Sample records for optic downhole seismic

  1. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  2. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16T23:59:59.000Z

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  3. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28T23:59:59.000Z

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  4. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-02-08T23:59:59.000Z

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  5. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  6. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-03-31T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  7. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2005-09-30T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  8. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P Paulsson

    2006-05-05T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  9. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N.P. Paulsson

    2005-08-21T23:59:59.000Z

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  10. Downhole telemetry system

    DOE Patents [OSTI]

    Normann, R.A.; Kadlec, E.R.

    1994-11-08T23:59:59.000Z

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  11. Downhole telemetry system

    DOE Patents [OSTI]

    Normann, Randy A. (Albuquerque, NM); Kadlec, Emil R. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  12. Downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20T23:59:59.000Z

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  13. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28T23:59:59.000Z

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  14. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  15. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2004-04-06T23:59:59.000Z

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  16. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  17. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24T23:59:59.000Z

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  18. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21T23:59:59.000Z

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  19. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2008-01-15T23:59:59.000Z

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  20. Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1

    E-Print Network [OSTI]

    Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1 Summary We have developed a fiber-optic strainmeter to estimate velocities and attenuation at seismic only part of the core sample, the fiber-optic strainmeter would analyze the rock sample response

  1. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  2. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  3. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19T23:59:59.000Z

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  4. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2003-12-30T23:59:59.000Z

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  5. Acoustical Communications for Wireless Downhole Telemetry Systems

    E-Print Network [OSTI]

    Farraj, Abdallah

    2012-08-22T23:59:59.000Z

    This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems...

  6. Downhole tool adapted for telemetry

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Provo, UT)

    2010-12-14T23:59:59.000Z

    A cycleable downhole tool such as a Jar, a hydraulic hammer, and a shock absorber adapted for telemetry. This invention applies to other tools where the active components of the tool are displaced when the tool is rotationally or translationally cycled. The invention consists of inductive or contact transmission rings that are connected by an extensible conductor. The extensible conductor permits the transmission of the signal before, after, and during the cycling of the tool. The signal may be continuous or intermittent during cycling. The invention also applies to downhole tools that do not cycle, but in operation are under such stress that an extensible conductor is beneficial. The extensible conductor may also consist of an extensible portion and a fixed portion. The extensible conductor also features clamps that maintain the conductor under stresses greater than that seen by the tool, and seals that are capable of protecting against downhole pressure and contamination.

  7. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  8. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07T23:59:59.000Z

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  9. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01T23:59:59.000Z

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  10. Continuous injection method controls downhole corrosion - 2

    SciTech Connect (OSTI)

    Bradburn, J.B.; Todd, R.B.

    1981-08-01T23:59:59.000Z

    In designing a continuous downhole corrosion inhibitor injection system, many interrelated factors must be considered: bottomhole pressure, inhibitor viscosity, injection rate, friction loss, hole geometry, cost, delivery time, annulus environment, elastomers, and corrosivity of well fluids. In view of the many variables associated with the design of a downhole injection system, the following design outline is presented. 8 refs.

  11. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06T23:59:59.000Z

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  12. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01T23:59:59.000Z

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  13. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  14. Harsh environments electronics : downhole applications.

    SciTech Connect (OSTI)

    Vianco, Paul Thomas

    2011-03-01T23:59:59.000Z

    The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

  15. Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: Energy ResourcesDow KokamDownhole

  16. Insights from the downhole dynamometer database

    SciTech Connect (OSTI)

    Waggoner, J.R.

    1997-03-01T23:59:59.000Z

    The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. Following a brief description of the downhole dynamometer tools, data collection program, and database content, this paper will illustrate a few of the interesting and unique insights gained from the downhole data.

  17. Development of the downhole dynamometer database

    SciTech Connect (OSTI)

    Waggoner, J.R.; Mansure, A.

    1997-02-01T23:59:59.000Z

    The Downhole Dynamometer Database is a compilation of test data collected with a set of five downhole tools built by Albert Engineering under contract to Sandia National Laboratories. The downhole dynamometer tools are memory tools deployed in the sucker rod string with sensors to measure pressure, temperature, load, and acceleration. The acceleration data is processed to yield position, so that a load vs. position dynagraph can be generated using data collected downhole. With five tools in the hole at one time, all measured data and computed dynagraphs from five different positions in the rod string are available. The purpose of the Database is to provide industry with a complete and high quality measurement of downhole sucker rod pumping dynamics. To facilitate use of the database, Sandia has developed a Microsoft Windows-based interface that functions as a visualizer and browser to the more than 40 MBytes of data. The interface also includes a data export feature to allow users to extract data from the database for use in their own programs. This paper includes a description of the downhole dynamometer tools, data collection program, database content, and a few illustrations of the data contained in the downhole dynamometer database.

  18. Downhole vibration sensing by vibration energy harvesting

    E-Print Network [OSTI]

    Trimble, A. Zachary

    2007-01-01T23:59:59.000Z

    This thesis outlines the design of a prototype electromagnetic induction vibration energy harvesting device for use in a downhole environment. First order models of the necessary components for a generic vibration energy ...

  19. New downhole steam generator tested

    SciTech Connect (OSTI)

    Bleakley, W.B.

    1981-07-01T23:59:59.000Z

    Completion of 2 field tests of a new-model down-hole steam generator paves the way for further evaluation and development of a system destined to increase California's heavy oil production. Current air pollution restrictions there prevent installation of conventional steam generators in several areas of interest to oil operators. The current series of tests, conducted by Chemical Oil Recovery Co. (CORCO) of Bakersfield, California, follows an earlier prototype operation conducted by Sandia National Laboratories in conjunction with the US Department of Energy. The CORCO tests were conducted on the surface with the generator's output going into Tenneco Oil Exploration and Production Co.'s overland-Riokern Well No. 80, located in the Kern River field 4 miles north of Bakersfield. The first test was concluded with just under 1000 bbl of steam injected, less than planned due to a higher-than-expected injection pressure. The unit operated at less than 25% capacity because of the air compressor limitation. Compressor output was only 285 psi, not enough to inject the desired volumes into the reservoir. Test data shows that injection amounted to 150 bpd of 90 to 95% quality steam at 225-psi wellhead pressure. After injection, the well was shut in for 3 days to allow soaking, then put on production. Initial production was 40 bopd at 175 F.

  20. DHE (downhole heat exchangers). [Downhole Heat Exchangers (DHE)

    SciTech Connect (OSTI)

    Culver, G.

    1990-11-01T23:59:59.000Z

    The use of downhole heat exchangers (DHE) for residential or commercial space and domestic water heating and other applications has several desirable features. Systems are nearly or completely passive -- that is, no or very little geothermal water or steam is produced from the well either reducing or completely eliminating surface environmental concerns and the need for disposal systems or injection wells. Initial cost of pumps and installation are eliminated or reduced along with pumping power costs and maintenance costs associated with pumping often corrosive geothermal fluids. Many residential and small commercial systems do not require circulating pumps because the density difference in the incoming and outgoing sides of the loop are sufficient to overcome circulating friction losses in the entire system. The major disadvantage of DHEs is their dependence on natural heat flow. In areas where geological conditions provide high permeability and a natural hydraulic gradient, DHEs can provide a substantial quantity of heat. A single 500-ft (152 m) well in Klamath Falls, Oregon, supplies over one megawatt thermal and output is apparently limited by the surface area of pipe that can be installed in the well bore. In contrast, DHEs used in conjunction with heat pumps may supply less than 8 KW from a well of similar depth. Here output is limited by conductive heat flow with perhaps a small contribution from convection near the well bore. The highest capacity DHE reported to date, in Turkey, supplies 6 MW thermal from an 820-ft (250 m) well. There were two main goals for this project. The first was to gather, disseminate and exchange internationally information on DHES. The second was to perform experiments that would provide insight into well bore/aquifer interaction and thereby provide more information on which to base DHE designs. 27 refs., 31 figs., 3 tabs.

  1. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-03-31T23:59:59.000Z

    The objective of this project is to demonstrate the impact of downhole vibration stimulation on oil production rates in a mature waterflood field. Oil & Gas Consultants International, Inc. (OGCI) will manage the project in close cooperation with the Osage Tribe as the tests will be conducted in Osage County, Oklahoma, the mineral estate of the Osage Tribe. The field is owned and operated by Calumet Oil Company. Phillips Petroleum Company will contribute their proprietary vibration core analysis of cores recovered from the pilot test area. To achieve the project objectives, the work has been divided into nine tasks, some are concurrent, while other tasks rely on completion of previous steps. The operator, Calumet Oil Company operates several field in Osage County Oklahoma. The North Burbank Unit will be the site of the test. The team will then determine where within the field to optimally locate the vibration test well. With the location determined, the test well will be drilled, cored, logged and 7-inch production casing run and cemented. In a parallel effort, OGCI will be designing, building, and testing a new version of the downhole vibration tool based on their patented and field proven whirling orbital vibrator. With the field test tool built to run in 7-inch casing. Reliability testing of the downhole tool and surface power source will be conducted in nearby field operated by Calumet Oil Company. After the core is recovered, Phillips Petroleum Company will be conducting laboratory tests utilizing their proprietary sonic core apparatus to determine fluid flow response to a range of vibration frequencies. These results, in turn, will allow final adjustments to the frequency generation mechanisms of the downhole vibration tool. One or more offset wells, near to the vibration test well, will be equipped with downhole geophones and or hydro-phones to determine the strength of signal and if the producing formation has a characteristic resonant frequency response. Surface geophones will also be set out and arranged to pick up the signal generated by the downhole vibration tool. The downhole vibrator will be installed in the test well. Monitoring the production and injection for the pilot test area will continue. As the frequency of the downhole tool is changed, the recording of seismic signals, both on the surface and downhole, will also be conducted. The results of the data collection will be a matrix of varying vibration stimulation conditions corresponding to changes in production fluid rates and seismic responses. The report on the results of the downhole vibration stimulation will be prepared and delivered using several venues. Technical papers will be submitted to the Society of Petroleum Engineers. Workshops are planned to be held for operators in Osage County and surrounding areas. A dedicated technical session on vibration stimulation may be offered at the 2002 SPE/DOE/IOR Conference, bringing together the world's experts in this emerging technology. The final task will be to close out the project.

  2. 275 C Downhole Microcomputer System

    SciTech Connect (OSTI)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31T23:59:59.000Z

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

  3. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT); Daly, Jeffery E. (Cypress, TX)

    2009-05-05T23:59:59.000Z

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  4. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  5. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2005-07-05T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  6. Remote down-hole well telemetry

    DOE Patents [OSTI]

    Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

    2004-07-20T23:59:59.000Z

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  7. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe R. (Provo, UT)

    2004-10-05T23:59:59.000Z

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  8. Polished Downhole Transducer Having Improved Signal Coupling

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28T23:59:59.000Z

    Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

  9. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  10. Downhole transmission system comprising a coaxial capacitor

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT); Rawle, Michael (Springville, UT)

    2011-05-24T23:59:59.000Z

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  11. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

    2007-04-24T23:59:59.000Z

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  12. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

    2007-04-03T23:59:59.000Z

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  13. Lock open mechanism for downhole safety valve

    SciTech Connect (OSTI)

    Shirk, S.H.

    1990-11-06T23:59:59.000Z

    This patent describes a wireline operable lock open mechanism for use in a downhole safety valve for a subterranean well conduit having an axially shiftable valve member movable downwardly between a closed and an open position relative to the conduit bore and biased to the closed position. The safety valve including a tubular housing assemblage defining an upwardly facing no-go shoulder in its upper end and a downwardly facing locking shoulder in its lower end above the valve member.

  14. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, D.S.

    1995-12-19T23:59:59.000Z

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  15. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  16. Downhole safety valve for subterranean well and method

    SciTech Connect (OSTI)

    Eriksen, E.P.V.; Drakeley, B.K.; Carmody, M.A.

    1990-07-31T23:59:59.000Z

    This patent describes a method of establishing communication with a control fluid conduit provided in the tubular wall of a fluid pressure operated downhole tool. Also described is apparatus for effecting the downhole severing of a radially, inwardly directed hollow protuberance on the tubular wall of a valve housing, the tubular wall also defining a no-go shoulder above the protuberance.

  17. Downhole Fluid Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: Energy ResourcesDow KokamDownhole Fluid

  18. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2007-11-06T23:59:59.000Z

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  19. Downhole delay assembly for blasting with series delay

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1982-01-01T23:59:59.000Z

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  20. Data Transmission System For A Downhole Component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Fox, Joe (Spanish Fork, UT); Briscoe, Michael (Lehi, UT)

    2005-01-18T23:59:59.000Z

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  1. Data transmission system for a downhole component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.

    2006-05-09T23:59:59.000Z

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  2. Signal connection for a downhole tool string

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe; Briscoe, Michael

    2006-08-29T23:59:59.000Z

    A signal transmission connection for a tool string used in exploration and production of natural resources, namely: oil, gas, and geothermal energy resources. The connection comprises first and second annular elements deployed in cooperative association with each other. The respective elements comprise inductive transducers that are capable of two-way signal transmission between each other, with downhole components of the tool string, and with ground-level equipment. The respective inductive transducers comprise one or more conductive loops housed within ferrite troughs, or within ferrite trough segments. When energized, the conductive loops produce a magnetic field suitable for transmitting the signal. The second element may be rotational in drilling applications. The respective elements may be fitted with electronic equipment to aid and manipulate the transmission of the signal. The first element may also be in communication with the World Wide Web.

  3. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30T23:59:59.000Z

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

  4. Vertical seismic profiling technique emerges as a valuable drilling tool

    SciTech Connect (OSTI)

    Roberts, R.J.; Platt, J.D.

    1984-03-19T23:59:59.000Z

    The new downhole measurement technique known as vertical seismic profiling entails lowering a geophone down ahead of the bit to acquire data on the well pressure and to determine (in strata not yet drilled) the depth to formation tops, the compaction curves, and the hardness of the rock. The basic VSP provides data useful in surface seismic interpretation, formation evaluation, and onsite decision making for the drilling program.

  5. Continuous chain bit with downhole cycling capability

    DOE Patents [OSTI]

    Ritter, Don F. (Albuquerque, NM); St. Clair, Jack A. (Albuquerque, NM); Togami, Henry K. (Albuquerque, NM)

    1983-01-01T23:59:59.000Z

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  6. Static downhole characteristics of well CGEH-1 at Coso Hot Springs...

    Open Energy Info (EERE)

    downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Static downhole...

  7. Detection of water or gas entry into horizontal wells by using permanent downhole monitoring systems

    E-Print Network [OSTI]

    Yoshioka, Keita

    2007-09-17T23:59:59.000Z

    distributed temperature sensors (DTS) in intelligent completions. Analyzing such changes will potentially aid the diagnosis of downhole flow conditions. In vertical wells, temperature logs have been used successfully to diagnose the downhole flow conditions...

  8. Downhole Vibration Monitoring and Control System

    SciTech Connect (OSTI)

    Martin E. Cobern

    2007-09-30T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding.

  9. Downhole steam generator with improved preheating, combustion, and protection features

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07T23:59:59.000Z

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  10. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30T23:59:59.000Z

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  11. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  12. Drilling jar for use in a downhole network

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; McPherson, James; Pixton, David S.; Briscoe, Michael

    2006-01-31T23:59:59.000Z

    Apparatus and methods for integrating transmission cable into the body of selected downhole tools, such as drilling jars, having variable or changing lengths. A wired downhole-drilling tool is disclosed in one embodiment of the invention as including a housing and a mandrel insertable into the housing. A coiled cable is enclosed within the housing and has a first end connected to the housing and a second end connected to the mandrel. The coiled cable is configured to stretch and shorten in accordance with axial movement between the housing and the mandrel. A clamp is used to fix the coiled cable with respect to the housing, the mandrel, or both, to accommodate a change of tension in the coiled cable.

  13. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    SciTech Connect (OSTI)

    Bennett, G.A.

    1988-03-01T23:59:59.000Z

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  14. System for loading executable code into volatile memory in a downhole tool

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Bartholomew, David B. (Springville, UT); Johnson, Monte L. (Orem, UT)

    2007-09-25T23:59:59.000Z

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  15. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01T23:59:59.000Z

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  16. Assessment and interpretation of cross- and down-hole seismograms at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Staub, W.P.; Wang, J.C. (Oak Ridge National Lab., TN (United States)); Selfridge, R.J. (Automated Sciences Group, (United States))

    1991-09-01T23:59:59.000Z

    This paper is an assessment and interpretation of cross-and down-hole seismograms recorded at four sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP). Arrival times of shear (S-) and compressional (P-) waves are recorded on these seismograms in milliseconds. Together with known distances between energy sources and seismometers lowered into boreholes, these arrival times are used to calculate S- and P-wave velocities in unconsolidated soils and sediments that overlie bedrock approximately 320 ft beneath PGDP. The soil columns are modified after an earlier draft by ERC Environmental and Energy Services Company (ERCE), 1990. In addition to S- and P- wave velocity estimates from this paper, the soil columns contain ERCE's lithologic and other geotechnical data for unconsolidated soils and sediments from the surface to bedrock. Soil columns for Sites 1 through 4 and a site location map are in Plates 1 through 5 of Appendix 6. The velocities in the four columns are input parameters for the SHAKE computer program, a nationally recognized computer model that simulates ground response of unconsolidated materials to earthquake generated seismic waves. The results of the SHAKE simulation are combined with predicted ground responses on rock foundations (caused by a given design earthquake) to predict ground responses of facilities with foundations placed on unconsolidated materials. 3 refs.

