Franklin; P. Geissbühler; J. V. Germani; A. Goldschmidt; E. Guillian; A. L. Hallin; G. Harper; P. J. Harvey; R. Hazama; K. M. Heeger; J. Heise; A. Hime; M. A. Howe; M. Huang; L. L. Kormos; C. Kraus; C. B. Krauss; J. Law; I. T. Lawson; K. T. Lesko; J. C. Loach; S. Majerus; J. Manor; S. McGee; K. K. S. Miknaitis; G. G. Miller; B. Morissette; A. Myers; N. S. Oblath; H. M. O'Keeffe; R. W. Ollerhead; S. J. M. Peeters; A. W. P. Poon; G. Prior; S. D. Reitzner; K. Rielage; R. G. H. Robertson; P. Skensved; A. R. Smith; M. W. E. Smith; T. D. Steiger; L. C. Stonehill; P. M. Thornewell; N. Tolich; B. A. VanDevender; T. D. Van Wechel; B. L. Wall; H. Wan Chan Tseung; J. Wendland; N. West; J. B. Wilhelmy; J. F. Wilkerson; J. M. Wouters

2007-05-23T23:59:59.000Z

213

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

214

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

like everyday objects and have momentum, but they also have wave properties. Quantum mechanics, the mathematical basis for our theories about particles, explains the behavior of...

215

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle decays and annihiliations - Electron positron annhiliation When an electron and positron (antielectron) collide at high energy, they can annihilate to produce charm...

216

Stereo multiplexed holographic particle image velocimeter  

DOE Patents (OSTI)

A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time. 13 figs.

Adrian, R.J.; Barnhart, D.H.; Papen, G.A.

1996-08-20T23:59:59.000Z

217

Stereo multiplexed holographic particle image velocimeter  

DOE Patents (OSTI)

A holographic particle image velocimeter employs stereoscopic recording of particle images, taken from two different perspectives and at two distinct points in time for each perspective, on a single holographic film plate. The different perspectives are provided by two optical assemblies, each including a collecting lens, a prism and a focusing lens. Collimated laser energy is pulsed through a fluid stream, with elements carried in the stream scattering light, some of which is collected by each collecting lens. The respective focusing lenses are configured to form images of the scattered light near the holographic plate. The particle images stored on the plate are reconstructed using the same optical assemblies employed in recording, by transferring the film plate and optical assemblies as a single integral unit to a reconstruction site. At the reconstruction site, reconstruction beams, phase conjugates of the reference beams used in recording the image, are directed to the plate, then selectively through either one of the optical assemblies, to form an image reflecting the chosen perspective at the two points in time.

Adrian, Ronald J. (Champaign, IL); Barnhart, Donald H. (Urbana, IL); Papen, George A. (Urbana, IL)

1996-01-01T23:59:59.000Z

218

Unsteady Analysis of a Counter-Rotating Aspirated Compressor Using Phase-Lag and Non-Linear Harmonic Methods.  

E-Print Network (OSTI)

??An analysis of the MIT counter-rotating aspirated compressor (CRAC) has been conducted using two different 3D viscid turbulent unsteady solvers. The Turbo phase-lag time accurate… (more)

Knapke, Robert D.

2011-01-01T23:59:59.000Z

219

The second skin approach : skin strain field analysis and mechanical counter pressure prototyping for advanced spacesuit design  

E-Print Network (OSTI)

The primary aim of this thesis is to advance the theory of advanced locomotion mechanical counter pressure (MCP) spacesuits by studying the changes in the human body shape during joint motion. Two experiments take advantage ...

Bethke, Kristen (Kristen Ann)

2005-01-01T23:59:59.000Z

220

Virtual Monotonic Counters and Count-Limited Objects using a TPM without a Trusted OS (Extended Version)  

E-Print Network (OSTI)

A trusted monotonic counter is a valuable primitive thatenables a wide variety of highly scalable offlineand decentralized applications that would otherwise be prone to replay attacks, including offline payment, e-wallets, ...

Sarmenta, Luis F. G.

2006-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving single slope ADC and an example implemented in FPGA with 16.7 GHz equivalent counter clook frequency  

SciTech Connect

Single slope ADC is a common building block in many ASCI or FPGA based front-end systems due to its simplicity, small silicon footprint, low noise interference and low power consumption. In single slope ADC, using a Gray code counter is a popular scheme for time digitization, in which the comparator output drives the clock (CK) port of a register to latch the bits from the Gray code counter. Unfortunately, feeding the comparator output into the CK-port causes unnecessary complexities and artificial challenges. In this case, the propagation delays of all bits from the counter to the register inputs must be matched and the counter must be a Gray code one. A simple improvement on the circuit topology, i.e., feeding the comparator output into the D-port of a register, will avoid these unnecessary challenges, eliminating the requirement of the propagation delay match of the counter bits and allowing the use of regular binary counters. This scheme not only simplifies current designs for low speeds and resolutions, but also opens possibilities for applications requiring higher speeds and resolutions. A multi-channel single slope ADC based on a low-cost FPGA device has been implemented and tested. The timing measurement bin width in this work is 60 ps, which would need a 16.7 GHz counter clock had it implemented with the conventional Gray code counter scheme. A 12-bit performance is achieved using a fully differential circuit making comparison between the input and the ramping reference, both in differential format.

Wu, Jinyuan; /Fermilab; Odeghe, John; /South Carolina State U.; Stackley, Scott; /Boston U.; Zha, Charles; /Rice U.

2011-11-01T23:59:59.000Z

222

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

쭺-¶ 쭺-¶ Particle Physics Education Sites ¡]¥H¤U¬°¥~¤åºô¯¸¡^ quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top Introduction: The Particle Adventure - an interactive tour of particle physics for everyone: the basics of theory and experiment. Virtual Visitor Center of the Stanford Linear Accelerator Center. Guided Tour of Fermilab, - overviews of several aspects of Particle Physics. Also check out Particle Physics concepts. Probing Particles - a comprehensive and straight-forward introduction to particle physics. Big Bang Science - approaches particle physics starting from the theoretical origin of the universe.

223

Current Development Status of a Particle Size Analyzer for Coated Particle Fuel  

Science Conference Proceedings (OSTI)

Work was performed to develop a prototype Particle Size Analyzer (PSA) for application to coated particle fuel characterization. This system was based on a light obscuration method and targeted towards high throughput analysis. Although never matured to the point of replacing existing lower throughput optical microscopy shadowgraph methods, the system was successfully applied to automating the counting of large particle samples for increased accuracy in calculating mean particle properties based on measurements of multiparticle samples. The measurement of particle size with the PSA was compared to current shadowgraph techniques and found to result in considerably greater throughput at the cost of larger measurement uncertainty. The current algorithm used by the PSA is more sensitive to particle shape and this is a likely cause of the greater uncertainty when attempting to measure average particle diameter. The use of the PSA to measure particle shape will require further development. Particle transport through the PSA and stability of the light source/detector are key elements in the successful application of this technique. A number of system pitfalls were studied and addressed.

Nelson, Andrew T [ORNL; Hunn, John D [ORNL; Karnowski, Thomas Paul [ORNL

2007-08-01T23:59:59.000Z

224

Optical memory  

DOE Patents (OSTI)

Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

Mao, Samuel S; Zhang, Yanfeng

2013-07-02T23:59:59.000Z

225

Optical switch  

DOE Patents (OSTI)

An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

Reedy, Robert P. (Livermore, CA)

1987-01-01T23:59:59.000Z

226

Optical switch  

DOE Patents (OSTI)

An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

Reedy, R.P.

1987-11-10T23:59:59.000Z

227

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermion Any particle that has odd-half-integer (12, 32, ...) intrinsic angular momentum (spin), measured in units of h-bar. All particles are either fermions or bosons. Fermions...

228

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Interaction A process in which a particle decays or it responds to a force due to the presence of another particle (as in a collision). The four fundamental interactions are...

229

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Pauli Exclusion Principle The principle that no two particles in the same quantum state may exist in the same place at the same time. Particles that obey this principle are called...

230

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle A particle with no internal substructure. In the Standard Model the quarks, leptons, photons, gluons, W+ and W- bosons, and the Z bosons are fundamental. All other objects...

231

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Antiparticle For most particle types (and every fermion type) there is another particle type that has exactly the same mass but the opposite value of all other charges (quantum...

232

SMALL PARTICLE HEAT EXCHANGERS  

E-Print Network (OSTI)

ON ~m Small Particle Heat Exchangers Arion J. Hunt June 1978d. LBL 7841 Small Particle Heat Exchangers by Arlon J. Huntgenerally to non-solar heat exchangers. These may be of the

Hunt, A.J.

2011-01-01T23:59:59.000Z

233

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson - 2 Finding the Mass of the Higgs Boson - Part 2 Adding up the masses of the particles from the Higgs decay doesn't work, because these particles have enormous kinetic energy...

234

ARM - Measurement - Cloud optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

optical depth optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments GOES : Geostationary Operational Environmental Satellites Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters GOES : Geostationary Operational Environmental Satellites

235

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron A type of circular accelerator in which the particles travel in synchronized bunches at fixed radius...

236

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Fermi National Accelerator Laboratory in Batavia, Illinois (near Chicago). Named for particle physics pioneer Enrico Fermi...

237

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

CERN CERN (European Laboratory for Particle Physics) is the major European international accelerator laboratory located near Geneva, Switzerland...

238

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking The reconstruction of a "track" left in a detector by the passage of a particle through the...

239

Validation of the MCNPX-PoliMi Code to Design a Fast-Neutron Multiplicity Counter  

Science Conference Proceedings (OSTI)

Many safeguards measurement systems used at nuclear facilities, both domestically and internationally, rely on He-3 detectors and well established mathematical equations to interpret coincidence and multiplicity-type measurements for verifying quantities of special nuclear material. Due to resource shortages alternatives to these existing He-3 based systems are being sought. Work is also underway to broaden the capabilities of these types of measurement systems in order to improve current multiplicity analysis techniques. As a part of a Material Protection, Accounting, and Control Technology (MPACT) project within the U.S. Department of Energy's Fuel Cycle Technology Program we are designing a fast-neutron multiplicity counter with organic liquid scintillators to quantify important quantities such as plutonium mass. We are also examining the potential benefits of using fast-neutron detectors for multiplicity analysis of advanced fuels in comparison with He-3 detectors and testing the performance of such designs. The designs are being developed and optimized using the MCNPX-PoliMi transport code to study detector response. In the full paper, we will discuss validation measurements used to justify the use of the MCNPX-PoliMi code paired with the MPPost multiplicity routine to design a fast neutron multiplicity counter with liquid scintillators. This multiplicity counter will be designed with the end goal of safeguarding advanced nuclear fuels. With improved timing qualities associated with liquid scintillation detectors, we can design a system that is less limited by nuclear materials of high activities. Initial testing of the designed system with nuclear fuels will take place at Idaho National Laboratory in a later stage of this collaboration.

J. L. Dolan; A. C. Kaplan; M. Flaska; S. A. Pozzi; D. L. Chichester

2012-07-01T23:59:59.000Z

240

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - How to obtain particles to accelerate Electrons: Heating a metal causes electrons to be ejected. A...

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Detector shapes Physicists are curious about the events that occur during and after a particle's...

242

Experimental comparison of the active well coincidence counter with the random driver  

SciTech Connect

A direct comparison has been made between the IAEA Active Well Coincidence Counter (AWCC) and the CMB-8 Random Driver. The comparison included an experimental evaluation of precision, counting rate, accuracy, penetrability, stability, and the effect of sample inhomogeneity. Samples used in the evaluation included highly enriched U/sub 3/O/sub 8/, U/sub 3/O/sub 8/ mixed withe qgraphite, highly enriched uranium metal discs, and depleted uranium metal. These materials are typical of the samples of interest to the IAEA inspectors. It was concluded that the two instruments had very similar performance characteristics with the Random Driver giving better penetrability and the AWCC giving better stability.

Menlove, H.O.; Ensslin, N.; Sampson, T.E.

1979-06-01T23:59:59.000Z

243

Performance of Multi-Pixel Photon Counters for the T2K near detectors  

E-Print Network (OSTI)

We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that simultaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.

Yokoyama, M; Gomi, S; Ieki, K; Nagai, N; Nakaya, T; Nitta, K; Orme, D; Otani, M; Murakami, T; Nakadaira, T; Tanaka, M

2010-01-01T23:59:59.000Z

244

Performance of Multi-Pixel Photon Counters for the T2K near detectors  

E-Print Network (OSTI)

We have developed a Multi-Pixel Photon Counter (MPPC) for the neutrino detectors of T2K experiment. About 64,000 MPPCs have been produced and tested in about a year. In order to characterize a large number of MPPCs, we have developed a system that simultaneously measures 64 MPPCs with various bias voltage and temperature. The performance of MPPCs are found to satisfy the requirement of T2K experiment. In this paper, we present the performance of 17,686 MPPCs measured at Kyoto University.

M. Yokoyama; A. Minamino; S. Gomi; K. Ieki; N. Nagai; T. Nakaya; K. Nitta; D. Orme; M. Otani; T. Murakami; T. Nakadaira; M. Tanaka

2010-07-16T23:59:59.000Z

245

Development and commissioning of the Timing Counter for the MEG Experiment  

E-Print Network (OSTI)

The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed to deliver trigger information and to accurately measure the timing of the $e^+$ in searching for the decay $\\mu^+ \\rightarrow e^+\\gamma$. It is part of a magnetic spectrometer with the $\\mu^+$ decay target in the center. It consists of two sectors upstream and downstream the target, each one with two layers: the inner one made with scintillating fibers read out by APDs for trigger and track reconstruction, the outer one consisting in scintillating bars read out by PMTs for trigger and time measurement. The design criteria, the obtained performances and the commissioning of the detector are presented herein.

M. De Gerone; S. Dussoni; K. Fratini; F. Gatti; R. Valle; G. Boca; P. W. Cattaneo; R. Nardò; M. Rossella; L. Galli; M. Grassi; D. Nicolò; Y. Uchiyama; D. Zanello

2011-12-01T23:59:59.000Z

246

Calibration and performance testing of the IAEA Aquila Active Well Coincidence Counter (Unit 1)  

SciTech Connect

An Active Well Coincidence Counter (AWCC) and a portable shift register (PSR-B) produced by Aquila Technologies Group, Inc., have been tested and cross-calibrated with existing AWCCs used by the International Atomic Energy Agency (IAEA). This report summarizes the results of these tests and the cross-calibration of the detector. In addition, updated tables summarizing the cross-calibration of existing AWCCs and AmLi sources are also included. Using the Aquila PSR-B with existing IAEA software requires secondary software also supplied by Aquila to set up the PSR-B with the appropriate measurement parameters.

Menlove, H.O..; Siebelist, R.; Wenz, T.R.

1996-01-01T23:59:59.000Z

247

Riding Waves of Dissent: Counter-Imperial Impulses in the Age of Fuller and Melville  

E-Print Network (OSTI)

This dissertation examines the interplay between antebellum frontier literature and the counter-imperial impulses that impelled the era's political, cultural, and literary developments. Focusing on selected works by James Fenimore Cooper, Margaret Fuller, Francis Parkman, and Herman Melville, I use historicist methods to reveal how these authors drew upon and contributed to a strong and widespread, though ultimately unsuccessful, resistance to the discourse of Manifest Destiny that now identifies the age. For all their important differences, each of the frontier writings I examine reflects the presence of a culturally-pervasive anxiety over issues such as environmental depletion, slavery, Indian removal, and expansion's impact on the character of a nation ostensibly founded on republican, anti-imperialist principles. Moreover, the later works reflect an intensification of such anxiety as the United States entered into war with Mexico and the slavery debate came to increasingly dominate the political scene. Chapter I emphasizes the ideological contestations bred by the antebellum United States' westward march, and signals a departure from recent critical tendencies to omit those contestations in order to portray a more stable narrative of American imperialism. The chapter concludes by arguing that Cooper established an initial narrative formulation that sought to suppress counter-imperial impulses within a mainline triumphalist vision. Chapter II examines Fuller's first published book, Summer on the Lakes, in 1843, in the context of hotbutton controversies over expansion that informed the 1844 presidential contest; employing the metaphor of the dance as her governing trope for engaging unfamiliar landscapes, peoples, and even modes of community, Fuller placed persistently marginalized counter-imperial impulses at the center of her western travelogue. Chapter III discusses Parkman's sub-textual engagement with controversies surrounding the Mexican War; though thoroughly invested in conquest ideologies, Oregon Trail nevertheless resonates with the war's most popular negative associations. Chapter IV explores Melville's attunement to national ambivalences towards rhetorics of Manifest Destiny from the late 1840s through the early 1850s. During this stage of his career, Melville both payed tribute to the Anglo-American triumphalism freighting the antebellum era, and enacted a powerful articulation of the era's counter-imperial impulse.

