Sample records for optic chemical sensors

  1. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  2. Waveguide-based optical chemical sensor

    DOE Patents [OSTI]

    Grace, Karen M. (Ranchos de Taos, NM); Swanson, Basil I. (Los Alamos, NM); Honkanen, Seppo (Tucson, AZ)

    2007-03-13T23:59:59.000Z

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  3. Calibration-free optical chemical sensors

    DOE Patents [OSTI]

    DeGrandpre, Michael D.

    2006-04-11T23:59:59.000Z

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  4. FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR

    SciTech Connect (OSTI)

    Michael A. Carpenter

    2004-03-30T23:59:59.000Z

    The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

  5. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27T23:59:59.000Z

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  6. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01T23:59:59.000Z

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  7. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  8. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  9. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  10. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22T23:59:59.000Z

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  11. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  12. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19T23:59:59.000Z

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. Optical displacement sensor

    DOE Patents [OSTI]

    Carr, Dustin W. (Albuquerque, NM)

    2008-04-08T23:59:59.000Z

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  14. Optical and mechanical behavior of the optical fiber infrasound sensor

    E-Print Network [OSTI]

    DeWolf, Scott

    2009-01-01T23:59:59.000Z

    1.2 The Optical Fiber Infrasound Sensor . . . . . . .Fiber Infrasound Sensor Optical fibers are well known forSchnidrig. An optical fiber infrasound sensor: A new lower

  15. Structure, Mechanism and Applications of Sol-Gel Clad Fiber-Optic Sensors

    E-Print Network [OSTI]

    Fellows Olteanu, Marta Sarah

    2010-01-01T23:59:59.000Z

    as a reversible optical sensor for ammonia and acidity [17],well suited to novel optical sensor applications [15][20][of chemical sensors which utilize optical waveguides and or/

  16. Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear, and medical applications. In these en- vironments the advantages of fiber-optic chemical sensors are that they

  17. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  18. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  19. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect (OSTI)

    Shiquan Tao

    2006-12-31T23:59:59.000Z

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

  20. Optical fiber sensor technique for strain measurement during materials deposition, chemical reaction, and relaxation

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1988-01-21T23:59:59.000Z

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study. 9 figs.

  1. Optical humidity sensor

    DOE Patents [OSTI]

    Tarvin, J.A.

    1987-02-10T23:59:59.000Z

    An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.

  2. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOE Patents [OSTI]

    Pipino, Andrew C. R. (Gaithersburg, MD)

    2003-02-04T23:59:59.000Z

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  3. Fluorescent optical position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-11-15T23:59:59.000Z

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  4. TRS-Fiber Optic Classifier Sensor Installation

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    TRS-Fiber Optic Classifier Sensor Installation The sensor that the Traffic Recording System (TRS) uses is the Flexsense Portable Fiberoptic Sensor System by Optical Sensor Systems. This includes two is undetected by the TRS. The user must make sure that the sensors do not get bent or twisted or the fiber optic

  5. Buried fiber optic intrusion sensor 

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity...

  6. Low noise optical position sensor

    DOE Patents [OSTI]

    Spear, J.D.

    1999-03-09T23:59:59.000Z

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

  7. Low noise optical position sensor

    DOE Patents [OSTI]

    Spear, Jonathan David (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

  8. Chemical micro-sensor

    DOE Patents [OSTI]

    Ruggiero, Anthony J.

    2005-05-03T23:59:59.000Z

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  9. Fiber optic sensor and method for making

    DOE Patents [OSTI]

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18T23:59:59.000Z

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  10. Active Control Strategies for Chemical Sensors and Sensor Arrays

    E-Print Network [OSTI]

    Gosangi, Rakesh

    2013-07-17T23:59:59.000Z

    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating...

  11. In-situ, Real-Time Monitoring of Mechanical and Chemical Structure Changes in a V2O5 Battery Electrode Using a MEMS Optical Sensor

    SciTech Connect (OSTI)

    Jung, H. [University of Maryland; Gerasopoulos, K. [University of Maryland; Gnerlich, Markus [University of Maryland; Talin, A. Alec [Sandia National Laboratories; Ghodssi, Reza [University of Maryland

    2014-06-01T23:59:59.000Z

    This work presents the first demonstration of a MEMS optical sensor for in-situ, real-time monitoring of both mechanical and chemical structure evolutions in a V2O5 lithium-ion battery (LIB) cathode during battery operation. A reflective membrane forms one side of a Fabry-Perot (FP) interferometer, while the other side is coated with V2O5 and exposed to electrolyte in a half-cell LIB. Using one microscope and two laser sources, both the induced membrane deflection and the corresponding Raman intensity changes are observed during lithium cycling. Results are in good agreement with the expected mechanical behavior and disorder change of the V2O5 layers, highlighting the significant potential of MEMS as enabling tools for advanced scientific investigations.

  12. High pressure fiber optic sensor system

    SciTech Connect (OSTI)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26T23:59:59.000Z

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  13. Silicon fiber optic sensors

    DOE Patents [OSTI]

    Pocha, Michael D. (Livermore, CA); Swierkowski, Steve P. (Livermore, CA); Wood, Billy E. (Livermore, CA)

    2007-10-02T23:59:59.000Z

    A Fabry-Perot cavity is formed by a partially or wholly reflective surface on the free end of an integrated elongate channel or an integrated bounding wall of a chip of a wafer and a partially reflective surface on the end of the optical fiber. Such a constructed device can be utilized to detect one or more physical parameters, such as, for example, strain, through the optical fiber using an optical detection system to provide measuring accuracies of less than aboutb0.1%.

  14. Buried fiber optic intrusion sensor

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry...

  15. Optic Flow Sensor Objective: Using optic flow sensors, detect and track

    E-Print Network [OSTI]

    Wirthlin, Michael J.

    Optic Flow Sensor Objective: Using optic flow sensors, detect and track the walls of a rural or urban terrain. Principle Investigators: Tim McLain, Randy Beard Optic Flow Sensor · Computationally factor ­ 1" x 1" x 1.5" · Inexpensive ­ $80 including optics · Fast ­ computes optic flow at 2300 fps2006

  16. Optical high acidity sensor

    DOE Patents [OSTI]

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22T23:59:59.000Z

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  17. Fiber optics spectrochemical emission sensors

    DOE Patents [OSTI]

    Griffin, J.W.; Olsen, K.B.

    1992-02-04T23:59:59.000Z

    A method is described of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species. The method uses a probe insertable into the well or tank via a cable and having an electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has an optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited in the fluid in alignment with the light guide axis. Optical emissions are received from the excited chemical species along such axis. 18 figs.

  18. Fiber optics spectrochemical emission sensors

    DOE Patents [OSTI]

    Griffin, Jeffrey W. (Kennewick, WA); Olsen, Khris B. (West Richland, WA)

    1992-01-01T23:59:59.000Z

    A method of in situ monitoring of a body of a fluid stored in a tank or groundwater or vadose zone gases in a well for the presence of selected chemical species uses a probe insertable into the well or tank via a cable and having electrical apparatus for exciting selected chemical species in the body of fluid. The probe can have a pair of electrodes for initiating a spark or a plasma cell for maintaining a plasma to excite the selected chemical species. The probe also has optical apparatus for receiving optical emissions emitted by the excited species and optically transmitting the emissions via the cable to an analysis location outside the well. The analysis includes detecting a selected wavelength in the emissions indicative of the presence of the selected chemical species. A plurality of probes can be suspended at an end of a respective cable, with the transmitting and analyzing steps for each probe being synchronized sequentially for one set of support equipment and instrumentation to monitor at multiple test points. The optical apparatus is arranged about the light guide axis so that the selected chemical species are excited the fluid in alignment with the light guide axis and optical emissions are received from the excited chemical species along such axis.

  19. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18T23:59:59.000Z

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  20. Fiber optic moisture sensor

    DOE Patents [OSTI]

    Kirkham, R.R.

    1984-08-03T23:59:59.000Z

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  1. Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated sensors. The transmission ratio in the pass-band and suppression ratio in the stop-band of the optical and of the optical filter. Test results comparing sensor and filter performance with competing technologies

  2. Design guidelines for optical resonator biochemical sensors

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

  3. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05T23:59:59.000Z

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  4. Integrated optical tamper sensor with planar waveguide

    DOE Patents [OSTI]

    Carson, Richard F. (Albuquerque, NM); Casalnuovo, Stephen A. (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  5. Sandia National Laboratories: Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels On September 10, 2013, in CRF, Energy, Facilities, News, News & Events, Research & Capabilities, Sensors & Optical Diagnostics,...

  6. Optical sensor of magnetic fields

    DOE Patents [OSTI]

    Butler, M.A.; Martin, S.J.

    1986-03-25T23:59:59.000Z

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  7. Correlations Between Optical, Chemical and Physical Properties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols....

  8. Polymers for Chemical Sensors Using Hydrosilylation Chemistry

    SciTech Connect (OSTI)

    Grate, Jay W.; Kaganove, Steven N.; Nelson, David A.

    2001-06-28T23:59:59.000Z

    Sorbent and functionalized polymers play a key role in a diverse set of fields, including chemical sensors, separation membranes, solid phase extraction techniques, and chromatography. Sorbent polymers are critical to a number of sensor array or "electronic nose" systems. The responses of the sensors in the array give rise to patterns that can be used to distinguish one compound from another, provided that a sufficiently diverse set of sensing materials is present in the array. Figure 1 illustrates the concept of several sensors, each with a different sensor coating, giving rise to variable responses to an analyte that appear as a pattern in bar graph format. Using hydrosilylation as the bond-forming reaction, we have developed a versatile and efficient approach to developing sorbent polymers with diverse interactive properties for sensor applications. Both the chemical and physical properties of these polymers are predictable and tunable by design.

  9. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, J.

    1999-04-06T23:59:59.000Z

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  10. Interferometric fiber optic displacement sensor

    DOE Patents [OSTI]

    Farah, John (M.I.T. P.O. Box 397301, Cambridge, MA 02139)

    1999-01-01T23:59:59.000Z

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  11. Optical Sensor Technology Development and Deployment

    SciTech Connect (OSTI)

    B. G. Parker

    2005-01-24T23:59:59.000Z

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  12. NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR Edouard Buchoud1 As a complement to conventional sensors, Distributed Optical Fiber Sensors (DOFS) have gradually played. In complementary to traditional sensors, distributed fiber optic sensors (DOFS) are an attractive tool for SHM [1

  13. Reactive Grasping Using Optical Proximity Sensors

    E-Print Network [OSTI]

    Nangeroni, Paul

    We propose a system for improving grasping using fingertip optical proximity sensors that allows us to perform online grasp adjustments to an initial grasp point without requiring premature object contact or regrasping ...

  14. Mechanical and optical behavior of a novel optical fiber crack sensor and an interferometric strain sensor

    E-Print Network [OSTI]

    Olson, Noah Gale, 1969-

    2002-01-01T23:59:59.000Z

    The proper interpretation of measurements from an optical fiber sensor requires a full understanding of its mechanical response to external action and the corresponding change in optical output. To quantify the mechanical ...

  15. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  16. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19T23:59:59.000Z

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  17. Electro-optic voltage sensor head

    DOE Patents [OSTI]

    Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Woods, Gregory K. (Cornelius, OR)

    1999-01-01T23:59:59.000Z

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  18. Electro-optic voltage sensor head

    DOE Patents [OSTI]

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17T23:59:59.000Z

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  19. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01T23:59:59.000Z

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  20. Analogic fiber optic position sensor with nanometric resolution Frdric Lamarque

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analogic fiber optic position sensor with nanometric resolution Frédéric Lamarque Université de of the sensor is presented as well as experimentation results. Keywords Fiber optic sensor, nanometric size is approximately 1.5x2.0x0.6 mm3 and the measurement resolution is 0.1 µm [4]. An optical sensor

  1. Ph.D. Thesis Optical Sensors Based on Dedicated

    E-Print Network [OSTI]

    Ph.D. Thesis Optical Sensors Based on Dedicated Diffractive Optical Elements STEVEN RICHARD KITCHEN;Abstract This thesis deals with the development of optical sensors based on laser diodes and dedicated part of the project deals with development of optical flow sensor systems. Firstly, a new beam splitter

  2. Magneto-optic current sensor

    DOE Patents [OSTI]

    Lanagan, Michael T.; Valsko-Vlasov, Vitalii K.; Fisher, Brandon L.; Welp, Ulrich

    2003-10-07T23:59:59.000Z

    An optical current transducer configured to sense current in the conductor is disclosed. The optical current transducer includes a light source and a polarizer that generates linearly polarized light received from a the light source. The light is communicated to a magneto-optic garnet that includes, among other elements, bismuth, iron and oxygen and is coupled to the conductor. The magneto-optic garnet is configured to rotate the polarization of the linearly polarized light received from the polarizer. The optical current transducer also includes an analyzer in optical communication with the magneto-optic garnet. The analyzer detects the rotation of the linearly polarized light caused by the magneto-optic garnet.

  3. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  4. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  5. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  6. Lensless Magneto-optic speed sensor

    DOE Patents [OSTI]

    Veeser, Lynn R. (Los Alamos, NM); Forman, Peter R. (Los Alamos, NM); Rodriguez, Patrick J. (Santa Fe, NM)

    1998-01-01T23:59:59.000Z

    Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

  7. Lensless magneto-optic speed sensor

    DOE Patents [OSTI]

    Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

    1998-02-17T23:59:59.000Z

    Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

  8. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  9. Fiber-optic displacement sensor system 

    E-Print Network [OSTI]

    Cava, Norayda Nora

    1990-01-01T23:59:59.000Z

    . 54 CHAPTER I INTRODUCTION The implementation of fiber optics in sensor systems is not a new idea; its popularity has steadily increased through the years. Although technological advances have much to do with this, certain characteristic.... The microbending scheme for displacement measurements [10], [11] takes advantage of the fact that when optical fibers are bent at sharp angles, energy will escape through the bent fiber walls. Maximum sensitivity for this scheme is achieved by minimizing...

  10. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  11. Fiber Optic Temperature Sensor for PEM Fuel Cells

    E-Print Network [OSTI]

    Fiber Optic Temperature Sensor for PEM Fuel Cells S.W. Allison, T.J. McIntyre, L.C. Maxey, M a Waveguide Temperature Sensor? · Reliability - fiber optic sensors are immune to oxidizing or reducing Objectives · Develop a low cost, robust temperature sensor for monitoring fuel cell condition and performance

  12. Biocompatible Force Sensor with Optical Readout and Dimensions of

    E-Print Network [OSTI]

    Straight, Aaron

    Biocompatible Force Sensor with Optical Readout and Dimensions of 6 nm3 Hari Shroff,,§ Bjo1rn M Received June 6, 2005 ABSTRACT We have developed a nanoscopic force sensor with optical readout. The sensor energy transfer. The sensor was calibrated between 0 and 20 pN using a combined magnetic tweezers

  13. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 3, NO. 6, DECEMBER 2009 415 A Cantilever Sensor With an Integrated Optical

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Sensor With an Integrated Optical Readout for Detection of Enzymatically Produced Homocysteine Stephan T--Microcantilever sensors have been recognized as a promising sensor platform for various chemical and biological ap involves elaborate off-chip setups with free-space optics. An improved device, known as the optical

  14. CHARACTERIZATION OF AN OPTICAL COLLISION AVOIDANCE SENSOR Kyle Watters

    E-Print Network [OSTI]

    Hornsey, Richard

    CHARACTERIZATION OF AN OPTICAL COLLISION AVOIDANCE SENSOR Kyle Watters , Cyrus Minwalla , Michael, unmanned aerial vehicles, sensor ar- ray 1. INTRODUCTION A prototype optical instrument is described detection' should be at a distance on the order of 5 km [2]. An optical sensor may have advantages in mass

  15. Fiber Optic Sensors for PEM Fuel Cells Nigel David

    E-Print Network [OSTI]

    Victoria, University of

    Fiber Optic Sensors for PEM Fuel Cells by Nigel David B.Sc., Simon Fraser University, 2004 M or other means, without the permission of the author. #12;ii Fiber Optic Sensors for PEM Fuel Cells) and air- water two-phase flow sensors are developed and demonstrated based on optical fibre Bragg gratings

  16. ADHESIVE DISBOND MONITORING WITH MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    ADHESIVE DISBOND MONITORING WITH MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS Sanne a sensing system that is based on a combination of 3 optical fiber sensors which are non optical fiber and feature an enhanced response to shear stress. The change in response of the sensors

  17. INTRODUCTION Optical sensors have long been used in the Great

    E-Print Network [OSTI]

    INTRODUCTION Optical sensors have long been used in the Great Lakes to track changes Concentrations Measured by Acoustic and Optical Sensors Nathan Hawley* Great Lakes Environmental Research sensitive to particles of different sizes, the simultaneous deployment of acoustic and optical sensors may

  18. Optical fiber sensors for harsh environments

    DOE Patents [OSTI]

    Xu, Juncheng; Wang, Anbo

    2007-02-06T23:59:59.000Z

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  19. Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical

    E-Print Network [OSTI]

    Quake, Stephen R.

    2004-01-01T23:59:59.000Z

    that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits­membrane interactions under various physiological conditions. The force sensor is an optical encoder based on transSensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive

  20. Electro-optical voltage sensor head

    DOE Patents [OSTI]

    Woods, Gregory K. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  1. All-optical Fog Sensor for Determining the Fog Visibility Range in Optical Wireless Communication Links

    E-Print Network [OSTI]

    Haddadi, Hamed

    All-optical Fog Sensor for Determining the Fog Visibility Range in Optical Wireless Communication is to use an all optical based fog sensor to study the atmospheric visibility of fog and its constituents on the optical wireless communication (OWC) links in a controlled laboratory test-bid. The fog sensor measures

  2. Fluorescent optical liquid level sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  3. Cloaking a sensor via transformation optics

    E-Print Network [OSTI]

    Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

    2010-11-14T23:59:59.000Z

    It is generally believed that transformation optics based cloaking, besides rendering the cloaked region invisible to detection by scattering of incident waves, also shields the region from those same waves. We demonstrate a coupling between the cloaked and uncloaked regions, exposing a difference between cloaking for rays and waves. Interior resonances allow this coupling to be amplified, and careful choice of parameters leads to effective cloaks with degraded shielding. As one application, we describe how to use transformation optics to hide sensors in the cloaked region and yet enable the sensors to efficiently measure waves incident on the exterior of the cloak, an effect similar to the plasmon based approach of Alu' and Engheta.

  4. INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS

    E-Print Network [OSTI]

    INTERFACIAL STABILITY OF THIN FILM FIBER-OPTIC HYDROGEN SENSORS R. Davis Smith, Ping Liu, Se and utility of these sensors, especially in the configuration that is based upon the optical response hydrogen sensors for use as safety monitors wherever hydrogen is used, stored, or produced. Prior work has

  5. Microbend fiber-optic temperature sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-05-30T23:59:59.000Z

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  6. Microbend fiber-optic temperature sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  7. Cloaking a Sensor via Transformation Optics Allan Greenleaf

    E-Print Network [OSTI]

    Uhlmann, Gunther

    LM11852 REV IEW CO PY N O T FO R D ISTRIBU TIO N Cloaking a Sensor via Transformation Optics Allan. As one application, we describe how to use transformation optics to hide sensors in the cloaked region optics cloaking at positive frequency, besides rendering the cloaked region invisible to detection

  8. Intensity Histogram CMOS Image Sensor for Adaptive Optics

    E-Print Network [OSTI]

    Cauwenberghs, Gert

    Intensity Histogram CMOS Image Sensor for Adaptive Optics Yu M. Chi, Gary Carhart , Mikhail AAODisturbanceSource Update/Optimize Fig. 1. Intended real-time optical control application. The sensor computes histogram of Bioengineering University of California, San Diego La Jolla, CA 92093 Intelligent Optics Lab U.S. Army Research

  9. Periodic Metallic Nanostructures as Plasmonic Chemical Sensors Chiara Valsecchi and Alexandre G. Brolo*

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    ;evaluation as chemical sensors and a brief comparison of the pPeriodic Metallic Nanostructures as Plasmonic Chemical Sensors Chiara Valsecchi and Alexandre G generation of low- cost and efficient chemical sensors and biosensors. The extensive variety

  10. Modeling and validation of performance limitations for the optimal design of interferometric and intensity-modulated fiber optic displacement sensors

    E-Print Network [OSTI]

    Moro, Erik Allan

    2012-01-01T23:59:59.000Z

    317 (1996). B. Culshaw, “Optical fiber sensor technologies:Fabry-Perot optical fiber sensors,” Opt. Lett. 16 ( 4), 273-and implementation of optical sensors for use in such

  11. Electro-optic high voltage sensor

    DOE Patents [OSTI]

    Davidson, James R.; Seifert, Gary D.