  17. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31T23:59:59.000Z

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors.

  18. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael A.

    2006-10-03T23:59:59.000Z

    An inductive coupler for downhole components. The inductive coupler includes an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  19. High-Temperature Downhole Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:HidraliaWellsDownhole Tools Jump to:

  20. Downhole Sensor Holds Transformative Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuaryDominionDow St. CharlesDownhole Sensor

  1. Downhole Sensor Holds Transformative Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol. 73, No. 219Does Your City Have aDongDownhole Sensor

  2. Downhole control of deviation with steerable straight-hole turbodrills

    SciTech Connect (OSTI)

    Gaynor, T.M.

    1988-03-01T23:59:59.000Z

    Advances in directional drilling have until recently been confined to issues that are peripheral to the central problem of controlling assembly behavior downhole. Examples of these advances are measurement while drilling (MWD) and the increasing use of computer assistance in well planning. These were significant steps forward, but the major problem remained. Changes in formation deviation tendencies led to trips to change bottomhole assemblies (BHA's) to cope with the new conditions. There is almost no direct control of deviation behavior. The steerable straight-hole turbodrill (SST) addresses this problem directly, allowing alteration of the well course without the need to trip. The availability of such a system radically changes the way in which directional well planning may be approached. This paper describes the equipment used and the equipment's construction and operational requirements. It discusses the capabilities and current limitation of the systems. Field results are presented for some 300,000 ft (91 500 m) of deviated drilling carried out over 2 years in Alaska and the North Sea. A series of four highly deviated wells totaling 35,000 ft (10 700m) with only three deviation trips is included. The SST is the first deviation drilling system to achieve deviation control over long sections without tripping to change BHA's. Bits and downhole equipment are now more reliable and long-lived than ever, therefore, deviation trips are becoming a major target for well cost saving.

  3. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24T23:59:59.000Z

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  4. 275 C Downhole Switched-Mode Power Supply

    SciTech Connect (OSTI)

    Chris Hutchens; Vijay Madhuravasal

    2008-08-31T23:59:59.000Z

    A vee-square (V2) control based controller IC is developed for a switch mode power supply capable of operating at extreme temperature/harsh environment conditions. A buck type regulator with silicon carbide power junction field effect transistors (JFET) as power devices is used to analyze the performance of controller. Special emphases are made on the analog sub-blocks--voltage reference, operational transconductance amplifier and comparator as individual building blocks. Transformer coupled gate drives and high temperature operable magnetic cores and capacitors are identified and tested for use in the design. Conventional ceramic chip packaging of ICs combined with lead carrier type mounting of passive filter components is introduced for hybrid packaging of the complete product. The developed SMPS is anticipated to support the operation of down-hole microcontrollers and other electronics devices that require low/medium power filtered dc inputs over an operating temperature of 275 C.

  5. Element for use in an inductive coupler for downhole components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2009-03-31T23:59:59.000Z

    An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.

  6. Downhole cement test in a very hot hole

    SciTech Connect (OSTI)

    Pettitt, R.A.; Cocks, G.G.; Dreesen, D.N.; Sims, J.R.; Nicholson, R.W.; Boevers, B.

    1982-01-01T23:59:59.000Z

    Completion of the commercial-sized Hot Dry Rock Geothermal Energy Project requires that hydraulic fractures be created between two inclined wellbores at a depth of about 4 km (15,000 ft). Isolation of a section of the open wellbore is necessary for pressurization to achieve the fracture connections. A cemented-in liner/PBR assembly is one of the methods used for zone isolation near the botton of the injection well. A downhole, pumped cement test was first conducted at a wellbore temperature of 275/sup 0/C (525/sup 0/F) to determine if a suitable slurry could be designed, pumped, and later recovered to assure the success of the cemented-in liner operation.

  7. Program for the improvement of downhole drilling motors

    SciTech Connect (OSTI)

    Finger, J.T.

    1983-11-01T23:59:59.000Z

    This report describes the work done under contract to Sandia National Labs and to the Department of Energy for improvement of downhole drilling motors. The focus of this program was the development of a better bearing-and-seal assembly that could be used in different kinds of drilling motors in a geothermal environment. Major tasks were: (1) design and construction of seal testing devices, (2) screening and evaluation of candidate seals in a simulated bearing/seal package, (3) tests of the most promising candidates in a full-scale bearing/seal package, and (4) analysis of failed seals after testing. The key results from this program were: (1) identification of seal/shaft/lubricant systems that performed well at high pressure and temperature, (2) identification of other seal designs that should be avoided for similar applications, and (3) evaluation of the test machines' design.

  8. Interpreting Horizontal Well Flow Profiles and Optimizing Well Performance by Downhole Temperature and Pressure Data

    E-Print Network [OSTI]

    Li, Zhuoyi

    2011-02-22T23:59:59.000Z

    be used to obtain downhole flow conditions, which is key information to control and optimize horizontal well production. However, the fluid flow in the reservoir is often multiphase and complex, which makes temperature and pressure interpretation very...

  9. RECIPIENT: Paulsson, Inc. u.s. DEPARTJl.iENT OF ENERGY EERE PROJECT...

    Broader source: Energy.gov (indexed) [DOE]

    STATE: CA PROJECT TITLE: Development of a 300C, 200 level , 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs Funding...

  10. CX-010245: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development of a 300 Degree, 200 Level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  11. CX-007886: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Development of a 300C, 200 level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  12. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, R.A.; Lockwood, G.J.; Gonzales, M.

    1998-03-03T23:59:59.000Z

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

  13. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, Randy A. (Edgewood, NM); Lockwood, Grant J. (Albuquerque, NM); Gonzales, Meliton (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

  14. An improved finite difference calculation of downhole dynamometer cards for sucker rod pumps

    E-Print Network [OSTI]

    Everitt, Thomas Aaron

    1987-01-01T23:59:59.000Z

    AN IMPROVED FINITE DIFFERENCE CALCULATION OF DOWNHOLE DYNAMOMETER CARDS FOR SUCKER ROD PUMPS A Thesis by THOMAS AARON EVERITT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1987 Maj or Subj ect: Petroleum Engineering AN IMPROVED FINITE DIFFERENCE CALCULATION OF DOWNHOLE DYNAMOMETER CARDS FOR SUCKER ROD PUMPS A Thesis by THOMAS AARON EVERITT Approved as to style and content by: James W. nin...

  15. Scattering Versus Intrinsic Attenuation in the Near Surface: Measurements from Permanent Down-hole Geophones

    E-Print Network [OSTI]

    Mangriotis, Maria-Daphne

    2009-01-01T23:59:59.000Z

    is a seismic parameter which improves interpretation ofas a seismic parameter to improve the interpretation ofinterpretation of coda-Q measurmenets,” BSSA, Vol. White JE. “Computed seismic

  16. Program for the improvement of downhole drilling-motor bearings and seals. Final report: Phase III, Part 1

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    A systematic laboratory testing and evaluation program to select high-temperature seals, bearings, and lubricants for geothermal downhole drilling motors is summarized.

  17. Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition

    SciTech Connect (OSTI)

    John H. Cohen; Greg Deskins

    2006-02-01T23:59:59.000Z

    This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

  18. Downhole steam generator with improved preheating/cooling features

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM); Mulac, Anthony J. (Tijeras, NM)

    1983-01-01T23:59:59.000Z

    An apparatus for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  19. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Briscoe, Michael A.; Sneddon, Cameron; Fox, Joe

    2006-05-09T23:59:59.000Z

    The present invention includes a method of making an inductive coupler for downhole components. The method includes providing an annular housing, preferably made of steel, the housing having a recess. A conductor, preferably an insulated wire, is also provided along with a plurality of generally U-shaped magnetically conducting, electrically insulating (MCEI) segments. Preferably, the MCEI segments comprise ferrite. An assembly is formed by placing the plurality of MCEI segments within the recess in the annular housing. The segments are aligned to form a generally circular trough. A first portion of the conductor is placed within the circular trough. This assembly is consolidated with a meltable polymer which fills spaces between the segments, annular housing and the first portion of the conductor. The invention also includes an inductive coupler including an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  20. Field application of an interpretation method of downhole temperature and pressure data for detecting water entry in horizontal/highly inclined gas wells

    E-Print Network [OSTI]

    Achinivu, Ochi I.

    2009-05-15T23:59:59.000Z

    In the oil and gas industry today, continuous wellbore data can be obtained with high precision. This accurate and reliable downhole data acquisition is made possible by advancements in permanent monitoring systems such as downhole pressure...

  1. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    SciTech Connect (OSTI)

    Veil, J. A.; Langhus, B. G.; Belieu, S.; Environmental Assessment; CH2M Hill; Nebraska Oil and Gas Conservation Commission

    1999-01-31T23:59:59.000Z

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely transferred to operators, particularly to small or medium-sized independent U.S. companies. One of the missions of the U.S. Department of Energy's (DOE's) National Petroleum Technology Office (NPTO) is to assess the feasibility of promising oil and gas technologies that offer improved operating performance, reduced operating costs, or greater environmental protection. To further this mission, the NPTO provided funding to a partnership of three organizations a DOE national laboratory (Argonne National Laboratory), a private-sector consulting firm (CH2M-Hill), and a state government agency (Nebraska Oil and Gas Conservation Commission) to assess the feasibility of DOWS. The purpose of this report is to provide general information to the industry on DOWS by describing the existing uses of simultaneous injection, summarizing the regulatory implications of simultaneous injection, and assessing the potential future uses of the technology. Chapter 2 provides a more detailed description of the two major types of DOWS. Chapter 3 summarizes the existing U.S. and Canadian installations of DOWS equipment, to the extent that operators have been willing to share their data. Data are provided on the location and geology of existing installations, production information before and after installation of the DOWS, and costs. Chapter 4 provides an overview of DOWS-specific regulatory requirements imposed by some state agencies and discusses the regulatory implications of handling produced water downhole, rather than pumping it to the surface and reinjecting it. Findings and conclusions are presented in Chapter 5 and a list of the references cited in the report is provided in Chapter 6. Appendix A presents detailed data on DOWS installations. This report presents the findings of Phase 1 of the simultaneous injection project, the feasibility assessment. Another activity of the Phase 1 investigation is to design a study plan for Phase 2 of the project, field pilot studies. The Phase 2 study plan is being developed separately and is not included in this report.

  2. Development of a High-Pressure/High-Temperature Downhole Turbine Generator

    SciTech Connect (OSTI)

    Timothy F. Price

    2007-02-01T23:59:59.000Z

    The objective of this project as originally outlined has been to achieve a viable downhole direct current (DC) power source for extreme high pressure, high temperature (HPHT) environments of >25,000 psi and >250 C. The Phase I investigation posed and answered specific questions about the power requirements, mode of delivery and form factor the industry would like to see for downhole turbine generator tool for the HPHT environment, and noted specific components, materials and design features of that commercial system that will require upgrading to meet the HPHT project goals. During the course of Phase I investigation the scope of the project was HPHT downhole DC power. Phase I also investigated the viability of modifying a commercial expanded, without additional cost expected to the project, to include the addition of HT batteries to the power supply platform.

  3. Apparatus and method for compensating for clock drift in downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-08-07T23:59:59.000Z

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  4. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30T23:59:59.000Z

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  5. Measurement of induced fractures by downhole TV camera in Black Warrior Basin coalbeds

    SciTech Connect (OSTI)

    Palmer, I.D. (Amoco Production Co., Tulsa, OK (US)); Sparks, P. (Taurus Exploration Inc., Birmingham, AL (US))

    1991-03-01T23:59:59.000Z

    Fracture stimulation is commonly used for coal degasification at the Black Warrior basin in Alabama. To understand coalbed fracturing better, Well AM-1 in the Oak Grove field was completed openhole in the section bracketing the Black Creek coals. Special diagnostics used on this project included various injection tests, static-line pressure measurements, and a downhole television camera. The television camera observed fractures during injection tests and after the propped fracture treatment. The authors believe these are the first successful downhole television pictures of propped fractures in coalbeds. Results are compared with predictions of hydraulic fracture simulators. This is a way of calibrating hydraulic fracture models for improved design/optimization.

  6. Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J.T. Rutledge

    E-Print Network [OSTI]

    Microseismic mapping of a Cotton Valley hydraulic fracture using decimated downhole arrays J three hydraulic fracture operations in the Cotton Valley gas field of East Texas. Two 48-level, 3 a consortia of operators and service companies conducted an extensive hydraulic fracture imaging demonstration

  7. Seismic Studies

    SciTech Connect (OSTI)

    R. Quittmeyer

    2006-09-25T23:59:59.000Z

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

  8. Downhole microseismic monitoring of hydraulic fracturing: a full-waveform approach for complete moment tensor inversion and stress estimation

    E-Print Network [OSTI]

    Song, Fuxian

    2010-01-01T23:59:59.000Z

    Downhole microseismics has gained in popularity in recent years as a way to characterize hydraulic fracturing sources and to estimate in-situ stress state. Conventional approaches only utilize part of the information ...

  9. Biased insert for installing data transmission components in downhole drilling pipe

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Briscoe, Michael A. (Lehi, UT); Garner, Kory K. (Payson, UT); Wilde, Tyson J. (Spanish Fork, UT)

    2007-04-10T23:59:59.000Z

    An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

  10. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2005-11-29T23:59:59.000Z

    A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

  11. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    SciTech Connect (OSTI)

    Hooker, Matthew; Hazelton, Craig; Kano, Kimi

    2010-12-31T23:59:59.000Z

    The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250°C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

  12. Downhole steam generator using low-pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07T23:59:59.000Z

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  13. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2005-09-20T23:59:59.000Z

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  14. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    SciTech Connect (OSTI)

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.; DiBona, B.G.

    1983-08-01T23:59:59.000Z

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  15. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01T23:59:59.000Z

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

  16. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  17. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2000-09-30T23:59:59.000Z

    This Technical Quarterly Report is for the reporting period July 1, 2000 to September 30, 2000. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Since this is the first Quarterly report, much of the work done is of a preliminary nature. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The selection of the pilot test area has been completed. The drilling of the test well is waiting on rig availability. Phillips has begun sonic core testing of offset cores, waiting on the core from the well to be drilled. Design work is progressing for the tool, which will be built to fit the test well. Installation of monitoring equipment and the downhole vibration tool will occur after the well is drilled. Technical transfer efforts have begun with the submission of an abstract for a technical paper for the Oklahoma City Society of Petroleum Engineers meeting in March 2001.

  18. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    SciTech Connect (OSTI)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17T23:59:59.000Z

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5?×?10{sup ?5}?nm/psi at 1480?nm to 1.3?×?10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4?×?10{sup ?6} 1/psi to ?1.3?×?10{sup ?6} 1/psi and from ?5?×?10{sup ?6} 1/psi to ?1.8?×?10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

  19. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  20. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  1. SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    , and the interpretation of seismic measurements. The book presents a consistent treatment of the seismic ray method, based#12;SEISMIC RAY THEORY Seismic Ray Theory presents the most comprehensive treatment of the seismic ray method available. This method plays an important role in seismology, seismic exploration

  2. Investigation of frequency dependent attenuation in a vertical seismic profile

    E-Print Network [OSTI]

    Zeitvogel, Mark Evan

    1982-01-01T23:59:59.000Z

    to the next location. As each shot was recorded on the downhole geo- phone, a corresponding record for the same shot was made on the moni- tor geophone. Although the downhole tool contained an orthogonal three component geophone system, poor coupling... 4. Monitor and downhole time traces 5. Arco VSP section. 15 Windowed P-wave and resulting spectra. 17 Correspondence between downhole and monitor ratios formed from consecutive shots. 18 8. Search for reference shot 21 9. Effect of source...

  3. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  4. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30T23:59:59.000Z

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-14, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI, Brett Davidson and Tim Spanos, Prism Production Technologies, were the instructors. The sixteen attendees also participated in the half-day field trip to the test facility near Tulsa.

  5. Production of natural gas from methane hydrate by a constant downhole pressure well

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2007-07-01T23:59:59.000Z

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

  6. Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology

    E-Print Network [OSTI]

    Moreno, Jose A

    2014-08-12T23:59:59.000Z

    -length and permeability, by assimilating data from downhole temperature sensors. The ensemble Kalman filter is implemented to assimilate DTS data and estimate fracture parameters. This inverse method is suitable for applications to non-linear assimilation problems and is...