Lawrence, Nicholas M.

2009-08-01T23:59:59.000Z

248

Laser ablation of nanoscale particles with 193 nm light  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser ablation of nanoscale particles with 193 nm light Laser ablation of nanoscale particles with 193 nm light Title Laser ablation of nanoscale particles with 193 nm light Publication Type Journal Article Year of Publication 2007 Authors Choi, Jong Hyun, Donald Lucas, and Catherine P. Koshland Journal Journal of Physics: Conference Series Volume 59 Start Page 54 Issue 1 Pagination 54-59 Abstract Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics.

249

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle decays and annihiliations - Half life A lump of uranium left to itself will gradually decay, one nucleus at a time. The rate of decay is measured by how long it would take...

250

The Particle Adventure | Particle decays and annihiliations ...  

NLE Websites -- All DOE Office Websites (Extended Search)

mass in a radioactive decay go? Recall that we said that when uranium decays into thorium and an alpha particle, 0.0046 u of mass appears to have been lost. As Einstein said,...

251

Physics Out Loud - Particle Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Nucleus Previous Video (Nucleus) Physics Out Loud Main Index Next Video (Particle Resonance) Particle Resonance Particle Accelerator Andrew Hutton, Director of Accelerators at...

252

Confined energy distribution for charged particle beams  

SciTech Connect

A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

1990-01-01T23:59:59.000Z

253

Risk assessment methodology applied to counter IED research & development portfolio prioritization  

SciTech Connect

In an effort to protect the United States from the ever increasing threat of domestic terrorism, the Department of Homeland Security, Science and Technology Directorate (DHS S&T), has significantly increased research activities to counter the terrorist use of explosives. More over, DHS S&T has established a robust Counter-Improvised Explosive Device (C-IED) Program to Deter, Predict, Detect, Defeat, and Mitigate this imminent threat to the Homeland. The DHS S&T portfolio is complicated and changing. In order to provide the ''best answer'' for the available resources, DHS S&T would like some ''risk based'' process for making funding decisions. There is a definite need for a methodology to compare very different types of technologies on a common basis. A methodology was developed that allows users to evaluate a new ''quad chart'' and rank it, compared to all other quad charts across S&T divisions. It couples a logic model with an evidential reasoning model using an Excel spreadsheet containing weights of the subjective merits of different technologies. The methodology produces an Excel spreadsheet containing the aggregate rankings of the different technologies. It uses Extensible Logic Modeling (ELM) for logic models combined with LANL software called INFTree for evidential reasoning.

Shevitz, Daniel W [Los Alamos National Laboratory; O' Brien, David A [Los Alamos National Laboratory; Zerkle, David K [Los Alamos National Laboratory; Key, Brian P [Los Alamos National Laboratory; Chavez, Gregory M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

254

Wigner distribution function and entanglement of generalized quantum optical vortex  

E-Print Network (OSTI)

We calculate the Wigner (quasi)probability distribution function of the quantum optical elliptical vortex (QEV), generated by coupling squeezed vacuum states of two modes. The coupling between the two modes is performed by using beam splitter (BS) or a dual channel directional coupler (DCDC). The quantum interference due to the coupling between the two modes promises the generation of controlled entanglement for quantum computation and quantum tomography. We compute the entanglement of such QEV formed by non-classical radiation field, using Wigner function. We report a critical squeezing parameter above which the entanglement is less for higher vorticity, which is counter intuitive.

Abir Bandyopadhyay; Shashi Prabhakar; R. P. Singh

2011-01-25T23:59:59.000Z

255

Unconditional conversion between quantum particles and waves  

E-Print Network (OSTI)

Wave-particle duality is a basic notion of quantum mechanics, which has largely contributed to many debates on the foundations of quantum theory. Besides this fundamental aspect of the wave-particle nature of quantum systems, recently, it turned out that, in order to construct more advanced and efficient protocols in quantum communication and information processing, it is also beneficial to combine continuous-wave and discrete-particle features in a so-called hybrid fashion. However, in traditional, quantum optical complementarity tests, monitoring the light waves would still happen in an effectively particle-like fashion, detecting the fields click by click. Similarly, close-to-classical, wave-like coherent states, as readily available from standard laser sources, or other Gaussian states generated through nonlinear optical interactions, have been so far experimentally converted into non-classical quantum superpositions of distinct waves only in a conditional fashion. Here we experimentally demonstrate the deterministic conversion of a single-photon state into a quantum superposition of two weak coherent states with opposite phases - a Schrodinger kitten state - and back. Conceptually different from all previous experiments, as being fully reversible, this can be interpreted as a quantum gate, connecting the complementary regimes of particle-like and wave-like light fields in a unitary fashion, like in a quantum computation. Such an unconditional conversion is achieved by means of a squeezing operation, demonstrating a fundamental feature of any quantum system: particle-like and wave-like properties can be reversibly altered, with no need for filtering out either through detection.

Yoshichika Miwa; Jun-ichi Yoshikawa; Noriaki Iwata; Mamoru Endo; Petr Marek; Radim Filip; Peter van Loock; Akira Furusawa

2012-09-13T23:59:59.000Z

256

Initial characterization of unequal-length, low-background proportional counters for absolute gas-counting applications  

Science Conference Proceedings (OSTI)

Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g. 37 Ar ). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counter designs and now operate in PNNL's shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of Oxygen-Free High-Conductivity copper components for use in a shielded above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates

2013-01-01T23:59:59.000Z

257

Surrogate protein particle standards  

Science Conference Proceedings (OSTI)

... The large particles may be useful as a standard for the counting of ... drugs require visual inspection, at present there are no standards available for ...

2013-09-10T23:59:59.000Z

258

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

at RHIC or the AGS should be submitted to the Associate Laboratory Director for Nuclear and Particle Physics, presently Steve Vigdor, Bldg. 510F, Brookhaven National...

259

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 12-14 September 2006 Tuesday, 12 September Room 2-160, Bldg. 510 (Physics) 0900...

260

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting June 15-16, 2009 Agenda Reference Documents Letter to Barbara Jacak and Nu Xu (129...

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 7-8 June 2012 Agenda Related Documents: PHENIX Beam Use Proposal, STAR Beam Use...

262

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Charge Conservation The observation that electric charge is conserved in any process of transformation of one group of particles into another...

263

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Standard Model Physicists have developed a theory of fundamental particles and interactions called the Standard Model. This site describes various aspects of this model...

264

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Weak Interaction The interaction responsible for all processes in which flavor changes, hence for the instability of heavy quarks and leptons, and particles that contain them. Weak...

265

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Antimatter Material made from antifermions. We define the fermions that are common in our universe as matter and their antiparticles as antimatter. In the particle theory there is...

266

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Z Boson A carrier particle of the weak interactions. It is involved in all weak processes that do not change flavor...

267

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

W+, W- Boson A carrier particle of the weak interactions. It is involved in all electric-charge-changing weak processes...

268

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator A machine used to accelerate particles to high speeds, and thus high energy compared to their rest-mass energy...

269

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Conservation When a quantity is always the same before and after a particle reaction, it is said to be conserved. Such quantities include electric charge, energy, and momentum...

270

Particle Event Pictures  

NLE Websites -- All DOE Office Websites (Extended Search)

- Identifying Particles - D0 Detector - CDF Detector - Links Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: April 13, 2001...

271

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron The least massive electrically-charged particle, hence absolutely stable. It is the most common lepton, with electric charge -1...

272

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

The discovery of the Higgs boson is an enormous clue about the mechanism for giving mass to fundamental particles, as conceived by Higgs, Brout, Englert, Guralnik, Hagen, and...

273

FPGA particle graphics hardware.  

E-Print Network (OSTI)

??Particle graphics simulations are well suited for modeling phenomena such as water, cloth, explosions, fire, smoke, and clouds. They are normally realized in software, as… (more)

Beeckler, John Sachs.

2006-01-01T23:59:59.000Z

274

Particle Data Group - Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Group HOME: pdgLive Summary Tables Reviews, Tables, Plots Particle Listings Europe, Africa, Middle East, India, Pakistan, Russia and all other countries For copies of: ...

275

Particle Physics Education Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites -...

276

Method and apparatus for analyzing particle-containing gaseous suspensions  

DOE Patents (OSTI)

The method and apparatus permit analyses, by optical means, of properties of gaseous suspensions of particles, by measuring radiation that is emitted, transmitted or scattered by the particles. Determinations of composition, size, temperature and spectral emittance can be performed either in-situ or by sampling, and Fourier-transform infrared spectrometric techniques are most effectively used. Apparatus specifically adapted for performing radiation scattering analyses, and for collecting radiation from different sources, are provided. 51 figs.

Solomon, P.R.; Carangelo, R.M.; Best, P.E.

1987-03-24T23:59:59.000Z

277

Hybrid simulation of energetic particle effects on tearing modes in tokamak plasmas  

SciTech Connect

The effects of energetic ions on stability of tearing mode are investigated by global kinetic/MHD hybrid simulations in a low beta tokamak plasma. The kinetic effects of counter circulating energetic ions from the non-adiabatic response are found to be strongly destabilizing while the effects from the adiabatic response are stabilizing. The net effect with both adiabatic and non-adiabatic contributions is destabilizing. On the other hand, the kinetic effects of co-circulating energetic ions from the non-adiabatic response are calculated to be weakly stabilizing while the corresponding adiabatic contribution is destabilizing for small energetic ion beta. The net effect is weakly stabilizing. The dependence of kinetic effects on energetic ion beta, gyroradius, and speed is studied systematically and the results agree in large part with the previous analytic results for the kinetic effects of circulating particles. For trapped energetic ions, their effects on tearing mode stability are dominated by the adiabatic response due to large banana orbit width and strong poloidal variation of particle pressure. The net effect of trapped energetic particles on tearing modes is much more destabilizing as compared to that of counter circulating particles at the same beta value.

Cai Huishan [CAS Key Laboratory of Geospace Environment, Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Fu Guoyong [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2012-07-15T23:59:59.000Z

278

Synthesis and textural evolution of alumina particles with mesoporous structures  

Science Conference Proceedings (OSTI)

Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous {gamma}-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl{sup -} in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into {gamma}-Al{sub 2}O{sub 3} particles with mesostructures after further calcination at 1173 K, whereas coexisting SO{sub 4}{sup 2-} can promote above morphology evolution and then transformed into {gamma}-Al{sub 2}O{sub 3} nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m{sup 2} g{sup -1} even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl{sup -} is beneficial for the formation of {gamma}-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

Liu Xun [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Peng Tianyou, E-mail: typeng@whu.edu.c [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Yao Jinchun; Lv Hongjin; Huang Cheng [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

2010-06-15T23:59:59.000Z

279

Optics: general-purpose scintillator light response simulation code  

E-Print Network (OSTI)

We present the program optics that simulates the light response of an arbitrarily shaped scintillation particle detector. Predicted light responses of pure CsI polygonal detectors, plastic scintillator staves, cylindrical plastic target scintillators and a Plexiglas light-distribution plate are illustrated. We demonstrate how different bulk and surface optical properties of a scintillator lead to specific volume and temporal light collection probability distributions. High-statistics optics simulations are calibrated against the detector responses measured in a custom-made cosmic muon tomography apparatus. The presented code can also be used to track particles intersecting complex geometrical objects.

E. Frlez; B. K. Wright; D. Pocanic

2000-06-27T23:59:59.000Z

280

Experimental comparison of the active well coincidence counter with the random driver  

SciTech Connect

A direct comparison has been made between the IAEA Active Well Coincidence Counter (AWCC) and the LASL Random Driver at CMB-8. The comparison included an experimental evaluation of precision, counting rate, accuracy, penetrability, stability, and the effect of sample inhomogeneity. Samples used in the evaluation included highly enriched U/sub 3/O/sub 8/, U/sub 3/O/sub 8/ mixed with graphite, highly enriched uranium metal discs, and depleted uranium metal. These materials are typical of the samples of interest to the IAEA inspectors. It is concluded that the two instruments had very similar performance characteristics with the Random Driver giving better penetrability and the AWCC giving better stability.

Menlove, H.O.; Ensslin, N.; Sampson, T.E.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Single-photon detection timing jitter in a visible light photon counter  

E-Print Network (OSTI)

Visible light photon counters (VLPCs) offer many attractive features as photon detectors, such as high quantum efficiency and photon number resolution. We report measurements of the single-photon timing jitter in a VLPC, a critical performance factor in a time-correlated single-photon counting measurement, in a fiber-coupled closed-cycle cryocooler. The measured timing jitter is 240 ps full-width-at-half-maximum at a wavelength of 550 nm, with a dark count rate of 25 000 counts per second. The timing jitter increases modestly at longer wavelengths to 300 ps at 1000 nm, and increases substantially at lower bias voltages as the quantum efficiency is reduced.

Burm Baek; Kyle S. McKay; Martin J. Stevens; Jungsang Kim; Henry H. Hogue; Sae Woo Nam

2009-11-30T23:59:59.000Z

282

Estimates of neutron reaction rates in three portable He-3 proportional counters  

SciTech Connect

The goal of this study is to obtain Monte Carlo estimates of neutron reaction rates for the {sup 3}He(n,p){sup 3}H reaction in two portable He-3 proportional counters in several configurations to quantify contributions from the environment, and optimize the tube characteristics. The smallest tube (0.5-inch diameter, 2-inch long, P = 10 atm) will not meet requirements. The largest tube (1-inch diameter, 4-inch long, P = 6 or 10 atm) will meet requirements and the tube length could be decreased to 2-inch at 6 atm and 1-inch at 10 atm. The 'medium' tube (3/4-inch diameter, 2-inch long, P = 10 atm) will meet requirements for the parallelepiped body, but will not for the cylindrical body.

Descalle, M; Labov, S

2007-03-01T23:59:59.000Z

283

Performance Considerations for Alternatives to 3He-Based Neutron Counters for Safeguards Applications  

Science Conference Proceedings (OSTI)

Worldwide, significant effort has been expended to develop replacement technologies for 3He-filled proportional counters used as neutron detectors and employed extensively in applications as diverse as Homeland Security portal monitoring to fundamental scientific research. Far less attention has been paid to the specific needs of safeguards measurement systems to meet mission objectives such as international obligations under the Nuclear Non-Proliferation Treaty. The measurement configuration, operational environments, and performance requirements for the typical safeguards assay system are sufficiently different from those of other applications that the new generation of neutron detectors is not generally suitable for use in demanding safeguards applications. To illustrate the performance needs for any viable replacement neutron detector technology, the operational constraints for several typical safeguards measurement systems are considered. Key attributes include achieving adequate efficiency per unit volume and minimal parasitic losses, along with gamma-ray immunity in a unit with high reliability and low maintenance.

McElroy, Robert Dennis [ORNL; Croft, Dr. Stephen [Los Alamos National Laboratory (LANL); Young, Brian M [Canberra Industries, Inc., Meriden, CT

2011-01-01T23:59:59.000Z

284

Shear flow driven drift waves and the counter-rotating vortices  

Science Conference Proceedings (OSTI)

It is shown that the drift waves can become unstable due to the shear flow produced by externally applied electric field. The modified Rayleigh instability condition is obtained which is applicable to both electron-ion and electron-positron-ion plasmas. It is proposed that the shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime the stationary structures may appear in electron-positron-ion plasmas as well as electron-ion plasmas. A particular form of the shear flow can give rise to counter-rotating dipole vortices and vortex chains. The speed and amplitude of the structures are affected by the presence of positrons in the electron ion plasma. The relevance of this investigation to laboratory and astrophysical plasmas is pointed out.

Haque, Q.; Saleem, H.; Mirza, Arshad M. [Department of Physics, Commission on Science and Technology for Sustainable Development in the South (COMSATS) Institute of Information Technology, H-8 Islamabad, Pakistan and Pakistan Institute of Nuclear Science and Technology, PINSTECH (PRD), P.O. Nilore, Islamabad (Pakistan); Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2005-10-01T23:59:59.000Z

285

Method and apparatus for removing coarse unentrained char particles from the second stage of a two-stage coal gasifier  

DOE Patents (OSTI)

A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.