    2003-09-16T23:59:59.000Z

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  12. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

    1997-01-01T23:59:59.000Z

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  13. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06T23:59:59.000Z

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  14. Pendulum Sensor using an Optical Mouse

    E-Print Network [OSTI]

    Randall D. Peters; Sheng-Chiang "John" Lee

    2009-04-20T23:59:59.000Z

    An optical mouse that is in common use with personal computers is employed to measure the motion of a pendulum. The pendulum can be monitored (i) realtime only, or (ii) also with data storage for later detailed analysis using Excel. The software developed for this purpose is a LabView executable algorithm. It allows the user to select among several modes that include filtering operations. The limiting resolution of this position sensor, which is in the neighborhood of 50 micrometers, is determined by the 'dpi' specification of the mouse.

  15. Signal processing for fiber optic acoustic sensor system

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01T23:59:59.000Z

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  16. Excess optical quantum noise in atomic sensors

    E-Print Network [OSTI]

    Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

    2014-10-14T23:59:59.000Z

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

  17. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12T23:59:59.000Z

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  18. MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MICROSTRUCTURED OPTICAL FIBER BRAGG GRATING SENSORS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS optical fiber Bragg grating (MOFBG) sensors for structural health monitoring applications. We then focus, optical fiber sensor, fiber Bragg grating, structural health monitoring INTRODUCTION Microstructured

  19. Electro-optic high voltage sensor

    DOE Patents [OSTI]

    Davidson, James R. (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  20. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOE Patents [OSTI]

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06T23:59:59.000Z

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  1. Proceedings: 3rd EPRI Optical Sensor Systems Workshop

    SciTech Connect (OSTI)

    None

    2002-02-01T23:59:59.000Z

    These are the proceedings of the third Optical Sensor System Workshop, part of an ongoing effort by EPRI to support development of optical sensor technology, to identify benefits for utility users, and to position EPRI members as more ''informed buyers'' and users.

  2. Fibratus tactile sensor using reflection on an optical lever Satoshi Saga

    E-Print Network [OSTI]

    Tachi, Susumu

    Fibratus tactile sensor using reflection on an optical lever Satoshi Saga Tohoku University Shinobu this fibratus tactile sensor. Keywords: tactile sensor, fiber, image sensor, optical measure- ment, optical measure- ments; further, the wiring assembly is complicated. Some optical sensors [Yamada et al. 2002

  3. Evaluations of fiber optic sensors for interior applications

    SciTech Connect (OSTI)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01T23:59:59.000Z

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  4. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

    1994-01-01T23:59:59.000Z

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  5. Micro optical fiber light source and sensor and method of fabrication thereof

    DOE Patents [OSTI]

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01T23:59:59.000Z

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  6. Active Control Strategies for Chemical Sensors and Sensor Arrays 

    E-Print Network [OSTI]

    Gosangi, Rakesh

    2013-07-17T23:59:59.000Z

    the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We...

  7. Proceedings of IEEE Sensors 2003 Fiber Optic Oxygen Sensor for Power Plant Applications

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    807 Proceedings of IEEE Sensors 2003 Paper 22-2 Fiber Optic Oxygen Sensor for Power Plant for power plant applications. The sensor utilizes quenching of the bright red fluorescence from inorganic. Motivation Combustion processes in power plants require the correct mix of fuel and oxygen to maximize

  8. Ultra-High Temperature Sensors Based on Optical Property

    SciTech Connect (OSTI)

    Nabeel Riza

    2008-09-30T23:59:59.000Z

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  9. Plasmonics Based Harsh Environment Compatible Chemical Sensors

    SciTech Connect (OSTI)

    Michael Carpenter

    2012-01-15T23:59:59.000Z

    Au-YSZ, Au-TiO{sub 2} and Au-CeO{sub 2} nanocomposite films have been investigated as a potential sensing element for high-temperature plasmonic sensing of H{sub 2}, CO, and NO{sub 2} in an oxygen containing environment. The Au-YSZ and Au-TiO{sub 2} films were deposited using PVD methods, while the CeO{sub 2} thin film was deposited by molecular beam epitaxy (MBE) and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. Each of the films were characterized by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H{sub 2}, CO, and NO{sub 2} were performed at a temperature of 500°C in oxygen backgrounds of 5.0, 10, and ~21% O{sub 2}. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the respective metal oxides. This process affects the LSPR peak position either by charge exchange with the Au nanoparticles or by changes in the dielectric constant surrounding the particles. Hyperspectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used on the Au-CeO{sub 2} results and showed separation between analytes as well as trends in gas concentration. Results indicate that each of the films are is selective towards O{sub 2}, H{sub 2}, CO, and NO{sub 2} in separate exposures. However, when the films were analyzed in a sensor array based experiment, ie simultaneous exposures to the target gases, PCA analysis of the combined response showed an even greater selective character towards the target gases. Combined with the observed stability over long exposure periods, each of these Au-metal oxide films shows good potential as an optical sensing element for harsh environmental conditions.

  10. Forty-Four Pass Fibre Optic Loop for Improving the Sensitivity of Surface Plasmon Resonance Sensors

    E-Print Network [OSTI]

    Chin B Su; Jun Kameoka

    2007-09-21T23:59:59.000Z

    A forty-four pass fibre optic surface plasmon resonance sensor that enhances detection sensitivity according to the number of passes is demonstrated for the first time. The technique employs a fibre optic recirculation loop that passes the detection spot forty- four times, thus enhancing sensitivity by a factor of forty-four. Presently, the total number of passes is limited by the onset of lasing action of the recirculation loop. This technique offers a significant sensitivity improvement for various types of plasmon resonance sensors that may be used in chemical and biomolecule detections.

  11. A New Generation of Sensors Based on Extraordinary Optical Transmission

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    A New Generation of Sensors Based on Extraordinary Optical Transmission REUVEN GORDON, DAVID SINTON advances in the optical and spectroscopic properties of nanohole arrays in thin gold films optical transmission" (EOT), that is, they are more transparent at certain wavelengths than expected

  12. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    SciTech Connect (OSTI)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01T23:59:59.000Z

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  13. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOE Patents [OSTI]

    Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

    2002-01-01T23:59:59.000Z

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  14. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01T23:59:59.000Z

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  15. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, S.E.

    1998-07-21T23:59:59.000Z

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  16. Novel fiber optic polarimetric torsion sensor based on polarization-maintaining photonic crystal fiber

    E-Print Network [OSTI]

    Wai, Ping-kong Alexander

    Novel fiber optic polarimetric torsion sensor based on polarization- maintaining photonic crystal other engineering applications. Compared with conventional torsion sensors, the fiber optic torsion sensors have the distinct advantages of all-fiber-optical sensing. The fiber optic torsion sensors based

  17. Distributed fiber optic intrusion sensor system for monitoring long perimeters 

    E-Print Network [OSTI]

    Juarez, Juan C.

    2009-06-02T23:59:59.000Z

    A distributed sensor using an optical fiber for detecting and locating intruders over long perimeters (>10 km) is described. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from...

  18. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect (OSTI)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31T23:59:59.000Z

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  19. Fiber optic micromirror sensor for volatile organic compounds

    SciTech Connect (OSTI)

    Butler, M.A.; Ricco, A.J.; Buss, R. (Sandia National Lab., Albuquerque, NM (US))

    1990-04-01T23:59:59.000Z

    With the growing concern over environmental pollution, there is a need for sensors to locate and measure the distribution of a wide range of pollutants. In this paper the authors report a fiber optic sensor, based on a thin film micromirror, which responds to a wide range of volatile organic compounds (VOCs). This generic class of sensor will be useful for monitoring applications where the pollutant has already been identified.

  20. Fabry-Perot fiber optic sensor using multimode laser diode

    E-Print Network [OSTI]

    Chu, Siu Yi Andrew

    1993-01-01T23:59:59.000Z

    FABRY-PEROT FIBER OPTIC SENSOR USING MULTIMODE LASER DIODE A Thesis SIU YI ANDREW CHU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Electrical Engineering FABRY-PEROT FIBER OPTIC SENSOR USING MULTIMODE LASER DIODE A Thesis SIU YI ANDREW CHU Submitted to Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  1. Cloaking a sensor for three-dimensional Maxwell's equations: transformation optics approach

    E-Print Network [OSTI]

    Chen, Xudong; Uhlmann, Gunther

    2011-01-01T23:59:59.000Z

    P. Sheng, “Transformation optics and metamaterials,” Nat.sensor via transformation optics,” Phys. Rev. E 83, 016603 (October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20518 13. G.

  2. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, J.R.; Otagawa, T.

    1985-05-20T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  3. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA)

    1998-01-01T23:59:59.000Z

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  4. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05T23:59:59.000Z

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  5. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05T23:59:59.000Z

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  6. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOE Patents [OSTI]

    Murphy, Kent A. (Roanoke, VA); Gunther, Michael F. (Blacksburg, VA); Vengsarkar, Ashish M. (Scotch Plains, NJ); Claus, Richard O. (Christiansburg, VA)

    1994-01-01T23:59:59.000Z

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  7. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOE Patents [OSTI]

    Wang, Anbo (Blacksburg, VA)

    2007-12-11T23:59:59.000Z

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  8. Fiber optic hydrophone sensor arrays using low reflectance internal mirrors 

    E-Print Network [OSTI]

    Lee, Jong-Seo

    1998-01-01T23:59:59.000Z

    A new design of fiber optic hydrophone sensor arrays phics. using low reflectance internal mirrors in optical fibers is investigated. The mirrors are produced by fusion arc splicing of two fibers, one of which has a thin film of TiO2 on the end. A...

  9. High sensitivity bulk electro-optic modulator field sensor for high voltage environments

    E-Print Network [OSTI]

    Shy,Jow-Tsong

    High sensitivity bulk electro-optic modulator field sensor for high voltage environments Mao December 2004) An optical electric field sensor is an effective instrument for surveying the electric attacked by unexpected electrical shocks through the metal cable of the sensor. Sensing by optical sensors

  10. Fig. 1 Teleoperated slave robot Development of Distributed Optical Torque Sensors for Realization of Local Impedance

    E-Print Network [OSTI]

    Tachi, Susumu

    Fig. 1 Teleoperated slave robot Development of Distributed Optical Torque Sensors for Realization the recent development of optical torque sensor in order to replace expensive strain gauge sensor attached shapes of mechanical structure of sensor as well as optical measurement approaches are given. The results

  11. Sensors and Actuators B 123 (2007) 594605 Fiber optic sensing of liquid refractive index

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Sensors and Actuators B 123 (2007) 594­605 Fiber optic sensing of liquid refractive index Argha rights reserved. Keywords: Liquid refractive index sensor; Fiber optic refractive index sensor; Refractive index sensitivity of uncladded fiber; Uncladded optical fiber as sensor 1. Introduction

  12. Informed peg-in-hole insertion using optical sensors Eric Paulos John Canny

    E-Print Network [OSTI]

    Paulos, Eric

    Informed peg-in-hole insertion using optical sensors Eric Paulos John Canny Department several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us operations using simple optical sensors. A key to the method is the use of one sensor to compute the position

  13. Analytical Chemistry CHM1102H Biosensors & Chemical Sensors

    E-Print Network [OSTI]

    Chan, Hue Sun

    hyphenated techniques that bridge to information detectors such as mass spectrometers. New opportunitiesAnalytical Chemistry CHM1102H Biosensors & Chemical Sensors (Cross-listed Undergraduate CHM414H-called "electronic nose". CHM1103H Advanced Topics in Analytical Chemistry (Cross-listed Undergraduate CHM414H - UTM

  14. Optics-less Sensors for Localization of Radiation Sources

    E-Print Network [OSTI]

    H. J. Caulfield; L. P. Yaroslavsky; Ch. Goerzen; S. Umansky

    2008-08-08T23:59:59.000Z

    A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a given number of sources in known positions. The accuracy is found to be dependent only on the sub-sensors noise level, on the number of sub-sensors and on the spacing between radiation sources.

  15. Fibre-optic interferometric pressure sensor based on droplet-shaped PDMS elastomer

    E-Print Network [OSTI]

    Vlachos, Kyriakos G.

    Fibre-optic interferometric pressure sensor based on droplet-shaped PDMS elastomer C. Markos1 , K *gkakaran@eie.gr Keywords: white-light interferometer, fibre-optic pressure sensor, PDMS-based Fabry progress in fiber-optic extrinsic Fabry­Perot interferometric sensors ", Optical Fiber Technology, 23, p

  16. Simulation, implementation, and analysis of an optical fiber bundle distance sensor with

    E-Print Network [OSTI]

    Huang, Haiying

    Simulation, implementation, and analysis of an optical fiber bundle distance sensor with single Optical Society of America OCIS codes: 060.2370, 120.2830. 1. Introduction Optical fiber distance sensors. In general, optical fiber distance sensors can be divided into two categories: intensity

  17. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors

    E-Print Network [OSTI]

    Dalang, Robert C.

    Modeling and evaluating the performance of Brillouin distributed optical fiber sensors Marcelo A analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors of America OCIS codes: (060.2310) Fiber optics; (060.2370) Fiber optics sensors; (290.5900) Scattering

  18. Implementation of an integrated confocal sensor using planar optics S. Sinzinger, J. Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Implementation of an integrated confocal sensor using planar optics S. Sinzinger, J. Jahns We demonstrate an optical sensor head integrated in planar optics. The sensor is based on the confocal principle which is widely used in microscopy, sensing, and optical data storage. In order to achieve enhanced

  19. Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber H. Qu,1); published August 13, 2014 We demonstrate an interferometric fiber-optic bending/nano-displacement sensor for sensing the displacement. © 2014 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors

  20. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect (OSTI)

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27T23:59:59.000Z

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  1. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Otagawa, Takaaki (Solon, OH)

    1991-01-01T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  2. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, J.R.; Otagawa, T.

    1991-09-10T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  3. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  4. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect (OSTI)

    Chen, Kevin

    2014-08-31T23:59:59.000Z

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers, rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100oC have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800oC. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  5. Fluorescence based chemical sensors for corrosion detection

    SciTech Connect (OSTI)

    Johnson, R.E. [LeTourneau Univ., Longview, TX (United States). Dept. of Chemistry; Agarwala, V.S. [Naval Air Warfare Center Aircraft Div., Patuxent River, MD (United States)

    1997-12-01T23:59:59.000Z

    Several fluorescent materials have been identified as possible corrosion sensing coatings. These are either redox or metal ion complex materials. The redox materials are nonfluorescent in the reduced state and become fluorescent upon oxidation. Incorporated into paint coatings, they provide an early warning of corrosive conditions at the metal or alloy surface. The metal ion complex materials only fluoresce when the organic compound complexes with metal ions such as those generated in corrosion reactions. Fluorescent materials have been incorporated into paint coatings and on metal surfaces for the detection of corrosion. Oxine reacts with aluminum oxide on corroded aluminum to give a fluorescence that can be photographed in UV light. Several other materials were found to have good fluorescence but cannot be reversibly oxidized or reduced at the present time. More work will be done with these compounds as well as with Schiff bases to develop new fluorescent chemical sensing materials for smart coating on alloy surfaces.

  6. SINGLE SILVER NANOPARTICLES AS REAL-TIME OPTICAL SENSORS WITH ZEPTOMOLE SENSITIVITY

    E-Print Network [OSTI]

    Shull, Kenneth R.

    SINGLE SILVER NANOPARTICLES AS REAL-TIME OPTICAL SENSORS WITH ZEPTOMOLE SENSITIVITY Adam D. Mc-time sensor technologies. (A) A dark-field optical image of Ag nanoparticles immobilized on a glass substrate

  7. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01T23:59:59.000Z

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  8. Electro-optic voltage sensor with beam splitting

    DOE Patents [OSTI]

    Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  9. Electro-optic voltage sensor with Multiple Beam Splitting

    DOE Patents [OSTI]

    Woods, Gregory K. (Cornelius, OR); Renak, Todd W. (Idaho Falls, ID); Crawford, Thomas M. (Idaho Falls, ID); Davidson, James R. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  10. STRAIN MONITORING IN STIFFENED COMPOSITE PANELS USING EMBEDDED FIBRE OPTICAL AND STRAIN GAUGE SENSORS

    E-Print Network [OSTI]

    Boyer, Edmond

    (SHM) system based on Fibre Optic Bragg Grating (FOBG) sensors and standard resistance strain gauges for CFRP fuselage stiffened panels based on fibre optic Bragg grating sensors for the Green Regional. Among these approaches, methods based on optical [1]-[6] sensors are among the most rapidly developing

  11. Comparison of fingerprint quality measures using an optical and a capacitive sensor

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    Comparison of fingerprint quality measures using an optical and a capacitive sensor Fernando Alonso of Cagliari images are expected to be different for optical and capacitive sensors. For example, the effect measure computation. In our opinion, some measures could be suitable for the optical sensor

  12. Planar Integrated Free Space Optic Plasmonic Sensor Christopher A. Jones, Stefan F. Helfert and Jurgen Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Planar Integrated Free Space Optic Plasmonic Sensor Christopher A. Jones, Stefan F. Helfert and J sensor. This sensor could be easily connected to a conventional optical system. The orthogonal interfaces complex operations on the transmitted information. One simple way of achieving this on optical signals

  13. Ico-photonics-delphi2009.org Fibre-optic interferometric pressure sensor based on

    E-Print Network [OSTI]

    Vlachos, Kyriakos G.

    Ico-photonics-delphi2009.org Fibre-optic interferometric pressure sensor based on droplet pressure sensor, PDMS-based Fabry-Perot cavity A range of single-mode fibre-optic based on reflective Fabry­Perot interferometric sensors ", Optical Fiber Technology, 23, p.227- 237, 2006. [2] Florian Schneider , Jan Draheim

  14. Optical efficiency of image sensor pixels Peter B. Catrysse and Brian A. Wandell

    E-Print Network [OSTI]

    Wandell, Brian A.