  7. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP...

  8. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    Geothermal Field California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

  9. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At...

  10. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration...

  11. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  12. Seismic characterization of fractures

    E-Print Network [OSTI]

    JM Carcione

    2014-06-07T23:59:59.000Z

    Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

  13. New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks,

    E-Print Network [OSTI]

    Greer, Julia R.

    #12;New Paradigm for Seismic Networks: Crowd-Sourced Seismic Networks, including Buildings Tom Egill Hauksson #12;SCSN: what does it encompass? · ~360 Seismic Stations · ~60 stations from partners SCSN/SCEDC total of ~26 FTE's #12;Crowd Sourced Networks · Current broadband seismic network

  14. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect (OSTI)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27T23:59:59.000Z

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  15. Downhole steam generator with improved preheating/cooling features. [Patent application

    DOE Patents [OSTI]

    Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

    1980-10-10T23:59:59.000Z

    An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  16. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOE Patents [OSTI]

    Noble, Donald T. (Ames, IA); Braymen, Steven D. (Ames, IA); Anderson, Marvin S. (Ames, IA)

    1996-10-01T23:59:59.000Z

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  17. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOE Patents [OSTI]

    Noble, D.T.; Braymen, S.D.; Anderson, M.S.

    1996-10-01T23:59:59.000Z

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

  18. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01T23:59:59.000Z

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  19. Method of migrating seismic records

    DOE Patents [OSTI]

    Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

    2000-01-01T23:59:59.000Z

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  20. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  1. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  2. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The...

  3. Evaluation of a Vector Hypercube for Seismic Modelling Seismic modelling

    E-Print Network [OSTI]

    Renaut, Rosemary

    Evaluation of a Vector Hypercube for Seismic Modelling Abstract Seismic modelling is a computationally to produce realistic seismic traces intensive problem. A 2D syn- Rosemary Renautt and Johnny equation is the first step in the generation of a synthetic seismogram as an aid in the interpretation

  4. Seismic viscoelastic attenuation Submitted to

    E-Print Network [OSTI]

    Cormier, Vernon F.

    Seismic viscoelastic attenuation Submitted to: Encyclopedia of Solid Earth Geophysics Harsh Gupta-3046 USA E-mail: vernon.cormier@uconn.edu Tel: 860-486-3547 Fax: 860-486-3346 #12;SEISMIC VISCOELASTIC ATTENUATION Synonyms Seismic intrinsic attenuation Definitions Linear viscoelastic attenuation. The loss

  5. Development of a hydraulic borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.

    1998-04-01T23:59:59.000Z

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  6. Canadian Seismic Agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lapointe, S.P.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Adams, J.; Cajka, M.G.; McNeil, W.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada))

    1992-05-01T23:59:59.000Z

    This is a progress report of work carried out under the terms of a research agreement entitled the Canadian Seismic Agreement'' between the US Nuclear Regulatory Commission (USNRC), the Canadian Commercial Corporation and the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1989 to June 30, 1990. The Canadian Seismic Agreement'' supports generally the operation of various seismograph stations in eastern Canada and the collection and analysis of earthquake data for the purpose of mitigating seismic hazards in eastern Canada and the northeastern US. The specific activities carried out in this one-year period are summarized below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong-motion network developments and earthquake activity. During this period the first surface fault unequivocably determined to have accompanied a historic earthquake in eastern North America, occurred in northern Quebec.

  7. Canadian Seismic Agreement

    SciTech Connect (OSTI)

    Basham, P.W.; Lyons, J.A.; Drysdale, J.A.; Shannon, W.E.; Andersen, F.; Hayman, R.B.; Wetmiller, R.J.

    1983-11-01T23:59:59.000Z

    The ECTN network has remained stable over the past year; progress on the new concentrator software has been slow. Major developments have taken place in the Ottawa Data Laboratory including the installation of a new VAX system and further development of the Seismic Analysis Monitor software. A new initiative has been the development of hardware and software for the Sudbury Local Telemetered Network, which can be considered a prototype for a smart outstation. The performance of the ECTN over the past year is described along with a summary of eastern Canadian seismicity during the reporting period and a list of EPB research publications on eastern Canadian seismicity during the past year. 4 figures, 3 tables.

  8. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19T23:59:59.000Z

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  9. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08T23:59:59.000Z

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

  10. Canadian seismic agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

    1990-04-01T23:59:59.000Z

    During the period of this report, the contract resources were spent on operation and maintenance of the Eastern Canada Telemetred Network (ECTN), development of special purpose local network systems, servicing and maintenance of the strong-motion seismograph network in eastern Canada, operation of the Ottawa data lab and earthquake monitoring and reporting. Of special note in this period was the final completion of the Sudbury (SLTN) and Charlevoix (CLTN) local networks and the integration of their data processing and analysis requirements in the regular analysis stream for ECTN data. These networks now acquire high quality digital data for detailed analysis of seismic activity and source properties from these two areas, thus effectively doubling the amount of seismic data being received by the Ottawa data lab. 37 refs., 17 figs., 2 tabs.

  11. Development and implementation of seismic design and evaluation criteria for NIF

    SciTech Connect (OSTI)

    Sommer, S.C.; MacCalden, P.B.

    1998-03-17T23:59:59.000Z

    The National Ignition Facility (NIF) is being built at the Lawrence Livermore National Laboratory (LLNL) as an international research center for inertial confinement fusion (ICF). This paper will provide an overview of NIF, review NIF seismic criteria, and briefly discuss seismic analyses of NIF optical support structures that have been performed by LLNL and the Ralph M. Parsons Company, the Architect and Engineer (A&E) for NIF. The NIF seismic design and evaluation criteria is based on provisions in DOE Standard 1020 (DOE-STD-1020), the Uniform Building Code (UBC), and the LLNL Mechanical Engineering Design Safety Standards (MEDSS). Different levels of seismic requirements apply to NIF structures, systems, and components (SSCs) based on their function. The highest level of requirements are defined for optical support structures and SSCs which could influence the performance of optical support structures, while the minimum level of requirements are Performance Category 2 (PC2) requirements in DOE-STD-1020. To demonstrate that the NIF seismic criteria is satisfied, structural analyses have been performed by LLNL and Parsons to evaluate the responses of optical support structures and other SSCs to seismic-induced forces.

  12. Seismic Facies Characterization By Scale Analysis

    E-Print Network [OSTI]

    Herrmann, Felix J.

    2000-01-01T23:59:59.000Z

    Over the years, there has been an ongoing struggle to relate well-log and seismic data due to the inherent bandwidth limitation of seismic data, the problem of seismic amplitudes, and the apparent inability to delineate ...

  13. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01T23:59:59.000Z

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  14. Frequent-Interval Seismic CPTu

    Office of Environmental Management (EM)

    PE NPH Engineering Manager, DOE-SR Motivation The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization....

  15. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

  16. Overview of seismic panel activities

    SciTech Connect (OSTI)

    Bandyopadhyay, K.K.

    1991-01-01T23:59:59.000Z

    In January 1991, the DOE-EM appointed a Seismic Panel to develop seismic criteria that can be used for evaluation of underground storage tanks containing high level radioactive wastes. The Panel expects to issue the first draft of the criteria report in January 1992. This paper provides an overview of the Panel's activities and briefly discusses the criteria. 3 refs.

  17. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01T23:59:59.000Z

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  18. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer to FundPreparedContinuingHearings »Seismic Design

  19. Temporal Integration of Seismic Traveltime Tomography

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan B.

    2005-06-01T23:59:59.000Z

    Time-lapse geophysical measurements and seismic imaging methods in particular are powerful techniques

  20. SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING Norimitsu Nakata

    E-Print Network [OSTI]

    Snieder, Roel

    SEISMIC INTERFEROMETRY FOR TEMPORAL MONITORING by Norimitsu Nakata #12;c Copyright by Norimitsu Seismic interferometry, where one computes coherency of waves between two or more receivers and averages from the first study related to seismic interferometry (although the name of seismic interferometry has

  1. Reservoir Characterization Using Intelligent Seismic Inversion

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    reservoir performance. Field Development #12;- Issues about the data and problems regarding data analysis characterization studies. - Inverse modeling of reservoir properties from the seismic data is known as seismic inversion. SEISMIC LOGS #12;1. Does a relationship exist between seismic data and reservoir characteristics

  2. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

    1994-01-01T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  3. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13T23:59:59.000Z

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  4. Integrated system for seismic evaluations

    SciTech Connect (OSTI)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01T23:59:59.000Z

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs.

  5. annual hanford seismic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the resulting distributions 5. Include the seismic hazard 64 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...

  6. alternate seismic support: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the resulting distributions 5. Include the seismic hazard 76 Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity Physics...

  7. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

  8. Assessing Beyond Design Basis Seismic Events and Implications...

    Office of Environmental Management (EM)

    on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist)...

  9. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03T23:59:59.000Z

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  10. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. Investigating the point seismic array concept with seismic rotation measurements.

    SciTech Connect (OSTI)

    Abbott, Robert E.; Aldridge, David Franklin

    2009-02-01T23:59:59.000Z

    Spatially-distributed arrays of seismometers are often utilized to infer the speed and direction of incident seismic waves. Conventionally, individual seismometers of the array measure one or more orthogonal components of rectilinear particle motion (displacement, velocity, or acceleration). The present work demonstrates that measure of both the particle velocity vector and the particle rotation vector at a single point receiver yields sufficient information to discern the type (compressional or shear), speed, and direction of an incident plane seismic wave. Hence, the approach offers the intriguing possibility of dispensing with spatially-extended received arrays, with their many problematic deployment, maintenance, relocation, and post-acquisition data processing issues. This study outlines straightforward mathematical theory underlying the point seismic array concept, and implements a simple cross-correlation scanning algorithm for determining the azimuth of incident seismic waves from measured acceleration and rotation rate data. The algorithm is successfully applied to synthetic seismic data generated by an advanced finite-difference seismic wave propagation modeling algorithm. Application of the same azimuth scanning approach to data acquired at a site near Yucca Mountain, Nevada yields ambiguous, albeit encouraging, results. Practical issues associated with rotational seismometry are recognized as important, but are not addressed in this investigation.

  12. Canadian seismic agreement

    SciTech Connect (OSTI)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C., Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A. (Geological Survey of Canada, Ottawa, ON (Canada). Geophysics Div.)

    1990-04-01T23:59:59.000Z

    This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs.

  13. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOE Patents [OSTI]

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30T23:59:59.000Z

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  14. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18T23:59:59.000Z

    of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.

  15. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  16. Newberry Seismic Deployment Fieldwork Report

    SciTech Connect (OSTI)

    Wang, J; Templeton, D C

    2012-03-21T23:59:59.000Z

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

  17. Long term study of the seismic environment at LIGO

    E-Print Network [OSTI]

    E. J. Daw; J. A. Giaime; D. Lormand; M. Lubinski; J. Zweizig

    2004-03-11T23:59:59.000Z

    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.

  18. Multipoint Pressure and Temperature Sensing Fiber Optic Cable for Monitoring CO2 Sequestration

    SciTech Connect (OSTI)

    Challener, William

    2014-12-31T23:59:59.000Z

    This report describes the work completed on contract DE-FE0010116. The goal of this two year project was to develop and demonstrate in the laboratory a highly accurate multi-point pressure measurement fiber optic cable based on MEMS pressure sensors suitable for downhole deployment in a CO2 sequestration well. The sensor interrogator was also to be demonstrated in a remote monitoring system and environmental testing was to be completed to indicate its downhole survivability over a lengthy period of time (e.g., 20 years). An interrogator system based on a pulsed laser excitation was shown to be capable of multiple (potentially 100+) simultaneous sensor measurements. Two sensors packages were completed and spliced in a cable onto the same fiber and measured. One sensor package was subsequently measured at high temperatures and pressures in supercritical CO2, while the other package was measured prior and after being subjected to high torque stresses to mimic downhole deployment. The environmental and stress tests indicated areas in which the package design should be further improved.

  19. Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir

    E-Print Network [OSTI]

    Feighner, Mark A.

    2010-01-01T23:59:59.000Z

    support in the interpretation of the seismic and tomographicinterpretation is partially supported by the re- h s flection seismic

  20. Seismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch)

    E-Print Network [OSTI]

    Boschi, Lapo

    Tomography Seismic tomography is the science of interpreting seismic measurements (seismograms) to derive; that is to say, solve the seismological inverse problem. Seismic data and their interpretation Seismic stationsSeismic Tomography: Definitions Lapo Boschi (lapo@erdw.ethz.ch) September 14, 2009 Seismic

  1. Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold

    E-Print Network [OSTI]

    Meyer, Francois

    Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold Juan--In this research, we consider the supervised learning problem of seismic phase classification. In seismology, knowledge of the seismic activity arrival time and phase leads to epicenter localization and surface

  2. Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic seismic risk analysis of existing buildings in regions with moderate seismicity C to apply an approach based on risk for the seismic assessment of existing buildings. In this innovative analytical seismic assessment methods, as the ratio between the capacity and the requirement of the current

  3. Seismic vulnerability analysis of moderate seismicity areas using in situ experimental

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismic vulnerability analysis of moderate seismicity areas using in situ experimental techniques (LGIT), LCPC, CNRS, Université Joseph Fourier Grenoble Abstract Seismic vulnerability analysis. This curve is particularly interesting in moderate seismic areas. This methodology is applied to the Grenoble

  4. Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment

    E-Print Network [OSTI]

    Prieto, Germán A.

    Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic March 2010; accepted 9 April 2010; published 31 August 2010. [1] The seismic coda consists of scattered of radiated wave energy. We apply an empirical Green's function (EGF) method to the seismic coda in order

  5. Seismic Attribute Analysis Using Higher Order Statistics

    E-Print Network [OSTI]

    Greenidge, Janelle Candice

    2009-05-15T23:59:59.000Z

    Seismic data processing depends on mathematical and statistical tools such as convolution, crosscorrelation and stack that employ second-order statistics (SOS). Seismic signals are non-Gaussian and therefore contain information beyond SOS. One...

  6. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.

    2002-05-29T23:59:59.000Z

    This project is intended to enhance the ability to use seismic data for the determination of rock and fluid properties through an improved understanding of the physics underlying the relationships between seismic attributes and formation.

  7. Evaluation of strategies for seismic design

    E-Print Network [OSTI]

    Tsertikidou, Despoina

    2012-01-01T23:59:59.000Z

    Current trends in seismic design require a new approach, oriented in satisfying motion related design requirements and limiting both structural and non-structural damage. Seismic isolation and damping devices are currently ...

  8. Seismic imaging using higher order statistics

    E-Print Network [OSTI]

    Srinivasan, Karthik

    1999-01-01T23:59:59.000Z

    Improvements in seismic resolution beyond typical seismic wavelength will have significant implications for hydrocarbon exploration and production. Conventional imaging algorithms can be derived as a least squared optimization problem in which...

  9. SEISMIC IMAGING WITH THE GENERALIZED RADON ...

    E-Print Network [OSTI]

    2008-07-29T23:59:59.000Z

    SEISMIC IMAGING WITH THE GENERALIZED RADON. TRANSFORM AND DOUBLE BEAMFORMING: A CURVELET. TRANSFORM PERSPECTIVE. M V DE ...

  10. Development of a HT Seismic Tool

    Broader source: Energy.gov [DOE]

    The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.

  11. Impact of seismic resolution on geostatistical techniques

    SciTech Connect (OSTI)

    Mukerji, T.; Rio, P.; Mavko, G.M.

    1995-12-31T23:59:59.000Z

    Seismic measurements are often incorporated in geostatistical techniques for estimation and simulation of petrophysical properties such as porosity. The good correlation between seismic and rock properties provides a basis for these techniques. Seismic data have a wide spatial coverage not available in log or core data. However, each seismic measurement has a characteristic response function determined by the source-receiver geometry and signal bandwidth. The image response of the seismic measurement gives a filtered version of the true velocity image. Therefore the seismic image we obtain cannot reflect exactly the true seismic velocity at all scales of spatial heterogeneities present in the earth. The seismic response function can be conveniently approximated in the spatial spectral domain using a Born approximation. Our goal is to study how the seismic image response affects the estimation of variograms and spatial scales, and its impact on geostatistical results. Limitations of view angles and signal bandwidth not only smoothes the seismic image, increasing the variogram range, but can also introduce anisotropic spatial structures in the image. We can add value to the seismic data by better characterizing an quantifying these attributes. As an exercise we present example of seismically assisted cosimulation of porosity between wells.