Donath, Ernest E. (Christiansted, St. Croix, VI)

1976-01-01T23:59:59.000Z

286

Forming Three-Dimensional Colloidal Structures Using Holographic Optical Tweezers  

E-Print Network (OSTI)

A method for forming permanent three dimensional structures from colloidal particles using holographic optical trapping is described. Holographic optical tweezers (HOT) are used to selectively position charge stabilized colloidal particles within a flow cell. Once the particles are in the desired location an electrolyte solution is pumped into the cell which reduces the Debye length and induces aggregation caused by the van der Waals attraction. This technique allows for the formation of three dimensional structures both on and away from the substrate that can be removed from solution without the aid of critical point drying. This technique is inexpensive, fast, and versatile as it relies on forces acting on almost all colloidal suspensions.

C. R. Knutson; J. Plewa

2005-08-05T23:59:59.000Z

287

Scintillation counter and wire chamber front end modules for high energy physics experiments  

SciTech Connect

This document describes two front-end modules developed for the proposed MIPP upgrade (P-960) experiment at Fermilab. The scintillation counter module was developed for the Plastic Ball detector time and charge measurements. The module has eight LEMO 00 input connectors terminated with 50 ohms and accepts negative photomultiplier signals in the range 0.25...1000 pC with the maximum input voltage of 4.0 V. Each input has a passive splitter with integration and differentiation times of {approx}20 ns. The integrated portion of the signal is digitized at 26.55 MHz by Analog Devices AD9229 12-bit pipelined 4-channel ADC. The differentiated signal is discriminated for time measurement and sent to one of the four TMC304 inputs. The 4-channel TMC304 chip allows high precision time measurement of rising and falling edges with {approx}100 ps resolution and has internal digital pipeline. The ADC data is also pipelined which allows deadtime-less operation with trigger decision times of {approx}4 {micro}s. The wire chamber module was developed for MIPP EMCal detector charge measurements. The 32-channel digitizer accepts differential analog signals from four 8-channel integrating wire amplifiers. The connection between wire amplifier and digitizer is provided via 26-wire twist-n-flat cable. The wire amplifier integrates input wire current and has sensitivity of 275 mV/pC and the noise level of {approx}0.013 pC. The digitizer uses the same 12-bit AD9229 ADC chip as the scintillator counter module. The wire amplifier has a built-in test pulser with a mask register to provide testing of the individual channels. Both modules are implemented as a 6Ux220 mm VME size board with 48-pin power connector. A custom europack (VME) 21-slot crate is developed for housing these front-end modules.

Baldin, Boris; DalMonte, Lou; /Fermilab

2011-01-01T23:59:59.000Z

288

Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation  

DOE Patents (OSTI)

Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

1999-09-14T23:59:59.000Z

289

Some Particle Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Properties Particle Properties An Article Written Originally for Midlevel Teachers Back A particle, increasing its speed because of some force acting on it, gains energy of motion. An electron (negatively charged) gains one electron volt (eV) of energy in accelerating through a vacuum from the negative end to the positive end of a one-volt battery. The one eV of energy is given up to other particles as the electron crashes into the positive end. A proton (positively charged) traveling from positive to negative pole through the vacuum would also gain one eV of energy and give it up in its collision with particles in the negative end. This proton collision is similar to the proton beam collision with a target at Fermilab, but at Fermilab the proton energy is much greater.

290

Imaging alpha particle detector  

DOE Patents (OSTI)

A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

Anderson, David F. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

291

HIGH ENERGY PARTICLE ACCELERATOR  

DOE Patents (OSTI)

An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

Courant, E.D.; Livingston, M.S.; Snyder, H.S.

1959-04-14T23:59:59.000Z

292

Absorption of Visible Radiation by Atmospheric Aerosol Particles Fog and Cloud Water Residues  

Science Conference Proceedings (OSTI)

Light absorption by samples of atmospheric aerosol particles as a function of size was studied using the integrating sphere method. In addition, the optical properties of fog and cloud-water residues were determined. The samples were taken at two ...

Karl Andre; Ralph Dlugi; Gottfried Schnatz

1981-01-01T23:59:59.000Z

293

Some Techniques and Uses of 2D-C Habit Classification Software for Snow Particles  

Science Conference Proceedings (OSTI)

A technique has been designed that uses observable properties of images from a 2D-C optical array probe (size, linearity, area, perimeter, and image density) to classify unsymmetrical ice particles into nine habit classes. Concentrations are ...

Edmond W. Holroyd III

1987-09-01T23:59:59.000Z

294

Shattering during Sampling by OAPs and HVPS. Part I: Snow Particles  

Science Conference Proceedings (OSTI)

The data on cloud particle sizes and concentrations collected with the help of aircraft imaging probes [optical array probes OAP-2DC, OAP-2DP, and the High Volume Precipitation Spectrometer (HVPS)] are widely used for cloud parameterization and ...

Alexei Korolev; George A. Isaac

2005-05-01T23:59:59.000Z

295

Characterizing flows with an instrumented particle measuring Lagrangian accelerations  

E-Print Network (OSTI)

We present in this article a novel Lagrangian measurement technique: an instrumented particle which continuously transmits the force/acceleration acting on it as it is advected in a flow. We develop signal processing methods to extract information on the flow from the acceleration signal transmitted by the particle. Notably, we are able to characterize the force acting on the particle and to identify the presence of a permanent large-scale vortex structure. Our technique provides a fast, robust and efficient tool to characterize flows, and it is particularly suited to obtain Lagrangian statistics along long trajectories or in cases where optical measurement techniques are not or hardly applicable.

Zimmermann, Robert; Gasteuil, Yoann; Volk, Romain; Pinton, Jean-François

2012-01-01T23:59:59.000Z

296

Measurement of highly enriched uranium metal buttons with the high-level neutron coincidence counter operating in the active mode  

SciTech Connect

The portable High-Level Neutron Coincidence Counter is used in the active mode with the addition of AmLi neutron sources to assay the /sup 235/U content of highly enriched metal pieces or buttons. It is concluded that the portable instrument is a practical instrument for assaying uranium metal buttons with masses in the range 1.5 to 4 kg.

Foley, J.E.

1980-10-01T23:59:59.000Z

297

First proton--proton collisions at the LHC as observed with the ALICE detector: measurement of the charged particle pseudorapidity density at sqrt(s) = 900 GeV  

E-Print Network (OSTI)

On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |eta| < 0.5, we obtain dNch/deta = 3.10 +- 0.13 (stat.) +- 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 +- 0.15 (stat.) +- 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton--antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

The ALICE Collaboration; K. Aamodt; N. Abel; U. Abeysekara; A. Abrahantes Quintana; A. Acero; D. Adamova; M. M. Aggarwal; G. Aglieri Rinella; A. G. Agocs; S. Aguilar Salazar; Z. Ahammed; A. Ahmad; N. Ahmad; S. U. Ahn; R. Akimoto; A. Akindinov; D. Aleksandrov; B. Alessandro; R. Alfaro Molina; A. Alici; E. Almaraz Avina; J. Alme; T. Alt; V. Altini; S. Altinpinar; C. Andrei; A. Andronic; G. Anelli; V. Angelov; C. Anson; T. Anticic; F. Antinori; S. Antinori; K. Antipin; D. Antonczyk; P. Antonioli; A. Anzo; L. Aphecetche; H. Appelshauser; S. Arcelli; R. Arceo; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Aysto; M. D. Azmi; S. Bablok; M. Bach; A. Badala; Y. W. Baek; S. Bagnasco; R. Bailhache; R. Bala; A. Baldisseri; A. Baldit; J. Ban; R. Barbera; G. G. Barnafoldi; L. Barnby; V. Barret; J. Bartke; F. Barile; M. Basile; V. Basmanov; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Baumann; I. G. Bearden; B. Becker; I. Belikov; R. Bellwied; E. Belmont-Moreno; A. Belogianni; L. Benhabib; S. Beole; I. Berceanu; A. Bercuci; E. Berdermann; Y. Berdnikov; L. Betev; A. Bhasin; A. K. Bhati; L. Bianchi; N. Bianchi; C. Bianchin; J. Bielcik; J. Bielcikova; A. Bilandzic; L. Bimbot; E. Biolcati; A. Blanc; F. Blanco; F. Blanco; D. Blau; C. Blume; M. Boccioli; N. Bock; A. Bogdanov; H. Boggild; M. Bogolyubsky; J. Bohm; L. Boldizsar; M. Bombara; C. Bombonati; M. Bondila; H. Borel; V. Borshchov; C. Bortolin; S. Bose; L. Bosisio; F. Bossu; M. Botje; S. Bottger; G. Bourdaud; B. Boyer; M. Braun; P. Braun-Munzinger; L. Bravina; M. Bregant; T. Breitner; G. Bruckner; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; K. Bugaev; P. Buncic; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. Camacho; P. Camerini; M. Campbell; V. Canoa Roman; G. P. Capitani; G. Cara Romeo; F. Carena; W. Carena; F. Carminati; A. Casanova Diaz; M. Caselle; J. Castillo Castellanos; J. F. Castillo Hernandez; V. Catanescu; E. Cattaruzza; C. Cavicchioli; P. Cerello; V. Chambert; B. Chang; S. Chapeland; A. Charpy; J. L. Charvet; S. Chattopadhyay; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; V. Chibante Barroso; D. D. Chinellato; P. Chochula; K. Choi; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; F. Chuman; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; O. Cobanoglu; J. -P. Coffin; S. Coli; A. Colla; G. Conesa Balbastre; Z. Conesa del Valle; E. S. Conner; P. Constantin; G. Contin; J. G. Contreras; Y. Corrales Morales; T. M. Cormier; P. Cortese; I. Cortes Maldonado; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cuautle; L. Cunqueiro; J. Cussonneau; A. Dainese; H. H. Dalsgaard; A. Danu; I. Das; S. Das; A. Dash; S. Dash; G. O. V. de Barros; A. De Caro; G. de Cataldo; J. de Cuveland; A. De Falco; M. de Gaspari; J. de Groot; D. De Gruttola; A. P. de Haas; N. De Marco; R. de Rooij; S. De Pasquale; G. de Vaux; H. Delagrange; G. Dellacasa; A. Deloff; V. Demanov; E. Denes; A. Deppman; G. D~RErasmo; D. Derkach; A. Devaux; D. Di Bari; C. Di Giglio; S. Di Liberto; A. Di Mauro; P. Di Nezza; M. Dialinas; L. Diaz; R. Diaz; T. Dietel; H. Ding; R. Divia; O. Djuvsland; G. do Amaral Valdiviesso; V. Dobretsov; A. Dobrin; T. Dobrowolski; B. Donigus; I. Dominguez; D. M. M. Don; O. Dordic; A. K. Dubey; J. Dubuisson; L. Ducroux; P. Dupieux; A. K. Dutta Majumdar; M. R. Dutta Majumdar; D. Elia; D. Emschermann; A. Enokizono; B. Espagnon; M. Estienne; D. Evans; S. Evrard; G. Eyyubova; C. W. Fabjan; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; R. Fearick; A. Fedunov; D. Fehlker; V. Fekete; D. Felea; B. Fenton-Olsen; G. Feofilov; A. Fernandez Tellez; E. G. Ferreiro; A. Ferretti; R. Ferretti; M. A. S. Figueredo; S. Filchagin; R. Fini; F. M. Fionda; E. M. Fiore; M. Floris; Z. Fodor; S. Foertsch; P. Foka; S. Fokin; F. Formenti; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; A. Frolov; U. Fuchs; F. Furano; C. Furget; M. Fusco Girard; J. J. Gaardhoje; S. Gadrat; M. Gagliardi; A. Gago; M. Gallio; P. Ganoti; M. S. Ganti; C. Garabatos; C. Garc; J. Gebelein; R. Gemme; M. Germain; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; G. Giraudo; P. Giubellino; E. Gladysz-Dziadus; R. Glasow; P. Glassel; A. Glenn; R. Gomez; H. Gonzalez Santos; L. H. Gonzalez-Trueba; P. Gonzalez-Zamora; S. Gorbunov; Y. Gorbunov; S. Gotovac; H. Gottschlag; V. Grabski; R. Grajcarek; A. Grelli; A. Grigoras; C. Grigoras; V. Grigoriev; A. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J. -Y. Grossiord; R. Grosso; C. Guarnaccia; F. Guber; R. Guernane; B. Guerzoni; K. Gulbrandsen; H. Gulkanyan; T. Gunji; A. Gupta; R. Gupta; H. -A. Gustafsson; H. Gutbrod; O. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; J. Hamblen; B. H. Han; J. W. Harris; M. Hartig; A. Harutyunyan

2009-11-28T23:59:59.000Z

298

Optical data latch  

DOE Patents (OSTI)

An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

Vawter, G. Allen (Corrales, NM)

2010-08-31T23:59:59.000Z

299

Review of Particle Physics  

SciTech Connect

This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V{sub ud} and V{sub us}, V{sub cb} and V{sub ub}, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.

Particle Data Group; Nakamura, Kenzo; al., et

2010-06-30T23:59:59.000Z

300

Quantum vortices in optical lattices  

E-Print Network (OSTI)

A vortex in a superfluid gas inside an optical lattice can behave as a massive particle moving in a periodic potential and exhibiting quantum properties. In this Letter we discuss these properties and show that the excitation of vortex motions in a two-dimensional lattice can lead to striking measurable changes in its dynamic response. It would be possible by means of Bragg spectroscopy to carry out the first direct measurement of the effective vortex mass, the pinning to the underlying lattice, and the dissipative damping.

P. Vignolo; R. Fazio; M. P. Tosi

2007-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Open Problems in $?$ Particle Condensation  

E-Print Network (OSTI)

$\\alpha$ particle condensation is a novel state in nuclear systems. We briefly review the present status on the study of $\\alpha$ particle condensation and address the open problems in this research field: $\\alpha$ particle condensation in heavier systems other than the Hoyle state, linear chain and $\\alpha$ particle rings, Hoyle-analogue states with extra neutrons, $\\alpha$ particle condensation related to astrophysics, etc.

Y. Funaki; M. Girod; H. Horiuchi; G. Roepke; P. Schuck; A. Tohsaki; T. Yamada

2010-03-05T23:59:59.000Z

302

Optical absorption measurement system  

DOE Patents (OSTI)

The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

1986-09-17T23:59:59.000Z

303

Optical absorption measurement system  

DOE Patents (OSTI)

The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

Draggoo, Vaughn G. (Livermore, CA); Morton, Richard G. (San Diego, CA); Sawicki, Richard H. (Pleasanton, CA); Bissinger, Horst D. (Livermore, CA)

1989-01-01T23:59:59.000Z

304

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Fixed target experiments In a fixed-target experiment, a charged particle such as an electron or a...

305

Particle Accelerator & X-Ray Optics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard X-Ray Quad Collimator Facilitates Microcrystallography Experiments Isotopic Abundance in Atom Trap Trace Analysis Nanomaterials Analysis using a Scanning Electron Microscope...

306

Fiber optic monitoring device  

DOE Patents (OSTI)

A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

Samborsky, J.K.

1993-10-05T23:59:59.000Z

307

Fiber optic monitoring device  

DOE Patents (OSTI)

This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

Samborsky, J.K.

1992-12-31T23:59:59.000Z

308

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

experiment with tiny particles? - A linear or circular accelerator? All accelerators are either linear or circular, the difference being whether the particle is shot like a bullet...

309

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and particle detectors - How do we experiment with tiny particles? - Major accelerators We invite you to explore the basic plans of the world's major accelerators so...

310

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Accelerators solve two problems for physicists. First, since all particles behave like waves, physicists use accelerators to increase a particle's momentum, thus...

311

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortcomings Shortcomings of the first data Shortcomings of the first data The data were convincing but not perfect, and there were significant shortcomings. For one thing, by July 4, 2012, there weren't enough statistics to measure whether the rate at which this particle (the Higgs boson) decays to various collections of less massive particles (the "branching ratios") are those predicted by the Standard Model. A "branching ratio" is simply the probability that a particle will decay via a given decay channel. These ratios are predicted by the Standard Model, and measured by observing the same particle decay over and over again. The next plot shows the best measurements we can make of the branching ratios with the data available in 2013. Since these are the ratios to the

312

Heterogeneous particle swarm optimizers  

Science Conference Proceedings (OSTI)

Particle swarm optimization (PSO) is a swarm intelligence technique originally inspired by models of flocking and of social influence that assumed homogeneous individuals. During its evolution to become a practical optimization tool, some heterogeneous ...