    Optical efficiency of image sensor pixels Peter B. Catrysse and Brian A. Wandell Department sensor pixel by using a geometrical-optics phase-space approach. We compare the theoretical predictions, we show how to use these optical efficiency calculations to trade off image sensor pixel sensitivity

  15. Fig. 1. Teleoperated slave robot. Optical Torque Sensors for Local Impedance Control

    E-Print Network [OSTI]

    Tachi, Susumu

    Fig. 1. Teleoperated slave robot. Optical Torque Sensors for Local Impedance Control Realization_teterukov@ipc.i.u-tokyo.ac.jp We recently developed an optical torque sensor to replace expensive strain-gauge-based sensor on the anthropomorphic robot arm and realize local impedance control in individual joints. Keywords: Optical torque

  16. 6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time

    E-Print Network [OSTI]

    6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time in-plane vibration-contact, low-cost optical sensor for real time detection and active vibration control of mechanical devices sensitivity to any translational vibration. The calibration of the sensor is independent of the optical

  17. SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors

    E-Print Network [OSTI]

    Ötügen, Volkan

    SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors for structural used in materials include piezoelectric particles, acoustic emission sensors, and optical fibers. Each. Use of fiber-optic sensors is advantageous in composite materials because they can become an integral

  18. Fibre optic sensor for continuous health monitoring in CFRP composite materials

    E-Print Network [OSTI]

    Fibre optic sensor for continuous health monitoring in CFRP composite materials Laurent Rippert on this material. In this research study, fibre optic sensors will be proven to offer an alternative for the robust a quite simple microbend optical sensor contains information on the elastic energy released whenever

  19. Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Low-speed optic-flow sensor onboard an unmanned helicopter flying outside over fields* Guillaume.Fabiani}@onera.fr weight or were not very well characterized, except for the optical mouse sensors [21], with which] in that of 2-D optic flow sensors). It therefore seemed to be worth testing the reliability of the present 1-D

  20. Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real, we sought to develop an optical fiber-based sensor that could re- port changes in fluid viscosity

  1. REQUIREMENTS TO ESTABLISH FIBRE-OPTIC SENSORS FOR MONITORING OF STRUCTURES

    E-Print Network [OSTI]

    Boyer, Edmond

    REQUIREMENTS TO ESTABLISH FIBRE-OPTIC SENSORS FOR MONITORING OF STRUCTURES Wolfgang Habel, Vivien-12205 Berlin wolfgang.habel@bam.de ABSTRACT Fibre-optic sensors need to be more established examples where fibre-optic sensors provide outstanding knowledge about the structure's behaviour

  2. Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors

    E-Print Network [OSTI]

    Thévenaz, Jacques

    Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors-sideband suppressed-carrier (SSB-SC) modulation in Brillouin optical time-domain analysis (BOTDA) sensors. The SSB conventional unipolar sequences. Keywords: Stimulated Brillouin scattering, distributed optical fiber sensor

  3. 123BLPCn272october/november 2008 Optical fiber strain sensors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    123BLPC·n°272·october/november 2008 Optical fiber strain sensors for use in civil engineering: State-of-the-art, industrial applications and outlook ABSTRACT Optical fiber sensors prove-of-the-art assessment of optical fiber strain sensor use in civil engineering, nearly 20 years after their initial

  4. Accurate Insertion Strategies Using Simple Optical Sensors Eric Paulos John Canny

    E-Print Network [OSTI]

    Paulos, Eric

    Accurate Insertion Strategies Using Simple Optical Sensors Eric Paulos John Canny paulos-calibrating peg-in-hole in- sertion strategy using several very simple, inexpensive, and accurate optical sensors describe a method for performing accurate in- sertion operations using simple optical sensors. A key

  5. Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems L. Perret, L. Ruaux, B. Cagneau, Y. Alayli, Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems, Sensors and Actuators A Abstract , 165, 189-193 (2011). In this paper, we report fiber optics

  6. Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation

    E-Print Network [OSTI]

    Thévenaz, Jacques

    Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental-pulse Brillouin optical time-domain analysis (DP-BOTDA) sensors. The proposed model is a tool that provides a full. Keywords: Stimulated Brillouin scattering, distributed optical fiber sensor, temperature sensing, strain

  7. An investigation of the polarization dependence of a temperature sensor based on an optical microfiber coupler

    E-Print Network [OSTI]

    An investigation of the polarization dependence of a temperature sensor based on an optical is experimentally investigated. The optical microfiber coupler based temperature sensor has a diameter circa 2 m for the development of a range of fiber optic sensors with high sensitivity and microscale dimensions [1

  8. USE OF DISTRIBUTED FIBER OPTIC SENSORS TO DETECT DAMAGE IN A Xavier Chapeleau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    USE OF DISTRIBUTED FIBER OPTIC SENSORS TO DETECT DAMAGE IN A PAVEMENT Xavier Chapeleau 1 , Juliette strains and crack initiation. These first tests demonstrate that distributed fiber optic sensor based, by monitoring strain profiles in the bituminous layers. KEYWORDS: Distributed fiber optic sensor, asphalt

  9. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect (OSTI)

    Russell G. May; Tony Peng; Tom Flynn

    2004-04-01T23:59:59.000Z

    Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

  10. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOE Patents [OSTI]

    Colburn, J.W. Jr.

    1991-07-23T23:59:59.000Z

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  11. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOE Patents [OSTI]

    Colburn, Jr., John W. (Houston, TX)

    1991-01-01T23:59:59.000Z

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  12. Vision based navigation using novel optical sensors

    E-Print Network [OSTI]

    Wazni, Karim Patrick

    1999-01-01T23:59:59.000Z

    An optical position measurement system based on Position Sensing Diode technology is tested in its planar version. The system features active target intensity control and signal light modulation. Preliminary calibration procedures are researched...

  13. Vision based navigation using novel optical sensors 

    E-Print Network [OSTI]

    Wazni, Karim Patrick

    1999-01-01T23:59:59.000Z

    An optical position measurement system based on Position Sensing Diode technology is tested in its planar version. The system features active target intensity control and signal light modulation. Preliminary calibration procedures are researched...

  14. Chemometrics review for chemical sensor development, task 7 report

    SciTech Connect (OSTI)

    NONE

    1994-05-01T23:59:59.000Z

    This report, the seventh in a series on the evaluation of several chemical sensors for use in the U.S. Department of Energy`s (DOE`s) site characterization and monitoring programs, concentrates on the potential use of chemometrics techniques in analysis of sensor data. Chemometrics is the chemical discipline that uses mathematical, statistical, and other methods that employ formal logic to: design or select optimal measurement procedures and experiments and provide maximum relevant chemical information by analyzing chemical data. The report emphasizes the latter aspect. In a formal sense, two distinct phases are in chemometrics applications to analytical chemistry problems: (1) the exploratory data analysis phase and (2) the calibration and prediction phase. For use in real-world problems, it is wise to add a third aspect - the independent validation and verification phase. In practical applications, such as the ERWM work, and in order of decreasing difficulties, the most difficult tasks in chemometrics are: establishing the necessary infrastructure (to manage sampling records, data handling, and data storage and related aspects), exploring data analysis, and solving calibration problems, especially for nonlinear models. Chemometrics techniques are different for what are called zeroth-, first-, and second-order systems, and the details depend on the form of the assumed functional relationship between the measured response and the concentrations of components in mixtures. In general, linear relationships can be handled relatively easily, but nonlinear relationships can be difficult.

  15. Sandia Energy - Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute of AdvancedSecuritySensors &

  16. Dynamic Fiber Optic Sensors Under Intense Radioactive Environments

    SciTech Connect (OSTI)

    Allison, S.W.; Earl, D.D.; Haines, J.R.; Tsai, C.C.

    1998-10-15T23:59:59.000Z

    A liquid mercury target will be used as the neutron source for the proposed Spallation Neutron Source facility. This target is subjected to bombardment by short-pulse, high-energy proton beams. The intense thermal loads caused by interaction of the pulsed proton beam with the mercury create an enormous rate of temperature rise ({approximately}10{sup 7} K/s) during a very brief beam pulse ({approximately } 0.5 {micro}s). The resulting pressure waves in the mercury will interact with the walls of the mercury target and may lead to large stresses. To gain confidence in the mercury target design concept and to benchmark the computer design codes, we tested various electrical and optical sensors for measuring the transient strains on the walls of a mercury container and the pressures in the mercury. The sensors were attached on several sample mercury targets that were tested at various beam facilities: Oak Ridge Electron Linear Accelerator, Los Alamos Neutron Science Center-Weapons Neutron Research, and Brookhaven National Laboratory's Alternating Gradient Synchrotron. The effects of intense background radiation on measured signals for each sensor are described and discussed. Preliminary results of limited tests at these facilities indicate that the fiber optic sensors function well in this intense radiation environment, whereas conventional electrical sensors are dysfunctional.

  17. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  18. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  19. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    DOE Patents [OSTI]

    Johnson, Jr., Alan T. (Philadelphia, PA); Gelperin, Alan (Princeton, NJ); Staii, Cristian (Madison, WI)

    2011-07-12T23:59:59.000Z

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  20. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect (OSTI)

    A. Wang; H. Xiao; R. May

    1999-10-29T23:59:59.000Z

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  1. Optical penetration sensor for pulsed laser welding

    DOE Patents [OSTI]

    Essien, Marcelino (Albuquerque, NM); Keicher, David M. (Albuquerque, NM); Schlienger, M. Eric (Albuquerque, NM); Jellison, James L. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  2. Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Hornsey, Richard

    Modeling a Prototype Optical Collision Avoidance Sensor For Unmanned Aerial Vehicles Cyrus Minwalla) are essential in controlled airspace under visual flight rules (VFR). A prototype optical sensor accomplishes and evaluation of the prototype sensor are presented here, as are preliminary measurements to clarify the roles

  3. Performance characterization of an internsity-modulated fiber optic displacement sensor

    SciTech Connect (OSTI)

    Moro, Erik Allan [Los Alamos National Laboratory; Todd, Michael D [Los Alamos National Laboratory; Puckett, Santhony D [Los Alamos National Laboratory

    2010-09-30T23:59:59.000Z

    A testbed simulating an intensity-modulated fiber optic displacement sensor is experimentally characterized, and the implications regarding sensor design are discussed. Of interest are the intensity distribution of the transmitted optical signal and the relationships between sensor architecture and performance. Particularly, an intensity-modulated sensor's sensitivity, linearity, displacement range, and resolution are functions of the relative positioning of its transmitting and receiving fibers. In this paper, sensor architectures with various combinations of these performance metrics are discussed. A sensor capable of micrometer resolution is reported, and it is concluded that this work could lead to an improved methodology for sensor design.

  4. Design and Verification of an Optical System to Interrogate Dermally-implanted Microparticle Sensors 

    E-Print Network [OSTI]

    Long, Ruiqi

    2012-07-16T23:59:59.000Z

    patient adherence to the recommended self-monitoring frequency, non-invasive/ minimally invasive glucose testing approaches are needed. Luminescent microparticle sensor is an attractive solution. For these sensors to be deployed in vivo, a matched optical...

  5. Focal-Plane Image and Beam Quality Sensors for Adaptive Optics

    E-Print Network [OSTI]

    Cauwenberghs, Gert

    Focal-Plane Image and Beam Quality Sensors for Adaptive Optics Marc CohenÝ, Gert Cauwenberghs]. Therefore a critical component in the stochastic control system for adaptive optics is the metric sensor Engineering 3400 North Charles Street, Baltimore, MD 21211 ŢArmy Research Laboratory, Intelligent Optics

  6. Miniaturized optical sensor for cursor control Michael Linde Jakobsen, Henning Larsen, Finn Pedersen, Henrik Pedersen,

    E-Print Network [OSTI]

    20 Miniaturized optical sensor for cursor control Michael Linde Jakobsen, Henning Larsen, Finn and Jřrgen Korsgaard OPDI Technologies, Denmark A miniaturized optical displacement sensor that can information of the movement but also to optically establish a dynamic high-pass filtering, thus removing

  7. Radiometric Correctionradiometric correction Radiometric correction is important to ensure that terrestrial variables retrieved from optical satellite sensor

    E-Print Network [OSTI]

    Coburn, Craig

    that terrestrial variables retrieved from optical satellite sensor systems are calibrated to a common physical interactions. Radiometric corrections of optical sensor data consider sensor radiometric calibration, surface reflectance propagated through the atmosphere to the satellite sensor. Given that the optical properties

  8. > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) optical fiber sensors (DOFS) have

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    --Distributed optical fiber sensors (DOFS) have gained an increasingly prominent role in structural-health monitoring of electronic equipment at the site. Complementary to these sensors, distributed optical fiber sensors (DOFS optical fiber, and a large number of sensors can be multiplexed to enhance their economic viability. Due

  9. NONLINEAR EFFECTS OF A MODAL DOMAIN OPTICAL FIBER SENSOR IN A VIBRATION SUPPRESSION CONTROL LOOP FOR A FLEXIBLE

    E-Print Network [OSTI]

    Lindner, Douglas K.

    NONLINEAR EFFECTS OF A MODAL DOMAIN OPTICAL FIBER SENSOR IN A VIBRATION SUPPRESSION CONTROL LOOP Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system the region of linear operation in terms of the optical fiber sensor parameters. #12;2 1. INTRODUCTION

  10. JW2A.3.pdf Imaging and Applied Optics Technical Digest 2012 OSA Optical Microfiber Sensors for the Detection of Current

    E-Print Network [OSTI]

    JW2A.3.pdf Imaging and Applied Optics Technical Digest © 2012 OSA Optical Microfiber Sensors microfibers for current sensing are discussed. OCIS codes: (060.2370) Fiber optics sensors; (230.2240) Faraday effect. 1. Introduction Current sensors exploiting the Faraday Effect in optical fibers [1] have

  11. Self-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors

    E-Print Network [OSTI]

    New South Wales, University of

    a reactor for a bottom-up control of the chemical synthesis with the ultimate goal of improvingSelf-Powered Wireless Nano-scale Sensor Networks within Chemical Reactors Eisa Zarepour1 Mahbub networks (NSNs) can be applied in many chemical applications to monitor and control the chemical process

  12. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  13. An image sensor with on-die diffractive optics in 0.18m bulk Christopher Thomas, Richard Hornsey

    E-Print Network [OSTI]

    Hornsey, Richard

    An image sensor with on-die diffractive optics in 0.18µm bulk CMOS Christopher Thomas, Richard of reducing package size for imaging and non-imaging optical sensors. While systems incorporating on image sensors, microlenses, diffraction gratings, micro-optics, diffractive optics 1. INTRODUCTION

  14. Fiber optic sensor: Feedback control design and implementation

    SciTech Connect (OSTI)

    Tung, D.; Bertram, L.; Hillaire, R.; Anderson, S.; Leonard, S.; Marburger, S.

    1997-07-01T23:59:59.000Z

    Digital feedback control of Gas Tungsten Arc Welding (GTAW) has been demonstrated on a tube sample of stainless steel and titanium alloy. A fiber optic sensor returns a signal proportional to backside radiance from the workpiece; that signal is used by the controller to compute a compensation weld current. The controller executes 10 times a second on an Intel 486 chip. For travel speeds of 3 to 6 inches per minute and thicknesses between 0.025 and 0.10 inches, constant backside bead width was maintained within 0.02 inches, from startup to tie-in.

  15. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17T23:59:59.000Z

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  16. Optical Fiber Sensor Instrumentation for Slagging Coal Gasifiers

    SciTech Connect (OSTI)

    Anbo Wang; Kristie Cooper

    2008-07-19T23:59:59.000Z

    Coal gasifier is one of the most promising solutions for clean fossil energy. Refractory thickness monitoring and online real-time temperature measurement is needed for improved reliability and advanced process control for current and future generation power plants. The objective of this program is to design and implement an optical fiber based sensing system that could potentially be used to monitor refractory wall thickness and temperature inside a coal gasifier. For the thickness monitoring, the system should be able to operate at temperatures up to 1000 C. For this temperature range, silica fiber can still work so it is chosen for the sensor design. The measurement is based on a photon counting optical time domain reflectometer. A narrow light pulse is launched into a silica fiber which could be embedded into the gasifier refractory wall, and is partially reflected by the far end of the fiber. The time of flight of the light pulse in the fiber then gives an indication of the position of the fiber end, which is a function of the wall thickness when the fiber is embedded. Results obtained show a measurement accuracy of {+-}2cm in environment of 1000 C with a saw cut fiber end. When the fiber end is corroded by sodium carbide at 900 C, the accuracy is {+-}3cm. For the temperature measurement, a single crystal sapphire fiber sensor is designed. The sapphire fiber guides the broadband light from a light emitting diode to a sapphire wafer functioning as a Fabry-Perot interferometer and the wafer optical thickness is a function of temperature. The returned optical signal is then demodulated by multimode fiber based whitelight interferometry. The system was tested up to 1500 C with a measurement accuracy of {+-}10 C for the entire measurement range.

  17. Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms

    SciTech Connect (OSTI)

    Parameswaran, Krishnan R. [Physical Sciences Inc.

    2013-12-02T23:59:59.000Z

    The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

  18. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-02-08T23:59:59.000Z

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  19. Fabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors

    E-Print Network [OSTI]

    Aeschlimann, Martin

    -electromechanical (MEMS) fabrication technology in or- der to produce sensors with reproducible optical and mechanicalFabrication and characterization of coaxial scanning near-field optical microscopy cantilever sensors M. Salomo *, D. Bayer, B.R. Schaaf, M. Aeschlimann, E. Oesterschulze * Department of Physics

  20. Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change

    E-Print Network [OSTI]

    Williamson, Craig E.

    Lakes as sensors in the landscape: Optical metrics as scalable sentinel responses to climate change, Edgewater, Maryland Abstract As the lowest point in the surrounding landscape, lakes act as sensors. Here a novel suite of climate forcing optical indices (CFOI) from lakes across North America is found

  1. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies

    E-Print Network [OSTI]

    Laurent, Gilles

    Evaluating a genetically encoded optical sensor of neural activity using electrophysiology of America Rafael Yuste, Columbia University, New York City, USA Genetically encoded optical indicators hold. However, the interpretation of images of brain activity produced using such sensors is not straightforward

  2. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01T23:59:59.000Z

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  3. A planar lightwave circuit based micro interrogator and its applications to the interrogation of multiplexed optical fiber Bragg grating sensors

    E-Print Network [OSTI]

    Yao, Jianping

    of multiplexed optical fiber Bragg grating sensors Gaozhi Xiao a,*, Nezih Mrad b , Honglei Guo c , Zhiyi Zhang Accepted 20 August 2008 Keywords: Micro interrogator Fiber Bragg grating sensors a b s t r a c t Optical have developed a micro optical sensor interrogator using a monolithically integrated planar lightwave

  4. Processing of transient signals from damage in CFRP composite materials monitored with embedded intensity-modulated fiber optic sensors

    E-Print Network [OSTI]

    intensity-modulated fiber optic sensors M. Weversa , L. Ripperta , J.-M. Papyb , S. Van Huffelb a Department-modulated fiber optic sensors, whose working principle is based on the microbending concept, are used to monitor. In this approach fibre optic sensors may offer an alternative for the robust piezoelectric transducers used

  5. NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence in the ocean. The incorporation of this new generation of optical sensors on a even a subset of the ARGO floats

  6. Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors

    DOE Patents [OSTI]

    Johnson, Jr., Alan T

    2013-12-17T23:59:59.000Z

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  7. New Acoustic Sensor for Chemical and Biological Detection | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back into an electrical signal. The wave's frequency is determined by the velocity of sound through the material. The usefulness of these devices as sensors comes from their...

  8. Cloud optical and microphysical properties derived from ground-based and satellite sensors over

    E-Print Network [OSTI]

    Li, Zhanqing

    Cloud optical and microphysical properties derived from ground-based and satellite sensors over of cloud optical and microphysical properties were made at Taihu, a highly polluted site in the central Yangtze Delta region, during a research campaign from May 2008 to December 2009. Cloud optical depth (COD

  9. IN-LINE CHEMICAL SENSOR DEPLOYMENT IN A TRITIUM PLANT

    SciTech Connect (OSTI)

    Tovo, L.; Wright, J.; Torres, R.; Peters, B.

    2013-10-02T23:59:59.000Z

    The Savannah River Tritium Plant (TP) relies on well understood but aging sensor technology for process gas analysis. Though new sensor technologies have been brought to various readiness levels, the TP has been reluctant to install technologies that have not been tested in tritium service. This gap between sensor technology development and incorporating new technologies into practical applications demonstrates fundamental challenges that exist when transitioning from status quo to state-of-the-art in an extreme environment such as a tritium plant. These challenges stem from three root obstacles: 1) The need for a comprehensive assessment of process sensing needs and requirements; 2) The lack of a pick-list of process-compatible sensor technologies; and 3) The need to test technologies in a tritium-contaminated process environment without risking production. At Savannah River, these issues are being addressed in a two phase project. In the first phase, TP sensing requirements were determined by a team of process experts. Meanwhile, Savannah River National Laboratory sensor experts identified candidate technologies and related them to the TP processing requirements. The resulting roadmap links the candidate technologies to actual plant needs. To provide accurate assessments of how a candidate sensor technology would perform in a contaminated process environment, an instrument demonstration station was established within a TP glove box. This station was fabricated to TP process requirements and designed to handle high activity samples. The combination of roadmap and demonstration station provides the following assets: ? Creates a partnership between the process engineers and researchers for sensor selection, maturation, and insertion, ? Selects the right sensors for process conditions ? Provides a means for safely inserting new sensor technology into the process without risking production, and ? Provides a means to evaluate off normal occurrences where and when they occur. This paper discusses the process to identify and demonstrate new sensor technologies for the Savannah River TP.

  10. Optics-less smart sensors and a possible mechanism of cutaneous vision in nature

    E-Print Network [OSTI]

    Leonid Yaroslavsky; Chad Goerzen; Stanislav Umansky; H. John Caulfield

    2008-08-08T23:59:59.000Z

    Optics-less cutaneous (skin) vision is not rare among living organisms, though its mechanisms and capabilities have not been thoroughly investigated. This paper demonstrates, using methods from statistical parameter estimation theory and numerical simulations, that an array of bare sensors with a natural cosine-law angular sensitivity arranged on a flat or curved surface has the ability to perform imaging tasks without any optics at all. The working principle of this type of optics-less sensor and the model developed here for determining sensor performance may be used to shed light upon possible mechanisms and capabilities of cutaneous vision in nature.