  12. April 22, 2010 Seismic Reflection VI

    E-Print Network [OSTI]

    Ito, Garrett

    4/21/2010 1 GG450 April 22, 2010 Seismic Reflection VI Data Interpretation II Today's material section Chrono- stratigraphic section Relations of strata to boundaries of a depositional sequence Seismic stratigraphic reflection terminations within an idealized seismic sequence Reflection configurations #12

  13. Seismic, shock, and vibration isolation - 1988

    SciTech Connect (OSTI)

    Chung, H. (Argonne National Lab., Argonne, IL (US)); Mostaghel, N. (Univ. of Utah, Salt Lake City, UT (US))

    1988-01-01T23:59:59.000Z

    This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.

  14. BOOK REVIEW Seismic Communication and Adventure

    E-Print Network [OSTI]

    Munshi-South, Jason

    BOOK REVIEW Seismic Communication and Adventure Among African Elephants The Elephant's Secret Sense in Namibia as she first develops the hypothesis that elephants can communicate using seismic signals. Science documenting the elephants' listening behavior and responses to seismic cues. However, these scientific

  15. SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SEISMIC VULNERABILITY ASSESSMENT USING AMBIENT VIBRATIONS: METHOD AND VALIDATION Clotaire Michel, France cmichel@obs.ujf-grenoble.fr Abstract Seismic vulnerability in wide areas is usually assessed like USA or Italy. France is a country with moderate seismicity so that it requires lower-cost methods

  16. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  17. Seismic Performance Requirements for WETF

    SciTech Connect (OSTI)

    Hans Jordan

    2001-01-01T23:59:59.000Z

    This report develops recommendations for requirements on the Weapons Engineering Tritium Facility (WETF) performance during seismic events. These recommendations are based on fragility estimates of WETF structures, systems, and components that were developed by LANL experts during facility walkdowns. They follow DOE guidance as set forth in standards DOE-STD-1021-93, ''Natural Phenomena Hazards Performance Categorization Guidelines for Structures, Systems, and Components'' and DOE-STD-1020-94, ''Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities''. Major recommendations are that WETF institute a stringent combustible loading control program and that additional seismic bracing and anchoring be provided for gloveboxes and heavy equipment.

  18. Detection of CO2 Seepage From Geological Sequestration Sites Using an Array of Downhole Pressure Gauges Jalal Jalali, Shahab D. Mohaghegh, Dept. of Petroleum & Natural Gas Engineering, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    University 8th Annual Conference on Carbon Capture & Sequestration, May 4th ­ 7th 2009, Pittsburgh, PA LongDetection of CO2 Seepage From Geological Sequestration Sites Using an Array of Downhole Pressure term monitoring of geologic sites used for CO2 sequestration is an environmental necessity while

  19. Case histories in the Europe/Africa area demonstrate improved capabilities of fiber-optic video camera technology

    SciTech Connect (OSTI)

    Olsen, J.E.; Kristensen, R.; Taylor, R.W.

    1995-10-01T23:59:59.000Z

    Cost constraints in the oilfield restrict the performance of remedial services unless a high probability of success can be assured. Unfortunately, a method that could accurately diagnose wellbore problems in a broad scope of oilfield environments was not available, and until the 90`s, accuracy of problem assessment was compromised to the point that estimates of remedial success could not be determined. During the 90`s, however, a downhole video system that showed promise of providing the sought-after diagnostic accuracy for today`s operational conditions was introduced to the oilfield. With the combined capabilities of fiber-optic signal transmission and downhole video camera technology, the system can now provide the oil and gas industry with a diagnostic tool that is rapidly becoming invaluable in oilfield services and is proving the worth of the old adage, seeing is believing. This paper will present a brief overview of the use of the downhole video (DHV) camera technique from its first documented usage until early 1992. The enhancements that have been instrumental in enlarging the scope of its usage since that time will then be discussed. Case histories recorded by the video camera operation in the Europe/Africa area will be presented and analyzed to demonstrate usage and benefits of the system.

  20. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  1. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01T23:59:59.000Z

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  2. Seismic Volume Visualization for Horizon Extraction Daniel Patel

    E-Print Network [OSTI]

    present a novel system for rapidly interpret- ing and visualizing seismic volumetric data. First we to seismic data interpretation. Keywords: Seismic interpretation, Seismic horizons, Volume ren- dering hydrocarbons are trapped. In this paper we present a system for rapid interpretation of seismic reflection

  3. Seismic Isolation Working Meeting Gap Analysis Report

    SciTech Connect (OSTI)

    Justin Coleman; Piyush Sabharwall

    2014-09-01T23:59:59.000Z

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  4. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01T23:59:59.000Z

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  5. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    SciTech Connect (OSTI)

    HOFMAYER,C.H.

    1999-03-29T23:59:59.000Z

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01T23:59:59.000Z

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  7. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

    2009-10-13T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  8. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05T23:59:59.000Z

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  9. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01T23:59:59.000Z

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  10. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION platform for distributed hybrid testing #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN? Celestina Overview Implementation Validation Next steps #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  11. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental and

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES ENISTAT: Experimental-TA Project #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Partners (Users) · METU Ragueneau · SCHOECK (Germany): Steffen Scheer, Seref Diler #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

  12. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION Database: Architecture and implementation #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN Conclusions #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES 3 SERIES Concluding

  13. Oklahoma seismic network. Final report

    SciTech Connect (OSTI)

    Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center

    1993-07-01T23:59:59.000Z

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

  14. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-10-01T23:59:59.000Z

    In this report we will show the fundamental concepts of two different methods to compute seismic energy absorption. The first methods gives and absolute value of Q and is based on computation with minimum phase operators. The second method gives a relative energy loss compared to a background trend. This method is a rapid, qualitative indicator of anomalous absorption and can be combined with other attributes such as band limited acoustic impedance to indicate areas of likely gas saturation.

  15. INVERSE SCATTERING OF SEISMIC DATA WITH THE ...

    E-Print Network [OSTI]

    1910-61-22T23:59:59.000Z

    We discuss the inverse scattering of seismic reflection data making use of the generalized Radon transform. Through an extension, the relevant transform attains ...

  16. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  17. Optimization Online - Constrained optimization in seismic reflection ...

    E-Print Network [OSTI]

    F. Delbos

    2004-07-07T23:59:59.000Z

    Jul 7, 2004 ... Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach. F. Delbos (Frederic.Delbos ***at*** ifp.fr)

  18. Finite element approximation of coupled seismic and ...

    E-Print Network [OSTI]

    zyserman

    layer, having a thickness of about 10 nm. Finite element approximation of coupled seismic and electromagnetic waves in gas hydrate-bearing sediments – p.

  19. Hanford site seismic monitoring instrumentation plan

    SciTech Connect (OSTI)

    Reidel, S.P.

    1996-02-29T23:59:59.000Z

    This document provides a plan to comply with the seismic monitoring provisions of US DOE Order 5480.28, Natural Phenomena Hazards.

  20. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01T23:59:59.000Z

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  1. Opportunities for improving regulations governing the seismic...

    Office of Environmental Management (EM)

    Support DOE NPH Design AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  2. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  3. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

  4. Constrained optimization in seismic reflection tomography: an SQP ...

    E-Print Network [OSTI]

    2004-07-06T23:59:59.000Z

    Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces.

  5. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...

  6. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Environmental Management (EM)

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems This...

  7. Application of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the...

  8. Effects of Seismic Motion Incoherency on SSI and SSSI Responses...

    Office of Environmental Management (EM)

    Effects of Seismic Motion Incoherency on SSI and SSSI Responses of Nuclear Structures for Different Soil Site Conditions Effects of Seismic Motion Incoherency on SSI and SSSI...

  9. An Asymptotic Model of Seismic Reflection from a Permeable Layer

    E-Print Network [OSTI]

    Silin, Dmitriy; Goloshubin, Gennady

    2010-01-01T23:59:59.000Z

    Hilterman, F.J. : Seismic Amplitude Interpretation. Number 4interpretations of some poroelasticity coef?cients. For instance, we demonstrate that the An Asymptotic Model of Seismic

  10. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  11. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  12. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Environmental Management (EM)

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  13. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...

  14. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  15. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Seismic Technology Adapted to Analyzing and Developing...

  16. Application of Random Vibration Theory Methodology for Seismic...

    Office of Environmental Management (EM)

    Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...

  17. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31T23:59:59.000Z

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  18. Seismic of the territory Toktogul reservoir, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly; Yegemberdiyeva, Kuliya [Institute of Seismology of National Academy Science Kyrgyz Republic (Kyrgyzstan)

    2008-07-08T23:59:59.000Z

    In connection with that this seismic in the territory of Naryn cascade maybe has its peculiarity in cludding in the territory Toktogul reservoir before of the building of the Toktogul dam, during of the building and after accordingly was decided to consider the seismic in this space of times. The arm of the present paper is estimation seismic of the territory Toktogul reservoir for different times: before of the building of the Toktogul dam (1960-1973), during its filling (1974-1980) and since start it's of the uninterruptedly exploitation to present time (1981-2006). The territory in that located the cascade of Naryn River is considered that seismic active in the Central part of the Tien Shan. The tectonic motions are become here intensity. The presence of the large faults is complicating significantly the seismic situation of the study region.

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01T23:59:59.000Z

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  20. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  1. Newberry EGS Seismic Velocity Model

    SciTech Connect (OSTI)

    Templeton, Dennise

    2013-10-01T23:59:59.000Z

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  2. Fault properties from seismic Q M. H. Worthington1

    E-Print Network [OSTI]

    Cambridge, University of

    ®cally concerned with the analysis and interpretation of some vertical seismic pro®ling (VSP) data from a holeFault properties from seismic Q M. H. Worthington1 and J. A. Hudson2 1 T. H. Huxley School of seismic Q from a North Sea vertical seismic pro®ling data set has revealed an abrupt increase

  3. Interactive Seismic Interpretation with Piecewise Global Energy Minimization

    E-Print Network [OSTI]

    Interactive Seismic Interpretation with Piecewise Global Energy Minimization Thomas H¨ollt King and horizons. However, seismic interpretation and horizon tracing is a difficult and error-prone task, often starts with creating a model of the subsurface structures, the seismic interpretation. A seismic

  4. SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian

    E-Print Network [OSTI]

    Yegian, Mishac

    1 SEISMIC GEOTECHNICAL INVESTIGATIONS FOR BRIDGES M. K. Yegian 1 , F. ASCE ABSTRACT Seismic and impedance calculations; assessment of foundation performance under the design seismic loads; and in the case of existing bridges, if deemed necessary, design of seismic retrofit measures. The outcomes of each

  5. Seismic response of fractures and induced anisotropy in poroelastic media

    E-Print Network [OSTI]

    Santos, Juan

    Seismic response of fractures and induced anisotropy in poroelastic media Juan E. Santos stituto) and R. Mart´inez Corredor (UNLP) Department of Mathematics, University of Calgary, October 2014 Seismic variations of velocity and attenuation of seismic waves. Seismic response of fractures and induced anisotropy

  6. SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabi

    E-Print Network [OSTI]

    SERIES workshopSERIES workshop Role of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitationRole of research infrastructures in seismic rehabilitation Istanbul, 8Istanbul, 8--9 February 20129

  7. Seismic transducer modeling using ABAQUS

    SciTech Connect (OSTI)

    Stephen R. Novascone

    2004-05-01T23:59:59.000Z

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  8. Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

  9. Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction Seismic Wave Propagation in Alluvial Basins

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Seismic Wave Propagation in Alluvial Basins and Influence of Site-City Interaction 1 Seismic Wave of alluvial deposits have a major influence on seismic wave propagation and amplification. However influence seismic wave propagation near the free surface. In this paper, the influence of surface structures

  10. Seismic margins and calibration of piping systems

    SciTech Connect (OSTI)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  11. Seismicity parameters preceding moderate to major earthquakes

    SciTech Connect (OSTI)

    von Seggern, D.; Alexander, S.S.; Baag, C.

    1981-10-10T23:59:59.000Z

    Seismic events reported in the bulletins of the two large arrays, LASA and NORSAR, were merged with those from the NEIS bulletin for the period 1970-1977. Using a lower cutoff of m/sub b/ = 5.8, 510 'main shocks' within the P range of LASA or NORSAR were selected for this period; and various seismicity trends prior to them were investigated. A search for definite foreshocks, based on a significantly short time delay to the main shock, revealed that the true rate of foreshock occurrence was less than 20%. Foreshocks are almost exclusively associated with shallow (h<100 km) main shocks. Averaging shows that the seismicity level around the main shock increases somewhat for 10 days before main shocks; this feature peaks in the last 3--4 hours prior to the main shocks. Again by averaging, the seismicity about main shocks is shown to tend with time toward the main shock as its origin time is approached, but the average effect is small (approx.10% change).Using a new variable to track the departures from both spatial and temporal randomness, the Poisson-like behavior of deeper seismicity (>100 km) was demonstrated. For shallow events (<100 km) this variable reveals numerous instances of clustering and spatial-temporal seismic gaps, with little tendency toward a uniformity of behavior prior to main shocks. A statistical test of the validity of seismic precursors was performed for approximately 90 main shock regions which had sufficient seismicity. Using a five-variable vector, (interevent time, interevent distance, magnitude, epicentral distance to main shock, and depth difference relative to main shock) for each event in a 'precursory' time window of 500 days before the main shock and for each event in a 'normal' time window of 500 days before that, the null hypothesis of equal vector means between the two groups was tested. At 90% confidence levels, less than 30% of the main shock regions were thus found to exhibit precursory seismicity changes.

  12. Seismic Pulses Derivation from the Study of Source Signature Characteristics

    SciTech Connect (OSTI)

    Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)

    2010-07-07T23:59:59.000Z

    This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.

  13. Seismic Structure of Shallow Lithosphere at Locations of Distinctive Seafloor Spreading /

    E-Print Network [OSTI]

    Henig, Ashlee Shae

    2013-01-01T23:59:59.000Z

    Lithologic interpretations of our seismic results are guidedx and z. Interpretation of the 2D seismic velocity models (to aid in interpretation of rock type from seismic velocity.

  14. Assessment of seismic margin calculation methods

    SciTech Connect (OSTI)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01T23:59:59.000Z

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  15. SMACS. Probabilistic Seismic Analysis System

    SciTech Connect (OSTI)

    Johnson, J.J.; Maslenikov, O.R.; Tiong, L.W.; Mraz, M.J. [EQE Incorporated, San Ramon, CA (United States); Bumpus, S.; Gerhard, M.A. [Lawrence Livermore National Lab., CA (United States)

    1992-01-14T23:59:59.000Z

    The SMACS (Seismic Methodology Analysis Chain with Statistics) system of computer programs is one of the major computational tools of the U.S. NRC Seismic Safety Margins Research Program (SSMRP). SMACS is comprised of the core program SMAX, which performs the SSI response analyses, five preprocessing programs, and two postprocessors. The preprocessing programs include: GLAY and CLAN, which generate the nominal impedance matrices and wave scattering vectors for surface-founded structures; INSSIN, which projects the dynamic properties of structures to the foundation in the form of modal participation factors and mass matrices; SAPPAC, which projects the dynamic and pseudostatic properties of multiply-supported piping systems to the support locations, and LNGEN, which can be used to generate the multiplication factors to be applied to the nominal soil, structural, and subsystem properties for each of the response calculations in accounting for random variations of these properties. The postprocessors are: PRESTO, which performs statistical operations on the raw data from the response vectors that SMAX produces to calculate best fit lognormal distributions for each response location, and CHANGO, which manipulates the data produced by PRESTO to produce other results of interest to the user. Also included is the computer program SAP4 (a modified version of the University of California, Berkeley SAPIV program), a general linear structural analysis program used for eigenvalue extractions and pseudostatic mode calculations of the models of major structures and subsystems. SAP4 is used to prepare input to the INSSIN and SAPPAC preprocessing programs. The GLAY and CLAN programs were originally developed by J.E. Luco (UCSD) and H.L. Wong (USC).

  16. 4-D seismic technologies: intersurvey calibration

    E-Print Network [OSTI]

    Kelley, Jeffrey Paul

    1998-01-01T23:59:59.000Z

    seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) analysis is typically...

  17. 4-D seismic technologies: intersurvey calibration 

    E-Print Network [OSTI]

    Kelley, Jeffrey Paul

    1998-01-01T23:59:59.000Z

    seismic data sets at different times in the production life of a reservoir, calibrating, then comparing the data sets and interpreting intersurvey differences in terms of fluid change or movement. In practice 4-D (time-lapse) ...

  18. Non-physical energy in seismic interferometry 

    E-Print Network [OSTI]

    King, Simon James

    2012-06-25T23:59:59.000Z

    Non-physical arrivals produced by seismic interferometry, the process whereby Green’s functions are synthesized between two points by cross-correlation, crossconvolution or deconvolution, are often considered to provide ...