Marco A. Montes De Oca; Jorge Peña; Thomas Stützle; Carlo Pinciroli; Marco Dorigo

2009-05-01T23:59:59.000Z

313

Particles and Prairies: Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles and Prairies Video Sponsors: Funding for this program was provided in part by the U.S. Department of Energy Office of Energy Research, Illinois State Board of Education's...

314

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Program Advisory Committee Meeting 21-22 June 2010 Agenda Submitted Proposals STAR Beam Use Proposal PHENIX Beam Use Proposal LoI: Feasibility Test of...

315

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Agenda Brookhaven Nuclear and Particle Physics Program Advisory Committee Meeting 6-8 June 2011 Reference Documents PAC Recommendations, 21-22 June 2010 Charge to PAC for...

316

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Collider A collider is an accelerator in which two beams traveling in opposite directions are steered together to provide high-energy collisions between the particles in one beam...

317

The Particle Adventure | Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Fixed-target Experiment An experiment in which the beam of particles from an accelerator is directed at a stationary (or nearly stationary) target. The target may be a solid, a...

318

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

How Do Fundamental Particles Get Mass? > How Does the Higgs Boson... How Does the Higgs Boson get its Mass? On the other hand, if a rumor crosses the room,... ...it creates the...

319

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

The Higgs Boson and Beyond > Is this Higgs Boson the Higgs Boson... Is this Higgs Boson the Higgs Boson of the Standard Model? We do know that the particle we discovered is a Higgs...

320

The Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Boson Finding the Mass of the Higgs Boson How do you find the mass of the Higgs Boson when it decays into other particles before we detect it? If you were going to build a bicycle,...

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

2 web edition of RPP for different platforms 2012 book edition of RPP Particle Physics Booklet (rpp-2012-booklet.pdf file, 7 MBytes); Review of Partilce Physics 1526 pages, Phys....

322

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

1 web edition of RPP for different platforms 2010 book edition of RPP Particle Physics Booklet (rpp-2010-booklet.pdf file, 6 MBytes); rpp-2010-JPhys-G-37-075021.pdf file (40...

323

Particle Data Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2 book, booklet will be available in August. Web edition of the Review of Particle Physics is now available. Funded By: US DOE US NSF CERN MEXT (Japan) INFN (Italy) MEC (Spain)...

324

Particle Data Group - Downloads  

NLE Websites -- All DOE Office Websites (Extended Search)

6 MBytes); rpp-2010-JPhys-G-37-075021.pdf file (40 MBytes) of the published RPP 2010 book; Figures from the reviews in RPP The PDG Monte Carlo particle numbering scheme The PDG...

325

Particle entrapping filamentry structures  

DOE Patents (OSTI)

Minute particulates are removed from a fluid flow by directing the fluid towards a particle entrapping element having a hair-like covering a flexible filaments. The filaments have fixed root ends and movable free ends that extend away from the roots and are shiftable in response to flow pressure and particle impacts. Particles lodge within the mass of filaments while the fluid component of the flow passes through particle entrapping element if the substrate is porous or is deflected away if the substrate is impervious. The structure does not necessarily cause a sizable pressure drop in the flow and can entrap large quantities of particulates. The invention has a variety of specific applications such as, for example, removal of smoke from the exhaust gases of vehicle engines or stationary fuel consuming installations. 11 figs.

Steele, W.A.; Leider, H.R.; Mohr, P.B.

1988-09-29T23:59:59.000Z

326

Particle Physics Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is A Particle Physics Experiment? The word "experiment" often makes people envision a scientist in white lab coat and goggles walking into the lab, pouring some test tubes...

327

GPU COMPUTING FOR PARTICLE TRACKING  

E-Print Network (OSTI)

a simple GPU based particle tracking code, TracyGPU, isP U COMPUTING FOR PARTICLE TRACKING Hiroshi Nishimura, K a iCOMPUTING FOR PARTICLE TRACKING * Hiroshi Nishimura ', Kai

Nishimura, Hiroshi

2011-01-01T23:59:59.000Z

328

Optical NAND gate  

DOE Patents (OSTI)

An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

Skogen, Erik J. (Albuquerque, NM); Raring, James (Goleta, CA); Tauke-Pedretti, Anna (Albuquerque, NM)

2011-08-09T23:59:59.000Z

329

Optical extensometer  

DOE Patents (OSTI)

An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.

Walker, Ray A. (Kennewick, WA); Reich, Fred R. (Richland, WA); Russell, James T. (Richland, WA)

1978-01-01T23:59:59.000Z

330

Physics Out Loud - Elementary Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrons Previous Video (Electrons) Physics Out Loud Main Index Next Video (Gluons) Gluons Elementary Particles Learn about elementary particles from Jo Dudek, a jointly appointed...

331

Online Particle Physics Information - Scope  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC Online Particle Physics Information PDG Scope of this Guide While a substantial amount of particle physics information is Internet accessible, most listings do not provide...

332

System for forming janus particles  

DOE Patents (OSTI)

The invention is a method of forming Janus particles, that includes forming an emulsion that contains initial particles, a first liquid, and a second liquid; solidifying the first liquid to form a solid that contains at least a portion of the initial particles on a surface of the solid; and treating the exposed particle sides with a first surface modifying agent, to form the Janus particles. Each of the initial particles on the surface has an exposed particle side and a blocked particle side.

Hong, Liang (Midland, MI); Jiang, Shan (Champaign, IL); Granick, Steve (Champaign, IL)

2011-01-25T23:59:59.000Z

333

Near-field scattering from red pigment particles: Absorption and spectral dependence  

E-Print Network (OSTI)

cornea,5 the effi- ciency of phosphors,6 and the appearance of reflective dis- play materials,7 paint,8Near-field scattering from red pigment particles: Absorption and spectral dependence L. E. Mc of pigment particles embedded in a transparent resin, the optical characteristics of the resulting film

French, Roger H.

334

Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line  

Science Conference Proceedings (OSTI)

3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.

Wang, Jian-Guang [ORNL

2011-01-01T23:59:59.000Z

335

Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use  

DOE Patents (OSTI)

A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

Kimura, Wayne D. (Bellevue, WA); Romea, Richard D. (Seattle, WA); Steinhauer, Loren C. (Bothell, WA)

1998-01-01T23:59:59.000Z

336

Airborne Characterization of the Chemical, Optical, and Meteorological Properties, and Origins of a Combined Ozone-Haze Episode over the Eastern United States  

Science Conference Proceedings (OSTI)

Airborne observations of trace gases, particle size distributions, and particle optical properties were made during a constant altitude transect from New Hampshire to Maryland on 14 August 2002, the final day of a multiday haze and ozone (O3) ...

Brett F. Taubman; Lackson T. Marufu; Charles A. Piety; Bruce G. Doddridge; Jeffrey W. Stehr; Russell R. Dickerson

2004-07-01T23:59:59.000Z

337

Integration of Heat Transfer, Stress, and Particle Trajectory Simulation  

Science Conference Proceedings (OSTI)

Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

Thuc Bui; Michael Read; Lawrence ives

2012-05-17T23:59:59.000Z

338

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

Blewett, J.P.

1962-01-01T23:59:59.000Z

339

Fine Particles in Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Fine Particles in Soils Fine Particles in Soils Nature Bulletin No. 582 November 28, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist FINE PARTICLES IN SOILS If a farmer, while plowing, is visited in the field by another farmer, invariably the visitor will pick up a handful of turned over earth and knead it with his fingers while they talk. The "feel" of it tells him a lot about the texture and structure of that soil. He knows that both are important factors in the growth of plants and determine the crops that may be obtained from the land. Soil is a combination of three different things About half of it is solid matter; the other half consists of air and water The solid portion is composed of organic and inorganic materials.

340

Charged particle accelerator grating  

DOE Patents (OSTI)

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Precision wood particle feedstocks  

DOE Patents (OSTI)

Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

Dooley, James H; Lanning, David N

2013-07-30T23:59:59.000Z

342

Manual for the Portable Handheld Neutron Counter (PHNC) for Neutron Survey and the Measurement of Plutonium Samples  

SciTech Connect

We have designed a portable neutron detector for passive neutron scanning measurement and coincidence counting of bulk samples of plutonium. The counter will be used for neutron survey applications as well as the measurement of plutonium samples for portable applications. The detector uses advanced design {sup 3}He tubes to increase the efficiency and battery operated shift register electronics. This report describes the hardware, performance, and calibration for the system.

H.O. Menlove

2005-11-01T23:59:59.000Z

343

A Stable Massive Charged Particle  

E-Print Network (OSTI)

We consider the possibility of the existence of a stable massive charged particle by a minimal extension of the standard model particle content. Absolute stability in the case of singly charged particle is not possible if the usual doublet Higgs exists, unless a discrete symmetry is imposed.But a doubly charged particle is absolutely stable.

G. Rajasekaran

2011-05-26T23:59:59.000Z

344

Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis on Over 10,000 Cores  

SciTech Connect

Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques hold the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance.

Chen, Yousu; Huang, Zhenyu; Rice, Mark J.

2012-12-27T23:59:59.000Z

345

Apparatus for measuring particle properties  

DOE Patents (OSTI)

An apparatus for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle's size can be determined from the intensity of the light scattered. The particle's velocity can be determined from the elapsed time between various intensities of the light scattered.

Rader, Daniel J. (Albuquerque, NM); Castaneda, Jaime N. (Albuquerque, NM); Grasser, Thomas W. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

346

Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling  

SciTech Connect

The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

Elhadj, S.; Qiu, S. R.; Stolz, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Monterrosa, A. M. [Department of Nuclear Engineering and Department of Materials Science and Engineering, University of California, Berkeley, California 94704 (United States)

2012-05-01T23:59:59.000Z

347

Simulation and Analysis of a Tissue Equivalent Proportional Counter Using the Monte Carlo Transport Code FLUKA  

E-Print Network (OSTI)

The purpose of this study was to determine how well the Monte Carlo transport code FLUKA can simulate a tissue-equivalent proportional counter (TEPC) and produce the expected delta ray events when exposed to high energy heavy ions (HZE) like in the galactic cosmic ray (GCR) environment. Accurate transport codes are desirable because of the high cost of beam time, the inability to measure the mixed field GCR on the ground and the flexibility they offer in the engineering and design process. A spherical TEPC simulating a 1 um site size was constructed in FLUKA and its response was compared to experimental data for an 56Fe beam at 360 MeV/nucleon. The response of several narrow beams at different impact parameters were used to explain the features of the response of the same detector exposed to a uniform field of radiation. Additionally, an investigation was made into the effect of the wall thickness on the response of the TEPC and the range of delta rays in the tissue-equivalent (TE) wall material. A full impact parameter test (from IP = 0 to IP = detector radius) was performed to show that FLUKA produces the expected wall effect. That is, energy deposition in the gas volume can occur even when the primary beam does not pass through the gas volume. A final comparison to experimental data was made for the simulated TEPC exposed to various broad beams in the energy range of 200 - 1000 MeV/nucleon. FLUKA overestimated energy deposition in the gas volume in all cases. The FLUKA results differed from the experimental data by an average of 25.2 % for yF and 12.4 % for yD. It is suggested that this difference can be reduced by adjusting the FLUKA default ionization potential and density correction factors.

Northum, Jeremy Dell

2010-05-01T23:59:59.000Z

348

Computer-optimized design of polyethylene-moderated {sup 3}He counters for fast neutrons  

Science Conference Proceedings (OSTI)

Because polyethylene-moderated {sup 3}He counters are rugged and reliable, they are generally the instruments of choice for field detection of fast neutrons in gamma-ray backgrounds. Their main drawback is the bulky, massive moderator needed to reduce the incident neutron energies to the sensitive range of the {sup 3}He+n capture reaction. This report discusses an optimization approach that provides a detector with uniform angular response and the maximum detection efficiency per unit mass. The key assumption is that each parameter has a geometrical interpretation and its effect on the response can be evaluated independently from that of the others. Specifically, the detection efficiency can be written as a product of separate functions for the moderator mass, gas pressure, tube position, etc., and the uniformity of the angular response is determined by the symmetry of the moderator dimensions. This analytical model was tested by compiling a comprehensive database of detector efficiencies as functions of the different parameters, including one- versus two-tube detectors, moderator masses from 1 to 6 kg, gas pressures from 1 to 20 atm, etc. In general, the model reproduced both the magnitude and angular dependence of the efficiency to within about 10%. To a high degree, the most important parameters are polyethylene mass and the quantity of {sup 3}He gas; because of neutron diffusion out of the moderator, the optimum tube positions are near the center of the detector. The highest value of the efficiency per unit mass occurs near 3 kg, a result that requires the most compact detectors to use more than a single {sup 3}He tube. In this case, the optimum detector has two tubes and a total mass of 3.0 kg. Although they could use 4-atm tubes with 2.54-cm diameters, increasing the gas volume could easily provide a 20% increase in efficiency with no changes in other parameters.

R. C. Byrd

2000-05-01T23:59:59.000Z

349

ADVANCES IN THE RXTE PROPORTIONAL COUNTER ARRAY CALIBRATION: NEARING THE STATISTICAL LIMIT  

SciTech Connect

During its 16 years of service, the Rossi X-Ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observations of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on board RXTE which provides data in 3-50 keV energy range with submillisecond time resolution in up to 256 energy channels. In 2009, the RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is based on the residual minimization between the model spectrum for Crab Nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am{sub 241} calibration source, uniformly covering the whole RXTE mission operation period. The new method led to a much more effective model convergence and allowed for better understanding of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF v11.7 (HEASOFT Release 6.7) along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

Shaposhnikov, Nikolai [CRESST and Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod, E-mail: nikolai.v.shaposhnikov@nasa.gov [Astrophysics Science Division, Goddard Space Flight Center, NASA, Greenbelt, MD 20771 (United States)

2012-10-01T23:59:59.000Z

350

The Particle Adventure | How do we experiment with tiny particles? |  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating particles Accelerating particles Accelerating particles It is fairly easy to obtain particles. Physicists get electrons by heating metals; they get protons by robbing hydrogen of its electron; etc. Accelerators speed up charged particles by creating large electric fields which attract or repel the particles. This field is then moved down the accelerator, "pushing" the particles along. In a linear accelerator the field is due to traveling electromagnetic (E-M) waves. When an E-M wave hits a bunch of particles, those in the back get the biggest boost, while those in the front get less of a boost. In this fashion, the particles "ride" the front of the E-M wave like a bunch of surfers. The next page shows this process in an easier to understand animation

351

Inclusive neutral particle production  

SciTech Connect

Results of recent inclusive neutral particle production experiments are compared to existing experimental results. These experiments range from 15 to 2000 GeV/c in laboratory beam momentum and use $pi$$sup -$, $pi$$sup +$, p and anti p beams. (auth)

Kahn, S.

1975-01-01T23:59:59.000Z

352

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

Blewett, J.P.; Kiesling, J.D.

1963-06-11T23:59:59.000Z

353

Matter: the fundamental particles  

E-Print Network (OSTI)

"The largest particle physics centre in the world is located in Europe. It straddles the Franco-Swiss border, near Geneva. At CERN - the European Organisation for Nuclear Research , which is focused on the science of nuclear matter rather than on the exploitation of atomic energy - there are over 6 500 scientists." (1 page)

Landua, Rolf

2007-01-01T23:59:59.000Z

354

Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER  

SciTech Connect

The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.

N.N. Gorelenkov and R.B. White

2012-10-29T23:59:59.000Z

355

STRATIGRAPHY OF COUNTER-POINT-BAR AND EDDY-ACCRETION DEPOSITS IN LOW-ENERGY MEANDER BELTS OF THE PEACE-ATHABASCA  

E-Print Network (OSTI)

STRATIGRAPHY OF COUNTER-POINT-BAR AND EDDY-ACCRETION DEPOSITS IN LOW-ENERGY MEANDER BELTS-7th Ave. SW, Nexen Inc., Calgary, AB, T2P 3P7, Canada ABSTRACT: Previously termed concave bank

356

Latching micro optical switch  

DOE Patents (OSTI)

An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

Garcia, Ernest J; Polosky, Marc A

2013-05-21T23:59:59.000Z

357

Integrated optical tamper sensor  

DOE Patents (OSTI)

This invention consists of an monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

Carson, R.F.; Casalnuovo, S.A.