  11. Sensors and Actuators B 121 (2007) 282294 The potential for and challenges of detecting chemical hazards

    E-Print Network [OSTI]

    Raman, Barani

    technologies are currently deployed for hazards detection [1,2]. Established technologies such as ion mobilitySensors and Actuators B 121 (2007) 282­294 The potential for and challenges of detecting chemical, C.J. Martinez, C.B. Montgomery, S. Semancik Chemical Science and Technology Laboratory, National

  12. The application of fiber optic sensors to the monitoring of roller element bearing systems 

    E-Print Network [OSTI]

    Juarez, Juan Carlos

    2002-01-01T23:59:59.000Z

    A rotating machinery test rig was instrumented with fiber optic Fabry-Perot Interferometer (FFPI) strain sensors for condition monitoring of rolling element bearings. Wavelength division multiplexing (WDM) was utilized to simultaneously monitor...

  13. Adaptive optics wavefront sensors based on photon-counting detector arrays

    E-Print Network [OSTI]

    Aull, Brian F.

    For adaptive optics systems, there is a growing demand for wavefront sensors that operate at higher frame rates and with more pixels while maintaining low readout noise. Lincoln Laboratory has been investigating Geiger-mode ...

  14. An experimental investigation of the sensitivity of a buried fiber optic intrusion sensor 

    E-Print Network [OSTI]

    Kuppuswamy, Harini

    2006-04-12T23:59:59.000Z

    A distributed fiber optic sensor with the ability of detecting and locating intruders on foot and vehicles over long perimeters (>10 km) was studied. The response of the sensor to people walking over or near it and to vehicles driving nearby...

  15. The application of fiber optic sensors to the monitoring of roller element bearing systems

    E-Print Network [OSTI]

    Juarez, Juan Carlos

    2002-01-01T23:59:59.000Z

    THE APPLICATION OF FIBER OPTIC SENSORS TO THE MONITORING OF ROLLER ELEMENT BEARING SYSTEMS A Thesis by JUAN CARLOS JUAREZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2002 Major Subject: Electrical Engineering THE APPLICATION OF FIBER OPTIC SENSORS TO THE MONITORING OF ROLLER ELEMENT BEARING SVSTEMS A Thesis by . IIJAN CARLOS JUAREZ Submitted to Texas A&M University...

  16. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    SciTech Connect (OSTI)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30T23:59:59.000Z

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  17. EVALUATION OF AIRBORNE AND SATELLITE ELECTRO-OPTICAL SENSORS PERFORMANCES BY USE OF HIGH-ALTITUDE CLOUDS OCCURRENCE

    E-Print Network [OSTI]

    EVALUATION OF AIRBORNE AND SATELLITE ELECTRO-OPTICAL SENSORS PERFORMANCES BY USE OF HIGH The impact of high-altitude clouds along an electro- optical sensor line of sight has been studied, F-91761 Palaiseau, France, email : karine.caillault@onera.fr KEYWORDS: sensor performance

  18. A 16 mm3 autonomous solar-powered sensor node with bi-directional optical communication for distributed sensor net-

    E-Print Network [OSTI]

    Kahn, Joseph M.

    Abstract A 16 mm3 autonomous solar-powered sensor node with bi- directional optical communication, a 2.6 mm2 SOI solar cell array, and a micromachined four-quadrant corner-cube retroreflector (CCR- idly deployed by unmanned aerial vehicles (UAV), tracking the movements of birds, small animals

  19. Optical fiber pressure and acceleration sensor fabricated on a fiber endface

    DOE Patents [OSTI]

    Zhu, Yizheng; Wang, Xingwei; Xu, Juncheng; Wang, Anbo

    2006-05-30T23:59:59.000Z

    A fiber optic sensor has a hollow tube bonded to the endface of an optical fiber, and a diaphragm bonded to the hollow tube. The fiber endface and diaphragm comprise an etalon cavity. The length of the etalon cavity changes when applied pressure or acceleration flexes the diaphragm. The entire structure can be made of fused silica. The fiber, tube, and diaphragm can be bonded with a fusion splice. The present sensor is particularly well suited for measuring pressure or acceleration in high temperature, high pressure and corrosive environments (e.g., oil well downholes and jet engines). The present sensors are also suitable for use in biological and medical applications.

  20. Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells Juan F. Botero-Cadavid

    E-Print Network [OSTI]

    Victoria, University of

    Fiber-optic sensor for detection of hydrogen peroxide in PEM fuel cells by Juan F. Botero of an optical fiber and its small size (125 µm diameter), make the sensors here developed an ideal solution, by photocopy or other means, without the permission of the author. #12;ii Supervisory Committee Fiber-optic

  1. Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors

    E-Print Network [OSTI]

    Moya, David

    2012-01-01T23:59:59.000Z

    Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and ...

  2. Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors

    E-Print Network [OSTI]

    Selker, John

    Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff, which use the scattered light in a standard telecommunications fiber-optic cable to infer absolute

  3. Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands

    DOE Patents [OSTI]

    Andle, Jeffrey C. (Bangor, ME); Lec, Ryszard M. (Orono, ME)

    2000-01-01T23:59:59.000Z

    A piezoelectric sensor and assembly for measuring chemical, biochemical and physical measurands is disclosed. The piezoelectric sensor comprises a piezoelectric material, preferably a crystal, a common metal layer attached to the top surface of the piezoelectric crystal, and a pair of independent resonators placed in close proximity on the piezoelectric crystal such that an efficacious portion of acoustic energy couples between the resonators. The first independent resonator serves as an input port through which an input signal is converted into mechanical energy within the sensor and the second independent resonator serves an output port through which a filtered replica of the input signal is detected as an electrical signal. Both a time delay and an attenuation at a given frequency between the input signal and the filtered replica may be measured as a sensor output. The sensor may be integrated into an assembly with a series feedback oscillator and a radio frequency amplifier to process the desired sensor output. In the preferred embodiment of the invention, a selective film is disposed upon the grounded metal layer of the sensor and the resonators are encapsulated to isolate them from the measuring environment. In an alternative embodiment of the invention, more than two resonators are used in order to increase the resolution of the sensor.

  4. Researchers develop new acoustic sensor for chemical and biological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jared Sagoff * November 17, 2014 Tweet EmailPrint ARGONNE, Ill. - Testing for ovarian cancer or the presence of a particular chemical could be almost as simple as distinguishing...

  5. Application of Luminescent Materials to Optical Sensing 

    E-Print Network [OSTI]

    Ritter, Sarah C

    2014-09-05T23:59:59.000Z

    Development of sensors for detection of various chemical and biological species is an important and ever-growing field. In particular, optical-based sensors enable a remote, rapid method for continuous or on-demand monitoring. Monitoring humidity...

  6. Optical position sensor for determining the interface between a clear and an opaque fluid

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2006-05-23T23:59:59.000Z

    An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

  7. A fibre optic sensor for the in situ determination of rock physical properties

    E-Print Network [OSTI]

    Reinsch, Thomas; Milsch, Harald; Bremer, Kort; Lewis, Elfed; Leen, Gabriel; Lochmann, Steffen; 10.1016/j.ijrmms.2012.06.011

    2012-01-01T23:59:59.000Z

    To understand the behaviour of rocks under changing load or temperature conditions, the determination of physical parameters like pore pressure or temperature within the pore space is essential. Within this study, the implementation of a novel fibre optic point sensor for pressure and temperature determination into a high pressure / high temperature triaxial cell is presented. For the first time, pressure was measured directly within the pore space of a Flechtinger sandstone specimen during a hydrostatic compression test at up to 70 MPa. The sensor used within this study consists of a miniature all-silica fibre optic Extrinsic Fabry-Perot Interferometer (EFPI) sensor which has an embedded Fibre Bragg Grating (FBG) reference sensor element to determine temperature and pressure directly at the point of measurement.

  8. A two-mode fiber optic-bending sensor 

    E-Print Network [OSTI]

    Covington, Charles Eric

    1993-01-01T23:59:59.000Z

    relating the bending sensitivity to the shape of the profile's asymmetry are discussed. A temperature and strain compensated bending sensor for bending over arbitrary paths is demonstrated as an application of this technology. Some alternate two...

  9. Microfabricated Optical Sensor Probe for the Detection of Esophageal Cancer 

    E-Print Network [OSTI]

    Chinna Balareddy, Karthik Reddy

    2012-10-19T23:59:59.000Z

    spectrometry. The sensor probe consists of a lithographically patterned polymer waveguides chip and three micromachined positioning substrates and source/collection fibers to achieve 45 degree light incidence and collection of spatially resolved diffuse...

  10. Secure Integrated Routing and Localization in Wireless Optical Sensor Networks

    E-Print Network [OSTI]

    Okorafor, Unoma Ndili

    2009-05-15T23:59:59.000Z

    Wireless ad hoc and sensor networks are envisioned to be self-organizing and autonomous networks, that may be randomly deployed where no fixed infrastructure is either feasible or cost-effective. The successful commercialization of such networks...

  11. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    SciTech Connect (OSTI)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13T23:59:59.000Z

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin?films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  12. Method and apparatus for packaging optical fiber sensors for harsh environments

    DOE Patents [OSTI]

    Pickrell, Gary; Duan, Yuhong; Wang, Anbo

    2005-08-09T23:59:59.000Z

    A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

  13. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect (OSTI)

    Candiani, A. [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece); Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Argyros, A.; Leon-Saval, S. G.; Lwin, R. [Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Sydney (Australia); Selleri, S. [Department of Information Engineering (DII), University of Parma, Parma 43124 (Italy); Pissadakis, S., E-mail: pissas@iesl.forth.gr [Foundation for Research and Technology-Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), Heraklion 70013 Greece (Greece)

    2014-03-17T23:59:59.000Z

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  14. ULTRA-HIGH TEMPERATURE SENSORS BASED ON OPTICAL PROPERTY MODULATION AND VIBRATION-TOLERANT INTERFEROMETRY

    SciTech Connect (OSTI)

    Nabeel A. Riza

    2005-07-22T23:59:59.000Z

    The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.

  15. December 1, 2000 / Vol. 25, No. 23 / OPTICS LETTERS 1687 Hybrid curvature and gradient wave-front sensor

    E-Print Network [OSTI]

    Dainty, Chris

    Received July 26, 2000 A new wave-front sensor for adaptive optics that gives signals for the curvatureDecember 1, 2000 / Vol. 25, No. 23 / OPTICS LETTERS 1687 Hybrid curvature and gradient wave-front sensor C. Paterson and J. C. Dainty The Blackett Laboratory, Imperial College, London, SW7 2BZ, UK

  16. In the paper, we describe an optical system which is capable of providing external access to both the sensor and

    E-Print Network [OSTI]

    Hua, Hong

    an intermediate image plane which is optically conjugated to the camera sensor. As indicated by its name, a relayAbstract In the paper, we describe an optical system which is capable of providing external access to both the sensor and the lens aperture (i.e., projection center) of a conventional camera. The proposed

  17. Molecules and materials for the optical detection of explosives and toxic chemicals

    E-Print Network [OSTI]

    Thomas, Samuel William, III

    2006-01-01T23:59:59.000Z

    Optical chemosensing, especially using amplifying fluorescent polymers, can allow for the highly sensitive and selective vapor-phase detection of both explosives and highly toxic chemicals, including chemical warfare agents. ...

  18. Distributed fiber optic intrusion sensor system for monitoring long perimeters

    E-Print Network [OSTI]

    Juarez, Juan C.

    2009-06-02T23:59:59.000Z

    Perturbation ........................ 17 G. Frequency Drift Measurement................................................................... 19 III ERBIUM DOPED FIBER LASER CHARACTERIZATION........................ 22 A. Er:Fiber Laser... .................................................................................................... 22 12. Experimental setup for fiber laser used in the intrusion sensor system ............. 24 13. Spectral linewidth scan of Erbium doped fiber laser ......................................... 24 14. Delayed self-heterodyne test setup...

  19. Manufacturing challenges of optical current and voltage sensors for utility applications

    SciTech Connect (OSTI)

    Yakymyshyn, C.P. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Brubaker, M.A. [Los Alamos National Lab., NM (United States); Johnston, P.M. [Johnston (Paul M.), Raleigh, NC (United States); Reinbold, C. [ABB High Voltage Switchgear, Greensburg, PA (United States)

    1997-12-01T23:59:59.000Z

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  20. Fiber optic laser-induced breakdown spectroscopy sensor for molten material analysis

    DOE Patents [OSTI]

    Zhang, Hansheng; Rai, Awadesh K.; Singh, Jagdish P.; Yueh, Fang-Yu

    2004-07-13T23:59:59.000Z

    A fiber optic laser-induced breakdown spectroscopy (LIBS) sensor, including a laser light source, a harmonic separator for directing the laser light, a dichroic mirror for reflecting the laser light, a coupling lens for coupling the laser light at an input of a multimode optical fiber, a connector for coupling the laser light from an output of the multimode optical fiber to an input of a high temperature holder, such as a holder made of stainless steel, and a detector portion for receiving emission signal and analyzing LIBS intensities. In one variation, the multimode optical fiber has silica core and silica cladding. The holder includes optical lenses for collimating and focusing the laser light in a molten alloy to produce a plasma, and for collecting and transmitting an emission signal to the multimode optical fiber.

  1. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Anbo Wang; Gary Pickrell

    2011-12-31T23:59:59.000Z

    This report summarizes technical progress on the program â??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systemsâ?ť funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  2. MRI-compatible Haptics: Feasibility of using optical fiber Bragg grating strain-sensors to detect deflection of needles in an MRI environment

    E-Print Network [OSTI]

    Park, Yong-Lae

    MRI-compatible Haptics: Feasibility of using optical fiber Bragg grating strain-sensors to detect fiber-optic-based force and deflection sensors based on fiber Bragg grating (FBG) technology have been was developed using a single optical fiber and an MRI compatible biopsy needle (22ga x 15cm). The FBG sensor

  3. D. A. Cohen, Y. Chang, A. F. J. Levi, H. Fetterman, and I. Newberg: `Optically-controlled serially-fed phased array sensor' page

    E-Print Network [OSTI]

    Levi, Anthony F. J.

    -fed phased array sensor' page IEEE Photonics Technol. Lett. 8, 1683-1685 (1996). 1 Optically Newberg Abstract A new type of RF-photonic sensor design which uses an optical serially-fed phased array. Fetterman, and I. Newberg: `Optically-controlled serially-fed phased array sensor' page IEEE Photonics

  4. Wall shear stress sensor based on the optical resonances of dielectric microspheres This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ötügen, Volkan

    Wall shear stress sensor based on the optical resonances of dielectric microspheres This article (2011) 075203 (9pp) doi:10.1088/0957-0233/22/7/075203 Wall shear stress sensor based on the optical an optical wall shear stress sensor based on the whispering gallery mode (WGM) shifts of dielectric micro

  5. FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS

    E-Print Network [OSTI]

    Narain, Amitabh

    /analyzed the incident reflected waves to identify and measure the total transit time of the sound wave (of known wave-speed1 FLUORESCENCE AND FIBER-OPTICS BASED REAL-TIME THICKNESS SENSOR FOR DYNAMIC LIQUID FILMS T. W. Ng/disadvantages of many known liquid film thickness sensing devices (viz. conductivity probes, reflectance based fiber

  6. Optical properties of chemical-vapor-deposited diamond films

    SciTech Connect (OSTI)

    Bi, X.X.; Eklund, P.C.; Zhang, J.G.; Rao, A.M. (Department of Physics and Astronomy, University of Kentucky, Lexington, KY (USA)); Perry, T.A.; Beetz, C.P. Jr. (Physics Department, General Motors Research Laboratory, Warren, MI (USA))

    1990-04-01T23:59:59.000Z

    Results of room-temperature optical studies on {similar to}10 micron thick, free-standing diamond films are reported. The films were grown on Si(100) substrates by hot filament-assisted chemical vapor deposition (CVD) from a methane/hydrogen mixture. The as-grown, free surface of the films exhibited a surface roughness of scale {sigma}{similar to}0.2 to 5 microns, depending on the methane/hydrogen mixture, which introduces significant optical scattering loss for frequencies greater than 0.5 eV. Specular reflection and transmission spectra in the range 0.01--10 eV were collected. Below the threshold for interband adsorption near {similar to}5 eV, the films studied behaved approximately as thin parallel plates of refractive index 2.4, with the rough free surface leading to increasingly larger loss of specular transmission/reflection with decreasing wavelength. Structure in the mid-infrared transmission spectra was observed and attributed to disorder-induced one-phonon absorption, intrinsic multi-phonon absorption, and infrared active --C--H{sub 2} stretching modes. The strength of the C--H band was observed to increase with increasing methane pressure in the growth chamber. At 5.3 eV, the onset of interband absorption was observed, in good agreement with the value of the indirect bandgap in type IIa (intrinsic) diamond.

  7. Homogenization studies for optical sensors based on sculptured thin films 

    E-Print Network [OSTI]

    Jamaian, Siti Suhana

    2013-07-01T23:59:59.000Z

    In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using ...

  8. Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case Study

    E-Print Network [OSTI]

    Sontag, Eduardo

    Model-Based Control of Nonlinear Systems Subject to Sensor Data Losses: A Chemical Process Case, Los Angeles, CA 90095-1592, USA, davidmps@ucla.edu, pdc@seas.ucla.edu. Controller Process x Data feedback control of nonlinear uncertain systems subject to sensor data losses. We compare three different

  9. Structural and environmental monitoring of tracker and vertex systems using Fiber Optic Sensors

    E-Print Network [OSTI]

    David Moya; Iván Vila

    2012-03-01T23:59:59.000Z

    Fibre optic sensors (FOS) are an established technique for environmental and deformation monitoring in several areas like civil engineering, aerospace, and energy. Their immunity to electromagnetic and magnetic fields and nuclear environments, its small size, multiplexing capability and the possibility to be embedded make them an attractive technology for the structural and environmental monitoring of collider particle physics experiments. Between all the possible Fibre Optic sensors FBGs (Fiber Bragg Grating) seems to be the best solution for HEP applications. The first step was to characterize FBG sensors for it use in High Energy Physics environment. During last two years we have checked the resistance of the Fibre Bragg Grating sensors to radiation. Two irradiation campaigns with protons have been done at CNA (Centro Nacional de Aceleradores). In the near future these sensors are being planned to be used in detectors (the closest one Belle II.). Several work on integration issues in Belle II PXD-SVD, and checking for environmental and deformation monitoring in the detectors inner part has been done.

  10. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman

    E-Print Network [OSTI]

    Berger, Andrew J.

    Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber in clinical blood serum and urine samples using liquid-core optical fiber (LCOF) Raman spectroscopy-core optical fiber (LCOF) geome- try can enhance the collected Raman signal from nonturbid aqueous samples by 1

  11. Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber

    E-Print Network [OSTI]

    Matthewson, M. John

    Effect of chemical stripping on the strength and surface morphology of fused silica optical fiber V. V. Rondinella M. J. Matthewson Fiber Optic Materials Research Program Department of Ceramics Rutgers University, Piscataway, NJ 08855-0909 ABSTRACT Examination of the surface profile of silica optical fiber

  12. Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav G. Chushak*

    E-Print Network [OSTI]

    Riboswitch-based sensor in low optical background Svetlana V. Harbaugh, Molly E. Davidson, Yaroslav have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy protease. Cells expressing the riboswitch showed a marked optical difference in fluorescence emission

  13. Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic

    E-Print Network [OSTI]

    Texas at Austin, University of

    Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional CouplerPolymer Directional Coupler Alan X. Wang Ray T. Chen Omega Optics Inc Austin TXOmega Optics Inc., Austin, TX -1- #12;Application of Electric Field

  14. Electro-optic voltage sensor for sensing voltage in an E-field

    DOE Patents [OSTI]

    Woods, Gregory K. (Idaho Falls, ID); Renak, Todd W. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  15. Electro-optic voltage sensor for sensing voltage in an E-field

    DOE Patents [OSTI]

    Woods, G.K.; Renak, T.W.

    1999-04-06T23:59:59.000Z

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  16. A two-mode fiber optic-bending sensor

    E-Print Network [OSTI]

    Covington, Charles Eric

    1993-01-01T23:59:59.000Z

    It is shown that a small slope in the refractive index profile of an optical fiber causes the two lowest order spatial modes to travel different distances from the geometrical center of the fiber. This effect increases by orders of magnitude...