  19. Study of induced seismicity for reservoir characterization

    E-Print Network [OSTI]

    Li, Junlun, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

  20. Seismic assessment strategies for masonry structures

    E-Print Network [OSTI]

    DeJong, Matthew J. (Matthew Justin)

    2009-01-01T23:59:59.000Z

    Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...

  1. Seismic retrofitting of deficient Canadian buildings

    E-Print Network [OSTI]

    Gemme, Marie-Claude

    2009-01-01T23:59:59.000Z

    Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...

  2. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  3. Bayesian estimation of resistivities from seismic velocities 

    E-Print Network [OSTI]

    Werthmüller, Dieter

    2014-06-30T23:59:59.000Z

    I address the problem of finding a background model for the estimation of resistivities in the earth from controlled-source electromagnetic (CSEM) data by using seismic data and well logs as constraints. Estimation of ...

  4. Decision analysis for seismic retrofit of structures

    E-Print Network [OSTI]

    Williams, Ryan J.

    2009-05-15T23:59:59.000Z

    of earthquakes as deterministic statements that will not occur for a long time rather than as probabilistic statements about the events (May 2004). Due to the aforementioned concerns regarding the decreased likelihood of building damage from seismic activity...-05, American Society of Civil Engineers, Reston, VA. Bai, J.-W., Hueste, M. B., and Gardoni, P. (2007). ?A probabilistic framework for the assessment of structural losses due to seismic events.? J. Struct. Engrg., submitted for review. Bracci, J. M...

  5. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  6. Forecasting Seismic Signatures of Stellar Magnetic Activity

    E-Print Network [OSTI]

    W. A. Dziembowski

    2007-09-17T23:59:59.000Z

    For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.

  7. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect (OSTI)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31T23:59:59.000Z

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  8. Seismic behavior of structural silicone glazing

    SciTech Connect (OSTI)

    Zarghamee, M.S.; Schwartz, T.A. [Simpson Gumpertz and Heger Inc., Arlington, MA (United States); Gladstone, M. [Dow Corning Corp., Fremont, CA (United States)

    1996-12-31T23:59:59.000Z

    In seismic events, glass curtain walls undergo racking deformation, while the flat glass lites do not rack due to their high shear stiffness. If the glass curtain wall is not isolated from the building frame by specifically designed connections that accommodate relative motion, seismic racking motion of the building frame will demand significant resiliency of the sealant that secures the glass to the curtain wall framing. In typical four-sided structural silicone glazing systems used in buildings with unbraced moment frames, the magnitude of seismic racking is likely to stress the sealants significantly beyond the sealant design strength. In this paper, the extent of the expected seismic racking motion, the behavior of the structural silicone glazing when subjected to the expected racking motion, and the field performance of a building with four-sided structural silicone glazing during the Northridge earthquake are discussed. The details of a curtain wall design concept consisting of shop-glazed subframes connected to the building frame and the connections that accommodate seismic motion of the subframe relative to the building frame is developed. Specific recommendations are made for the design of the four-sided structural silicone glazing systems for seismic loads.

  9. Crustal structure beneath the gravity lineations in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition

    E-Print Network [OSTI]

    Webb, Spahr C.

    , Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from

  10. The measurement of attenuation from vertical seismic profiles 

    E-Print Network [OSTI]

    Davis, Francis Erwin

    1983-01-01T23:59:59.000Z

    and the calcareous content or the shales. Slightly to non-calcareous shales exhibrted the highest attenuation values. Calcareous to very calcareous shales; low porosity, cemented andstones; and limestones exhibited the lowest attenuatior values. No correlation... aligned on trough. VSP3 . . . 81 Figure 40. Cumulative attenuation and 90% confidence intervals. Downhole data. VSP3 83 Figure 41. Cumulative attenuation and 90% confidence intervals. Synthetic data. VSP3 85 Figure 42. Cumulative attenuation and 90...

  11. The measurement of attenuation from vertical seismic profiles

    E-Print Network [OSTI]

    Davis, Francis Erwin

    1983-01-01T23:59:59.000Z

    and the calcareous content or the shales. Slightly to non-calcareous shales exhibrted the highest attenuation values. Calcareous to very calcareous shales; low porosity, cemented andstones; and limestones exhibited the lowest attenuatior values. No correlation... aligned on trough. VSP3 . . . 81 Figure 40. Cumulative attenuation and 90% confidence intervals. Downhole data. VSP3 83 Figure 41. Cumulative attenuation and 90% confidence intervals. Synthetic data. VSP3 85 Figure 42. Cumulative attenuation and 90...

  12. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  13. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  14. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    SciTech Connect (OSTI)

    Lane, Michael

    2012-01-01T23:59:59.000Z

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  15. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    SciTech Connect (OSTI)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  16. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01T23:59:59.000Z

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  17. Annual Hanford Seismic Report for Fiscal Year 2004

    SciTech Connect (OSTI)

    Hartshorn, Donald C.; Reidel, Steve P.; Rohay, Alan C.

    2004-12-07T23:59:59.000Z

    This report describes seismic activity at and around the Hanford Site during Fiscal Year 2004. It is also the first description of seismic activity during the fourth quarter of FY04.

  18. Seismic Reflection Studies in Long Valley Caldera, Califomia

    E-Print Network [OSTI]

    Black, Ross A.; Deemer, Sharon J.; Smithson, Scott B.

    1991-03-10T23:59:59.000Z

    Seismic reflection studies in Long Valley caldera, California, indicate that seismic methods may be successfully employed to image certain types of features in young silicic caldera environments. However, near-surface ...

  19. Seismic Facies Classification And Identification By Competitive Neural Networks

    E-Print Network [OSTI]

    Saggaf, Muhammad M.

    2000-01-01T23:59:59.000Z

    We present an approach based on competitive networks for the classification and identification of reservoir facies from seismic data. This approach can be adapted to perform either classification of the seismic facies based ...

  20. A Study of SSI Effects Incorporating Seismic Wave Incoherence...

    Office of Environmental Management (EM)

    A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...

  1. Time-lapse seismic monitoring of subsurface fluid flow

    E-Print Network [OSTI]

    Yuh, Sung H.

    2004-09-30T23:59:59.000Z

    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

  2. Motion based seismic design and loss estimation of diagrid structures

    E-Print Network [OSTI]

    Liptack, Robert J. (Robert Jeffrey)

    2013-01-01T23:59:59.000Z

    Diagrids are becoming an increasingly popular structural system in high rise design and construction. Little research has been performed on the seismic performance of Diagrids and how it integrates with seismic loss ...

  3. Characterization of the Virgo Seismic Environment

    E-Print Network [OSTI]

    The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri

    2011-08-08T23:59:59.000Z

    The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.

  4. Salvo: Seismic imaging software for complex geologies

    SciTech Connect (OSTI)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01T23:59:59.000Z

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  5. First Quarter Seismic Report for Fiscal Year 2006

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Stephen P.; Hartshorn, Donald C.; Sweeney, Mark D.; Clayton, Ray E.

    2006-09-01T23:59:59.000Z

    This report describes the earthquake data collected from October 2005 to December 2005 from the Hanford Seismic Network

  6. Seismic velocity and Q anisotropy in fractured poroelastic media

    E-Print Network [OSTI]

    Introduction. Seismic wave propagation through fractures is an important subject in hydrocarbon exploration geophysics, mining and reservoir characterization ...

  7. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Additional References Retrieved from "http:...

  8. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization...

  9. Method for processing seismic data to identify anomalous absorption zones

    DOE Patents [OSTI]

    Taner, M. Turhan

    2006-01-03T23:59:59.000Z

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  10. Geothermometry At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location...

  11. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada...

  12. Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Yellowstone Region (Chatterjee, Et Al., 1985) Exploration Activity...

  13. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher Giertsen, John Thurmond, John Gjelberg, and M. Eduard Groller, Member, IEEE

    E-Print Network [OSTI]

    The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data Daniel Patel, Christopher for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel

  14. Expressive Visualization and Rapid Interpretation of Seismic Volumes

    E-Print Network [OSTI]

    Expressive Visualization and Rapid Interpretation of Seismic Volumes Daniel Patel Thesis, Christopher Giertsen, John Thurmond, Eduard Gr¨oller The Seismic Analyzer: Interpreting and Illustrating 2D of Seismic Data Published in: Vision, Modelling and Visualization (VMV) 2007 Authors: Daniel Patel

  15. Knowledge Assisted Visualization Knowledge-assisted visualization of seismic data

    E-Print Network [OSTI]

    for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas, using seismic interpretation, is performed that makes it fit very naturally into the paradigmKnowledge Assisted Visualization Knowledge-assisted visualization of seismic data Daniel Patel a

  16. Staged Hybrid Genetic Search for Seismic Data Imaging

    E-Print Network [OSTI]

    Whitley, Darrell

    Christof Stork yy and Tony Kusuma yy Abstract --- Seismic data interpretation problems are typ­ icallyStaged Hybrid Genetic Search for Seismic Data Imaging Keith E. Mathias, y L. Darrell Whitley, y. Geological exploration em­ ploys seismic reflection surveys to obtain subsurface im­ ages of geologic beds

  17. Finding hydrocarbons in the classroom using "free" seismic interpretation software

    E-Print Network [OSTI]

    Finding hydrocarbons in the classroom using "free" seismic interpretation software WAYNE D Technological Univer- sity, we recently introduced a new course in seismic processing and interpretation of this paper is to pro- vide details of the class assignment in seismic interpretation, and to encourage

  18. STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN

    E-Print Network [OSTI]

    Braun, Douglas C.

    STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar

  19. Tutorial on seismic interferometry: Part 1 --Basic principles and applications

    E-Print Network [OSTI]

    Snieder, Roel

    Tutorial on seismic interferometry: Part 1 -- Basic principles and applications Kees Wapenaar1 , Deyan Draganov1 , Roel Snieder2 , Xander Campman3 , and Arie Verdel3 ABSTRACT Seismic interferometry is the retrieval of seismic surface-wave responses from ambient noise and the subsequent tomographic determination

  20. Seismic Retrofitting of RC Frames with RC Infilling

    E-Print Network [OSTI]

    Seismic Retrofitting of RC Frames with RC Infilling SERIES Workshop: "Role of research infrastructures in seismic rehabilitation" 8 - 9 February 2012, Istanbul, Turkey C. Z. Chrysostomou, N. Kyriakides, P. Kotronis, P. Roussis, M. Poljansek, F. Taucer RC Infilling of Existing RC Structures for Seismic

  1. Global seismic monitoring as probabilistic inference Nimar S. Arora

    E-Print Network [OSTI]

    Russell, Stuart

    Global seismic monitoring as probabilistic inference Nimar S. Arora Department of Computer Science of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), primarily through detection and localization of seismic events. We nuclear explosions. A global network of seismic, radionuclide, hydroacoustic, and infrasound sensors

  2. Seismic Observation Systems in Nagoya University and Publication of Data

    E-Print Network [OSTI]

    Southern California, University of

    Seismic Observation Systems in Nagoya University and Publication of Data Nobuo Fukuwa,a) Jun Tobita,b) and Hiroaki Kojimac) This paper reports the current situation of the seismic monitoring program conducted by Nagoya University. First, the system for observing seismic ground motion in the Tokai Region is described

  3. Seismic Engineering Research Infrastructures for European Synergies (SERIES)

    E-Print Network [OSTI]

    Seismic Engineering Research Infrastructures for European Synergies (SERIES) M.N. Fardis University of Patras, Greece SUMMARY: Through the 4-year project SERIES (Seismic Engineering Research Infrastructures of their research. It also helps them to enhance their potential, by jointly developing novel seismic testing

  4. Seismic shape parameters estimation and ground-roll suppression using

    E-Print Network [OSTI]

    Spagnolini, Umberto

    Seismic shape parameters estimation and ground-roll suppression using vector-sensor beamforming the problem of estimating the shape parameters of seismic wavefields in linear arrays. The purpose of the subsurface layers from the seismic wavefields registered by surface sensors. However, only the waves

  5. Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron

    E-Print Network [OSTI]

    Cameron, Maria Kourkina

    Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron

  6. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION General Committee Final workshop Ispra (IT), May 30 th, 2013 MAID project : Seismic behavior of L- and T-shaped unreinforced Masonry shear walls including Acoustic Isolation Devices #12;SEISMIC ENGINEERING RESEARCH

  7. S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES

    E-Print Network [OSTI]

    S E R I E S SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES COMMISSION, In memory of Prof. Roy Severn #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES · Project Framework · Experimental Campaign · Outcome Outline #12;SEISMIC ENGINEERING RESEARCH

  8. Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting

    E-Print Network [OSTI]

    Steidl, Gabriele

    Seismic Data Reconstruction via Shearlet-Regularized Directional Inpainting S¨oren H¨auser and Jianwei Ma May 15, 2012 We propose a new method for seismic data reconstruction by directional weighted of thousands of meters with a good resolution, the seismic method has become the most commonly used geophysical

  9. Parallel Seismic Ray Tracing in a Global Earth Model

    E-Print Network [OSTI]

    Genaud, Stéphane

    1 Parallel Seismic Ray Tracing in a Global Earth Model Marc Grunberg * , Stéphane Genaud of the Earth interior, and seismic tomogra- phy is a means to improve knowledge in this #28;eld. In order present in this paper the de- sign of a software program implement- ing a fast seismic ray

  10. LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA

    E-Print Network [OSTI]

    Eidsvik, Jo

    LITHOLOGY-FLUID INVERSION FROM PRESTACK SEISMIC DATA MARIT ULVMOEN Department of Mathematical of the study is on lithology-fluid inversion from prestack seismic data in a 3D reservoir. The inversion relates the lithology-fluid classes to elastic variables and the seismic data, and it follows the lines

  11. Lithology-Fluid Inversion based on Prestack Seismic Data

    E-Print Network [OSTI]

    Eidsvik, Jo

    Lithology-Fluid Inversion based on Prestack Seismic Data Marit Ulvmoen Summary The focus of the study is on lithology-fluid inversion from prestack seismic data. The target zone is a 3D reservoir model. The likelihood model relates the lithology-fluid classes to elastic variables and the seismic

  12. Seismic petrophysics: An applied science for reservoir geophysics

    E-Print Network [OSTI]

    Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic

  13. New events discovered in the Apollo lunar seismic data

    E-Print Network [OSTI]

    Shearer, Peter

    New events discovered in the Apollo lunar seismic data R. C. Bulow, C. L. Johnson,1 and P. M processing tools to revisit the Apollo lunar seismic data set with the goal of extending and further), New events discovered in the Apollo lunar seismic data, J. Geophys. Res., 110, E10003, doi:10

  14. Seismic response of steel suspension bridge

    SciTech Connect (OSTI)

    McCallen, D.B. [Lawrence Livermore National Lab., CA (United States); Astaneh-Asl, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering

    1996-11-01T23:59:59.000Z

    Performing accurate, realistic numerical simulations of the seismic response of long-span bridges presents a significant challenge to the fields of earthquake engineering and seismology. Suspension bridges in particular represent some of the largest and most important man-made structures and ensuring the seismic integrity of these mega-structures is contingent on accurate estimations of earthquake ground motions and accurate computational simulations of the structure/foundation system response. A cooperative, multi-year research project between the Univ. of California and LLNL was recently initiated to study engineering and seismological issues essential for simulating the response of major structures. Part of this research project is focused on the response of the long-span bridges with the San Francisco-Oakland Bay Bridge serving as a case study. This paper reports on the status of this multi-disciplinary research project with emphasis on the numerical simulation of the transient seismic response of the Bay Bridge.

  15. Development of the seismic input for use in the seismic safety margins research program

    SciTech Connect (OSTI)

    Bernreuter, D.L.; Chung, D.H.

    1980-01-29T23:59:59.000Z

    This paper briefly outlines the overall systems approach being developed for the Seismic Safety Margins Research Program. The unique features of the approach being taken to reduce the uncertainty in the seismic input for this program are discussed. These unique features will include extensive use of expert opinion, earthquake rupture simulation studies and the way in which the seismic hazard is incorporated into the overall systems analysis. Some very preliminary results are also given for the Zion site which is the power plant chosen for analysis in Phase I of the program.

  16. Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility

    SciTech Connect (OSTI)

    Carr, D.B.

    1993-08-01T23:59:59.000Z

    The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.

  17. DEMONSTRATION OF NONLINEAR SEISMIC SOIL STRUCTURE INTERACTION AND APPLICABILITY TO NEW SYSTEM FRAGILITY CURVES SEISMIC

    SciTech Connect (OSTI)

    Coleman, Justin [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it wasn’t the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  18. Generic seismic ruggedness of power plant equipment

    SciTech Connect (OSTI)

    Merz, K.L. (Anco Engineers, Inc., Culver City, CA (United States))

    1991-08-01T23:59:59.000Z

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  19. Nonlinear Seismic Response Of Single Piles

    SciTech Connect (OSTI)

    Cairo, R.; Conte, E.; Dente, G. [University of Calabria, Dipartimento di Difesa del Suolo, Rende (Italy)

    2008-07-08T23:59:59.000Z

    In this paper, a method is proposed to analyse the seismic response of single piles under nonlinear soil condition. It is based on the Winkler foundation model formulated in the time domain, which makes use of p-y curves described by the Ramberg-Osgood relationship. The analyses are performed referring to a pile embedded in two-layer soil profiles with different sharp stiffness contrast. Italian seismic records are used as input motion. The calculated bending moments in the pile are compared to those obtained using other theoretical solutions.