1991-12-31T23:59:59.000Z

358

Manipulating atoms in an optical lattice: Fractional fermion number and its optical quantum measurement  

E-Print Network (OSTI)

We provide a detailed analysis of our previously proposed scheme [Phys. Rev. Lett. 88, 180401, (2002)] to engineer the profile of the hopping amplitudes for atomic gases in a 1D optical lattice so that the particle number becomes fractional. We consider a constructed system of a dilute two-species gas of fermionic atoms where the two components are coupled via a coherent electromagnetic field with a topologically nontrivial phase profile. We show both analytically and numerically how the resulting atomic Hamiltonian in a prepared dimerized optical lattice with a defect in the pattern of alternating hopping amplitudes exhibits a fractional fermion number. In particular, in the low-energy limit we demonstrate the equivalence of the atomic Hamiltonian to a relativistic Dirac Hamiltonian describing fractionalization in quantum field theory. Expanding on our earlier argument [Phys. Rev. Lett. 91, 150404 (2003)] we show how the fractional eigenvalues of the particle number operator can be detected via light scattering. In particular, we show how scattering of far-off resonant light can convey information about the counting statistics of the atoms in an optical lattice, including state-selective atom density profiles and atom number fluctuations. Optical detection could provide a truly quantum mechanical measurement of the particle number fractionalization in a dilute atomic gas.

J. Ruostekoski; J. Javanainen; G. V. Dunne

2007-09-13T23:59:59.000Z

359

Role of particle conservation in self-propelled particle systems  

E-Print Network (OSTI)

Actively propelled particles undergoing dissipative collisions are known to develop a state of spatially distributed coherently moving clusters. For densities larger than a characteristic value clusters grow in time and form a stationary well-ordered state of coherent macroscopic motion. In this work we address two questions: (i) What is the role of the particles' aspect ratio in the context of cluster formation, and does the particle shape affect the system's behavior on hydrodynamic scales? (ii) To what extent does particle conservation influence pattern formation? To answer these questions we suggest a simple kinetic model permitting to depict some of the interaction properties between freely moving particles and particles integrated in clusters. To this end, we introduce two particle species: single and cluster particles. Specifically, we account for coalescence of clusters from single particles, assembly of single particles on existing clusters, collisions between clusters, and cluster disassembly. Coarse-graining our kinetic model, (i) we demonstrate that particle shape (i.e. aspect ratio) shifts the scale of the transition density, but does not impact the instabilities at the ordering threshold. (ii) We show that the validity of particle conservation determines the existence of a longitudinal instability, which tends to amplify density heterogeneities locally, and in turn triggers a wave pattern with wave vectors parallel to the axis of macroscopic order. If the system is in contact with a particle reservoir this instability vanishes due to a compensation of density heterogeneities.

Christoph A. Weber; Florian Thüroff; Erwin Frey

2013-01-31T23:59:59.000Z

360

Improved Normalization of the Size Distribution of Atmospheric Particles Retrieved from Aureole Measurements Using the Diffraction Approximation  

Science Conference Proceedings (OSTI)

This paper describes an improvement in the diffraction approximation used to retrieve the size distribution of atmospheric particles from solar aureole radiance measurements. Normalization using total optical thickness based on measurement of the ...

J. G. DeVore

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Particle measurement systems and methods  

SciTech Connect

A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

Steele, Paul T. (Livermore, CA)

2011-10-04T23:59:59.000Z

362

Optical voltage reference  

DOE Patents (OSTI)

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26T23:59:59.000Z

363

Optical voltage reference  

DOE Patents (OSTI)

An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

Rankin, R.; Kotter, D.

1992-12-31T23:59:59.000Z

364

Particle creation in (2+1) circular dust collapse  

E-Print Network (OSTI)

We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a BTZ black hole, we recover the expected Hawking radiation. 1

Sashideep Gutti; T. P. Singh

2007-01-01T23:59:59.000Z

365

Small Particles in Cirrus  

NLE Websites -- All DOE Office Websites (Extended Search)

Particles in Cirrus Particles in Cirrus Because the reflective properties of ice crystals in cirrus clouds can greatly influence the amount of solar energy that reaches the Earth, scientists use information about the shape and size of ice crystals as input to climate models. These data are obtained by satellite instruments, ground-based sensors, and research aircraft equipped with probes. However, notable discrepancies among these measurements have led to considerable uncertainty in how to represent these properties in climate models. From December 2009 through April 2010, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will sponsor the use of an instrumented aircraft to obtain the most comprehensive set of measurements of ice crystals in cirrus clouds yet obtained. In conjunction with

366

Particle Data Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About PDG About PDG About the PDG PDG authors Order PDG products PDG citation Encoder tools Job at LBNL Contact Us Downloads Resources Errata Archives Atomic Nuclear Properties Online HEP Info Non-PDG Databases Durham-RAL databases Current experiments Guide to Data Partial-wave analyses Contact Us News The "Reviews, Tables, Plots" section has been updated. The next book edition is due in early summer 2014, and the booklet in late summer 2014. Funded By: US DOE US NSF CERN MEXT (Japan) INFN (Italy) MEC (Spain) IHEP & RFBR (Russia) Mirrors: USA (LBNL) Brazil CERN Indonesia Italy Japan (KEK) Russia (Novosibirsk) Russia (Protvino) UK (Durham) The Review of Particle Physics J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

367

Particle Data Group - Authors  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Edition and 2007 Web Update 6 Edition and 2007 Web Update (Click on Author Name to get Email address, phone numbers, etc.) RPP authors New authors of 2007 Web Update M. Antonelli, 102 H. Baer, 64 G. Bernardi, 103 M. Carena, 51 M.-C. Chen, 11 B. Dobrescu, 51 J.-F. Grivaz, 104 T. Gutsche, 105 J. Huston, 45 T. Junk, 51 C.-J. Lin, 1 H. Mahlke, 106 P. Mohr, 107 P. Nevski, 75 S. Rolli, 108 A. Romaniouk, 109 B. Seligman, 110 M. Shaevitz, 111 B. Taylor, 107 M. Titov, 56,112 G. Weiglein, 78 A. Wheeler, 69 Authors of the 2006 Review of Particle Physics W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (bibtex format) Also see: PS format or PDF format. AUTHORS OF LISTINGS AND REVIEWS: (Click on Author Name to get Email address, phone numbers, etc.) RPP authors (RPP 2006)

368

Particle detector spatial resolution  

DOE Patents (OSTI)

Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

Perez-Mendez, V.

1992-12-15T23:59:59.000Z

369

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating particles: Animation The above is an animation of the following concept: This is a test search string for google...

370

Resonance, particle dynamics, and particle transmission in the micro-accelerator platform  

Science Conference Proceedings (OSTI)

We describe particle dynamics in the Micro-Accelerator Platform (MAP), a slab-symmetric dielectric laser accelerator (DLA), and model the expected performance of recently fabricated MAP structures. The quality of the structure resonances has been characterized optically, and results are compared with simulation. 3D trajectory analysis is used to model acceleration in those same structures 'as built.' Results are applied to ongoing beam transmission and acceleration tests at NLCTA/E-163, in which transmission of 60 MeV injected electrons through the beam channel of the MAP was clearly observed, despite the overfilling of the structure by the beam.

McNeur, J.; Hazra, K. S.; Liu, G.; Sozer, E. B.; Travish, G.; Yoder, R. B. [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

2012-12-21T23:59:59.000Z

371

``Hot particle`` intercomparison dosimetry  

SciTech Connect

Dosimetry measurements of four ``hot particles`` were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 {mu}m and maximum beta energies of 0.97, 046, 0.36 and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE extremity tape dosimeters, Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm{sup 2} of tissue at 18, 70, 125, and 400 {mu}m depth. Comparisons of tissue-dose averaged over 1 cm{sup 2} for 18, 70 and 125 {mu}m depth based on interpolated measured values, were within 30% for the GafChromic dye film, extrapolation chamber, NE Extremity Tape dosimeters, and Eberline RO-2 and 2A survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 {mu}m by about a factor of 2 compared with the Gaf Chromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment.

Kaurin, D.G.L.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States); Charles, M.W.; Darley, D.P.J. [Birmingham Univ. (United Kingdom); Durham, J.S. [Pacific Northwest Lab., Richland, WA (United States); Scannell, M.J. [Yankee Atomic Electric Co., Bolton, MA (United States); Soares, C.G. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-06-01T23:59:59.000Z

372

Radiation in Particle Simulations  

SciTech Connect

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.

More, R; Graziani, F; Glosli, J; Surh, M

2010-11-19T23:59:59.000Z

373

Particle production at HERA  

E-Print Network (OSTI)

H1 has measured a number of different known particles and compared their production to QCD models and to other reactions such as N-N collisions. ZEUS has also measured the production of K0SK0S pairs with a view to searching for glueballs. Several resonances are seen which are glueball candidates. The results on the masses and widths are compared to other experiments.

Changyi Zhou

2009-05-30T23:59:59.000Z

374

Particles, superparticles, and twistors  

Science Conference Proceedings (OSTI)

The covariant Green-Schwarz action for a superstring has never been quantized covariantly. The physics behind this is discussed. We then consider the corresponding point-particle action in four dimensions, and write down a master action from which it can be obtained as a gauge choice: the ''space-time gauge.'' There is also a ''twistor gauge,'' in which covariant quantization is straightforward (as noted previously by Shirafuji).

Bengtsson, A.K.H.; Bengtsson, I.; Cederwall, M.; Linden, N.

1987-09-15T23:59:59.000Z

375

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

376

DTIRC based optical collimators  

Science Conference Proceedings (OSTI)

Non-imaging optical concentrators have been used in the past to increase the power density of incoming radiation in applications such as photovoltaic (PV) solar and optical wireless communications. This paper explores the use of Dielectric Totally Internally ... Keywords: DTIRC, collimator, concentrator, non-imaging, optical

Roberto Ramirez-Iniguez; Ali Ahmadinia; Hernando Fernandez-Canque

2011-09-01T23:59:59.000Z

377

Reclaiming Blackness: (Counter) Narratives of Racial Kinship in Black Gay Men‘s Sexual Stories  

E-Print Network (OSTI)

Black gay male identities and their place within the social hierarchy are organized by interlocking systems of race, sexuality, gender and class. This produces the social marginality of black gay men in seemingly neutral ways. Prominent features of this systemic oppression are stock stories of black gay life that construct black gay men as pathological, dangerous, conflicted, inauthentically black, emasculated, and heretical within public and academic discourses. In order to better understand these dynamics and add to the empirical literature on race/sexuality intersections, fifty-two men identifying themselves as black/African American and as having relationships with other men, participated in semi-structured one-on-one interviews which explored their accounts of the structural arrangements, social interactions, and cultural meaning systems that defined the experience of being both black and gay in America. These interviews revealed that black gay men construct rich and complex counter narratives which not only expose the complex structural arrangements, cultural practices and racial ideologies that produce their marginality, but also remediate black gay manhood as part of the black diaspora. These narrative challenges illuminated discursive, performative and cultural practices, as well as social interactions occurring in three areas of the men‘s lives. First, were strategic uses of a hegemonic masculine form I call the "Super Black Man" (SBM) by which the men counteract the heteronormative, and hypermasculine prerequisites of respectable black masculinity, and represent themselves as racially-conscious and respectable black men. Participants also constructed narrative challenges to those cultural repertoires produced by the black church which organize the dominant scripts of black, Christian identity. These accounts were distinguished by the academic resources they utilized to re-theorize the relationship between Christian faith and the black body, confront the white racial framing and heteronormative assumptions embedded in church doctrine, and transform their outsider status within these communities. Finally participants‘ narratives also illustrate multiple dimensions by which a black racial framing organizes their experiences as black gay men, and their connection to black communities. These negotiations suggest the need to theorize race/sexuality intersections as having both structural and interpretative dimensions and to see the intersection of race and culture as complicating the manifestation of racial inequality.

Chambers, Christopher Scott

2011-05-01T23:59:59.000Z

378

Collisional Particle Disks  

E-Print Network (OSTI)

We present a new, simple, fast algorithm to numerically evolve disks of inelastically colliding particles surrounding a central star. Our algorithm adds negligible computational cost to the fastest existing collisionless N-body codes, and can be used to simulate, for the first time, the interaction of planets with disks over many viscous times. Though the algorithm is implemented in two dimensions-i.e., the motions of bodies need only be tracked in a plane-it captures the behavior of fully three-dimensional disks in which collisions maintain inclinations that are comparable to random eccentricities. We subject the algorithm to a battery of tests for the case of an isolated, narrow, circular ring. Numerical simulations agree with analytic theory with regards to how particles' random velocities equilibrate; how the ring viscously spreads; and how energy dissipation, angular momentum transport, and material transport are connected. We derive and measure the critical value of the coefficient of restitution above which viscous stirring dominates inelastic damping and the particles' velocity dispersion runs away.

Yoram Lithwick; Eugene Chiang

2006-07-11T23:59:59.000Z

379

NIST Optical Radiation Staff Directory  

Science Conference Proceedings (OSTI)

Optical Radiation Staff Directory. Staff. Name, Position, Office Phone. ... Contact. Optical Radiation Group Eric Shirley, Group Leader. ...

2013-08-02T23:59:59.000Z

380

Nano-engineering by optically directed self-assembly.  

Science Conference Proceedings (OSTI)

Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

Furst, Eric (University of Delaware, Newark, DE); Dunn, Elissa (Yale University, New Haven, CT); Park, Jin-Gyu (Yale University, New Haven, CT); Brinker, C. Jeffrey; Sainis, Sunil (Yale University, New Haven, CT); Merrill, Jason (Yale University, New Haven, CT); Dufresne, Eric (Yale University, New Haven, CT); Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John (University of Delaware, Newark, DE); Lele, Pushkar (University of Delaware, Newark, DE); Mittal, Manish (University of Delaware, Newark, DE)

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nano Particles – Supercritical Fluid Process  

Scientists at Idaho National Laboratory have invented a new method of producing quantum particles of varying dimensions by employing supercritical ...

382

The Role of Metaphor in the Darwin Debates: Natural Theology, Natural Selection, and Christian Production of Counter-Metaphor  

E-Print Network (OSTI)

The presence of metaphorical language in Charles Darwin's On the Origin of Species has been the source of much debate, particularly in the interaction between Darwin's theory and the Christian faith. The metaphorical language used to describe "nature," "evolution," "natural theology," and "natural selection" is examined?within Christianity prior to Darwin, in Darwin's writing of the Origin, and in the responses of three Victorian Christian critics of science. "Natural selection" and "evolution" had metaphorical meanings prior to Darwin's use of these terms. "Nature" was a highly metaphysical concept, described by the metaphor of natural theology. "Evolution" was associated with epic understandings of human progress. The metaphor of natural theology was particularly important to the faith of Western Christians by the time of Darwin. In order to better understand the role of natural theology, the theories of metaphor developed by Kenneth Burke in "Four Master Tropes" and by George Lakoff and Mark Johnson in Metaphors We Live By are compared. This comparison results in the development of an expansion of Lakoff and Johnson's metaphor theory, a model termed experienced metaphor. This model is used to explain Victorian Christians' emotional adherence to natural theology. Many of the interpreters of Darwin's work, both secular and Christian, saw natural selection as a rival to natural theology. The works of three prominent Victorians who attempted to defend natural theology against the apparent onslaughts of science are evaluated for additional metaphorical language regarding nature and evolution. Philip Gosse, G. K. Chesterton, and Charles Spurgeon each produced counter-metaphors to defend natural theology?metaphors of awe/wonder and of sin/destruction. The rhetorical effects of these counter-metaphors promote the rejection of Darwin's theory of evolution. The counter-metaphors identified are still in circulation within the debate over Darwin and Christianity today. The presence of metaphor in this debate deserves greater attention, in order to understand how metaphor affects the thinking of both Christian and secular audiences regarding Darwinian evolution.

Neumann, Juliet

2012-05-01T23:59:59.000Z

383

Evaluation of emerging parallel optical link technology for high energy physics  

Science Conference Proceedings (OSTI)

Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

2012-01-01T23:59:59.000Z

384

Omnidirectional fiber optic tiltmeter  

DOE Patents (OSTI)

A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

Benjamin, B.C.; Miller, H.M.