  17. Modeling and Validation of Performance Limitations for the Optimal Design of Interferometric and Intensity-Modulated Fiber Optic Displacement Sensors

    SciTech Connect (OSTI)

    Moro, Erik A. [Los Alamos National Laboratory

    2012-06-07T23:59:59.000Z

    Optical fiber sensors offer advantages over traditional electromechanical sensors, making them particularly well-suited for certain measurement applications. Generally speaking, optical fiber sensors respond to a desired measurand through modulation of an optical signal's intensity, phase, or wavelength. Practically, non-contacting fiber optic displacement sensors are limited to intensity-modulated and interferometric (or phase-modulated) methodologies. Intensity-modulated fiber optic displacement sensors relate target displacement to a power measurement. The simplest intensity-modulated sensor architectures are not robust to environmental and hardware fluctuations, since such variability may cause changes in the measured power level that falsely indicate target displacement. Differential intensity-modulated sensors have been implemented, offering robustness to such intensity fluctuations, and the speed of these sensors is limited only by the combined speed of the photodetection hardware and the data acquisition system (kHz-MHz). The primary disadvantages of intensity-modulated sensing are the relatively low accuracy (?m-mm for low-power sensors) and the lack of robustness, which consequently must be designed, often with great difficulty, into the sensor's architecture. White light interferometric displacement sensors, on the other hand, offer increased accuracy and robustness. Unlike their monochromatic-interferometer counterparts, white light interferometric sensors offer absolute, unambiguous displacement measurements over large displacement ranges (cm for low-power, 5 mW, sources), necessitating no initial calibration, and requiring no environmental or feedback control. The primary disadvantage of white light interferometric displacement sensors is that their utility in dynamic testing scenarios is limited, both by hardware bandwidth and by their inherent high-sensitivity to Doppler-effects. The decision of whether to use either an intensity-modulated interferometric sensor depends on an appropriate performance function (e.g., desired displacement range, accuracy, robustness, etc.). In this dissertation, the performance limitations of a bundled differential intensity-modulated displacement sensor are analyzed, where the bundling configuration has been designed to optimize performance. The performance limitations of a white light Fabry-Perot displacement sensor are also analyzed. Both these sensors are non-contacting, but they have access to different regions of the performance-space. Further, both these sensors have different degrees of sensitivity to experimental uncertainty. Made in conjunction with careful analysis, the decision of which sensor to deploy need not be an uninformed one.

  18. Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenoir City, TN); Capps, Gary J. (Knoxville, TN); Smith, David B. (Oak Ridge, TN); White, Clifford P. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

  19. An Optical Backscatter Sensor for Particulate Matter Measurement

    SciTech Connect (OSTI)

    Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL; Partridge Jr, William P [ORNL

    2009-01-01T23:59:59.000Z

    Diesel engines are prone to emit particulate matter (PM) emissions under certain operation conditions. In-cylinder production of PM from diesel combustion control can occur under a wide variety of operating conditions, and in some cases, operation of a multi-cylinder engine can further complicate PM emissions due to variations in air or fuel charge due to manifold mixing effects. In this study, a probe for detecting PM in diesel exhaust was evaluated on a light-duty diesel engine. The probe is based on an optical backscattering effect. Due to the optical nature of the probe, PM sensing can occur at high rates. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.

  20. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    SciTech Connect (OSTI)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  1. 668 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 7, NO. 6, NOVEMBER 2008 Chemical Sensors and Electronic Noses Based

    E-Print Network [OSTI]

    Zhou, Chongwu

    and Electronic Noses Based on 1-D Metal Oxide Nanostructures Po-Chiang Chen, Guozhen Shen, and Chongwu Zhou warfare agents is important to human health and safety. Thus, the development of chemical sensors- trial gases, chemical warfare agents, and human breath. In this review, we provide an overview

  2. Fiber-optic Fabry-Perot ultrasound sensor

    E-Print Network [OSTI]

    Alcoz, Jorge Jose

    1989-01-01T23:59:59.000Z

    -Perot interferometer. A mirror is produced by joining a fiber coated on the end with a T;02 film to an uncoated fiber by electric arc splicing. The acoustic field changes the index of refraction inside the interferometer cavity through the strain optic effect, thus... displays of-the response of S2 to a 150 KHz wave, for the static phase shift changing x/2. A second harmonic is ge~ when the interferometer is in quadrature . 10. Oscilloscope displays of detected signal for the same 350 KHz acoustic wave a...

  3. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor

    E-Print Network [OSTI]

    Li, Jiang; Paudel, Hari; Barankov, Roman; Bifano, Thomas; Mertz, Jerome

    2015-01-01T23:59:59.000Z

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and proof of concept experimental demonstrations.

  4. Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project

    SciTech Connect (OSTI)

    P. E. Klingsporn

    2005-11-14T23:59:59.000Z

    This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

  5. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    E-Print Network [OSTI]

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01T23:59:59.000Z

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  6. A study of semiconductor laser noise and its effect on fiber optic sensor performance 

    E-Print Network [OSTI]

    Lee, Wanku

    1994-01-01T23:59:59.000Z

    A STUDY OF SEMICONDUCTOR LASER NOISE AND ITS EFFECT ON FISER OPTIC SENSOR PERFORMANCE A Thesis by WANKU LEE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved... as to style and content by: F. aylor (Chair o Committee) D, c 0. Eknoyan (Member) Li ngs ( ember G. Cote (Member) A. , Patton (Head o Department) August 1994 Major Subject: Electrical Engineering ABSTRACT A Study of Semiconductor Laser Noise...

  7. A study of semiconductor laser noise and its effect on fiber optic sensor performance

    E-Print Network [OSTI]

    Lee, Wanku

    1994-01-01T23:59:59.000Z

    A STUDY OF SEMICONDUCTOR LASER NOISE AND ITS EFFECT ON FISER OPTIC SENSOR PERFORMANCE A Thesis by WANKU LEE Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved... as to style and content by: F. aylor (Chair o Committee) D, c 0. Eknoyan (Member) Li ngs ( ember G. Cote (Member) A. , Patton (Head o Department) August 1994 Major Subject: Electrical Engineering ABSTRACT A Study of Semiconductor Laser Noise...

  8. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

  9. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-08-29T23:59:59.000Z

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

  10. Literature search, review, and compilation of data for chemical and radiochemical sensors: Task 1 report

    SciTech Connect (OSTI)

    NONE

    1993-01-01T23:59:59.000Z

    During the next several decades, the US Department of Energy is expected to spend tens of billions of dollars in the characterization, cleanup, and monitoring of DOE`s current and former installations that have various degrees of soil and groundwater contamination made up of both hazardous and mixed wastes. Each of these phases will require site surveys to determine type and quantity of hazardous and mixed wastes. It is generally recognized that these required survey and monitoring efforts cannot be performed using traditional chemistry methods based on laboratory evaluation of samples from the field. For that reason, a tremendous push during the past decade or so has been made on research and development of sensors. This report contains the results of an extensive literature search on sensors that are used or have applicability in environmental and waste management. While restricting the search to a relatively small part of the total chemistry spectrum, a sizable body of reference material is included. Results are presented in tabular form for general references obtained from data base searches, as narrative reviews of relevant chapters from proceedings, as book reviews, and as reviews of journal articles with particular relevance to the review. Four broad sensor types are covered: electrochemical processes, piezoelectric devices, fiber optics, and radiochemical processes. The topics of surface chemistry processes and biosensors are not treated separately because they often are an adjunct to one of the four sensors listed. About 1,000 tabular entries are listed, including selected journal articles, reviews of conference/meeting proceedings, and books. Literature to about mid-1992 is covered.

  11. channel voltage sensor+ether--go-go K Optical detection of rate-determining ion-modulated conformational changes of the

    E-Print Network [OSTI]

    Bezanilla, Francisco

    channel voltage sensor+ether-ŕ-go-go K Optical detection of rate-determining ion electrophysiological and optical approach. We find that a fluorescent probe attached near S4 in the voltage sensor.pnas.org/misc/reprints.shtml To order reprints, see: Notes: #12;Optical detection of rate-determining ion-modulated conformational

  12. Optical Temperature Sensor Using Infrared-to-Visible-Frequency Upconversion in Er This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Cao, Wenwu

    Optical Temperature Sensor Using Infrared-to-Visible-Frequency Upconversion in Er 3+ /Yb 3. 8 (2011) 087804 Optical Temperature Sensor Using Infrared-to-Visible-Frequency Upconversion in Er3 State University, University Park, Pennsylvania 16802, USA (Received 24 May 2011) An optical temperature

  13. Journal of Materials Science, 2009. 44(6): p. 1560-1571 Whispering Gallery Mode-Based Micro-Optical Sensors for Structural Health Monitoring

    E-Print Network [OSTI]

    Gupta, Nikhil

    used in materials include piezoelectric particles, acoustic emission sensors and optical fibers. Each. Use of fiber-optic sensors is advantageous in composite materials because they can become an integral1560 Journal of Materials Science, 2009. 44(6): p. 1560-1571 Whispering Gallery Mode-Based Micro-Optical

  14. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    SciTech Connect (OSTI)

    Pickrell, Gary; Scott, Brian

    2014-06-30T23:59:59.000Z

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70?m) with a hollow core was successfully constructed with lead-in and lead-out 50?m diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber geometry to optical properties, and the development of a sensor packaging prototype for laboratory testing. Analysis and experiments determined that a bonding technique using a CO2 laser is the most suitable joining technique. Pore morphology alteration showed that transmission improved with increasing annealing temperature (producing smaller pores), while the sensor response time increased and the mechanical strength decreased with increasing annealing temperature. Software was developed for data acquisition and signal processing to collect and interpret spectral gas absorption data. Gas detection on porous glass sensors was completed and the detection limit was evaluated using acetylene and was found to be around 1- 200ppm. A complete materials package for porous glass sensors was manufactured for testing.

  15. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, C.B.

    1992-12-15T23:59:59.000Z

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  16. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, Charles B. (Lakewood, CO)

    1992-01-01T23:59:59.000Z

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  17. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    SciTech Connect (OSTI)

    Repasky, Kevin

    2013-09-30T23:59:59.000Z

    A fiber sensor array for sub-surface CO{sub 2} concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 􀁐m. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO{sub 2} to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from the DFB laser interacts with the CO{sub 2} before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO{sub 2} absorption features where a transmission measurement is made allowing the CO{sub 2} concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO{sub 2} concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO{sub 2} concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO{sub 2}/day began on July 10, 2012. The elevated subsurface CO{sub 2} concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program

  18. Self-compensating fiber optic flow sensor having an end of a fiber optics element and a reflective surface within a tube

    DOE Patents [OSTI]

    Peng, Wei; Qi, Bing; Wang, Anbo

    2006-05-16T23:59:59.000Z

    A flow rate fiber optic transducer is made self-compensating for both temperature and pressure by using preferably well-matched integral Fabry-Perot sensors symmetrically located around a cantilever-like structure. Common mode rejection signal processing of the outputs allows substantially all effects of both temperature and pressure to be compensated. Additionally, the integral sensors can individually be made insensitive to temperature.

  19. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect (OSTI)

    Weiss, Paul

    2014-01-20T23:59:59.000Z

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  20. A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

    E-Print Network [OSTI]

    Gerling, John

    2012-01-01T23:59:59.000Z

    linearity of the image sensor photo response and extract thephoto diode array was replaced with an RGB image sensorsensor cell and do not have the same geometrical factors. In this work, a reference photo

  1. Nondestructive optical characterization of chemical conversion coatings on aluminum

    SciTech Connect (OSTI)

    Schram, T.; De Laet, J.; Terryn, H. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Metallurgy, Electrochemistry, and Materials Science

    1998-08-01T23:59:59.000Z

    Chromium phosphate conversion coatings on aluminum have been characterized with nondestructive optical techniques. Complementary vibrational spectroscopy techniques, i.e., Fourier transform infrared spectroscopy and confocal micro-Raman spectroscopy, prove the presence of chromium phosphate as principal component in the coating. Additionally, aluminum oxide and indications for the presence of chromium oxide and aluminum fluoride are found. Reflection/absorption infrared spectroscopy (RAIRS) allows analysis of coatings as thin as 40 nm, while confocal micro-Raman spectroscopy is limited to thicknesses above about 150 nm. Compared to RAIRS spectra, the interpretation of Raman spectra is easier due to the morphological characteristics of the conversion coatings, e.g., the coating thickness, using a simulation and regression procedure based on a two-layer optical model. The optical constants of the upper layer, which in a first approximation can be attributed to the chromium phosphate part of the conversion coating, can explain the greenish appearance of the thickest conversion coatings. A linear relationship exists between the coating thickness and the conversion time. An analogous linear relation exists between the conversion time and the peak areas of most of the absorption peaks in the RAIRS spectra.

  2. Organic light emitting diodes (OLEDS) and OLED-based structurally integrated optical sensors

    SciTech Connect (OSTI)

    Cai, Yuankun

    2010-05-16T23:59:59.000Z

    General introduction to OLED basics and OLED-based structurally integrated sensors was provided in chapter 1 and chapter 2. As discussed in chapter 3, OLEDs were developed or improved using novel engineering methods for better charge injection (increased by over 1 order of magnitude) and efficiency. As the excitation sources, these OLEDs have preferred characteristics for sensor applications, including narrowed emission, emission at desired wavelength, and enhanced output for reduced EL background, higher absorption and improved device lifetime. In addition to OLEDs with desired performance, sensor integration requires oxidase immobilization with the sensor film for O{sub 2}-based biological and chemical sensing. Nanoparticles such as ZnO have large surface area and high isoelectric point ({approx}9.5), which favors enzyme immobilization via physical adsorption as well as Coulombic bonding. In chapter 4, it was demonstrated that ZnO could be used for this purpose, although future work is needed to further bond the ZnO to the sensor film. In chapter 5, single unit sensor was extended to multianalyte parallel sensing based on an OLED platform, which is compact and integrated with silicon photodiodes and electronics. Lactate and glucose were simultaneously monitored with a low limit of detection 0.02 mM, fast response time ({approx} 1 minute) and dynamic range from 0-8.6 ppm of dissolved oxygen. As discovered in previous work, the dynamic range covers 0-100% gas phase O{sub 2} or 0-40 ppm dissolved oxygen at room temperature. PL decay curve, which is used to extract the decay time, is usually not a simple exponential at high O{sub 2} concentration, which indicates that O{sub 2} is not equally accessible for different luminescent sites. This creates a challenge for data analysis, which however was successfully processed by stretched exponential as shown in chapter 6. This also provides an insight about the distribution of O{sub 2}:dye collisional quenching rate due to microheterogeneity. Effect of TiO{sub 2} doping was also discussed. Stretched exponential analysis also generates calibration curves with higher sensitivity, which is preferred from the operational point of view. The work of enhanced integration was shown in chapter 7 with a polymer photodetector, which enables the preferred operation mode, decay time measurement, due to fast reponse (<20 {mu}s). Device thickness was enlarged for maximum absorption of the PL, which was realized by slow spincoating rate and shorter spincoating time. Film prepared this way shows more crystalline order by Raman spectra, probably due to slow evaporation. This also ensures charge transport is not affected even with a thick film as indicated in the response time. Combination of OLEDs and polymer photodetectors present opportunities for solution processed all-organic sensors, which enables cheap processing at large scale. Future development can focus on monolithically integration of OLEDs and organic photodetectors (OPD) on the same substrate at a small scale, which could be enabled by inkjet printing. As OLED and OPD technologies continue to advance, small-sized, flexible and all-organic structurally integrated sensor platforms will become true in the near future.

  3. Fiber optic cone penetrometer raman probe for in situ chemical characterization of the Hanford underground waste tanks

    SciTech Connect (OSTI)

    Kyle, K.R.; Brown, S.B.

    1997-03-03T23:59:59.000Z

    A field hardened fiber optic Raman probe has been developed for cone penetrometer deployment in the Hanford underground chemical waste storage tanks. The corrosive chemical environment of the tanks, as well as Hanford specific deployment parameters, provide unique challenges for the design of an optical probe.

  4. Reflectance Infrared Spectroscopy on Operating Surface Acoustic Wave Chemical Sensors During Exposure to Gas-Phase Analytes

    SciTech Connect (OSTI)

    Hierlemann, A.; Hill, M.; Ricco, A.J.; Staton, A.W.; Thomas, R.C.

    1999-01-11T23:59:59.000Z

    We have developed instrumentation to enable the combination of surface acoustic wave (SAW) sensor measurements with direct, in-situ molecular spectroscopic measurements to understand the response of the SAW sensors with respect to the interfacial chemistry of surface-confined sensing films interacting with gas-phase analytes. Specifically, the instrumentation and software was developed to perform in-situ Fourier-transform infrared external-reflectance spectroscopy (FTIR-ERS) on operating SAW devices during dosing of their chemically modified surfaces with analytes. By probing the surface with IR spectroscopy during gas exposure, it is possible to understand in unprecedented detail the interaction processes between the sorptive SAW coatings and the gaseous analyte molecules. In this report, we provide details of this measurement system, and also demonstrate the utility of these combined measurements by characterizing the SAW and FTIR-ERS responses of organic thin-film sensor coatings interacting with gas-phase analytes.

  5. Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines 

    E-Print Network [OSTI]

    Bae, Taehan

    2001-01-01T23:59:59.000Z

    , with an optoelectronic signal conditioning unit containing a chirped distributed feedback laser used to interrogate the sensor. The response of the fiber sensor was compared with that of a piezoelectric pressure sensor used as a reference transducer. Tests were carried...

  6. Detecting high-frequency gravitational waves with optically-levitated sensors

    E-Print Network [OSTI]

    Asimina Arvanitaki; Andrew A. Geraci

    2013-01-02T23:59:59.000Z

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  7. Analysis of a distributed fiber-optic temperature sensor using single-photon detectors

    E-Print Network [OSTI]

    Shellee D. Dyer; Michael G. Tanner; Burm Baek; Robert H. Hadfield; Sae Woo Nam

    2011-11-17T23:59:59.000Z

    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver.

  8. Fiber optic detector and method for using same for detecting chemical species

    DOE Patents [OSTI]

    Baylor, Lewis C. (North Augusta, SC); Buchanan, Bruce R. (Perkiomenville, PA)

    1995-01-01T23:59:59.000Z

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  9. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    SciTech Connect (OSTI)

    Susan J. Foulk

    2012-07-24T23:59:59.000Z

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and significantly reduce energy consumption. Also, because blending and dispersion of additives and components in the final product could be continuously verified, we believe that, in many cases, intermediate compounding steps could be eliminated (saving even more time and energy).

  10. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01T23:59:59.000Z

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  11. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24T23:59:59.000Z

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  12. High-sensitivity optical monitoring of a micro-mechanical resonator with a quantum-limited optomechanical sensor

    E-Print Network [OSTI]

    O. Arcizet; P. -F. Cohadon; T. Briant; M. Pinard; A. Heidmann; J. -M. Mackowski; C. Michel; L. Pinard; O. Francais; L. Rousseau

    2006-05-19T23:59:59.000Z

    We experimentally demonstrate the high-sensitivity optical monitoring of a micro-mechanical resonator and its cooling by active control. Coating a low-loss mirror upon the resonator, we have built an optomechanical sensor based on a very high-finesse cavity (30000). We have measured the thermal noise of the resonator with a quantum-limited sensitivity at the 10^-19 m/rootHz level, and cooled the resonator down to 5K by a cold-damping technique. Applications of our setup range from quantum optics experiments to the experimental demonstration of the quantum ground state of a macroscopic mechanical resonator.

  13. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly(acrylic acid) films incorporating {Beta}-cyclodextrin receptors and amine-functionalized filter layers

    SciTech Connect (OSTI)

    Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.; Crooks, R.M. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry] [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1999-02-02T23:59:59.000Z

    The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, such as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.

  14. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imam, Neena; Barhen, Jacob

    2009-01-01T23:59:59.000Z

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore »readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  15. Spark-plug-mounted fiber optic sensor for measuring in-cylinder pressure in engines

    E-Print Network [OSTI]

    Bae, Taehan

    2001-01-01T23:59:59.000Z

    A new design for an in-cylinder fiber Fabry-Perot interferometer (FFPI) pressure sensor suitable for automotive engines has been investigated experimentally. The FFPI sensor consists of a single mode fiber containing two internal mirrors which form...