  20. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23T23:59:59.000Z

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  1. Microstructural Changes in Elastomers Seismic Devices

    SciTech Connect (OSTI)

    Buonsanti, Michele [Dipartimento Meccanica e Materiali, Facolta di Ingegneria, Universita Mediterranea, loc. Feo di Vito 89060 Reggio Calabria (Italy)

    2008-07-08T23:59:59.000Z

    Today elastomers or rubber materials are present in many seismic devices since they are fundamental tools for energy dissipation. The ground motion effects on the elastomers seismic isolator produces, in addition to horizontal displacements, even rotation respect to the vertical axis. These last effects make torsion action on the devices plane other in all components. We focus our attention on the circular elastomers sheet under warping actions. We observe some material volume fraction in a different phase and the analysis shows the evolution phases linked with inhomogeneous deformation field. Finally it appears, under cyclic loading conditions, a stress-softening phenomenon (i.e. Mullins effects) as correlation to continuum damage mechanism.

  2. Seismic Search for Strange Quark Nuggets

    E-Print Network [OSTI]

    Eugene T. Herrin; Doris C. Rosenbaum; Vigdor L. Teplitz

    2005-12-30T23:59:59.000Z

    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to one ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

  3. Seismic Crystals And Earthquake Shield Application

    E-Print Network [OSTI]

    B. Baykant Alagoz; Serkan Alagoz

    2009-05-15T23:59:59.000Z

    We theoretically demonstrate that earthquake shield made of seismic crystal can damp down surface waves, which are the most destructive type for constructions. In the paper, seismic crystal is introduced in aspect of band gaps (Stop band) and some design concepts for earthquake and tsunami shielding were discussed in theoretical manner. We observed in our FDTD based 2D elastic wave simulations that proposed earthquake shield could provide about 0.5 reductions in magnitude of surface wave on the Richter scale. This reduction rate in magnitude can considerably reduce destructions in the case of earthquake.

  4. Advanced motor driven clamped borehole seismic receiver

    DOE Patents [OSTI]

    Engler, Bruce P. (Sandoval County, NM); Sleefe, Gerard E. (Bernalillo County, NM); Striker, Richard P. (Bernalillo County, NM)

    1993-01-01T23:59:59.000Z

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  5. Seismic search for strange quark nuggets

    SciTech Connect (OSTI)

    Herrin, Eugene T.; Rosenbaum, Doris C.; Teplitz, Vigdor L. [Geology Department, Southern Methodist University, Dallas, Texas 75275 (United States); Physics Department, Southern Methodist University, Dallas, Texas 75275 (United States); NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2006-02-15T23:59:59.000Z

    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to 1 ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.

  6. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01T23:59:59.000Z

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  7. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect (OSTI)

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02T23:59:59.000Z

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  8. CONSTRAINTS ON SUBDUCTION GEODYNAMICS FROM SEISMIC ANISOTROPY

    E-Print Network [OSTI]

    , as downwelling limbs of the mantle's convective system, drive the secular cooling of the Earth. Subduction zones 2012; revised 4 March 2013; accepted 6 March 2013; published 12 April 2013. [1] Much progress has been for probing mantle dynamics in subduction systems. Here I review the observational con- straints on seismic

  9. Distributed computing of Seismic Imaging Algorithms

    E-Print Network [OSTI]

    Emami, Masnida; Jaberi, Nasrin

    2012-01-01T23:59:59.000Z

    The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

  10. Seismic isolation of two dimensional periodic foundations

    SciTech Connect (OSTI)

    Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-07-28T23:59:59.000Z

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  11. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Wayne D. Pennington

    2002-09-29T23:59:59.000Z

    The project, "Calibration of Seismic Attributes for Reservoir Characterization," is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, inlcuding several that are in final stages of preparation or printing; one of these is a chapter on "Reservoir Geophysics" for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along 'phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  12. CALIBRATION OF SEISMIC ATTRIBUTES FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Wayne D. Pennington; Horacio Acevedo; Aaron Green; Joshua Haataja; Shawn Len; Anastasia Minaeva; Deyi Xie

    2002-10-01T23:59:59.000Z

    The project, ''Calibration of Seismic Attributes for Reservoir Calibration,'' is now complete. Our original proposed scope of work included detailed analysis of seismic and other data from two to three hydrocarbon fields; we have analyzed data from four fields at this level of detail, two additional fields with less detail, and one other 2D seismic line used for experimentation. We also included time-lapse seismic data with ocean-bottom cable recordings in addition to the originally proposed static field data. A large number of publications and presentations have resulted from this work, including several that are in final stages of preparation or printing; one of these is a chapter on ''Reservoir Geophysics'' for the new Petroleum Engineering Handbook from the Society of Petroleum Engineers. Major results from this project include a new approach to evaluating seismic attributes in time-lapse monitoring studies, evaluation of pitfalls in the use of point-based measurements and facies classifications, novel applications of inversion results, improved methods of tying seismic data to the wellbore, and a comparison of methods used to detect pressure compartments. Some of the data sets used are in the public domain, allowing other investigators to test our techniques or to improve upon them using the same data. From the public-domain Stratton data set we have demonstrated that an apparent correlation between attributes derived along ''phantom'' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the public-domain Boonsville data set we developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and we developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines. The Teal South data set has provided a surprising set of results, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. Additional results were found using the public-domain Waha and Woresham-Bayer data set, and some tests of technologies were made using 2D seismic lines from Michigan and the western Pacific ocean.

  13. Potential for Induced Seismicity Related to the Northern California CO2 Reduction Project Pilot Test, Solano County, California

    E-Print Network [OSTI]

    Myer, L.

    2010-01-01T23:59:59.000Z

    discussed in the Seismic Data Interpretation section below,stations. Seismic Data Interpretation Shell developed anan internal interpretation of twenty 2D seismic lines. LBNL

  14. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  15. Simulation of production and elastic properties of reservoirs to validate time-lapse seismics.

    E-Print Network [OSTI]

    Guerin, Gilles

    , including the 3D seismic processing and inversion, and the preliminary time- lapse interpretation. We-lapse seismics. 3.1 Introduction Time-lapse, or 4-D, seismic monitoring is an integrated reservoir exploitation technique based on the analysis of successive 3-D seismic surveys. Differences over time in seismic

  16. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  17. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-07-27T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the last report. Most of the components have been received and assembly has begun. Testing is expected to resume in August. In April, a paper was presented at the American Association of Drilling Engineers National Technical Conference in Houston. The paper was well received, and several oilfield service and supply companies sent inquiries regarding commercial distribution of the system. These are currently being pursued, but none have yet been finalized.

  18. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2006-05-01T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Phase II concluded on January 31, 2006. The month of January was devoted to the final preparations for, and conducting of testing of the DVMCS at TerraTek laboratories in Salt Lake City. This testing was concluded on January 27, 2006. Much of the effort in this period was then devoted to the analysis of the data and the preparation of the Phase II final report. The report was issued after the close of the period. Work on Phase III of the project began during this quarter. It has consisted of making some modifications in the prototype design to make it more suitable for field testing an more practical for commercial use. This work is continuing. The redesign effort, coupled with the current extreme lead times quoted by oilfield machine shops for collar components, will delay the deployment of the field prototypes. The precommercial prototypes are being developed in parallel, so the project should be completed per the current schedule.

  19. Downhole Vibration Monitoring & Control System

    SciTech Connect (OSTI)

    Martin E. Cobern

    2007-03-31T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and the Phase II final report was issued. Work on Phase III of the project began during the first quarter, 2006. Efforts the current quarter have continued to focus on the manufacture of the prototype and precommercial parts, field test planning and commercialization. The continued extreme lead times quoted by oilfield machine shops for collar components significantly delayed the deployment of the prototype and precommercial units. All parts have now been received for two units, and all but one for the third. Mechanical assembly of the first two systems is complete and the electronics installation and laboratory testing will be finished in April. We have entered into a Memorandum of Understanding with a major US oilfield equipment supplier, which calls for their assisting with our field tests, in cash and in kind. We are close to signing a definitive agreement which includes the purchase of the three precommercial units. We had also signed a CRADA with the Rocky Mountain Oilfield Test Center (RMOTC), and scheduled a test at their site, The RMOTC drilling schedule continues to slip, and the test cannot begin until the first week of May. Based on these factors, we have requested a no-cost extension to July 31, 2007.

  20. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2006-09-30T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Phase II concluded on January 31, 2006, and the final report was issued. Work on Phase III of the project began during the previous quarter. Efforts this quarter have focused on the manufacture of the prototype and precommercial parts, field test planning and commercialization. The current extreme lead times quoted by oilfield machine shops for collar components, will delay the deployment of the field prototypes. The delivery date for five critical parts from one supplier has slipped to late November, which will preclude deployment for a field test before late December or early January. We are exploring whether we can take the partially made parts and complete them earlier in our own shop.

  1. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-04-27T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  2. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-08-31T23:59:59.000Z

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  3. ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control of

    E-Print Network [OSTI]

    Boyer, Edmond

    1 ABSTRACT: Modern seismic codes recommend the design of ductile structures able to absorb seismic energy through high plastic deformation. Since seismic ductile design relies on an accurate control-concrete composite structures; Material properties variability; Seismic design; capacity design. 1 GENERAL CONTEXT

  4. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15T23:59:59.000Z

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

  5. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

    2001-01-01T23:59:59.000Z

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  6. Characterization of the Virgo Seismic Environment

    E-Print Network [OSTI]

    Accadia, T; Astone, P; Ballardin, G; Barone, F; Barsuglia, M; Basti, A; Bauer, Th S; Bebronne, M; Beker, M G; Belletoile, A; Bitossi, M; Bizouard, M A; Blom, M; Bondu, F; Bonelli, L; Bonnand, R; Boschi, V; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Branchesi, M; Briant, T; Brillet, A; Brisson, V; Bulik, T; Bulten, H J; Buskulic, D; Buy, C; Cagnoli, G; Calloni, E; Canuel, B; Carbognani, F; Cavalier, F; Cavalieri, R; Cella, G; Cesarini, E; Chaibi, O; Chassande-Mottin, E; Chincarini, A; Chiummo, A; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Coughlin, M; Coulon, J -P; Cuoco, E; DAntonio, S; Dattilo, V; Davier, M; Day, R; De Rosa, R; Debreczeni, G; Del Pozzo, W; del Prete, M; Di Fiore, L; Di Lieto, A; Emilio, M Di Paolo; Di Virgilio, A; Dietz, A; Drago, M; Endroczi, G; Fafone, V; Ferrante, I; Fidecaro, F; Fiori, I; Flaminio, R; Forte, L A; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Galimberti, M; Gammaitoni, L; Garufi, F; Gaspar, M E; Gemme, G; Genin, E; Gennai, A; Giazotto, A; Gouaty, R; Granata, M; Greverie, C; Guidi, G M; Hayau, J -F; Heidmann, A; Heitmann, H; Hello, P; Jaranowski, P; Kowalska, I; Krolak, A; Leroy, N; Letendre, N; Li, T G F; Liguori, N; Lorenzini, M; Loriette, V; Losurdo, G; Majorana, E; Maksimovic, I; Man, N; Mantovani, M; Marchesoni, F; Marion, F; Marque, J; Martelli, F; Masserot, A; Michel, C; Milano, L; Minenkov, Y; Mohan, M; Morgado, N; Morgia, A; Mosca, S; Mours, B; Naticchioni, L; Nocera, F; Pagliaroli, G; Palladino, L; Palomba, C; Paoletti, F; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Persichetti, G; Piergiovanni, F; Pietka, M; Pinard, L; Poggiani, R; Prato, M; Prodi, G A; Punturo, M; Puppo, P; Rabeling, D S; Racz, I; Rapagnani, P; Re, V; Regimbau, T; Ricci, F; Robinet, F; Rocchi, A; Rolland, L; Romano, R; Rosinska, D; Ruggi, P; Sassolas, B; Sentenac, D; Sperandio, L; Sturani, R; Swinkels, B; Tacca, M; Taffarello, L; Toncelli, A; Tonelli, M; Torre, O; Tournefier, E; Travasso, F; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; Vasuth, M; Vavoulidis, M; Vedovato, G; Verkindt, D; Vetrano, F; Vicere, A; Vinet, J -Y; Vitale, S; Vocca, H; Ward, R L; Was, M; Yvert, M; Zadrozny, A; Zendri, J -P

    2011-01-01T23:59:59.000Z

    The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence ana...

  7. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

    1995-01-01T23:59:59.000Z

    A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

  8. On seismic signatures of rapid variation

    E-Print Network [OSTI]

    G. Houdek; D. O. Gough

    2006-12-01T23:59:59.000Z

    We present an improved model for an asteroseismic diagnostic contained in the frequency spacing of low-degree acoustic modes. By modelling in a realistic manner regions of rapid variation of dynamically relevant quantities, which we call acoustic glitches, we can derive signatures of the gross properties of those glitches. In particular, we are interested in measuring properties that are related to the helium ionization zones and to the rapid variation in the background state associated with the lower boundary of the convective envelope. The formula for the seismic diagnostic is tested against a sequence of theoretical models of the Sun, and is compared with seismic diagnostics published previously by Monteiro & Thompson (1998, 2005) and by Basu et al. (2004).

  9. Seismic switch for strong motion measurement

    DOE Patents [OSTI]

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30T23:59:59.000Z

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  10. Exploring the Earth’s subsurface with virtual seismic sources and receivers 

    E-Print Network [OSTI]

    Nicolson, Heather Johan

    2011-11-24T23:59:59.000Z

    Traditional methods of imaging the Earth’s subsurface using seismic waves require an identifiable, impulsive source of seismic energy, for example an earthquake or explosive source. Naturally occurring, ambient seismic waves form an ever...

  11. Seismic fragility estimates for corroded reinforced concrete bridge structures with two-column bents

    E-Print Network [OSTI]

    Zhong, Jinquan

    2009-05-15T23:59:59.000Z

    To assess the losses associated with future earthquakes, seismic vulnerability functions are commonly used to correlate the damage or loss of a structure to the level of seismic intensity. A common procedure in seismic vulnerability assessment...

  12. Seismic fragility and retrofitting for a reinforced concrete flat-slab structure

    E-Print Network [OSTI]

    Bai, Jong-Wha

    2004-09-30T23:59:59.000Z

    The effectiveness of seismic retrofitting applied to enhance seismic performance was assessed for a five-story reinforced concrete (RC) flat-slab building structure in the central United States. In addition to this, an assessment of seismic...

  13. Author's personal copy Interpretation of interseismic deformations and the seismic cycle associated with

    E-Print Network [OSTI]

    Vigny, Christophe

    Author's personal copy Interpretation of interseismic deformations and the seismic cycle associated online 11 January 2013 Keywords: Seismic cycle Finite element Subduction Earthquake Viscoelastic asthenosphere Low viscosity wedge The deformations of the overriding and subducting plates during the seismic

  14. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic...

  15. Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Seismic Risk Assessment of Port Facilities Ung Jin Na, Samit Ray Chaudhuri Faculty Advisor : Prof Estimation Methodology Applications (in progress) Port of Long Beach · Seismic Risk Assessment, Decision & Vertical movement, Settlement of Apron Seismic Vulnerability - quay Wall

  16. PRINCIPLES OF SEISMIC HOLOGRAPHY FOR DIAGNOSTICS OF THE SHALLOW SUBPHOTOSPHERE Charles Lindsey and D. C. Braun

    E-Print Network [OSTI]

    Braun, Douglas C.

    PRINCIPLES OF SEISMIC HOLOGRAPHY FOR DIAGNOSTICS OF THE SHALLOW SUBPHOTOSPHERE Charles Lindsey develop the wave-mechanical formalism for phase-correlation computational seismic holography headinggs: Sun: activity -- Sun: helioseismology -- sunspots 1. INTRODUCTION Computational seismic

  17. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research in

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research Infrastructures (RI) in regions of high seismicity. · Limited access of the Scientific and Technical (S resources at some RIs. #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES KEY POINTS

  18. Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges

    E-Print Network [OSTI]

    Seismic Assessment and Retrofit of Existing Multi-Column Bent Bridges By Cole C. Mc ................................................................................................................................... 6 Seismic Activity in Western Washington State Approach ­ Bridge Modeling .............................................11 Seismic Excitations

  19. Seismic fragility curves for reinforced concrete A Dissertation Submitted in Partial Fulfilment of the Requirements

    E-Print Network [OSTI]

    Seismic fragility curves for reinforced concrete buildings A Dissertation Submitted in Partial dissertation entitled "Seismic fragility curves for reinforced concrete frame and wall- frame buildings. Buildings designed for seismic loading, and buildings designed only for gravity loads, are considered

  20. Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report Fielding of HT-seismic Tools...