1983-06-30T23:59:59.000Z

385

Prediction of Severe Accident Counter Current Natural Circulation Flows in the Hot Leg of a Pressurized Water Reactor  

Science Conference Proceedings (OSTI)

During certain phases of a severe accident in a pressurized water reactor (PWR), the core becomes uncovered and steam carries heat to the steam generators through natural circulation. For PWR's with U-tube steam generators and loop seals filled with water, a counter current flow pattern is established in the hot leg. This flow pattern has been experimentally observed and has been predicted using computational fluid dynamics (CFD). Predictions of severe accident behavior are routinely carried out using severe accident system analysis codes such as SCDAP/RELAP5 or MELCOR. These codes, however, were not developed for predicting the three-dimensional natural circulation flow patterns during this phase of a severe accident. CFD, along with a set of experiments at 1/7. scale, have been historically used to establish the flow rates and mixing for the system analysis tools. One important aspect of these predictions is the counter current flow rate in the nearly 30 inch diameter hot leg between the reactor vessel and steam generator. This flow rate is strongly related to the amount of energy that can be transported away from the reactor core. This energy transfer plays a significant role in the prediction of core failures as well as potential failures in other reactor coolant system piping. CFD is used to determine the counter current flow rate during a severe accident. Specific sensitivities are completed for parameters such as surge line flow rates, hydrogen content, as well as vessel and steam generator temperatures. The predictions are carried out for the reactor vessel upper plenum, hot leg, a portion of the surge line, and a steam generator blocked off at the outlet plenum. All predictions utilize the FLUENT V6 CFD code. The volumetric flow in the hot leg is assumed to be proportional to the square root of the product of normalized density difference, gravity, and hydraulic diameter to the 5. power. CFD is used to determine the proportionality constant in the range from 0.11 to 0.13 and termed a discharge coefficient. The value is relatively unchanged for typical surge line flow rates as well as the hydrogen content in the flow. Over a significant range of expected temperature differences for the steam generator and reactor vessel upper plenum, the discharge coefficient also remained consistent. The discharge coefficient is a suitable model for determining the hot leg counter current flow rates during this type of severe accident. (author)

Boyd, Christopher F. [United States Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2006-07-01T23:59:59.000Z

386

The neutron long counter NERO for studies of beta-delayed neutron emission in the r-process  

E-Print Network (OSTI)

The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring beta-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a beta-decay implantation station, so that beta decays and beta-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring beta-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

J. Pereira; P. Hosmer; G. Lorusso; P. Santi; A. Couture; J. Daly; M. Del Santo; T. Elliot; J. Goerres; C. Herlitzius; K. -L. Kratz; L. O. Lamm; H. Y. Lee; F. Montes; M. Ouellette; E. Pellegrini; P. Reeder; H. Schatz; F. Schertz; L. Schnorrenberger; K. Smith; E. Stech; E. Strandberg; C. Ugalde; M. Wiescher; A. Woehr

2010-07-28T23:59:59.000Z

387

Apparatus for separating particles utilizing engineered acoustic contrast capture particles  

DOE Patents (OSTI)

An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

2011-12-27T23:59:59.000Z

388

Improving Efficiency of a Counter-Current Flow Moving Bed Granular Filter  

DOE Green Energy (OSTI)

The goal of this research is to improve the performance of moving bed granular filters for gas cleaning at high temperatures and pressures. A second goal of the research is to optimize the performances of both solids and gas filtering processes through appropriate use of granular bed materials, particle sizes, feed rates etc. in a factorial study. These goals are directed toward applications of advanced coal-fired power cycles under development by the U.S. Department of Energy including pressurized fluidized bed combustion and integrated gasification/combined cycles based on gas turbines and fuel cells. Only results for particulate gas cleaning are reported here.

Colver, G.M.; Brown, R.C.; Shi, H.; Soo, D.S-C.

2002-09-18T23:59:59.000Z

389

Anomalous optical nonlinearity of dielectric nanodispersions  

SciTech Connect

We present the results of studying the nonlinear optical response of nanodispersions of semiconductor (TiO{sub 2}, ZnO) and dielectric (SiO{sub 2}, Al{sub 2}O{sub 3}) nanoparticles of spherical, spheroidal and flake shape, suspended in polar and nonpolar dielectric matrices (water, isopropanol, polymethylsiloxane and transformer oil) by means of z-scanning in the field of low-intensity visible laser radiation. It is found that, unlike semiconductor nanoparticles and particles of spherical shape, flake-shaped SiO{sub 2} and Al{sub 2}O{sub 3} nanoparticles suspended in nonpolar matrices exhibit nonlinear optical response within the intensity interval from 0 to 500 W cm{sup -2} that vanishes at higher intensities. The diagrams of energy states of the optical electrons in nanoparticles that allow explanation of differences in the nonlinear-optical properties of nanodispersions are proposed. Good agreement between the experimental and theoretical dependences of nonlinear refractive indices and absorption coefficients on the intensity of radiation is observed. (optical nanostructures)

Milichko, V A; Dzyuba, V P; Kul'chin, Yurii N

2013-06-30T23:59:59.000Z

390

A brief examination of optical tagging technologies.  

SciTech Connect

Presented within this report are the results of a brief examination of optical tagging technologies funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The work was performed during the summer months of 2002 with total funding of $65k. The intent of the project was to briefly examine a broad range of approaches to optical tagging concentrating on the wavelength range between ultraviolet (UV) and the short wavelength infrared (SWIR, {lambda} < 2{micro}m). Tagging approaches considered include such things as simple combinations of reflective and absorptive materials closely spaced in wavelength to give a high contrast over a short range of wavelengths, rare-earth oxides in transparent binders to produce a narrow absorption line hyperspectral tag, and fluorescing materials such as phosphors, dies and chemically precipitated particles. One technical approach examined in slightly greater detail was the use of fluorescing nano particles of metals and semiconductor materials. The idea was to embed such nano particles in an oily film or transparent paint binder. When pumped with a SWIR laser such as that produced by laser diodes at {lambda}=1.54{micro}m, the particles would fluoresce at slightly longer wavelengths, thereby giving a unique signal. While it is believed that optical tags are important for military, intelligence and even law enforcement applications, as a business area, tags do not appear to represent a high on return investment. Other government agencies frequently shop for existing or mature tag technologies but rarely are interested enough to pay for development of an untried technical approach. It was hoped that through a relatively small investment of laboratory R&D funds, enough technologies could be identified that a potential customers requirements could be met with a minimum of additional development work. Only time will tell if this proves to be correct.

Ackermann, Mark R.; Cahill, Paul A. (Aspecular Optics, Dayton, OH); Drummond, Timothy J.; Wilcoxon, Jess Patrick

2003-07-01T23:59:59.000Z

391

Non-linear optical crystal vibration sensing device  

SciTech Connect

A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

Kalibjian, Ralph (Livermore, CA)

1994-01-11T23:59:59.000Z

392

Non-linear optical crystal vibration sensing device  

DOE Patents (OSTI)

The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.

Kalibjian, R.

1992-12-31T23:59:59.000Z

393

Classification of Volatile Engine Particles  

Science Conference Proceedings (OSTI)

Volatile particles cannot be detected at the engine exhaust by an aerosol detector. They are formed when the exhaust is mixed with ambient air downstream. Lack of a precise definition of volatile engine particles has been an impediment to engine manufacturers and regulatory agencies involved in the development of an effective control strategy. It is beyond doubt that volatile particles from combustion sources contribute to the atmospheric particulate burden, and the effect of that contribution is a critical issue in the ongoing research in the areas of air quality and climate change. A new instrument, called volatile particle separator (VPS), has been developed. It utilizes a proprietary microporous metallic membrane to separate particles from vapors. VPS data were used in the development of a two-parameter function to quantitatively classify, for the first time, the volatilization behavior of engine particles. The value of parameter A describes the volatilization potential of an aerosol. A nonvolatile particle has a larger A-value than a volatile one. The value of parameter k, an effective evaporation energy barrier, is found to be much smaller for small engine particles than that for large engine particles. The VPS instrument provides a means beyond just being a volatile particle remover; it enables a numerical definition to characterize volatile engine particles.

Cheng, Mengdawn [ORNL

2013-01-01T23:59:59.000Z

394

The Universe Adventure - Fundamental Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Particles Fundamental Particles Chart of Fundamental Particles All matter in the universe is comprised of fundamental particles. So what exactly makes up this matter? All matter is made of fundamental particles that came into being at the birth of the Universe. Quarks experience the strong force which is carried by massless particles called gluons. They bond together in specific combinations to form protons, neutrons, and other hadrons. Leptons do not experience the strong force but may interact via the electromagnetic force, the weak force, or both. Anti-quarks and anti-leptons are exactly the same as their quark and lepton counterparts, but have an opposite charge. All massive particles are influenced by the force of gravity. Quark-Gluon Plasma: 10-12 Seconds After the Big Bang

395

Optical Resonators in Current and Future Experiments of the ALPS Collaboration  

Science Conference Proceedings (OSTI)

The ALPS collaboration runs a “light shining through a wall” (LSW) experiment to search for weakly interacting sub?eV particles (WISPs). Its sensitivity is significantly enhanced by the incorporation of a large?scale production resonator and a small?scale high?power resonant second harmonic generator. Here we report on important experimental details and limitations of these resonators and derive recommendations for further experiments. A very promising improvement for a future ALPS experiment is the incorporation of an additional large?scale regeneration resonator. We present a rough sketch of how to combine a regeneration resonator with a single?photon counter (SPC) as detector for regenerated photons.

T. Meier; The ALPS collaboration

2010-01-01T23:59:59.000Z

396

A Physical Protection Systems Test Bed for International Counter-Trafficking System Development  

Science Conference Proceedings (OSTI)

Physical protection systems have a widespread impact on the nuclear industry in areas such as nuclear safeguards, arms control, and trafficking of illicit goods (e.g., nuclear materials) across international borders around the world. Many challenges must be overcome in design and deployment of foreign border security systems such as lack of infrastructure, extreme environmental conditions, limited knowledge of terrain, insider threats, and occasional cultural resistance. Successful security systems, whether it be a system designed to secure a single facility or a whole border security system, rely on the entire integrated system composed of multiple subsystems. This test bed is composed of many unique sensors and subsystems, including wireless unattended ground sensors, a buried fiber-optic acoustic sensor, a lossy coaxial distributed sensor, wireless links, pan-tilt-zoom cameras, mobile power generation systems, unmanned aerial vehicles, and fiber-optic-fence intrusion detection systems. A Common Operating Picture software architecture is utilized to integrate a number of these subsystems. We are currently performance testing each system for border security and perimeter security applications by examining metrics such as probability of sense and a qualitative understanding of the sensor s vulnerability of defeat. The testing process includes different soil conditions for buried sensors (e.g., dry, wet, and frozen) and an array of different tests including walking, running, stealth detection, and vehicle detection. Also, long term sustainability of systems is tested including performance differences due to seasonal variations (e.g. summer versus winter, while raining, in foggy conditions). The capabilities of the test bed are discussed. Performance testing results, both at the individual component level and integrated into a larger system for a specific deployment (in situ), help illustrate the usefulness and need for integrated testing facilities to carry out this mission. The test bed provides access to grassy fields, wooded areas, and a large waterway three distinct testing environments. The infrastructure supporting deployment of systems at the test bed includes grid power, renewable power systems, climate controlled enclosures, high bandwidth wireless links, and a fiber optic communications backbone. With over 10 acres of dedicated area and direct waterway access, the test bed is well suited for long term test and evaluation of physical protection and security systems targeting a wide range of applications.

Stinson, Brad J [ORNL; Kuhn, Michael J [ORNL; Donaldson, Terrence L [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Pickett, Chris A [ORNL

2011-01-01T23:59:59.000Z

397

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

398

Multichannel optical sensing device  

DOE Patents (OSTI)

A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

Selkowitz, Stephen E. (Piedmont, CA)

1990-01-01T23:59:59.000Z

399

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

1988-01-01T23:59:59.000Z

400

Atmospheric optical calibration system  

DOE Patents (OSTI)

An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

Hulstrom, R.L.; Cannon, T.W.

1988-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Selectively Erbium Doped Titanium Diffused Optical Waveguide Amplifiers in Lithium Niobate  

E-Print Network (OSTI)

Selectively erbium (Er) doped titanium (Ti) in-diffused optical waveguide amplifiers on lithium niobate (LiNbO3) substrate have been fabricated and characterized in the wavelength regime around ? = 1.53?m using counter-directional pumping at ?P = 1.48?m. LiNbO3 waveguide amplifiers are desirable for providing gain in optical circuit chips through integration with other optical elements on a single substrate. A prerequisite for achieving useful gain rests on the optimization of overlap between the incident guided optical signal mode distribution and the evolving emission from excited Er ions. The extent of overlap can be controlled by adjusting fabrication parameters. Fabrication parameters for Er-doped Ti in-diffused waveguide amplifiers of useful optical gain have been optimized by diffusing selective patterns of vacuum-deposited 17nm-thick erbium film at 1100?C for 100 hours into LiNbO3, and integrating with 7?m-wide single mode straight channel waveguides formed by diffusing 1070Å thick titanium film into the LiNbO3. Small-signal gain characterization was carried out with a -30 dBm of transmitted input signal power at ?S=1531nm with counter-directionally launched pump power ranging between 0 to 119mW at ?P=1488nm, using TM polarization for both the signal and pump beams. At a maximum launched pump power of 119mW, a signal enhancement of 8.8dBm for 25mm-long erbium doped region, and 11.6dBm for 35mm-long erbium doped region were obtained. The corresponding calculated net gain values are 1.8dB and 2.8dB, for the 25mm-long and 35mm-long Er-doped regions, respectively.

Suh, Jae Woo

2010-12-01T23:59:59.000Z

402

Visualizing Particle-in-Cell Simulation of Laser Wakefield Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

and assist in the planning of the next generation of particle accelerators and ultrafast applications in chemistry and biology. This image shows a horizontal slice through...

403

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

to detect an event, individual particles can be singled out from the multitudes for analysis. Following each event, computers collect and interpret the vast quantity of data...

404

An imaging co-axial tube electrodynamic trap for manipulation of charged particles  

Science Conference Proceedings (OSTI)

A tubular particle trapping device was designed and fabricated using two co-axial electrically conductive tubes with diameters of 5 mm and 7 mm, respectively. The device was integrated with an imaging camera and optical fiber bundle for real time monitoring of trapped particle motion. Charged microparticles of 3 to 50 m diameter can be suspended in air at ambient pressure using the device utilizing a quadrupole potential with an alternating voltage of amplitude 300 V to 750 V and frequency of 30 Hz to 140 Hz. Controlled trapping of a single particle or multiple particles can be achieved by tuning the voltage amplitude. The particle remained trapped when the entire assembly was translated or rotated. The device can be used as a manipulator for charged particle transport and repositioning.

Jiang, Ms. Linan [University of Arizona; Whitten, William B [ORNL; Pau, Dr. Stanley [University of Arizona/Bell Labs

2011-01-01T23:59:59.000Z

405

Optically measuring interior cavities  

DOE Patents (OSTI)

A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

Stone, Gary Franklin (Livermore, CA)

2009-11-03T23:59:59.000Z

406

Optically measuring interior cavities  

SciTech Connect

A method of measuring the three-dimensional volume or perimeter shape of an interior cavity includes the steps of collecting a first optical slice of data that represents a partial volume or perimeter shape of the interior cavity, collecting additional optical slices of data that represents a partial volume or perimeter shape of the interior cavity, and combining the first optical slice of data and the additional optical slices of data to calculate of the three-dimensional volume or perimeter shape of the interior cavity.

Stone, Gary Franklin (Livermore, CA)

2008-12-21T23:59:59.000Z

407

Optical linear algebra  

SciTech Connect

Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

Casasent, D.; Ghosh, A.

1983-01-01T23:59:59.000Z

408

Optical Technology News  

Science Conference Proceedings (OSTI)

... Could Speed Innovation in Solar Devices Release ... Device Measures Absolute Optical Power in Fiber at ... of Standards and Technology (NIST) have ...

2010-05-24T23:59:59.000Z

409

Latching Micro Optical Switch  

Sandia National Laboratories has developed a latching switch for optical fibers. One or more fibers are moved by an actuator between two positions, ...

410

Optical Technology Portal  

Science Conference Proceedings (OSTI)

... Instruments. Primary optical watt radiometer (POWR) facility ... into the market and it is expected that many of the light sources currently used for ...

2013-06-27T23:59:59.000Z

411

Glass and Optical Materials  

Science Conference Proceedings (OSTI)

NMR Insight into Glass Formers and Modifiers · NMR Studies on Biomaterials and Bioactive Glasses · Non-Linear Optical Properties in Glasses.