  16. Appeared in Sensors and Actuators B: Chemical, vol. 114, no. 1, pp. 254-262, 30 March 2006 Compliant and Low-cost Humidity Sensors using

    E-Print Network [OSTI]

    Sitti, Metin

    inexpensively on various types of nano-porous polymer membranes such as polycarbonate, cellulose acetate. Keywords: Humidity sensor; Nanoporous membrane; Polycarbonate; Shadow mask; 1. INTRODUCTION Humidity humidity sensors. Resistive humidity sensors usually consist of a moisture-sensitive, conductive material

  17. Performance of miniaturized optical fiber interconnects between sensor-embedded composite panels

    E-Print Network [OSTI]

    Miller, Ethan L.

    the performance of low-profile multi-fiber connectors between sensor- embedded composite panels and Sensor Technologies P.O. Box 11704 Blacksburg, VA 24061-1704, (703) 231-4224 ABSTRACT This paper reports to locally weaken the material and to expose the fiber sensor channel to the external environment. We report

  18. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2012-01-17T23:59:59.000Z

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  19. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    DOE Patents [OSTI]

    Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

    2007-07-03T23:59:59.000Z

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  20. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    SciTech Connect (OSTI)

    Kisholoy Goswami

    2005-10-11T23:59:59.000Z

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

  1. Design and implementation of a real-time, chemical sensor network

    E-Print Network [OSTI]

    Wong, Joseph Y. (Joseph Yee), 1981-

    2004-01-01T23:59:59.000Z

    Current methods of environmental chemical data collection are limited in both time and space. This limited set of data inhibits researchers from fully understanding the chemical processes occurring in water bodies. In order ...

  2. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    SciTech Connect (OSTI)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy T.

    2014-09-01T23:59:59.000Z

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  3. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOE Patents [OSTI]

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19T23:59:59.000Z

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  4. One-Dimensional Conducting Polymer Nanostructures for Chemical and Biological Sensor Applications

    E-Print Network [OSTI]

    Chartuprayoon, Nicha

    2012-01-01T23:59:59.000Z

    silicon substrate (A) and polyimide film (B). Optical imagesfabricated on x polyimide films via LithographicallySi wafers and flexible polyimide film. 60 Recently, the

  5. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOE Patents [OSTI]

    Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Shively, John E. (Arcadia, CA); Li, Lin (Monrovia, CA)

    2009-06-02T23:59:59.000Z

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  6. MEMS-based resonant sensor arrays : selective detection of volatile and toxic chemicals

    E-Print Network [OSTI]

    Whitfield, George C., 1981-

    2004-01-01T23:59:59.000Z

    With growing concerns about homeland security, public health, and environmental cleanliness, there is a strong need today for robust chemical sensing systems that are portable in addition to being highly sensitive. While ...

  7. Polymer and carbon nanotube materials for chemical sensors and organic electronics

    E-Print Network [OSTI]

    Wang, Fei, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis details the development of new materials for high-performance chemical sensing as well as organic electronic applications. In Chapter 2, we develop a chemiresistive material based on single-walled carbon nanotubes ...

  8. Silicate electrochemical measurements in seawater: Chemical and analytical aspects towards a reagentless sensor

    E-Print Network [OSTI]

    Mailhes, Corinne

    Silicate electrochemical measurements in seawater: Chemical and analytical aspects towards Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France Keywords: Molybdenum Silicate Reagentless developed a semi-autonomous method to detect silicate in aqueous samples. Molybdenum oxidation was used

  9. Design and fabrication of an optical pressure micro sensor for skin mechanics studies

    E-Print Network [OSTI]

    Kumar, Siddarth

    2006-01-01T23:59:59.000Z

    The mechanics of skin is as central to touch as optics is to vision and acoustics is to hearing. With the advent of novel imaging technologies such as the Optical Coherence Tomography (OCT), we are now able to view structures ...

  10. Electric field sensor based on electro-optic polymer refilled silicon slot photonic crystal waveguide coupled with bowtie antenna

    E-Print Network [OSTI]

    Zhang, Xingyu; Xu, Xiaochuan; Wang, Shiyi; Zhan, Qiwen; Zou, Yi; Chakravarty, Swapnajit; Chen, Ray T

    2014-01-01T23:59:59.000Z

    We present the design of a compact and highly sensitive electric field sensor based on a bowtie antenna-coupled slot photonic crystal waveguide (PCW). An electro-optic (EO) polymer with a large EO coefficient, r33=100pm/V, is used to refill the PCW slot and air holes. Bowtie-shaped electrodes are used as both poling electrodes and as receiving antenna. The slow-light effect in the PCW is used to increase the effective in-device r33>1000pm/V. The slot PCW is designed for low-dispersion slow light propagation, maximum poling efficiency as well as optical mode confinement inside the EO polymer. The antenna is designed for operation at 10GHz.

  11. An optical fiber Faraday effect current sensor for power system applications 

    E-Print Network [OSTI]

    Short, Shayne Xavier

    1995-01-01T23:59:59.000Z

    is compared to a high performance, commercially available, instrumentation current transducer. Specifically, the responses of the two sensors are compared in real time during various operating conditions. Concurrently, a theoretical analysis of the test...

  12. Application and modeling of frequency-domain lifetime spectroscopy for microsphere-based optical glucose sensors 

    E-Print Network [OSTI]

    Liang, Feng

    2009-05-15T23:59:59.000Z

    A new glucose affinity sensor based on a homogeneous fluorescence resonance energy transfer (FRET) assay system was developed to monitor the competitive binding between concanavalin A (ConA) and dextran. The FRET quenching kinetics of the donor were...

  13. The phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to

    E-Print Network [OSTI]

    Elliott, James

    of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. SolidAbstract The phenomenon of ion migration in solids forms the basis for a wide variety-state ionics (SSI) is the field of research concerning ionic motions in solids and the materials properties

  14. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  15. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    SciTech Connect (OSTI)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31T23:59:59.000Z

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  16. Fiber optic spectroscopic digital imaging sensor and method for flame properties monitoring

    DOE Patents [OSTI]

    Zelepouga, Serguei A. (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Saveliev, Alexei V. (Chicago, IL)

    2011-03-15T23:59:59.000Z

    A system for real-time monitoring of flame properties in combustors and gasifiers which includes an imaging fiber optic bundle having a light receiving end and a light output end and a spectroscopic imaging system operably connected with the light output end of the imaging fiber optic bundle. Focusing of the light received by the light receiving end of the imaging fiber optic bundle by a wall disposed between the light receiving end of the fiber optic bundle and a light source, which wall forms a pinhole opening aligned with the light receiving end.

  17. The monitoring and multiplexing of fiber optic sensors using chirped laser sources 

    E-Print Network [OSTI]

    Wan, Xiaoke

    2004-09-30T23:59:59.000Z

    . Linearization of the chirp rate has been achieved using feedback from a fiber Fabry-Perot interferometer (FFPI) to adjust the voltage ramp which drives the rotating mirror. In a demonstration of monitoring an array of two fiber Bragg grating (FBG) sensors, a...

  18. Fiber optic temperature sensor using a grating on an angled fiber tip 

    E-Print Network [OSTI]

    Varadarajan, Harini

    2000-01-01T23:59:59.000Z

    up to observe the response of the sensor to changes in temperature in a furnace was built and the test results are in general agreement with prediction. The reflected power is observed to vary approximately as a sinusoidal function as expected...

  19. Emissive sensors and devices incorporating these sensors

    DOE Patents [OSTI]

    Swager, Timothy M; Zhang, Shi-Wei

    2013-02-05T23:59:59.000Z

    The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

  20. A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico

    E-Print Network [OSTI]

    Central Florida, University of

    A synergetic use of satellite imagery from SAR and optical sensors to improve coastal flood mapping for inundation mapping and have a great potential for evaluating wetting/drying algorithms of inland and coastal and near infrared domains. Images acquired in these wavelengths (i.e. visible and near infrared

  1. Real time perfusion and oxygenation monitoring in an implantable optical sensor

    E-Print Network [OSTI]

    Subramanian, Hariharan

    2006-04-12T23:59:59.000Z

    in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

  2. Real time perfusion and oxygenation monitoring in an implantable optical sensor 

    E-Print Network [OSTI]

    Subramanian, Hariharan

    2006-04-12T23:59:59.000Z

    in operating rooms. In the late 1970s Scott Wilbur of the Biox corporation designed an ear sensor that used light emitting diode and solid state photodetectors to develop a clinically accepted pulse oximeter. The fiberoptic cables of previous ear oximeters.... Traditional oximeters use two light emitting diodes that emit light at 660nm (red) and 940nm (infrared) wavelengths. At these wavelengths both oxyhemoglobin and reduced hemoglobin have different absorption spectra (Fig. 1). The ratio of absorbances...

  3. Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

  4. An Optical Offgas Sensor Network Incorporating a HG Cavity Ringdown Spectrometer and IR Diode Lasers

    SciTech Connect (OSTI)

    George P. Miller

    2007-12-30T23:59:59.000Z

    A multi-element cavity ringdown system was evaluated with the objective of developing an intelligent sensor network to be incorporated into the control systems for advanced coal combustion facilities. Using a combination of a YAG-pumped dye laser and a tunable NIR/IR laser a dual cavity was constructed and a labview program was developed to provide multi-channel, real-time data to permit the real-time monitoring of typical exhaust emission gases, (for example: CO{sub 2}, SO{sub 2}, and mercury) of concern to the next generation of coal-powered facilities.

  5. In Vitro and In Vivo Comparison of Optics and Performance of a Distal Sensor Ureteroscope Versus a Standard Fiberoptic Ureteroscope

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    characteristics and optics of the X C with a stan- dardand In Vivo Comparison of Optics and Performance of a Distalperformance characteristics and optics of a new generation

  6. Optical characterization of InN layers grown by high-pressure chemical vapor deposition

    E-Print Network [OSTI]

    Nabben, Reinhard

    and optical properties of InN films grown on sapphire and GaN/sapphire templates. Results obtained from Raman analyzed in this contribution were grown on GaN/sapphire and sapphire 0001 substrates by HPCVD, utilizing to optical absorption edge estimates obtained from optical transmission spectra analysis. The analysis shows

  7. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect (OSTI)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Zelenyuk, Alla; Earle, Michael; MacDonald, A. M.; Liu, Peter S.; Leaitch, W. R.

    2014-03-06T23:59:59.000Z

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 ?m (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm?3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 ?m) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.

  8. AISI/DOE Advanced Process Control Program Vol. 1 of 6: Optical Sensors and Controls for Improved Basic Oxygen Furnace Operations

    SciTech Connect (OSTI)

    Sarah Allendorf; David Ottesen; Donald Hardesty

    2002-01-31T23:59:59.000Z

    The development of an optical sensor for basic oxygen furnace (BOF) off-gas composition and temperature in this Advanced Process Control project has been a laboratory spectroscopic method evolve into a pre-commercialization prototype sensor system. The sensor simultaneously detects an infrared tunable diode laser ITDL beam transmitted through the process off-gas directly above the furnace mouth, and the infrared greybody emission from the particulate-laden off-gas stream. Following developmental laboratory and field-testing, the sensor prototype was successfully tested in four long-term field trials at Bethlehem Steel's Sparrows Point plant in Baltimore, MD> The resulting optical data were analyzed and reveal correlations with four important process variables: (1) bath turndown temperature; (2) carbon monoxide post-combustion control; (2) bath carbon concentration; and (4) furnace slopping behavior. The optical sensor measurement of the off-gas temperature is modestly correlated with bath turndown temperature. A detailed regression analysis of over 200 heats suggests that a dynamic control level of +25 Degree F can be attained with a stand-alone laser-based optical sensor. The ability to track off-gas temperatures to control post-combustion lance practice is also demonstrated, and may be of great use in optimizing post-combustion efficiency in electric furnace steelmaking operations. In addition to the laser-based absorption spectroscopy data collected by this sensor, a concurrent signal generated by greybody emission from the particle-laden off-gas was collected and analyzed. A detailed regression analysis shows an excellent correlation of a single variable with final bath turndown carbon concentration. Extended field trials in 1998 and early 1999 show a response range from below 0.03% to a least 0.15% carbon concentration with a precision of +0.0007%. Finally, a strong correlation between prolonged drops in the off-gas emission signal and furnace slopping events was observed. A simple computer algorithm was written that successfully predicts furnace slopping for 90% of the heats observed; over 80% are predicted with at least a 30-second warning prior to the initial slopping events,

  9. An optical fiber Faraday effect current sensor for power system applications

    E-Print Network [OSTI]

    Short, Shayne Xavier

    1995-01-01T23:59:59.000Z

    sensing applications, the magnetic field that is employed is that which is induced by a current passing through a conductor. The Faraday efi'ect has been under continual study for over thirty years for mag- netic field sensing, with emphasis in recent... the conductor. For these applications, the Verdet constant is commonly given in terms of the current passing through the conductor. The most common Verdet constant value used for single-mode optical fiber is shown below. This is the value used...

  10. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    SciTech Connect (OSTI)

    Son, J [National Cancer Center, Ilsan, Gyeonggi-do, Korea University, Seoul (Korea, Republic of); Kim, M; Shin, D; Lim, Y; Lee, S; Kim, J; Kim, J [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul, Seoul (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2014-06-01T23:59:59.000Z

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction of beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7? 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.

  11. Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof

    DOE Patents [OSTI]

    Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

    2014-05-27T23:59:59.000Z

    A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

  12. How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment

    SciTech Connect (OSTI)

    Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

    2014-01-16T23:59:59.000Z

    We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

  13. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOE Patents [OSTI]

    Kruger, H.W.

    1994-05-10T23:59:59.000Z

    A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.

  14. Use of sensors in monitoring civil structures

    E-Print Network [OSTI]

    Daher, Bassam William, 1979-

    2004-01-01T23:59:59.000Z

    This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

  15. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOE Patents [OSTI]

    Martinez, Jennifer S. (Santa Fe, NM); Swanson, Basil I. (Los Alamos, NM); Grace, Karen M. (Los Alamos, NM); Grace, Wynne K. (Los Alamos, NM); Shreve, Andrew P. (Santa Fe, NM)

    2009-06-02T23:59:59.000Z

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  16. Correlation Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeOx) Films

    SciTech Connect (OSTI)

    Murphy, Neil R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, Chintalapalle V.

    2014-03-18T23:59:59.000Z

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, ? = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing ? from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of ? is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (?) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (? = 550 nm) to 2.62 and occurs at ? = 0.25. Finally n drops to 1.60 for ? = 0.50–1.00, where the films become GeO2. A detailed correlation between ?, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  17. Optical Transduction of Chemical Nathan H. Mack, Jay Wm. Wackerly, Viktor Malyarchuk, John A. Rogers,*

    E-Print Network [OSTI]

    Rogers, John A.

    imaging and spectroscopic modes. Periodically arrayed nanostructured metallic thin films exhibit near-infrared response, eliciting sensitivities of these devices not only in the near-infrared but also the visible collinear transmission (or reflection) optical geometries.3-5 These nanostructured devices come in a variety

  18. Chemically sensitive polymer-mediated nanoporous alumina SAW sensors for the detection of vapor-phase analytes 

    E-Print Network [OSTI]

    Perez, Gregory Paul

    2005-08-29T23:59:59.000Z

    We have investigated the chemical sensitivity of nanoporous (NP) alumina-coated surface acoustic wave (SAW) devices that have been surface-modified with polymeric mediating films. The research in this dissertation covers the refinement of the NP...

  19. Chemically sensitive polymer-mediated nanoporous alumina SAW sensors for the detection of vapor-phase analytes

    E-Print Network [OSTI]

    Perez, Gregory Paul

    2005-08-29T23:59:59.000Z

    We have investigated the chemical sensitivity of nanoporous (NP) alumina-coated surface acoustic wave (SAW) devices that have been surface-modified with polymeric mediating films. The research in this dissertation covers the refinement of the NP...

  20. Buried fiber optic sensor

    E-Print Network [OSTI]

    Park, Jaehee

    1992-01-01T23:59:59.000Z

    , and TMom modes. Otherwise vm gives the HEv hm and EHv-hm modest20] 18 Table I. Parameters of the laser source and the fused silica fiber which are used in this experiment. n=n1=1. 4527 n2= 1. 4483 D (core diameter )= 8 um Cladding Diameter = 125 um... Interferometer . B. Frequency Chirping of Laser Diode C. Pressure Sensitivity to Uniform Pressure . . . . . . . . . . D. Pressure Sensitivity to Transverse Pressure . . . . E. Pressure Sensitivity to Longitudinal Pressure . . . . . . . . . . I 3 . . . . 20...

  1. An evaluation of an optically-based, cylinder pressure sensor in a single-cylinder, research, diesel engine 

    E-Print Network [OSTI]

    Turner, Timothy Troy

    1994-01-01T23:59:59.000Z

    in head bolts were tested under a variety of operating conditions on a single cylinder, research, diesel engine. The sensors' pressure vs. crank angle output was compared with the output of a piezoelectric pressure transducer mounted, in the engine head...

  2. Fiber Optic Hydrogen Sensor Development: Cooperative Research and Development Final Report, CRADA number CRD-05-00158

    SciTech Connect (OSTI)

    Ringer, M.

    2010-07-01T23:59:59.000Z

    NREL and Nuclear Filter Technology collaborated to develop a prototype product for a hydrogen threshold sensor that was used to monitor hydrogen production in the transport of nuclear waste transport containers.

  3. Sensor assembly

    DOE Patents [OSTI]

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13T23:59:59.000Z

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  4. Optical keyboard

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

    2001-01-01T23:59:59.000Z

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  5. Miniaturized Mid-Infrared Sensor Technologies

    SciTech Connect (OSTI)

    Kim, S; Young, C; Mizaikoff, B

    2007-08-16T23:59:59.000Z

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for overall at least maintaining, or ideally improving the achievable sensitivity.

  6. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications · Use and develop with usable ­ Chemical ­ Electronic ­ Optical ­ Magnetic ­ Transport, thermal and mechanical properties

  7. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11T23:59:59.000Z

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  8. BetaScint{trademark} fiber-optic sensor for detecting strontium-90 and uranium-238 in soil. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Accurate measurements of radioactivity in soils contaminated with Strontium-90 (Sr-90) or Uranium-238 (U-238) are essential for many DOE site remediation programs. These crucial measurements determine if excavation and soil removal is necessary, where remediation efforts should be focused, and/or if a site has reached closure. Measuring soil contamination by standard EPA laboratory methods typically takes a week (accelerated analytical test turnaround) or a month (standard analytical test turnaround). The time delay extends to operations involving heavy excavation equipment and associated personnel which are the main costs of remediation. This report describes an application of the BetaScint{trademark} fiber-optic sensor that measures Sr-90 or U-238 contamination in soil samples on site in about 20 minutes, at a much lower cost than time-consuming laboratory methods, to greatly facilitate remediation. This report describes the technology, its performance, its uses, cost, regulatory and policy issues, and lessons learned.

  9. Polymer-Ceramic MEMS Bimorphs as Thermal Infrared Sensors

    E-Print Network [OSTI]

    Warren, Clinton Gregory

    2010-01-01T23:59:59.000Z

    the testing and evaluation of sensors by both optical and4: Results and Evaluation The results of sensor fabrication,of testing and evaluation. A double beam sensor which

  10. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    SciTech Connect (OSTI)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2013-08-31T23:59:59.000Z

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  11. Ris-PhD-19(EN) Self Calibrating Interferometric Sensor

    E-Print Network [OSTI]

    Interferometric Sensor Department: Optics and Plasma Research Department Risø-PhD-19(EN) January 2006 This thesis

  12. Thermal microphotonic sensor and sensor array

    DOE Patents [OSTI]

    Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

    2010-02-23T23:59:59.000Z

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  13. Microscale autonomous sensor and communications module

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-03-25T23:59:59.000Z

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  14. Biopsy-implantable chemical sensor

    E-Print Network [OSTI]

    Vassiliou, Christophoros Christou

    2013-01-01T23:59:59.000Z

    There is a dire need for tools that can rapidly detect cancer treatment efficacy. A cancer patient must endure the side effects of chemotherapy and radiotherapy. It will be weeks before a change in the size of the tumor ...