  1. Review paper Seismic interferometry and ambient noise tomography in the British Isles

    E-Print Network [OSTI]

    Review paper Seismic interferometry and ambient noise tomography in the British Isles Heather. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2. Theory and method of seismic interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2. Seismic interferometry across the Scottish Highlands

  2. Seismic qualification of existing safety class manipulators

    SciTech Connect (OSTI)

    Wu, Ting-shu; Moran, T.J.

    1992-05-01T23:59:59.000Z

    There are two bridge type electromechanical manipulators within a nuclear fuel handling facility which were constructed over twenty-five years ago. At that time, there were only minimal seismic considerations. These manipulators together with the facility are being reactivated. Detailed analyses have shown that the manipulators will satisfy the requirements of ANSI/AISC N690-1984 when they are subjected to loadings including the site specific design basis earthquake. 4 refs.

  3. Seismic qualification of existing safety class manipulators

    SciTech Connect (OSTI)

    Wu, Ting-shu; Moran, T.J.

    1992-01-01T23:59:59.000Z

    There are two bridge type electromechanical manipulators within a nuclear fuel handling facility which were constructed over twenty-five years ago. At that time, there were only minimal seismic considerations. These manipulators together with the facility are being reactivated. Detailed analyses have shown that the manipulators will satisfy the requirements of ANSI/AISC N690-1984 when they are subjected to loadings including the site specific design basis earthquake. 4 refs.

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    SciTech Connect (OSTI)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  5. Probabilistic seismic risk of the territory of Bishkek city, Kyrgyzstan

    SciTech Connect (OSTI)

    Kamchybekov, Murataly Pakirovich [Institute of Seismology of National Academy Science Kyrgyz Republic (Kyrgyzstan)

    2008-07-08T23:59:59.000Z

    For seismic risk analysis were gathered information about district's seismicity, tectonics, topography, and engineering--geotechnical conditions, which present in apartments, infrastructures and demographies. All of these informations are joined within the limits of GIS for father probabilistic evaluations from different losses levels from earthquake, and also definitions of effective arrangements by reaction. There were given analysis of obtained results with the purpose to take into the consideration and falling of seismic risk's levels.

  6. Calibration of Seismic Attributes for Reservoir Characterization

    SciTech Connect (OSTI)

    Pennington, Wayne D.; Acevedo, Horacio; Green, Aaron; Len, Shawn; Minavea, Anastasia; Wood, James; Xie, Deyi

    2002-01-29T23:59:59.000Z

    This project has completed the initially scheduled third year of the contract, and is beginning a fourth year, designed to expand upon the tech transfer aspects of the project. From the Stratton data set, demonstrated that an apparent correlation between attributes derived along `phantom' horizons are artifacts of isopach changes; only if the interpreter understands that the interpretation is based on this correlation with bed thickening or thinning, can reliable interpretations of channel horizons and facies be made. From the Boonsville data set , developed techniques to use conventional seismic attributes, including seismic facies generated under various neural network procedures, to subdivide regional facies determined from logs into productive and non-productive subfacies, and developed a method involving cross-correlation of seismic waveforms to provide a reliable map of the various facies present in the area. The Teal South data set provided a surprising set of data, leading us to develop a pressure-dependent velocity relationship and to conclude that nearby reservoirs are undergoing a pressure drop in response to the production of the main reservoir, implying that oil is being lost through their spill points, never to be produced. The Wamsutter data set led to the use of unconventional attributes including lateral incoherence and horizon-dependent impedance variations to indicate regions of former sand bars and current high pressure, respectively, and to evaluation of various upscaling routines.

  7. Mechanical characterization of seismic base isolation elastomers

    SciTech Connect (OSTI)

    Kulak, R.F.; Hughes, T.H.

    1991-01-01T23:59:59.000Z

    From the various devices proposed for seismic isolators, the laminated elastomer bearing is emerging as the preferred device for large buildings/structures, such as nuclear reactor plants. The laminated bearing is constructed from alternating thin layers of elastomer and metallic plates (shims). The elastomer is usually a carbon filled natural rubber that exhibits damping when subjected to shear. Recently, some blends of natural and synthetic rubbers have appeared. Before candidate elastomers can be used in seismic isolation bearings, their response to design-basis loads and beyond- design-basis loads must be determined. This entails the development of constitutive models and and then the determination of associated material parameters through specimen testing. This paper describes the methods used to obtain data for characterizing the mechanical response of elastomers used for seismic isolation. The data provides a data base for use in determining material parameters associated with nonlinear constitutive models. In addition, the paper presents a definition for a damping ratio that does not exhibit the usual reduction at higher strain cycles. 2 refs., 6 figs., 1 tab.

  8. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07T23:59:59.000Z

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  9. The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment

    E-Print Network [OSTI]

    Peresan, Antonella; Soloviev, Alexander; Panza, Giuliano F

    2014-01-01T23:59:59.000Z

    The reliable statistical characterization of the spatial and temporal properties of large earthquakes occurrence is one of the most debated issues in seismic hazard assessment, due to the unavoidably limited observations from past events. We show that pattern recognition techniques, which are designed in a formal and testable way, may provide significant space-time constraints about impending strong earthquakes. This information, when combined with physically sound methods for ground shaking computation, like the neo-deterministic approach (NDSHA), may produce effectively preventive seismic hazard maps. Pattern recognition analysis of morphostructural data provide quantitative and systematic criteria for identifying the areas prone to the largest events, taking into account a wide set of possible geophysical and geological data, whilst the formal identification of precursory seismicity patterns (by means of CN and M8S algorithms), duly validated by prospective testing, provides useful constraints about impend...

  10. Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T. Mello*, IBM T. J. Watson Res. Center, Stewart A. Levin, Halliburton, Vanessa Lopez, Andrew Conn,

    E-Print Network [OSTI]

    Zhang, Hongchao

    Assisted Seismic Matching: Joint Inversion of Seismic, Rock Physics and Basin Modeling Ulisses T physics, and seismic attributes, including seismic amplitude to match seismic data. Introduction a match to seismic data. In particular, we seek to match not just event timing (phase) but also reflection

  11. Microsoft Word - Minutes from Sept 2008 seismic LL panel 10...

    Office of Environmental Management (EM)

    and design standards. Update on Seismic Qualification of Equipment Standards - Systems and Components Analysis and Qualification - George Antaki This presentation was...

  12. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W....

  13. ambient seismic noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sources may Gerstoft, Peter 38 Testing Community Velocity Models for Southern California Using the Ambient Seismic Field Geosciences Websites Summary: to determine...

  14. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  15. Seismic Imaging of the Earth's Interior (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Romanowicz, Barbara

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2006: Earth scientist Barbara Romanowicz discusses how she explores the deep structure and dynamics of the Earth using seismic tomography.

  16. MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...

    Open Energy Info (EERE)

    GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC...

  17. Applicaiton of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    to be adequate and slightly conservative Application of the Computer Program SASSI for Seismic SSI Analysis for WTP Facilities, Farhang Ostadan & Raman Venkata, October 25,...

  18. Development of an Updated Induced Seismicity Protocol for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review seismic024majer.pdf More Documents & Publications Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on...

  19. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Lee Steck (1997) Heterogeneous Structure Around the Jemez Volcanic Field, New Mexico, USA, as Inferred from the Envelope Inversion of Active-Experiment Seismic Data Additional...

  20. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Open Energy Info (EERE)

    GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...

  1. Seismic Amplitude Versus Offset (AVO) Character of Geopressured Transition Zones

    E-Print Network [OSTI]

    -stack amplitude versus offset behavior of seismic reflections from the eal. Acoustic synthetic seismograms based. Local conductivity logs and regional drilling mud weight compilations estab ish the presence

  2. Deformation and seismicity in the Coso geothermal area, Inyo...

    Open Energy Info (EERE)

    interferometry Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deformation and seismicity in the Coso geothermal area, Inyo County,...

  3. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Central...

  4. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1993 - 1994 Usefulness useful DOE-funding Unknown...

  5. Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001)...

  6. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Reservoir (Helmholtz Centre Potsdam, GFZ, Co-PI Dr. Oliver Heidbach) * Estimation of Seismic Hazard and Calculation of Potential Ground Motion (Lawrence Berkeley National...

  7. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful...

  8. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  9. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring Activity Date 1987 - 1987 Usefulness useful DOE-funding Unknown Notes The authors have described the experimental details, data analysis and forward...

  10. Geothermal: Sponsored by OSTI -- Application of seismic tomographic...

    Office of Scientific and Technical Information (OSTI)

    Application of seismic tomographic techniques in the investigation of geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

  11. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding...

  12. Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal...

    Open Energy Info (EERE)

    Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Abstract In...

  13. Field Mapping At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness...

  14. Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Exploration Activity Details...

  15. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Program 2010 Peer Review Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Principal Investigator: Bob A. Hardage...

  16. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho...

  17. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location...

  18. Field Mapping At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    Shevenell, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be...

  19. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown...

  20. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Roberts, Et Al., 1991)...

  1. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration...

  2. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  3. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Michael Batzle, PI Colorado School of Mines Track Name: Fluid...

  4. Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Central...

  5. Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Valles Caldera - Sulphur Springs Geothermal Area (Roberts, Et Al., 1991) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  6. Piezotube Borehole Seismic Source for Continuous Crosswell Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Piezotube Borehole Seismic Source for Continuous Crosswell Monitoring Lawrence Berkeley National Laboratory Contact LBL About This Technology (a) Peizotube source, as deployed...

  7. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...

  8. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Steck, Et Al., 1998)...

  9. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  10. Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Valles Caldera - Redondo Geothermal Area (Nishimura, Et Al., 1997)...

  11. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    LibraryAdd to library Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Abstract This report describes the development and...

  12. Idaho National Laboratory (INL) Seismic Risk Assessment Project...

    Office of Environmental Management (EM)

    at INL and Associated Risk Studies More Documents & Publications The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic...

  13. On the Solution of an Inverse Scattering Problem in Seismic While ...

    E-Print Network [OSTI]

    1910-20-20T23:59:59.000Z

    Apr 27, 2001 ... bore and regarded as a seismic source, from measurements of the ... the wave speeds in model problems within the context of the seismic.

  14. Multiphase fluid flow and time lapse seismics UNLP, 11 Octubre de ...

    E-Print Network [OSTI]

    santos

    Time-lapse seismic surveys aim to monitor the migration and dispersal of the CO2 plume after injection. Multiphase fluid flow and time lapse seismics – p. 3 ...

  15. New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear...

    Energy Savers [EERE]

    States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year...

  16. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  17. Improving the design and performance of concrete bridges in seismic regions

    E-Print Network [OSTI]

    Tobolski, Matthew Joseph

    2010-01-01T23:59:59.000Z

    response of a hybrid system, the energy dissipaters shouldof a hybrid system to dissipate seismic energy and cansystem to dissipate seismic energy. 14.3 Relationships for Hybrid

  18. CX-007541: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wells, allowing installation of a downhole geophone to more closely monitor seismic activity. CX-007541.pdf More Documents & Publications CX-001709: Categorical...

  19. Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring

    SciTech Connect (OSTI)

    Arabasz, W J; Pechmann, J C

    2001-03-01T23:59:59.000Z

    Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

  20. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15T23:59:59.000Z

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

  1. First Quarter Hanford Seismic Report for Fiscal Year 2011

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31T23:59:59.000Z

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  2. Robust wavelet estimation and blind deconvolution of noisy surface seismics

    E-Print Network [OSTI]

    van der Baan, Mirko

    Robust wavelet estimation and blind deconvolution of noisy surface seismics Mirko Van der Baan1 if the bandwidth of the seismic wavelet is narrow to very narrow; that is, if the wavelet bandwidth is similar to its principal frequency. The main problem is to estimate the phase of the wavelet with sufficient

  3. First Quarter Hanford Seismic Report for Fiscal Year 2009

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15T23:59:59.000Z

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  4. Three-component borehole wall-locking seismic detector

    DOE Patents [OSTI]

    Owen, Thomas E. (Helotes, TX)

    1994-01-01T23:59:59.000Z

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  5. INVERSION OF CONVERTED-WAVE SEISMIC DATA FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    INVERSION OF CONVERTED-WAVE SEISMIC DATA FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD, COLORADO Basin of northwest Colorado. The reservoir consists of lenticular fluvial sands, shales, and coals of magnitude lower than the seismic resolution which is 105 ft. The sandstone reservoirs are the primary target

  6. Using Expert Knowledge in Solving the Seismic Inverse Problem ?

    E-Print Network [OSTI]

    Ward, Karen

    practical applications, it it important to solve the seismic inverse problem, i.e., to measure seismic exhausted. Even under the best conservation policies, there is (and there will be) a constant need to find that there are resources such as minerals at a certain location is to actually drill a borehole and analyze the materials

  7. Seismic active control by neutral networks

    SciTech Connect (OSTI)

    Tang, Yu

    1995-12-31T23:59:59.000Z

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  8. Seismic active control by neural networks.

    SciTech Connect (OSTI)

    Tang, Y.

    1998-01-01T23:59:59.000Z

    A study on the application of artificial neural networks (ANNs) to activate structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feed-forward neural network architecture and an adaptive back-propagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the back-propagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator's capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  9. The discrete Kalman filtering approach for seismic signals deconvolution

    SciTech Connect (OSTI)

    Kurniadi, Rizal; Nurhandoko, Bagus Endar B. [Departement of Physics Intitut Teknologi Bandung, Jl. Ganesha 10 Bandung (Indonesia)

    2012-06-20T23:59:59.000Z

    Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

  10. Seismic fragility test of a 6-inch diameter pipe system

    SciTech Connect (OSTI)

    Chen, W. P.; Onesto, A. T.; DeVita, V.

    1987-02-01T23:59:59.000Z

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis.

  11. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect (OSTI)

    Amos Nur

    2009-01-08T23:59:59.000Z

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  12. Seismic risk assessment of a BWR: status report

    SciTech Connect (OSTI)

    Chuang, T.Y.; Bernreuter, D.L.; Wells, J.E.; Johnson, J.J.

    1985-02-01T23:59:59.000Z

    The seismic risk methodology developed in the US NRC Seismic Safety Margins Research Program (SSMRP) was demonstrated by its application to the Zion nuclear power plant, a pressurized water reactor (PWR). A detailed model of Zion, including systems analysis models (initiating events, event trees, and fault trees), SSI and structure models, and piping models was developed and analyzed. The SSMRP methodology can equally be applied to a boiling water reactor (BWR). To demonstrate its applicability, to identify fundamental differences in seismic risk between a PWR and a BWR, and to provide a basis of comparison of seismic risk between a PWR and a BWR when analyzed with comparable methodology and assumptions, a seismic risk analysis is being performed on the LaSalle County Station nuclear power plant.

  13. Nonlinear acoustic/seismic waves in earthquake processes

    SciTech Connect (OSTI)

    Johnson, Paul A. [Geophysics Group, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos New Mexico 87544 (United States)

    2012-09-04T23:59:59.000Z

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.

  14. Seismic metamaterials based on isochronous mechanical oscillators

    SciTech Connect (OSTI)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12T23:59:59.000Z

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  15. On the seismic age of the Sun

    E-Print Network [OSTI]

    G. Houdek; D. O. Gough

    2007-10-03T23:59:59.000Z

    We use low-degree acoustic modes obtained by the BiSON to estimate the main-sequence age $t_\\odot$ of the Sun. The calibration is accomplished by linearizing the deviations from a standard solar model the seismic frequencies of which are close to those of the Sun. Formally, we obtain the preliminary value $t_\\odot=4.68\\pm0.02 $Gy, coupled with an initial heavy-element abundance $Z=0.0169\\pm0.0005$. The quoted standard errors, which are not independent, are upper bounds implied under the assumption that the standard errors in the observed frequencies are independent.

  16. Seismic explosive charge loader and anchor

    SciTech Connect (OSTI)

    Mcreynolds, O.B.

    1981-07-14T23:59:59.000Z

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  17. Induced Seismicity Impact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudyInduced Seismicity

  18. LLNL-TR-400563 Seismic Data

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a Complex isTR-400563 Seismic Data

  19. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif Akitoshi Yoshida July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec- trooptically expands an optical boolean pattern encoded in d bits into an optical

  20. First quarter Hanford seismic report for fiscal year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2000.

  1. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  2. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second quarter of FY 2000.