412

Particle beam injection system  

SciTech Connect

This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

Jassby, Daniel L. (Princeton, NJ); Kulsrud, Russell M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

413

Particle Data Group - Authors  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Data Group Associates and Advisors Particle Data Group Associates and Advisors Aguilar-Benitez, Amsler, Antonelli, Arguin, Armstrong, Artuso, Asner, Babu, Baer, Band, Barberio, Barnett, Battaglia, Bauer, Beringer, Bernardi, Bertl, Besson, Bichsel, Biebel, Bloch, Blucher, Blusk, Bunakov, Burchat, Cahn, Carena, Carone, Casas Serradilla, Casper, Cattai, Ceccucci, Chakraborty, Chen, Chivukula, Copic, Cousins, Cowan, Crawford, Dahl, Dalitz, D'Ambrosio, DeGouvea, DeGrand, Damour, Desler, Dissertori, Dobbs, Dobrescu, Donahue, Doser, Drees, Edwards,A, Edwards, Eidelman, Elvira, Erler, Ezhela, Fasso', Feng, Fetscher, Fields, Filimonov, Foster, Freedman, Froidevaux, Fukugita, Gaisser, Garren, Geer, Gerber, Gerbier, Gherghetta, Gibbons, Gilman, Giudice, Goldhaber, Goodman, Grab, Gritsan, Grivaz, Groom, Grünewald, Gurtu, Gutsche, Haber, Hagiwara, Hagmann, Hanhart, Harper , Hayes, Heltsley, Hernàndez-Rey, Hewett, Hikasa, Hinchliffe, Holder, Höcker, Hogan, Höhler, Holtkamp, Honscheid , Huston , Igo-Kemenes, Jackson, James, Jawahery, Johnson, Junk, Karlen, Kayser, Kirkby, Klein, Kleinknecht, Klempt, Knowles, Kolb, Kolda, Kowalewski, Kreitz, Kreps, Krusche, Kuyanov, Kwon, Lahav, Landua, Langacker , Lepage, Liddle, Ligeti, Lin, Liss, Littenberg, Liu, LoSecco, Lugovsky,K, Lugovsky,S, Lugovsky,V, Lynch, Lys, Mahlke, Mangano, Mankov, Manley, Mannel, Manohar, March-Russell, Marciano, Martin, Masoni, Matthews, Milstead, Miquel, Mönig, Mohr, Morrison, Murayama, Nakada, Nakamura, Narain, Nason, Navas, Nevski, Nicholson, Nir, Olive, Oyanagi, Pape, Patrignani, Peacock, Piepke, Porter, Prell, Punzi, Quadt, Quinn, Raby, Raffelt, Ratcliff, Razuvaev, Renk, Richardson, Roesler, Rolandi, Rolli, Romaniouk , Roos, Rosenberg, Rosner, Sachrajda, Sakai, Salam, Sanda, Sarkar, Sauli, Schaffner, Schindler, Schmitt, Schneider, Scott, Seligman, Shaevitz, Shrock, Silari, Skands, Smith, Sjöstrand, Smoot, Sokolosky, Spanier, Spieler, Spooner, Srednicki, Stahl, Stanev, Stone, Stone,S, Streitmatter, Sumiyoshi, Suzuki, Syphers, Tanabashi, Taylor, Terning, Titov, Tkachenko, Törnqvist, Tovey, Trilling, Trippe, Turner, Valencia, van Bibber, Vincter, Venanzoni, Vogel, Voss, Ward, Watari, Webber, Weiglein, Wells, Whalley, Wheeler, Wohl, Wolfenstein, Womersley, Woody, Workman, Yamamoto, Yao, Youssef, Zenin, Zhang, Zhu, Zyla

414

Photon and Charged Particle Data Center  

Science Conference Proceedings (OSTI)

Photon and Charged Particle Data Center. Summary: The Photon and Charged Particle Data Center has long been an ...

2013-02-26T23:59:59.000Z

415

Particle Data Group - Errata 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Review of Particle Physics 2 Review of Particle Physics J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). During the time between editions of the Review of Particle Physics and the Particle Physics Booklet, we often find a number of errata. We correct most errata on our WWW pages. If you should find errata that are not known to us, please send mail to pdg @ lbl.gov. Pages 79, 1255 of the full Review (page 144 of the DataBooklet, pages 3, 3, 10 of the Web versions below): p, n, N-resonces; Baryons Summary Table (page 3) Baryons Summary Table (page 3) p Particle Listing (page 10) (November 28, 2012): The value of the partial mean life limit for n n → νe νe should read: > 1.4 (1030 years) at 90% CL. Page 320 of the full Review (page 4 of the Web versions below):

416

ARM - Measurement - Cloud ice particle  

NLE Websites -- All DOE Office Websites (Extended Search)

ice particle ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle Particles made of ice found in clouds. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MET : Surface Meteorological Instrumentation Field Campaign Instruments REPLICATOR : Balloon-borne Ice Crystal Replicator CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor LEARJET : Lear Jet PARTIMG : Particle imager UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments

417

Optics Communications 86 ( 199 1) 38 l-385 OPTICS COMMUNICATIONS  

E-Print Network (OSTI)

- countered case of multiple substates of the electronic ground state also population differences and coher sublevels. We analyze the case of a J= 1/2-J = l/2 transition with arbitrary ground-state polarization in the limit of a weak probe beam. It is found that transverse components of the ground-state orientation lead

Suter, Dieter

418

Classical Models of Subatomic Particles  

E-Print Network (OSTI)

We look at the program of modelling a subatomic particle---one having mass, charge, and angular momentum---as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat space.

R. B. Mann; M. S. Morris

1993-07-21T23:59:59.000Z

419

Particle Dynamics And Emergent Gravity  

E-Print Network (OSTI)

The emergent gravity proposal is examined within the framework of noncommutative QED/gravity correspondence from particle dynamics point of view.

Amir H. Fatollahi

2008-05-08T23:59:59.000Z

420

Recent particle searches at PEP  

Science Conference Proceedings (OSTI)

The subject of this talk will be the recent searches for new particles that have been conducted at PEP. In such a context

R. L. Messner

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Welcome to the Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

Sprachen: Espaol (USA) Espaol (Spain) Franaise Greek Italiano Polski Portugus Slovenska Deutsch Supported by US DOE and NSF Die Particle Data Group des Lawrence Berkeley...

422

Welcome to the Particle Adventure  

NLE Websites -- All DOE Office Websites (Extended Search)

y: Espaol (USA) Espaol (Spain) Franaise Greek Italiano Polski Portugus Slovenska Supported by US DOE and NSF The Particle Data Group of Lawrence Berkeley National...

423

Nuclear & Particle Physics, Astrophysics, Cosmology  

NLE Websites -- All DOE Office Websites (Extended Search)

reality environment. Nuclear and particle physics, applied physics Animation of new reactor concept for deep space exploration 4:32 Animation of new reactor concept for deep...

424

Flexible optical panel  

DOE Patents (OSTI)

A flexible optical panel includes laminated optical waveguides, each including a ribbon core laminated between cladding, with the core being resilient in the plane of the core for elastically accommodating differential movement thereof to permit winding of the panel in a coil.

Veligdan, James T. (Manorville, NY)

2001-01-01T23:59:59.000Z

425

Optical fuel pin scanner  

DOE Patents (OSTI)

An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

Kirchner, Tommy L. (Richland, WA); Powers, Hurshal G. (Richland, WA)

1983-01-01T23:59:59.000Z

426

Optical scanning apparatus  

DOE Patents (OSTI)

An optical scanner employed in a radioactive environment for reading indicia imprinted about a cylindrical surface of an article by means of an optical system including metallic reflective and mirror surfaces resistant to degradation and discoloration otherwise imparted to glass surfaces exposed to radiation is described.

Villarreal, R.A.

1985-11-06T23:59:59.000Z

427

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

428

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

429

Electromagnetic radiation, motion of a particle and energy-mass relation  

E-Print Network (OSTI)

Equation of motion of an uncharged arbitrarily shaped dust particle under the effects of (stellar) electromagnetic radiation and thermal emission is derived. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Relations between energy and mass of the incoming and outgoing radiation are obtained, together with relations between radiation energy and mass of the particle. The role of the diffraction nicely fits the relativistic formulation of the momentum of the outgoing radiation. The inequality 0 radiation pressure, integrated over stellar spectrum). The condition for the P-R effect is $\\vec{p}'_{o}$ = (1 - $\\bar{Q}'_{pr, 1} / \\bar{Q}'_{ext}$) $\\vec{p}'_{i}$, where $\\vec{p}'_{i}$ and $\\vec{p}'_{o}$ are incoming and outgoing radiation momenta (per unit time) measured in the proper frame of reference of the particle. The case of "perfectly absorbing spherical dust particle", within geometrical optics approximation, corresponds to the condition $\\vec{p}'_{o}$ = 0.5 $\\vec{p}'_{i}$. As for arbitrarily shaped dust particle, the condition 0 radiation pressure components. The condition can add a new information to the results obtained from observations, measurements and numerical calculations of the optical properties of the particle.

J. Klacka

2008-07-18T23:59:59.000Z

430

Particle deposition in ventilation ducts  

SciTech Connect

Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

Sippola, Mark R.

2002-09-01T23:59:59.000Z

431

Production, Characterization, and Acceleration of Optical Microbunches  

SciTech Connect

Optical microbunches with a spacing of 800 nm have been produced for laser acceleration research. The microbunches are produced using a inverse Free-Electron-Laser (IFEL) followed by a dispersive chicane. The microbunched electron beam is characterized by coherent optical transition radiation (COTR) with good agreement to the analytic theory for bunch formation. In a second experiment the bunches are accelerated in a second stage to achieve for the first time direct net acceleration of electrons traveling in a vacuum with visible light. This dissertation presents the theory of microbunch formation and characterization of the microbunches. It also presents the design of the experimental hardware from magnetostatic and particle tracking simulations, to fabrication and measurement of the undulator and chicane magnets. Finally, the dissertation discusses three experiments aimed at demonstrating the IFEL interaction, microbunch production, and the net acceleration of the microbunched beam. At the close of the dissertation, a separate but related research effort on the tight focusing of electrons for coupling into optical scale, Photonic Bandgap, structures is presented. This includes the design and fabrication of a strong focusing permanent magnet quadrupole triplet and an outline of an initial experiment using the triplet to observe wakefields generated by an electron beam passing through an optical scale accelerator.

Sears, Christopher M.S.; /Stanford U. /SLAC

2008-06-20T23:59:59.000Z

432

Single Particle Difraction at FLASH  

SciTech Connect

Single-pulse coherent diffraction patterns have been collected from randomly injected single particles with a soft X-ray free-electron laser (FEL). The intense focused FEL pulse gives a high-resolution low-noise coherent diffraction pattern of the object before that object turns into a plasma and explodes. A diffraction pattern of a single particle will only be recorded when the particle arrival into the FEL interaction region coincides with FEL pulse arrival and detector integration. The properties of the experimental apparatus coinciding with these three events set the data acquisition rate. For our single particle FLASH diffraction imaging experiments: (1) an aerodynamic lens stack prepared a particle beam that consisted of particles moving at 150-200 m/s positioned randomly in space and time, (2) the 10 fs long FEL pulses were delivered at a fixed rate, and (3) the detector was set to integrate and readout once every two seconds. The effect of these experimental parameters on the rate of data acquisition using randomly injected particles will be discussed. Overall, the ultrashort FEL pulses do not set the limit of the data acquisition, more important is the effective interaction time of the particle crossing the FEL focus, the pulse sequence structure and the detector readout rate. Example diffraction patterns of randomly injected ellipsoidal iron oxide nanoparticles in different orientations are presented. This is the first single particle diffraction data set of identical particles in different orientations collected on a shot-to-shot basis. This data set will be used to test algorithms for recovering 3D structure from single particle diffraction.

Bogan, M.; Boutet, S.; Starodub, Dmitri; Decorwin-Martin, Philippe; /SLAC; Chapman, H.; Bajt, S.; Schulz, J.; /DESY; Hajdu, Janos; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; /Uppsala U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry; Frank, Matthias; Hau-Riege, Stefan P.; Woods, Bruce; /LLNL, Livermore; Rohner, Urs; /Tofwerk AG, Thun

2010-06-11T23:59:59.000Z

433

Monte Carlo calculations of the effective area and directional response of a polyethylene-moderated neutron counter  

Science Conference Proceedings (OSTI)

Two recent reports on Monte Carlo studies have examined the angular response of a multiple-rod neutron scintillator and the energy response of a moderated {sup 3}He neutron counter. This report extends those studies to provide calculations of the effective area and angular sensitivity of a polyethylene-moderated neutron detector that has multiple {sup 3}He tubes. The results (1) provide a more accurate and general determination of the sensor`s detection efficiency, (2) suggest new techniques for obtaining information about the source direction, and (3) allow evaluation of proposals to improve the high-energy detection efficiency by using the production of (n,2n) neutrons in high-density material added to the moderator.

Not Available

1995-01-01T23:59:59.000Z

434

Optical Properties of Gold Pyramidal Shells  

Science Conference Proceedings (OSTI)

We present an investigation of the optical properties of gold pyramidal shell nanoparticles. Theory shows a multiresonance spectrum at near-infrared wavelengths that is consistent with the measured extinction spectra of particles that are fabricated using a soft-lithography technique. In addition to electric dipole and electric quadrupole resonances, the calculations identify an unusual plasmon mode, which involves oscillation of the polarization perpendicular to the direction of both the incident polarization and wave vector. We show that this TE-like resonance can be suppressed by truncating the tip of the pyramid or by increasing the shell thickness without adversely affecting the in-plane dipole and quadrupole resonances.

Shuford, Kevin L [ORNL; Lee, Jeunghoon [Northwestern University, Evanston; Odom, Teri [Northwestern University, Evanston; Schatz, George C. [Northwestern University, Evanston

2008-01-01T23:59:59.000Z

435

Development of a screened cathode gas flow proportional counter for in situ field determination of alpha contamination in soil  

SciTech Connect

This study resulted in the design, construction and testing of a gas flow proportional counter for in-situ determination of soil contamination. The uniqueness of this detector is the screened material used for the cathode. A Pu-239 source of 0.006 {micro}Ci was mounted to the outside of the cathode to simulate radioactive soil. The detector probe was placed into a laboratory mock-up and tested to determine operating voltage, efficiency and energy resolution. Two gas flow proportional counters were built and tested. The detectors are cylindrical, each with a radius of 1.905 cm, having an anode wire with a radius of 0.0038 cm. The length of the smaller detector`s anode was 2.54 cm, and the length of the larger detector`s anode was 7.64 cm. Therefore, the active volumes were 28.96 cm{sup 3} and 87.10 cm{sup 3}, respectively, for the small and large detector. An operating voltage of 1,975 volts was determined to be sufficient for both detectors. The average efficiency was 2.59 {+-} 0.12% and 76.71 {+-} 10.81% for the small volume and large volume detectors, respectively. The average energy resolution for the low-energy peak of the small detector was 4.24 {+-} 1.28% and for the large-energy peak was 1.37 {+-} 0.66%. The large detectors` energy resolution was 17.75 {+-} 3.74%. The smaller detector, with better energy resolution, exhibited a bi-modal spectrum, whereas the larger detector`s spectrum centered around a single broad peak.

Bush, S.P.

1997-02-01T23:59:59.000Z

436

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

Lampert, C.M.; Visco, S.J.

1992-08-25T23:59:59.000Z

437

Electrochromic optical switching device  

DOE Patents (OSTI)

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

1992-01-01T23:59:59.000Z

438

Particle simulations of space weather  

Science Conference Proceedings (OSTI)

We review the application of particle simulation techniques to the full kinetic study of space weather events. We focus especially on the methods designed to overcome the difficulties created by the tremendous range of time and space scales present in ... Keywords: Adaptive, Implicit, Particle-in-cell, Space weather

Giovanni Lapenta

2012-02-01T23:59:59.000Z

439

Cerenkov radiation of spinning particle  

E-Print Network (OSTI)

The Cerenkov radiation of a neutral particle with magnetic moment is considered, as well as the spin-dependent contribution to the Cerenkov radiation of a charged spinning particle. The corresponding radiation intensity is obtained for an arbitrary value of spin and for an arbitrary spin orientation with respect to velocity.

I. B. Khriplovich

2008-08-11T23:59:59.000Z

440

Long range alpha particle detector  

DOE Patents (OSTI)

An alpha particle detector capable of detecting alpha radiation from distant sources. A high voltage is generated near a conductive mesh while a fan draws air containing air molecules ionized by alpha particles across the mesh. The current in the mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

Wolf, M.A.; McAdtee, J.L. III; Unruh, W.P.; Cucchiadra, A.L.; Huchton, R.L.