  15. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  16. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, Robert C. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  17. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18T23:59:59.000Z

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  18. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01T23:59:59.000Z

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  19. Microwave-Assisted Synthesis of II-VI Semiconductor Micro- and Nanoparticles towards Sensor Applications 

    E-Print Network [OSTI]

    Majithia, Ravish

    2013-01-15T23:59:59.000Z

    and biological sensing,[22-24] optical multiplexing device design,[25] and as non-radiative probes for labeling and imaging.[26,27] While notable advancements in synthesis of semiconductor nanostructures have been made in recent years, significant roadblocks... and advanced their application as field emission devices, energy harvesting devices,[35,36] and most notably as chemical gas sensors.[18] Amongst various 1-D ZnO nanostructures, ones having ultra-small dimensions, defined as having at least one dimension...

  20. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition

    E-Print Network [OSTI]

    . INTRODUCTION Zinc oxide ZnO is a wide direct band-gap 3.37 eV semiconductor with a broad range of applications. Dimethylzinc DMZn , N2 gas, and high-purity O2 were used as the zinc source, carrier gas, and oxidizing agent including light-emitting devices,1 varistors,2 solar cells,3 and gas sensors.4 Moreover, ZnO is a promising

  1. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect (OSTI)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

    2013-12-28T23:59:59.000Z

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  2. Three-Component Spectroelectrochemical Sensor Module for the Detection of Pertechnetate (TcO4-)

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Bryan, Samuel A.; Seliskar, Carl J.; Heineman, William R.

    2013-07-01T23:59:59.000Z

    This review looks at the advancements in the development of a sensor for technetium (Tc) that is applicable to characterizing and monitoring the vadose zone and associated subsurface water. Subsurface contamination by Tc is of particular concern for two reasons: the extremely long lifetime of its most common isotope 99Tc (half-life = 2 x 105 years) and the fast migration in soils of pertechnetate (TcO4–) which is considered to be the dominant 99Tc species in ground water. TcO4– does not have a characteristic spectral signature which prevents its rapid, sensitive, and economic in-situ detection. To address this problem, a novel spectroelectrochemical sensor has been designed that combines three modes of selectivity (electrochemistry, spectroscopy, and selective partitioning) into a single sensor to substantially improve specificity which is critical in the specific detection of an analyte in the presence of potential interfering species. The sensor consists of a basic spectroelectrochemical configuration: a waveguide with an optically transparent electrode (OTE) that is coated with a thin chemically-selective film that preconcnetrates the analyte. The key to adapting this generic sensor to detect TcO4– and Tc complexes lies in the development of chemically-selective films that preconcentrate the analyte and, when necessary, chemically convert it into a complex with electrochemical and spectroscopic properties appropriate for sensing. This review focuses on the general concept of the sensor and the rationale for the selection of the specific components of choice, the development and characterization of the sensor for the different detection modules, the synthesis and characterization of complexes relevant in the detection of technetium, and the progress in the utilization of the sensor module for the effective detection of these complexes.

  3. Quantum optical technologies for metrology, sensing and imaging

    E-Print Network [OSTI]

    Jonathan P. Dowling; Kaushik P. Seshadreesan

    2015-02-27T23:59:59.000Z

    Over the past 20 years, bright sources of entangled photons have led to a renaissance in quantum optical interferometry. Optical interferometry has been used to test the foundations of quantum mechanics and implement some of the novel ideas associated with quantum entanglement such as quantum teleportation, quantum cryptography, quantum lithography, quantum computing logic gates, and quantum metrology. In this paper, we focus on the new ways that have been developed to exploit quantum optical entanglement in quantum metrology to beat the shot-noise limit, which can be used, e.g., in fiber optical gyroscopes and in sensors for biological or chemical targets. We also discuss how this entanglement can be used to beat the Rayleigh diffraction limit in imaging systems such as in LIDAR and optical lithography.

  4. Distributed optical fiber vibration sensing 

    E-Print Network [OSTI]

    Yu, Hui

    2001-01-01T23:59:59.000Z

    This thesis presents a distributed optical fiber vibration sensor. The purpose of this sensing system is to monitor, in real time, the status of railcars by burying an optical fiber underground beside the rails. Using a coherent homodyne technique...

  5. Optical investigations of surface processes in GaP heteroepitaxy on silicon under pulsed chemical beam epitaxy conditions*

    E-Print Network [OSTI]

    Dietz, Nikolaus

    was exposed to individual pulses of the precursors triethylgallium TEG and tertiarybutylphosphine TBP, or less likely, of TEG fragments, that occurs with TEG exposure. The optical data also show that TBP dealkylation occurs essentially instantaneously upon arrival at the surface, and that TEG dealkylation

  6. Capacitance pressure sensor

    DOE Patents [OSTI]

    Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  7. Optically Isolated HVIGBT Based MW Cascade Inverter Building...

    Broader source: Energy.gov (indexed) [DOE]

    Sensor 22.5KV 3" Solid Conductor Sensor 34.5KV Overhead Sensor Pole-Mounted Electro-Optics Benefits for Customer: - Complete Data Acquisition, Processing, Storage (up to 1...

  8. Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation: Argonne’s millimeter wave (mmW) sensor technologies measure a wide range of threat materials remotely

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-04-15T23:59:59.000Z

    Security threats come in many forms—airborne, radiative, gaseous, human, or infiltrative—and it can be costly and impractical to deploy a broad suite of detector technologies to identify all potential hazards in public places. Argonne’s millimeter wave (mmW) sensor technologies measure a wide range of threat materials remotely, making them well suited to many security, industrial and medical applications....

  9. Real time chemical detection using species selective thin films and waveguide Zeeman interferometry

    SciTech Connect (OSTI)

    Grace, K.M.; Shrouf, K. [Los Alamos National Lab., NM (United States); Honkanen, S. [Univ. of Arizona, Tucson, AZ (United States). Optical Sciences Center] [and others

    1998-12-01T23:59:59.000Z

    The authors present a chemical sensor scheme based on selective sensing surfaces and highly sensitive integrated optical transduction methods. Using self-assembly techniques, species selective thin-films are covalently attached to the surface of Si{sub 3}N{sub 4} channel waveguides to produce robust sensor elements. Exposure to targeted analytes results in the selective absorption of these molecules onto the waveguide surface causing a change in the effective index of the guided modes. These relative changes in effective index between TE and TM modes are precisely measured using Zeeman interferometry. Measurements demonstrate reversible, real time sensing of volatile organic compounds at ppm levels.

  10. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    E-Print Network [OSTI]

    Moon, Hi Gyu

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor ...

  11. Rank Extraction in Tin-Oxide Sensor Arrays Page 1 of 23 Rank Extraction in Tin-Oxide Sensor Arrays

    E-Print Network [OSTI]

    Roppel, Thaddeus A.

    Rank Extraction in Tin-Oxide Sensor Arrays Page 1 of 23 Rank Extraction in Tin-Oxide Sensor Arrays the amount of data to be processed. This work is a first example in feature extraction from tin-oxide sensors element array of tin-oxide sensors is presented. Results are extrapolated to other arrays of chemical

  12. Gamma-insensitive optical sensor

    DOE Patents [OSTI]

    Kruger, H.W.

    1994-03-15T23:59:59.000Z

    An ultraviolet/visible/infrared gamma-insensitive gas avalanche focal plane array is described comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example. 6 figures.

  13. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03T23:59:59.000Z

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  14. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06T23:59:59.000Z

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  15. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

    1993-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  16. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  17. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31T23:59:59.000Z

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  18. Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues

    SciTech Connect (OSTI)

    Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

    2013-02-04T23:59:59.000Z

    Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

  19. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect (OSTI)

    Meskhidze, Nicholas [NCSU] [NCSU

    2013-10-21T23:59:59.000Z

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  20. Implantable medical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2001-01-01T23:59:59.000Z

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  1. Dual-transduction-mode sensing approach for chemical detection

    SciTech Connect (OSTI)

    Wang, Liang (Frank) [Frank; Swensen, James S.

    2012-11-01T23:59:59.000Z

    Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by a set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.

  2. Chemiresistor urea sensor

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

  3. Molecular sieve sensors for selective detection at the nanogram level

    DOE Patents [OSTI]

    Bein, Thomas (Albuquerque, NM); Brown, Kelly D. (Albuquerque, NM); Frye, Gregory C. (Albuquerque, NM); Brinker, Charles J. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

  4. Fabrication and Characterization of Poly(2-Hydroxyethyl Methacrylate) Microparticle Sensors 

    E-Print Network [OSTI]

    Philip, Merene

    2013-04-24T23:59:59.000Z

    Optical biosensors are desired for the monitoring of various biochemical markers, which are relevant indicators in the treatment and diagnosis of diseases. Specifically, luminescence sensors are favorable for optical interrogation since...

  5. Lump detection with a gelsight sensor

    E-Print Network [OSTI]

    Jia, Xiaodan

    A GelSight sensor is a tactile sensing device comprising a clear elastomeric pad covered with a reflective membrane, coupled with optics to measure the membrane's deformations. When the pad is pressed against an object's ...

  6. Optical caliper with compensation for specimen deflection and method

    DOE Patents [OSTI]

    Bernacki, B.E.

    1997-12-09T23:59:59.000Z

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  7. Optical caliper with compensation for specimen deflection and method

    DOE Patents [OSTI]

    Bernacki, Bruce E. (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  8. Thermal sensor with an improved coating

    DOE Patents [OSTI]

    LaDelfe, Peter C. (Los Alamos, NM); Stotlar, Suzanne C. (Los Alamos, NM)

    1986-01-01T23:59:59.000Z

    The disclosure is directed to an apparatus for detecting radiation having wavelengths from about 0.4 .mu.m to about 5.6 .mu.m. An optical coating is applied to a thermal sensor that is normally transparent to radiation with such wavelengths. The optical coating is thin and light and includes a modifier and an absorber. The thermal sensor can be a pyroelectric detector such as strontium barium niobate.

  9. "Towards Optics-Based Measurements in Ocean Observatories"

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    /JPSS ­ UAV ­ Ocean optics, Biological ­ Laser penetration New opportunity · Insitu Sensors ­ (Gliders"Towards Optics-Based Measurements in Ocean Observatories" "Ocean Observatories Contributions to Ocean Models and Data Assimilation For Ecosystems" Ocean Optics 2012 Glasgow Scotland Robert Arnone

  10. Charge transport and chemical sensing properties of organic thin-films

    E-Print Network [OSTI]

    Yang, Dengliang

    2007-01-01T23:59:59.000Z

    low Drift in Organic Thin-film Transistor Chemical Sensors”,emitting diodes and thin-film transistors. The electricalLOW DRIFT IN ORGANIC THIN-FILM TRANSISTOR CHEMICAL SENSORS

  11. New functional polymers for sensors, smart materials and solar cells

    E-Print Network [OSTI]

    Lobez Comeras, Jose Miguel

    2012-01-01T23:59:59.000Z

    Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

  12. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect (OSTI)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06T23:59:59.000Z

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  13. Sensor device and methods for using same

    DOE Patents [OSTI]

    Rothgeb, Timothy Michael; Gansle, Kristina Marie Rohal; Joyce, Jonathan Livingston; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary

    2005-10-25T23:59:59.000Z

    A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.

  14. Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines 

    E-Print Network [OSTI]

    Bae, Taehan

    2006-10-30T23:59:59.000Z

    . Field tests were carried out in a 3-cylinder automotive engine with a piezoelectric pressure sensor as a reference transducer up to about 3500 rpm. The fiber optic sensor data generally matched those measured by the piezoelectric reference sensor...

  15. Universal signal processing method for multimode reflective sensors 

    E-Print Network [OSTI]

    Larson, Robert Eugene

    1988-01-01T23:59:59.000Z

    sensitivity, but the sensor configuration is complicated and requires the use of expensive lasers and single mode fibers. Amplitude modulation trades sensitivity for low cost and ease of configuration by using light emitting diodes and multimode fibers. A... fiber optic based sensor using amplitude modulation would provide a simple, low cost solution to the interference problem inherent in the use of composite materials. CHAPTER II BACKGROUND Development of optical fiber sensors started around 1977 [1...

  16. Excimer laser chemical problems

    SciTech Connect (OSTI)

    Tennant, R.; Peterson, N.

    1982-01-01T23:59:59.000Z

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  17. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combusion Exhaust Streams

    SciTech Connect (OSTI)

    Jerald A. Caton; Kalyan Annamalai

    2003-09-24T23:59:59.000Z

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. The nitric oxide sensor has been used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based sensor measurements showed good agreement with the results from physical probe sampling of the combustion exhaust. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. Future planned modifications will lead to even faster response times at sensitivity levels at or below 1 ppm.

  18. Micromechanical calorimetric sensor

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Doktycz, Mitchel J. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.

  19. A DSP embedded optical naviagtion system

    E-Print Network [OSTI]

    Gunnam, Kiran Kumar

    2004-09-30T23:59:59.000Z

    of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog...

  20. A DSP embedded optical naviagtion system 

    E-Print Network [OSTI]

    Gunnam, Kiran Kumar

    2004-09-30T23:59:59.000Z

    of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog...

  1. Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition

    E-Print Network [OSTI]

    Bristol, University of

    chemical vapor deposition of polycrystalline diamond. Several tracer species are monitored in order to gain used for diamond chemical vapor deposition Jie Ma,1 Michael N. R. Ashfold,1,a and Yuri A. Mankelevich2 spectroscopic methods used to diagnose microwave MW plasmas used for diamond chemical vapor deposition CVD . Zhu

  2. Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,

    E-Print Network [OSTI]

    Schindelhauer, Christian

    Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design, Implementation, and EvaluationImplementation, and Evaluation Jie Teng, Tim Bolbrock, Guohong Cao, and Tom La of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation

  3. NANOSCALE SCIENCE AND TECHNOLOGY FOR THE DEVELOPMENT OF ENVIRONMENTAL SENSORS

    SciTech Connect (OSTI)

    Ronald Andres, School of Chemical Engineering, Purdue University

    2007-01-03T23:59:59.000Z

    Under this funding, we proposed to: i) develop a ChemFET sensor platform, ii) develop a ChemDiode sensor platform, iii) synthesize receptor molecules suitable for chemical sensing, iv) study the electrostatic potential changes induced by receptor/target binding on surfaces and v) develop VLSI fabrication approaches for micron-scale chemical sensor devices. The accomplishments under these various thrusts are summarized in this section.

  4. Optical microphone

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    2000-01-11T23:59:59.000Z

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  5. Thin-film spectroscopic sensor

    DOE Patents [OSTI]

    Burgess, Jr., Lloyd W. (Seattle, WA); Goldman, Don S. (Richland, WA)

    1992-01-01T23:59:59.000Z

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  6. Sensor network and soft sensor design for stable nonlinear dynamic systems 

    E-Print Network [OSTI]

    Singh, Abhay Kumar

    2006-10-30T23:59:59.000Z

    In chemical processes, online measurements of all the process variables and parameters required for process control, monitoring and optimization are seldom available. The use of soft sensors or observers is, therefore, highly significant as they can...

  7. Micromachined pressure sensors: Review and recent developments

    SciTech Connect (OSTI)

    Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

    1997-03-01T23:59:59.000Z

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

  8. Dissolved oxygen and pH monitoring within cell culture media using a hydrogel microarray sensor 

    E-Print Network [OSTI]

    Lee, Seung Joon

    2009-05-15T23:59:59.000Z

    based on the fluorescence image of the sensor. The system included a blue LED as an illumination source, coupling optics, interference filters and a compact moisture resistant CCD camera. Various tests were performed for the sensor (sensitivity...

  9. SEA SURFACE CURRENT FIELDS IN THE BALTIC SEA DERIVED FROM MULTI-SENSOR SATELLITE DATA

    E-Print Network [OSTI]

    Hamburg,.Universität

    -sensor, algae blooms, surface currents, optical flow ABSTRACT: Mesoscale dynamic sea surface features demonstrate the use of multi- sensor / multi-channel satellite images for the computation of mesoscale surface

  10. A fiber optic probe for oxygen partial pressure sensing 

    E-Print Network [OSTI]

    Schlain, Leslie Ariel

    1986-01-01T23:59:59.000Z

    of the electronic circuitry, and Steve Spar for software development. TABLE OF CONTENTS INTRODUCTION Purpose Current Status of Conventional Oxygen Sensors Optical Sensors Technical Obj ect ives 1 5 10 MATERIAL AND METHODS 14 Transducer Design... the partial pressure of oxygen (p02) in solutions. The research effort was specifically aimed at the development of an oxygen sensor suitable for physiological applications. The sensor described in this thesis is an application of a generic fiber optic...

  11. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect (OSTI)

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31T23:59:59.000Z

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

  12. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect (OSTI)

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2005-09-30T23:59:59.000Z

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences. We will concentrate on the spectral region near 1530 nm, where other researchers have had some success in measuring ammonia.

  13. DEVELOPMENT OF ALL-SOLID-STATE SENSORS FOR MEASUREMENT OF NITRIC OXIDE AND AMMONIA CONCENTRATIONS BY OPTICAL ABSORPTION IN PARTICLE-LADEN COMBUSTION EXHAUST STREAMS

    SciTech Connect (OSTI)

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2004-09-30T23:59:59.000Z

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2 described in this progress report, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. A series of spectral simulations was performed using the HITRAN code to investigate the potential sensitivity of absorption measurements of ammonia in different spectral regions. It was concluded that ammonia absorption features in the 3000-nm spectral region would be hard to measure due to water vapor interferences.

  14. AOI [3] High-Temperature Nano-Derived Micro-H2 and - H2S Sensors

    SciTech Connect (OSTI)

    Perepezko, John; Lu-Steffes, Otto

    2014-08-31T23:59:59.000Z

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO2) and hydrogen sulfide (H2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring of H2, H2S and SO2 levels during coal gasification is strongly desired. The selective detection of SO2/H2S in the presence of H2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H2 and -H2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H2, SO2, and H2S within high-temperature environments (>500?C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H2S. The idea of including nanomaterials as the sensing material within resistive-type chemical sensor platforms was to increase the sensitivity (as shown for room temperature applications). Unfortunately, nanomaterials are not stable at high temperatures due to sintering and coarsening processes that are driven by their high surface to volume ratio. Therefore, new hydrogen and sulfur selective nanomaterial systems with high selectivity and stability properties in the proposed harsh environment were investigated. Different nano-morphologies of zirconate, molybdate, and tungstate compounds were investigated. The fabrication of the microsensors consisted of the deposition of the selective nanomaterial systems over metal based interconnects on an inert substrate. This work utilized the chemi-resistive (resistive- type) microsensor architecture where the chemically and structurally stable, high temperature compatible electrodes were sputtered onto a ceramic substrate. The nanomaterial sensing systems were deposited over the electrodes using a lost mold method patterned by conventional optical lithography. The microsensor configuration with optimized nanomaterial system was tested and compared to a millimeter-size sensor e outcomes of this research will contribute to the economical application of sensor arrays for simultaneous sensing of H2, H2S, and SO2.

  15. Power inverter with optical isolation

    DOE Patents [OSTI]

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06T23:59:59.000Z

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  16. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Planar Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working...

  17. Optical analyzer

    DOE Patents [OSTI]

    Hansen, A.D.

    1987-09-28T23:59:59.000Z

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  18. Voltage sensor with fiber Fabry-Perot interferometer

    E-Print Network [OSTI]

    Wann, Been-Huey

    1992-01-01T23:59:59.000Z

    INTRODUCTION. Page II RESEARCH DESCRIPTION. . . A. Optical Fiber Fabry-Perot Interferometer. . . . . B. Piezoelectricity. . C. Modulating Point in 60 Hz Voltage Measurement. . . . . . D. Temperature Control Circuit . . . . 18 . . . 26 III EXPERIMENTAL... PROCEDURES AND RESULTS. . . . . . A. Fabrication of the Optical Fiber Fabry-Perot Interferometer B. Selection of Piezoelectric Materials. C. Implementation of Temperature Control Circuit. . . . D. Experiments of Optical Fiber Voltage Sensor...

  19. IEEE SENSORS JOURNAL, VOL. 13, NO. 8, AUGUST 2013 2863 Thermal-Piezoresistive Resonators and

    E-Print Network [OSTI]

    Yi, Yun-Bo

    or toxic gases. Such sensors can be divided into two categories based on their sensing mechanism: chemical Object Identifier 10.1109/JSEN.2013.2258667 Chemical sensors are based on the chemical reaction between for leakage detection of explosive gases such as hydrogen and methane, and for real-time sensing of pathogenic

  20. Fabrication of thermal microphotonic sensors and sensor arrays

    DOE Patents [OSTI]

    Shaw, Michael J. (Tijeras, NM); Watts, Michael R. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2010-10-26T23:59:59.000Z

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  1. Multiple channel optical data acquisition system

    DOE Patents [OSTI]

    Fasching, G.E.; Goff, D.R.