  3. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26T23:59:59.000Z

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  4. First Quarter Hanford Seismic Report for Fiscal Year 2008

    SciTech Connect (OSTI)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21T23:59:59.000Z

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  5. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    seismic parameters for fractured reservoirs when the crackin a naturally fractured gas reservoir, The Leading Edge,

  6. Revised 1/19/06 Reflection Seismic Data Interpretation -GEY 772/772L Spring 2006

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Revised 1/19/06 Reflection Seismic Data Interpretation - GEY 772/772L ­ Spring 2006 Room TEC 104 Processing, Yilmaz; and Practical Seismic Interpretation, Badley; A Lab Manual of Seismic Reflection the fundamentals of geologic interpretation of 2D and 3D reflection seismic data. The class provides hands

  7. Review Article Seismic sequence near Zakynthos Island, Greece, April 2006: Identification of the

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Review Article Seismic sequence near Zakynthos Island, Greece, April 2006: Identification seismotectonic interpretation is that the whole sequence activated a single sub-horizontal fault zone at a depth is a high- seismicity area, the identification of the seismic fault is significant for the seismic hazard

  8. Use and abuse of seismic data in reservoir characterisation J. Hesthammera,*, M. Landrb,1

    E-Print Network [OSTI]

    Fossen, Haakon

    . This is especially a problem when interpreting seismic attribute maps. Such maps are widely used tools during development plans for oil ®elds. A recent interpretation of seismic attribute maps from a seismic survey; Gullveig 1. Introduction Today, most thorough seismic interpretations will be based on an integrated use

  9. Seismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO2

    E-Print Network [OSTI]

    Wilson, Thomas H.

    on the analysis of 3D seismic from the area. 3D seismic interpretation reveals that the Late Cretaceous FruitlandSeismic Evaluation of the Fruitland Formation with Implications on Leakage Potential of Injected CO Basin pilot test include acquisition of geophysical logs, time lapse VSP and analysis of 3D seismic data

  10. Frequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa

    E-Print Network [OSTI]

    California at Davis, University of

    of an interactive interpretation seismic system, ge- ological study and prediction can be made on the seismic dataFrequency Enhancements for Visualizing 3D Seismic Data Cheng-Kai Chen Carlos Correa Department a suite of enhancement tech- niques for visualizing seismic data. These techniques provide a better

  11. 7th NCEE, Boston, July, 2002 SEISMIC ANALYSIS OF DEEP SITES USING FREQUENCY AND PRESSURE

    E-Print Network [OSTI]

    Entekhabi, Dara

    -A prediction of the seismic amplification in Treasure Island during the Loma Prieta earthquake. Introduction

  12. Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Satish Pullammanappallil

    E-Print Network [OSTI]

    Louis, Sushil J.

    Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Satish to compute travel times for seismic waves. However, in practice, we have to solve the inverse problem: travel synthetic seismic models shows that large population sizes are crit- ical to generating good seismic

  13. SEISMIC RISK MAPS FOR EUROCODE-8 DESIGNED BUILDINGS Thomas Ulrich1

    E-Print Network [OSTI]

    1 SEISMIC RISK MAPS FOR EUROCODE-8 DESIGNED BUILDINGS Thomas Ulrich1 , John Douglas2 , Caterina Negulescu3 There is currently a move towards seismic design maps that are risk-targeted (e.g. Luco et al of such maps relies on three independent inputs: a) seismic hazard curves derived using probabilistic seismic

  14. Optimisation of seismic network design: Application to a geophysical international lunar network

    E-Print Network [OSTI]

    Sambridge, Malcolm

    Optimisation of seismic network design: Application to a geophysical international lunar network. Informations about lunar seismicity and seismic subsurface models from the Apollo missions are used as a priori information in this study to optimise the geometry of future lunar seismic networks in order to best resolve

  15. Seismic Screening, Evaluation, Rehabilitation, and Design Provisions for Wood-Framed Structures

    E-Print Network [OSTI]

    Gupta, Rakesh

    Seismic Screening, Evaluation, Rehabilitation, and Design Provisions for Wood-Framed Structures Preston Baxter, M.ASCE1 ; Thomas H. Miller, M.ASCE2 ; and Rakesh Gupta, M.ASCE3 Abstract: Seismic Database subject headings: Seismic analysis; Seismic design; Wood structures; Shear walls; Diaphragms

  16. Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A. Sethian

    E-Print Network [OSTI]

    Sethian, James A.

    Seismic Velocity Estimation from Time Migration Velocities M. K. Cameron, S. B. Fomel, J. A the problem of estimating seismic velocities inside the earth which is necessary for obtaining seismic images in regular Cartesian coordinates. We derive a relation between the true seismic velocities and the routinely

  17. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    E-Print Network [OSTI]

    Knapp, Camelia Cristina

    seismic data Dana M. Enciu,1 Camelia C. Knapp,1 and James H. Knapp1 Received 3 August 2008; revised 12 seismic data is employed in order to study the nature of the relationships between crustal seismicity with the Vrancea Seismogenic Zone (VSZ) of intermediate- depth seismicity, one of the most active earthquake- prone

  18. Ground motion input in seismic evaluation studies

    SciTech Connect (OSTI)

    Sewell, R.T.; Wu, S.C.

    1996-07-01T23:59:59.000Z

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  19. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-17T23:59:59.000Z

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

  20. SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Matthias G. Imhof; James W. Castle

    2003-11-01T23:59:59.000Z

    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

  1. First Quarter Hanford Seismic Report for Fiscal Year 1999

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  2. Validation of seismic probabilistic risk assessments of nuclear power plants

    SciTech Connect (OSTI)

    Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1994-01-01T23:59:59.000Z

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

  3. Seismic Safety Margins Research Program. Phase I, final report - overview

    SciTech Connect (OSTI)

    Smith, P. D.; Dong, R. G.; Bernreuter, D. L.; Bohn, M. P.; Chuang, T. Y.; Cummings, G. E.; Johnson, J. J.; Mensing, R. W.; Wells, J. E.

    1981-03-06T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. 66 refs., 29 figs., 10 tabs.

  4. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  5. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect (OSTI)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01T23:59:59.000Z

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  6. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect (OSTI)

    Preston, Leiph

    2014-09-01T23:59:59.000Z

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  7. Continuous Time Random Walks and South Spain Seismic Series

    E-Print Network [OSTI]

    A. Posadas; J. Morales; F. Vidal; O. Sotolongo-Costa; J. C. Antoranz

    2002-05-27T23:59:59.000Z

    Levy flights were introduced through the mathematical research of the algebra or random variables with infinite moments. Mandelbrot recognized that the Levy flight prescription had a deep connection to scale-invariant fractal random walk trajectories. The theory of Continuous Time Random Walks (CTRW) can be described in terms of Levy distribution functions and it can be used to explain some earthquake characteristics like the distribution of waiting times and hypocenter locations in a seismic region. This paper checks the validity of this assumption analyzing three seismic series localized in South Spain. The three seismic series (Alboran, Antequera and Loja) show qualitatively the same behavior, although there are quantitative differences between them.

  8. Subsystem fragility: Seismic Safety Margins Research Program (Phase I)

    SciTech Connect (OSTI)

    Kennedy, R. P.; Campbell, R. D.; Hardy, G.; Banon, H.

    1981-10-01T23:59:59.000Z

    Seismic fragility levels of safety related equipment are developed for use in a seismic oriented Probabilistic Risk Assessment (PRA) being conducted as part of the Seismic Safety Margins Research Program (SSMRP). The Zion Nuclear Power Plant is being utilized as a reference plant and fragility descriptions are developed for specific and generic safety related equipment groups in Zion. Both equipment fragilities and equipment responses are defined in probabilistic terms to be used as input to the SSMRP event tree/fault tree models of the Zion systems. 65 refs., 14 figs., 11 tabs.

  9. Optical Expanders with Applications in Optical Computing

    E-Print Network [OSTI]

    Reif, John H.

    Optical Expanders with Applications in Optical Computing John H. Reif \\Lambda Akitoshi Yoshida \\Lambda July 20, 1999 Abstract We describe and investigate an optical system which we call an optical expander. An optical expander elec­ trooptically expands an optical boolean pattern encoded in d bits

  10. Seismicity and seismic response of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) reactor plants

    SciTech Connect (OSTI)

    Ma, D.C.; Gvildys, J.; Wang, C.Y.; Spencer, B.W.; Sienicki, J.J.; Seidensticker, R.W.; Purvis, E.E. III

    1989-01-01T23:59:59.000Z

    On March 4, 1977, a strong earthquake occurred at Vrancea, Romania, about 350 km from the Kozloduy plant in Bulgaria. Subsequent to this event, construction of the unit 2 of the Armenia plant was delayed over two years while seismic features were added. On December 7, 1988, another strong earthquake struck northwest Armenia about 90 km north of the Armenia plant. Extensive damage of residential and industrial facilities occurred in the vicinity of the epicenter. The earthquake did not damage the Armenia plant. Following this event, the Soviet government announced that the plant would be shutdown permanently by March 18, 1989, and the station converted to a fossil-fired plant. This paper presents the results of the seismic analyses of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) plants. Also presented is the information concerning seismicity in the regions where VVERs are located and information on seismic design of VVERs. The reference units are the VVER-440 model V230 (similar to the two units of the Armenia plant) and the VVER-1000 model V320 units at Kozloduy in Bulgaria. This document provides an initial basis for understanding the seismicity and seismic response of VVERs under seismic events. 1 ref., 9 figs., 3 tabs.

  11. Post-processing of seismic parameter data based on valid seismic event determination

    DOE Patents [OSTI]

    McEvilly, Thomas V. (733 Alvarado Rd., Berkeley, CA 94705)

    1985-01-01T23:59:59.000Z

    An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.

  12. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    SciTech Connect (OSTI)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01T23:59:59.000Z

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  13. Simulation of anisotropic wave propagation in Vertical Seismic Profiles

    E-Print Network [OSTI]

    Durussel, Vincent Bernard

    2004-09-30T23:59:59.000Z

    they are powerful tools to simulate seismic wave propagation in three-dimensional anisotropic subsurface models. The code is currently under development using a C++ object oriented programming approach because it provides high flexibility in the design of new...

  14. Seismic reflection analysis of the Manson Impact Structure, Iowa

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1996-03-10T23:59:59.000Z

    Our combined interpretation of new, high-resolution seismic reflection data and reprocessed, but previously published, industrial Vibroseis data indicates that the Manson Impact Structure, Iowa, has an apparent crater ...

  15. Evidence of $q$-exponential statistics in Greek seismicity

    E-Print Network [OSTI]

    Chris G. Antonopoulos; George Michas; Filippos Vallianatos; Tassos Bountis

    2014-05-17T23:59:59.000Z

    We study the seismicity (global seismic activity) that occurred in Greece between 1976 and 2009 based on the dataset reported in Makropoulos et al., 2012, using concepts of Non-extensive Statistical Physics. By considering the entire and declustered datasets, for which the aftershocks have been removed, we initially investigate the frequency-magnitude distribution and find that both datasets are well approximated by a physical model derived in the framework of Non-extensive Statistical Physics. We then carry out a study of the distribution of interevent times of seismic events for different magnitude thresholds and discover that the data are well approximated by a statistical distribution of the $q$-exponential type that allows us to compute analytically the hazard function of earthquake production. Our analysis thus reveals further evidence that the underlying dynamical process of earthquake birth reflects a kind of nonlinear memory due to long-term persistence of seismic events.

  16. Seismic rehabilitation of a reinforced concrete flat-slab structure 

    E-Print Network [OSTI]

    Jimenez, Laila Margarita

    1999-01-01T23:59:59.000Z

    The effectiveness of seismic rehabilitation techniques used to eliminate punching shear failures was assessed for flat-slab structural systems. This type of retrofit was evaluated for a four-story reinforced concrete (RC) ...

  17. The Influence of Basalt Layers on Seismic Wave Propagation 

    E-Print Network [OSTI]

    Hanssen, Peter

    are to examine the effects of basalts on seismic wave propagation and the concequent implications for imaging sedimentary structures beneath them. From studies of basalt propertiesand borehole data in connection with foreward modelling and real data, I show...

  18. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01T23:59:59.000Z

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  19. Fracture characterization from seismic measurements in a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2015-01-01T23:59:59.000Z

    Fracture characterization is important for optimal recovery of hydrocarbons. In this thesis, we develop techniques to characterize natural and hydraulic fractures using seismic measurements in a borehole. We first develop ...

  20. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used ...

  1. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    Y. (1984). “Response of a wind turbine blade to seismic andM. (2006). “Swept wind turbine blade aeroelastic modelingto fatigue for wind turbine blades than earthquake loads. In

  2. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  3. 3?D Surface Topography Boundary Conditions in Seismic Wave Modelling

    E-Print Network [OSTI]

    Hestholm, Stig

    2001-01-01T23:59:59.000Z

    New alternative formulations of exact boundary conditions for arbitrary three{dimensional (3?D) free surface topographies on seismic media have been derived. They are shown to be equivalent with previously published ...

  4. Rapid Spatial Distribution Seismic Loss Analysis for Multistory Buildings

    E-Print Network [OSTI]

    Deshmukh, Pankaj Bhagvatrao

    2012-07-16T23:59:59.000Z

    Tall building frames that respond to large seismic ground motions tend to have significant spatial variability of damage over their height, often with a concentration of that damage in the lower stories. In spite of this spatial variability...

  5. Studying Hydraulic Fracturing through Time-variant Seismic Anisotropy

    E-Print Network [OSTI]

    Liu, Qifan

    2013-10-01T23:59:59.000Z

    . Studying seismic anisotropy by shear wave splitting can help us better understand the relationship between hydraulic fracturing and fracture systems. Shear wave splitting can be caused by fracturing and also can naturally take place in most sedimentary...

  6. Seismic Analysis Using Wavelet Transform for Hydrocarbon Detection

    E-Print Network [OSTI]

    Cai, Rui

    2012-02-14T23:59:59.000Z

    result in successful hydrocarbon finds because abnormal seismic amplitude variations can sometimes be caused by other factors, such as alternative lithology and residual hydrocarbons in certain depositional environments. Furthermore, not all gas fields...

  7. Seismic rehabilitation of wood diaphragms in unreinforced masonary buildings

    E-Print Network [OSTI]

    Grubbs, Amber Jo

    2002-01-01T23:59:59.000Z

    The purpose of this study is to evaluate the seismic performance of existing and rehabilitated wood floor and roof diaphragms in typical pre-1950's, unreinforced masonry (URM) buildings found in the Central and Eastern portions of the United States...

  8. Seismic response of wharf structures supported in liquefiable soil

    E-Print Network [OSTI]

    Panagiotidou, Andriani Ioanna

    2013-01-01T23:59:59.000Z

    This research analyzes the vulnerability of wharf structures supported on loose granular waterfront fills that are susceptible to liquefaction during seismic events and considers the effectiveness of pre-fabricated Vertical ...

  9. The retrofitting of existing buildings for seismic criteria

    E-Print Network [OSTI]

    Besing, Christa, 1978-

    2004-01-01T23:59:59.000Z

    This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

  10. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    geothermal area, 1996-2006 Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Time-dependent seismic tomography and its application to...

  11. Seismic retrofitting of the Ste-Justine Hospital in Montreal

    E-Print Network [OSTI]

    Chartrand, Valerie

    2009-01-01T23:59:59.000Z

    Seismic engineering provides design and construction techniques so that buildings and other structures can survive the tremendous forces of earthquakes. While codes and design practices have resulted in greatly improved ...

  12. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Experimental and Numerical Seismic Response of a 65-kW Wind

  13. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect (OSTI)

    Justin Coleman

    2014-09-01T23:59:59.000Z

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  14. A Probabilistic Seismic Hazard Analysis Update Review for Two...

    Office of Environmental Management (EM)

    Review for Two DOE Sites and NGA-East Project Overview and Status A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and...

  15. Modeling of Seismic Signatures of Carbonate Rock Types

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  16. Advance Seismic Data Analysis Program: (The "Hot Pot Project")

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: To improve geothermal well target selection and reduce drilling risk through an innovative and advanced analytical method for interpreting seismic data to locate deep geothermal structures.

  17. Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...

    Open Energy Info (EERE)

    issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient...

  18. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    E-Print Network [OSTI]

    Keiswetter, Dean; Black, Ross A.; Steeples, Don W.

    1994-03-01T23:59:59.000Z

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick glacial till are clearly...

  19. 3-D Seismic Methods for Shallow Imaging Beneath Pavement

    E-Print Network [OSTI]

    Miller, Brian

    2013-05-31T23:59:59.000Z

    The research presented in this dissertation focuses on survey design and acquisition of near-surface 3D seismic reflection and surface wave data on pavement. Increased efficiency for mapping simple subsurface interfaces through a combined use...

  20. Geothermal: Sponsored by OSTI -- Advanced Seismic Data Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...