1990-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

In-flight particle pyrometer for thermal spray processes. Final report, October 1, 1992--December 31, 1994  

SciTech Connect

The objective of the project was to produce an industrial hardened particle temperature sensor. In general the thermal spray community believes that the particle temperature and velocity prior to impact on the substrate are two of the predominant parameters which effect coating quality. Prior to the full scale prototyping of such an instrument it was necessary to firmly establish the relationship between operating parameters, particle temperature and coating characteristics. It was shown in the first year of this project that the characteristics and consistency of the coatings formed are directly determined by particle velocity and temperature at impact. For the HVOF spray process the authors have also shown that the particle velocity is determined primarily by chamber pressure, while stoichiometry (the ratio of oxygen to fuel) has a minor influence. Hence, particle velocity can be controlled by maintaining the chamber pressure at a set point. Particle temperature, on the other hand is primarily a function of stoichiometry. Therefore particle velocity and temperature can be independently controlled. In the second year (FY-94), an industrial hardened prototype particle temperature sensor (In-flight Particle Pyrometer) was produced. The IPP is a two-color radiation pyrometer incorporating improvements which make the device applicable to the measurement of in-flight temperature of particles over a wide range of operating conditions in thermal spray processes. The device is insensitive to particulate loading (particle feed rate), particle composition, particle size distribution, and provides an ensemble average particle temperature. The sensor head is compact and coupled to the electronics via a fiber optic cable. Fiber optic coupling allows maximum flexibility of deployment while providing isolation of the electronics from electromagnetic interference and the hot, particulate laden environment of a typical spray booth. The device is applicable to all thermal spray processes, including plasma spray, HVOF, twin wire arc, and liquid metal fed processes, as well as other more conventional high temperature processes such as crucible or hearth melting.

1995-02-20T23:59:59.000Z

442

OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES  

Science Conference Proceedings (OSTI)

This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

Grant, C D; Zhang, J Z

2007-09-28T23:59:59.000Z

443

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

444

Particle Data Group - Errata 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Review of Particle Physics 7 Review of Particle Physics During the time between editions of the Review of Particle Physics and the Particle Physics Booklet, we often find a number of errata. We correct most errata on our WWW pages. If you should find errata that are not known to us, please send mail to pdg @ lbl.gov. Page 1 and multiple others of the Web version below: Gauge and Higgs Boson Particle Listings Z boson (July 16, 2007): - In sub-header text to many measurement blocks any reference to "The Z boson" note should also include reference to LEP-SLC 06 (published in Phys. Rept. 427; 257 (2006)), e.g.: 'see the note "The Z boson" and ref. LEP-SLC 06' in the "Z MASS" sub-header text (page 1). - List of Z REFERENCES, page 48, should contain LEP-SLC 06 PRPL 427 257 ALEPH, DELPHI, L3, OPAL, SLD

445

Superconducting transmission line particle detector  

DOE Patents (OSTI)

A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

Gray, K.E.

1988-07-28T23:59:59.000Z

446

Superconducting transmission line particle detector  

DOE Patents (OSTI)

A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

Gray, Kenneth E. (Naperville, IL)

1989-01-01T23:59:59.000Z

447

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

448

Microscopic analysis of irradiated AGR-1 coated particle fuel compacts  

SciTech Connect

The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3×105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

2012-10-01T23:59:59.000Z

449

Gregorian optical system with non-linear optical technology for protection against intense optical transients  

SciTech Connect

An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

Ackermann, Mark R. (Albuquerque, NM); Diels, Jean-Claude M. (Albuquerque, NM)

2007-06-26T23:59:59.000Z

450

Solids Fraction Measurement with a Reflective Fiber Optic Probe  

SciTech Connect

A method has been developed to extract solids fraction information from a reflective fiber optic probe. The commercially available reflective fiber optic probe was designed to measure axial particle velocity (both up and down directions). However, the reflected light intensity measured is related to particle size and particle concentration. A light reflection model is used to relate the reflected light intensity to solids fraction. In this model we assume that the reflected light intensity is a fixed fraction, K1, of the total light intensity lost in penetration of a solid layer. Also, the solids fraction is related to particle concentration, N, in the light path, by N = K2 (1- ?), where (1-?) is the solids fraction. The parameters K1 and K2 are determined through a calibration and curve fitting procedure. This paper describes this procedure and the steps taken to derive the values of K1 and K2. It is proposed that the reflective fiber optic can be used for real time measurement of solids fraction in a circulating fluid bed.

Seachman, S.M.; Yue, P.C.; Ludlow, J.C.; Shadle, L.J.

2006-11-01T23:59:59.000Z

451

Thin display optical projector  

DOE Patents (OSTI)

An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

Veligdan, James T. (Manorville, NY)

1999-01-01T23:59:59.000Z

452

Silicon fiber optic sensors  

DOE Patents (OSTI)

A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

2007-10-02T23:59:59.000Z

453

Fiber optic laser rod  

DOE Patents (OSTI)

A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

Erickson, G.F.

1988-04-13T23:59:59.000Z

454

Optical waveguide tamper sensor technology  

DOE Green Energy (OSTI)

Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

Carson, R.F.; Butler, M.A.; Sinclair, M.B. [and others

1997-03-01T23:59:59.000Z

455

An Analysis of Field-Aged Diesel Particulate Filter Performance: Particle Emissions Before, During and After Regeneration  

Science Conference Proceedings (OSTI)

A field-aged, passive diesel particulate filter (DPF) employed in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. Total number concentration and number-size distributions were measured by a condensation particle counter and scanning mobility particle sizer, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 1 mg/hp-hr before regeneration to 3 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameter less than 50 nm may have been emitted after regeneration since these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after four years of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 seconds of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty federal test procedure when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Domingo, Norberto [ORNL

2010-01-01T23:59:59.000Z

456

Comminution process to produce engineered wood particles of uniform size and shape with disrupted grain structure from veneer  

DOE Patents (OSTI)

Comminution process of wood veneer to produce wood particles, by feeding wood veneer in a direction of travel substantially normal to grain through a counter rotating pair of intermeshing arrays of cutting discs arrayed axially perpendicular to the direction of veneer travel, wherein the cutting discs have a uniform thickness (Td), to produce wood particles characterized by a length dimension (L) substantially equal to the Td and aligned substantially parallel to grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) substantially equal to the veneer thickness (Tv) and aligned normal to W and L, wherein the W.times.H dimensions define a pair of substantially parallel end surfaces with end checking between crosscut fibers.

Dooley, James H; Lanning, David N

2013-07-30T23:59:59.000Z

457

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-Print Network (OSTI)

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium, of mesquite and juniper. From Thermo-gravimetric analyses the pre-exponential factor (B) and activation energy of fuels for pyrolysis were obtained using single reaction models (SRM) and parallel reaction model (PRM). The single reaction model including convention Arrhenius (SRM-CA) and maximum volatile release rate model (SRM-MVR). The parallel reaction model fits the experimental data very well, followed by MVR. The CA model the least accurate model. The activation energies obtained from PRM are around 161,000 kJ/kmol and 158,000 kJ/kmol for juniper and mesquite fuels, respectively. And, the activation energies obtained from MVR are around100,000 kJ/kmol and 85,000 kJ/kmol for juniper and mesquite fuels, respectively. The effects of equivalence ratio (ER), particle size, and moisture content on the temperature profile, gas composition, tar yield, and higher heating value (HHV) were investigated. For air gasification, when moisture increased from 6% to 12% and ER decreased from 4.2 to 2.7, the mole composition of the dry product gas for mesquite varied as follow: 18-30% CO, 2-5% H2, 1-1.5% CH4, 0.4-0.6% C2H6, 52-64% N2, and 10-12% CO2. The tar yield shows peak value (150 g/Nm^3) with change in moisture content between 6-24%. The tar collected from the gasification process included light tar and heavy tar. The main composition of the light tar was moisture. The chemical properties of heavy tar were determined. For air-steam gasification, H2 rich mixture gas was produced. The HHV of the mesquite gas increased first when S: F ratio increased from 0.15 to 0.3 and when the S: F ratio increased to 0.45, HHV of the gas decreased. Mesquite was blended with the Wyoming Powder River Basin (PRB) coal with ratio of 90:10 and 80:20 in order to increase the Tpeak and HHV. It was found that the Tpeak increased with the increase of PRB coal weight percentage (0% to 20%).

Chen, Wei 1981-

2012-12-01T23:59:59.000Z

458

Methods for globally treating silica optics to reduce optical damage  

SciTech Connect

A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

2012-11-20T23:59:59.000Z

459

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

each other. The advantage of this arrangement is that both beams have significant kinetic energy, so a collision between them is more likely to produce a higher mass particle...

460

The Particle Adventure | How do we experiment with tiny particles...  

NLE Websites -- All DOE Office Websites (Extended Search)

at those places where particle beams are made to cross. On the other hand, linear accelerators are much easier to build than circular accelerators because they don't need the...

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Optical Nanomaterials for Photonics/Biophotonics  

Science Conference Proceedings (OSTI)

Applications of optical nanoparticles in telecommunications, photodetectors, LED , etc. - Fluorescent Imaging using optical nanolabels (including multiphoton ...

462

Fluorescent Optical Position Sensor  

Sandia National Laboratories has created a method and apparatus for measuring the position of an object.  It relies on the attenuation of fluorescence light carried inside a fluorescent optical fiber to determine the position of an object. 

463

Stereoscopic optical viewing system  

DOE Patents (OSTI)

An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

Tallman, C.S.

1986-05-02T23:59:59.000Z

464

Integrated optical isolators  

E-Print Network (OSTI)

Introduction: Optical isolators are important components in lasers. Their main function is to eliminate noise caused by back-reflections into these lasers. The need for integrated isolators comes from the continuing growth ...

Zaman, Tauhid R

2005-01-01T23:59:59.000Z

465

Optical fiber switch  

DOE Patents (OSTI)

Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

466

Optical dynamic circuit services  

Science Conference Proceedings (OSTI)

IP service, leased-line service and POTS service have been the three long-standing communication service offerings of providers. Recently, both commercial and research-andeducation network providers have started offering optical dynamic circuit services. ...

Malathi Veeraraghavan; Mark Karol; George Clapp

2010-11-01T23:59:59.000Z

467

Electro-Optical Characterization  

DOE Green Energy (OSTI)

In the Electro-Optical Characterization group, within the National Center for Photovoltaic's Measurements and Characterization Division, we use various electrical and optical experimental techniques to relate photovoltaic device performance to the methods and materials used to produce them. The types of information obtained by these techniques range from small-scale atomic-bonding information to large-scale macroscopic quantities such as optical constants and electron-transport properties. Accurate and timely measurement of the electro-optical properties as a function of device processing provides researchers and manufacturers with the knowledge needed to troubleshoot problems and develop the knowledge base necessary for reducing cost, maximizing efficiency, improving reliability, and enhancing manufacturability. We work collaboratively with you to solve materials- and device-related R&D problems. This sheet summarizes our primary techniques and capabilities.

Not Available

2006-06-01T23:59:59.000Z

468

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

469

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

470

Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations  

E-Print Network (OSTI)

We compare experimental data and numerical simulations for the dynamics of inertial particles with finite density in turbulence. In the experiment, bubbles and solid particles are optically tracked in a turbulent flow of water using an Extended Laser Doppler Velocimetry technique. The probability density functions (PDF) of particle accelerations and their auto-correlation in time are computed. Numerical results are obtained from a direct numerical simulation in which a suspension of passive pointwise particles is tracked, with the same finite density and the same response time as in the experiment. We observe a good agreement for both the variance of acceleration and the autocorrelation timescale of the dynamics; small discrepancies on the shape of the acceleration PDF are observed. We discuss the effects induced by the finite size of the particles, not taken into account in the present numerical simulations.

R. Volk; E. Calzavarini; G. Verhille; D. Lohse; N. Mordant; J. -F. Pinton; F. Toschi

2007-10-17T23:59:59.000Z

471

EVOLUTION OF SOME PARTICLE DETECTORS BASED ON THE DISCHARGE IN GASES  

NLE Websites -- All DOE Office Websites (Extended Search)

61 - 61 - EVOLUTION OF SOME PARTICLE DETECTORS BASED ON THE DISCHARGE IN GASES G. Charpak CERN, Geneva, Switzerland. INTRODUCTION In this year 1969, if we look into the experimental techniques used around high-energy accelerators we observe the following situation: the bubble chamber is still an important tool, absorbing a large fraction of the activity of the community of experimentalists. Its evolution is directed towards a greater efficiency and rapidity in the automatic evalu- ation of pictures, and towards the building of giant chambers. What is it that keeps the bubble chamber surviving in the hostile surroundings of fast-growing counter techniques? Let us quote, for dis- cussion, some qualities and defects of a typical large hydrogen bubble chamber, 2 metres long:

472

Relaying an optical wavefront  

DOE Patents (OSTI)

A wavefront rely devices samples an incoming optical wavefront at different locations, optically relays the samples while maintaining the relative position of the samples and the relative phase between the samples. The wavefront is reconstructed due to interference of the samples. Devices can be designed for many different wavelengths, including for example the ultraviolet, visible, infrared and even longer wavelengths such as millimeter waves. In one application, the device function as a telescope but with negligible length.

Sweatt, William C. (Albuquerque, NM); Vawter, G. Allen (Corrales, NM)

2007-03-06T23:59:59.000Z

473

Fiber optic detector  

DOE Patents (OSTI)

This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

Partin, J.K.; Ward, T.E.; Grey, A.E.

1990-12-31T23:59:59.000Z

474

Optical pumping in a whispering-mode optical waveguide  

DOE Patents (OSTI)

A device and method for optical pumping in a whispering mode optical waveguide are described. Both a helical ribbon and cylinder are disclosed which incorporate an additional curvature for confining the beam to increase intensity. An optical pumping medium is disposed in the optical path of the beam as it propagates along the waveguide. Optical pumping is enhanced by the high intensities of the beam and long interaction path lengths which are achieved in a small volume.

Kurnit, N.A.

1981-08-11T23:59:59.000Z

475

Optical access port  

DOE Patents (OSTI)

A 0.025 m diameter optical access port system is provided for a high-pressure (20.4 bars) and high-temperature (538{degrees}C) fixed-bed coal gasification process stream. A pair of proximal channels lead into the pipe containing the process stream with the proximal channels disposed on opposite sides of the pipe and coaxial. A pair of ball valves are attached to respective ends of proximal channels for fluidly closing the respective channels in a closed position and for providing a fluid and optical aperture in an open position. A pair of distal channels are connected to respective ball valves. These distal channels are also coaxial with each other and with the proximal channels. Each distal channel includes an optical window disposed therein and associated sealing gaskets. A purge gas is introduced into each distal channel adjacent a respective optical window. The purge gas is heated by a heater before entry into the distal channels. Preferably the optical windows are made of fused silica and the seals are Grafoil gaskets which are pressed against the optical window. 3 figs.

Lutz, S.A.; Anderson, R.J.

1988-09-14T23:59:59.000Z

476

Fibre optics: Forty years later  

Science Conference Proceedings (OSTI)

This paper presents a brief overview of the state of the art in fibre optics and its main applications: optical fibre communications, fibre lasers and fibre sensors for various physical property measurements. The future of fibre optics and the status of this important area of the modern technology in Russia are discussed. (fiber optics)

Dianov, Evgenii M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

2010-01-31T23:59:59.000Z

477

High Speed Particle Image Velocimetry  

This patent application discloses a novel method to simultaneously track the motion of high numbers of object images under extreme, high concen-tration conditions. Although the software is designed to simultaneously track large numbers of particle ...

478

Study of heavy flavored particles  

Science Conference Proceedings (OSTI)

This report discusses progress on the following topics: time-of- flight system; charmed baryon production and decays; D decays to baryons; measurement of sigma plus particles magnetic moments; and strong interaction coupling. (LSP)

Not Available

1991-01-01T23:59:59.000Z

479

Particle Filtering in Geophysical Systems  

Science Conference Proceedings (OSTI)

The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. ...

Peter Jan van Leeuwen

2009-12-01T23:59:59.000Z

480

Particle Physics: a Progress Report  

E-Print Network (OSTI)

We present a concise review of where we stand in particle physics today. First we discuss QCD, then the electroweak sector and finally the motivations and the avenues for new physics beyond the Standard Model.

Guido Altarelli

2006-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "optical particle counter" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.