    1985-02-22T23:59:59.000Z

    A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

  2. Sensor apparatus

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

    2009-12-22T23:59:59.000Z

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  3. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  4. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect (OSTI)

    Yi Jia

    2011-02-28T23:59:59.000Z

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  5. Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint

    SciTech Connect (OSTI)

    Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

    2012-06-01T23:59:59.000Z

    Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

  6. Super-Resolution Optical Imaging of Biomass Chemical-Spatial Structure: Cooperative Research and Development Final Report, CRADA Number CRD-10-410

    SciTech Connect (OSTI)

    Ding, S. Y.

    2013-06-01T23:59:59.000Z

    The overall objective for this project is to characterize and develop new methods to visualize the chemical spatial structure of biomass at varying stages of the biomass degradation processes in situ during the process.

  7. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2003-06-01T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  8. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-06-29T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  9. Corrosion sensor

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  10. Corrosion sensor

    DOE Patents [OSTI]

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26T23:59:59.000Z

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  11. Optical Multiplexing for High-Throughput Spectroscopic Analysis. 

    E-Print Network [OSTI]

    Ahmed, Saadiah

    2012-05-03T23:59:59.000Z

    Implantable optical biosensors are being developed as aids for medical monitoring. Such optical biosensors are analyzed for performance in dynamic sensor testing environment. Multi-Frequency Phase Fluorometer (MFPF) is a key measuring device...

  12. Two applications of the Fabry-Perot interferometric sensor 

    E-Print Network [OSTI]

    Xie, Zhaoxia

    2009-05-15T23:59:59.000Z

    in the FFPI and produces voltage outputs proportional to the phase shifts. Laboratory Material Testing System tests show that the fiber optic sensor response is a fairly linear function of the axial displacement. In highway tests the FFPI sensors showed strong...

  13. Universal signal processing method for multimode reflective sensors

    E-Print Network [OSTI]

    Larson, Robert Eugene

    1988-01-01T23:59:59.000Z

    sensitivity, but the sensor configuration is complicated and requires the use of expensive lasers and single mode fibers. Amplitude modulation trades sensitivity for low cost and ease of configuration by using light emitting diodes and multimode fibers. A... method for reflective sensors using optical fibers as the data transmission media. The proposed transmitter - receiver unit was based on the amplitude modulation of reflected optical signals. This involves the use of an light emitting diode (LED...

  14. Design of the Microstructured Optical Fiber-based Surface Plasmon Resonance

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Design of the Microstructured Optical Fiber-based Surface Plasmon Resonance sensors with enhanced of a Microstructured Optical Fiber-based Surface Plasmon Resonance sensor with optimized microfluidics is proposed. In such a sensor plasmons on the inner surface of large metallized channels containing analyte can be excited

  15. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  16. Stable arrangements of mobile sensors for sampling physical fields

    E-Print Network [OSTI]

    Kumar, Sumeet

    Today's wireless sensor nodes can be easily attached to mobile platforms such as robots, cars and cell phones enabling pervasive sensing of physical fields (say of temperature, vibrations, air quality and chemicals). We ...

  17. 1143_sensor_Ho.ppt International Containment & Remediation Technology Conference

    E-Print Network [OSTI]

    Ho, Cliff

    long-term monitoring to ensure public safety · Over two million underground storage tanks containing;8143_sensor_Ho.ppt Field Demonstration Chemical Waste Landfill Sandia National Laboratories Albuquerque, New

  18. Compact real-time 2-D gradient-based analog VLSI motion sensor

    E-Print Network [OSTI]

    Deutschmann, Rainer

    the sensor might be favourably applied in industrial applications. Keywords: analog VLSI, motion sensor selectivity even for very low contrast input is demonstrated. As application it is shown how the pixel, smart vision sensor, parallel image processing, real-time computation, optical ow, machine vision, robot

  19. ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES

    E-Print Network [OSTI]

    Park, Yong-Lae

    ON THE GAGE FACTOR FOR OPTICAL FIBER GRATING STRAIN GAGES Richard J. Black1 , David Zare1 , Levy Oblea1 , Yong-Lae Park1 , Behzad Moslehi1 , and Craig Neslen2 1 Intelligent Fiber Optic Systems of grating and fiber types. KEY WORDS: Fiber-Optic Gratings, Fiber-Optic Sensors, Strain Gage Factor 1

  20. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  1. Optics & Laser Technology 40 (2008) 625631 Three-dimensional non-destructive optical evaluation

    E-Print Network [OSTI]

    Chen, Zhongping

    2008-01-01T23:59:59.000Z

    . A pyrometer, an infrared radiation sensor, is used to monitor surface temperature variation in laser brazingOptics & Laser Technology 40 (2008) 625­631 Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography Youngseop Kima , Eun Seo Choia

  2. Application of Luminescent Materials to Optical Sensing

    E-Print Network [OSTI]

    Ritter, Sarah C

    2014-09-05T23:59:59.000Z

    sensitivity, ZnO nanoparticles have great potential as optical-based environmental sensors. Results from dye-loaded ghost studies indicate that fluorescence intensity of intracellular dyes report on extracellular pH. Resealed ghosts loaded with a fluorescein...

  3. Micro-position sensor using faraday effect

    DOE Patents [OSTI]

    McElfresh, Michael (Livermore, CA); Lucas, Matthew (Pittsburgh, PA); Silveira, Joseph P. (Tracy, CA); Groves, Scott E. (Brentwood, CA)

    2007-02-27T23:59:59.000Z

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  4. SURFACE PLASMON COUPLED SENSOR AND NANOLENS

    E-Print Network [OSTI]

    Ko, Hyungduk

    2010-07-14T23:59:59.000Z

    This dissertation consists of two topics. One is a "Multi-pass Fiber Optic Surface Plasmon Resonance Sensor (SPR)" and the other is a "Nano-metallic Surface Plasmon Lens." Since both topics involved surface plasmon, the title of this dissertation...

  5. Optimizing Warehouse Forklift Dispatching Using a Sensor Network and Stochastic Learning

    E-Print Network [OSTI]

    Paschalidis, Ioannis "Yannis"

    , detecting biological, chemical, and nuclear attacks [6, 7]. More examples of security applications come from]. Agriculture may also benefit from sensor networks. For example, [18] studied the potential use of sensor network in vineyard management; see also [19] on precision agriculture. Sensor networks have also been

  6. Force Sensing Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing

    E-Print Network [OSTI]

    Park, Yong-Lae

    Manufacturing Yong-Lae Park1 , Kelvin Chau2 , Richard J. Black2 and Mark R. Cutkosky1 1 Center for Design deposition manufacturing (SDM) process was explored. The sensorized SDM-fabricated finger mechanoreceptors on its legs [2], in addition to hair sensors, chemical sensors, etc. [1], [26]. Mechanoreceptors

  7. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well

  8. IEEE SENSORS JOURNAL, VOL. 10, NO. 6, JUNE 2010 1075 Active Temperature Programming for

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    temperature of metal-oxide (MOX) chemical sensors gives rise to gas-specific signatures that provide a wealth. Index Terms--Active sensing, hidden Markov models, metal- oxide (MOX) sensors, partially observable Markov decision pro- cesses (POMDP). I. INTRODUCTION METAL-OXIDE (MOX) gas sensors are robust, inexpen

  9. Lead phosphate glass compositions for optical components

    DOE Patents [OSTI]

    Sales, Brian C. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

    1987-01-01T23:59:59.000Z

    A lead phosphate glass to which has been added indium oxide or scandium oe to improve chemical durability and provide a lead phosphate glass with good optical properties.

  10. Optically stimulated differential impedance spectroscopy

    DOE Patents [OSTI]

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18T23:59:59.000Z

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  11. Sensor response rate accelerator

    DOE Patents [OSTI]

    Vogt, Michael C. (Westmont, IL)

    2002-01-01T23:59:59.000Z

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  12. 7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical

    E-Print Network [OSTI]

    7003A-30, Session 5 Zero-crossing detection algorithm for arrays of optical spatial fi ltering-crossing detection algorithm for arrays of compact low-cost optical sensors for measuring e.g. minor fl uctuations-to-noise ratio, and delivers a "real time" output (0-1 kHz). The sensors use optical spatial-fi ltering

  13. Surface plasmon resonance spectroscopy sensor and methods for using same

    DOE Patents [OSTI]

    Anderson, Brian Benjamin (N. Augusta, SC); Nave, Stanley Eugene (Evans, GA)

    2002-01-01T23:59:59.000Z

    A surface plasmon resonance ("SPR") probe with a detachable sensor head and system and methods for using the same in various applications is described. The SPR probe couples fiber optic cables directly to an SPR substrate that has a generally planar input surface and a generally curved reflecting surface, such as a substrate formed as a hemisphere. Forming the SPR probe in this manner allows the probe to be miniaturized and operate without the need for high precision, expensive and bulky collimating or focusing optics. Additionally, the curved reflecting surface of the substrate can be coated with one or multiple patches of sensing medium to allow the probe to detect for multiple analytes of interest or to provide multiple readings for comparison and higher precision. Specific applications for the probe are disclosed, including extremely high sensitive relative humidity and dewpoint detection for, e.g., moisture-sensitive environment such as volatile chemical reactions. The SPR probe disclosed operates with a large dynamic range and provides extremely high quality spectra despite being robust enough for field deployment and readily manufacturable.

  14. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, C.S.

    1999-03-16T23:59:59.000Z

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  15. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    1999-01-01T23:59:59.000Z

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  16. Micromechanical potentiometric sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  17. Sandia National Laboratories: Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and gas utilities, and other industries that employ combustion models. A paper...

  18. Fiber-optic displacement sensor system

    E-Print Network [OSTI]

    Cava, Norayda Nora

    1990-01-01T23:59:59.000Z

    . Light pulses from a light emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude of the reflected pulses. A reference reflection from a... emitting diode (LED) were coupled into a multimode fiber. The displacement of a mirror positioned near the end of the fiber was measured by monitoring the amplitude...

  19. Sandia Energy - Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson the Cover ofSeminars Home ECSensors

  20. Sandia Energy » Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  1. Fluorescent Optical Position Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProofWorking OutsideFluorescent

  2. Autonomous Robot System for Sensor Characterization

    SciTech Connect (OSTI)

    David Bruemmer; Douglas Few; Frank Carney; Miles Walton; Heather Hunting; Ron Lujan

    2004-03-01T23:59:59.000Z

    This paper discusses an innovative application of new Markov localization techniques that combat the problem of odometry drift, allowing a novel control architecture developed at the Idaho National Engineering and Environmental Laboratory (INEEL) to be utilized within a sensor characterization facility developed at the Remote Sensing Laboratory (RSL) in Nevada. The new robotic capability provided by the INEEL will allow RSL to test and evaluate a wide variety of sensors including radiation detection systems, machine vision systems, and sensors that can detect and track heat sources (e.g. human bodies, machines, chemical plumes). By accurately moving a target at varying speeds along designated paths, the robotic solution allows the detection abilities of a wide variety of sensors to be recorded and analyzed.

  3. Evaluation of infrasound sensors

    SciTech Connect (OSTI)

    Kromer, R.P.; McDonald, T.S.

    1998-08-01T23:59:59.000Z

    Sandia is evaluating the performance of various infrasound sensors that could be used as part of the International Monitoring Systems (IMS). Specifications for infrasound stations are outlined in CTBT/PC/II/1/Add.2. This document specifies minimum requirements for sensor, digitizer and system. The infrasound sensors evaluation task has the following objectives: provide an overview of the sensors presently in use; evaluate these sensors with respect to the requirements of the IMS.

  4. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    DOE Patents [OSTI]

    Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

    2004-02-03T23:59:59.000Z

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  5. Decentralized TDOA Sensor Pairing in Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Meng, Wei; Lihua, Xie; Wendong, Xiao

    2013-01-01T23:59:59.000Z

    localization in wireless sensor networks,” IEEE Signallocalization in wireless sensor networks,” IEEE Trans.techniques for wireless sensor networks: A survey,” IEEE

  6. Full spectrum optical safeguard

    DOE Patents [OSTI]

    Ackerman, Mark R. (Albuquerque, NM)

    2008-12-02T23:59:59.000Z

    An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

  7. Control and optimization system and method for chemical looping processes

    DOE Patents [OSTI]

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24T23:59:59.000Z

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  8. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2008-02-05T23:59:59.000Z

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  9. Mobility in Wireless Sensor Networks

    E-Print Network [OSTI]

    Mehta, Ankur Mukesh

    2012-01-01T23:59:59.000Z

    Channel-Specific Wireless Sensor Network Path Data”. In:Average Power in Wireless Sensor Networks through Data Ratedesign space of wireless sensor networks”. In: IEEE Wireless

  10. Aircraft Cabin Environmental Quality Sensors

    E-Print Network [OSTI]

    Gundel, Lara

    2010-01-01T23:59:59.000Z

    Gale et al. (2006) and evaluation of sensor performance byConclusions from evaluation of representative sensor systemsConclusions from evaluation of representative sensor systems

  11. Amorphous Diamond MEMS and Sensors

    SciTech Connect (OSTI)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01T23:59:59.000Z

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.

  12. The Adaptive Optics Lucky Imager: combining adaptive optics and lucky imaging

    E-Print Network [OSTI]

    Crass, Jonathan

    2014-07-01T23:59:59.000Z

    , in particular the adaptive optics system and a new type of wavefront sensor, the non-linear curvature wavefront sensor (nlCWFS), being used within the instrument. The development of the nlCWFS has been the focus of my work, bringing the technique from a...

  13. Sensors 2002, 2, 23-34 ISSN 1424-8220

    E-Print Network [OSTI]

    Ho, Cliff

    . The sensors and packaging have been tested in field and laboratory environments, and characterization methods, contaminant. Introduction Tens of thousands of sites containing toxic chemical spills, leaking underground storage tanks, and chemical waste dumps require characterization and long-term monitoring to protect

  14. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY); Sorini-Wong, Susan S. (Laramie, WY)

    2009-02-10T23:59:59.000Z

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  15. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

    2011-03-01T23:59:59.000Z

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  16. Final Technical Report [Toward Simultaneous Single-Particle Chemical and Optical Characterization: Development of a Multi-Angle Optical Scattering Module for the Aerosol Time-of-Flight Mass Spectrometer

    SciTech Connect (OSTI)

    Buckley, Steven [Photon Machines, Inc.] [Photon Machines, Inc.

    2013-10-22T23:59:59.000Z

    This project was an initial effort to investigate the feasibility of an instrument combining real-time atmospheric particle composition measurements using an ATOFMS (Atmospheric Time-Of-Flight Mass Spectrometer) such as those performed by Prather’s group at the University of California, San Diego (UCSD) with multi-wavelength scattering measurements of the type investigated by Sorensen et al., of Kansas State University (KSU). In this Phase I effort we proposed to investigate near-angle scattering and the possibility of integration of a multi-wavelength scattering instrument into the UCSD ATOFMS. After an initial optical design and calculations, we discovered issues with the theory of measurement and with mechanical integration. Evidence emerged that the method of multi-wavelength scattering is only efficacious for spherical particles, while most atmospheric particles are non-spherical fractal aggregates. We also determined that the integration of the detector into existing ATOFMS instruments would be severely limited by volume constraints, and additional volume would require prohibitive additional pumping compared with the existing ATOFMS systems. Based on this evidence, we decided not to pursue a Phase II effort.

  17. Solution-gated graphene transistors for chemical and biological sensing applications

    E-Print Network [OSTI]

    Mailly, Benjamin

    2013-01-01T23:59:59.000Z

    Various fabrication processes were developed in order to make graphene-based chemical and biological sensors on different substrates. Single-layer graphene is grown by chemical vapor deposition and then transferred to ...

  18. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21T23:59:59.000Z

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  19. Spectroelectrochemical Sensor for Pertechnetate Applicable to Hanford and Other DOE Sites

    SciTech Connect (OSTI)

    Heineman, William R; Seliskar, Carl J; Bryan, Samuel A

    2012-09-18T23:59:59.000Z

    The general aim of our work funded by DOE is the design and implementation of a new sensor technology that offers unprecedented levels of specificity needed for analysis of the complex chemical mixtures found at DOE sites nationwide. The specific goal of this project was the development of a sensor for technetium (Tc) that is applicable to characterizing and monitoring the vadose zone and associated subsurface water at the Hanford Site and other DOE sites. The concept for the spectroelectrochemical sensor is innovative and represents a breakthrough in sensor technology. The sensor combines three modes of selectivity (electrochemistry, spectroscopy, and selective partitioning) into a single sensor to substantially improve selectivity. The sensor consists of a basic spectroelectrochemical configuration that we have developed under our previous DOE grants: a waveguide with an optically transparent electrode (OTE) that is coated with a thin chemically-selective film that preconcnetrates the analyte. The key to adapting this generic sensor to detect TcO4- and Tc complexes lies in the development of chemically-selective films that preconcentrate the analyte and, when necessary, chemically convert it into a complex with electrochemical and spectroscopic properties appropriate for sensing. Significant accomplishments were made in the general areas of synthesis and characterization of polymer films that efficiently preconcentrate the analyte, development and characterization of sensors and associated instrumentation, and synthesis and characterization of relevant Re and Tc complexes. Two new polymer films for the preconcentration step in the sensor were developed: partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) and phosphine containing polymer films. The latter was a directed polymer film synthesis that combined the proper electrostatic properties to attract TcO4- and also incorporated a suitable ligand for covalently trapping a lower oxidation state Tc complex within the film for spectroelectrochemical detection. Spectroelectrochemical sensors were developed and demonstrated, first using [Re(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) as a model compound with the non-radioactive Re surrogate for radioactive Tc. A fluorescence based spectroelectrochemical sensor for [Tc(dmpe)3]+/2+was then developed using SSEBS as the preconcentrating film. Portable instrumentation for the fluorescence spectroelectrochemical sensor was fabricated and tested. The effects of components in Hanford subsurface water on sensor performance with a detailed evaluation of the effect of total ionic strength on sensitivity demonstrated the ability to use the spectroelectrochemical sensor on representative water samples. A variety Re and Tc complexes were synthesized and characterized to explore the best ligands to use for detection of Tc. A lower oxidation-state Tc-complex [Tc(dmpe)3]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) was synthesized to use as a model compound for developing Tc sensors. [Tc(dmpe)3]+/2+ exhibited the important properties of solution fluorescence at ambient temperatures and reversible electrochemistry. A range of low oxidation state dioxo Re- and Tc-complexes of formulae [ReO2(py)4]+, [ReO2(CN)4]-, [ReO2(P-P)2]+ and [ReO2(S-S)2]+ (py = pyridine) were synthesized. An exhaustive study of the spectroscopy and electrochemistry of Re(diimine)(CO)3(halide) complexes was performed. These complexes served as models for the Tc(diimine)(CO)3(halide) complexes that were readily formed from Tc(CO)x(halides)6-x complexes which are themselves constituents of tank waste samples from Hanford. Of particular interest were new Tc complexes with the +5 and +6 oxidation states. Tetrabutylammonium salt of tetrachlorooxotechnetate(V), (nBu4N)[TcOCl4] (I) was synthesized and the structure determined. [TcO2(CN)4]3- , [TcO2(en)2]2+ , [TcO2(im)4]+, and [TcO2(py)4]+ (en = ethylenediamine; im = imidazole; py = pyridine) complexes were synthesized and solution and solid state 99Tc NMR spectra were acquired giving

  20. An Evaluation of Acoustic Doppler Velocimeters as Sensors to Obtain the Concentration of Suspended Mass in Water

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    An Evaluation of Acoustic Doppler Velocimeters as Sensors to Obtain the Concentration of Suspended, acoustic Doppler velocimeters (ADVs) and other acoustic sensors have been used by researchers in the ocean than optical turbidity sensors, and the high-frequency velocity measurements allow for a direct

  1. Millimeter-wave sensors

    E-Print Network [OSTI]

    Kim, Seoktae

    2006-04-12T23:59:59.000Z

    New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...

  2. Sensor devices comprising field-structured composites

    DOE Patents [OSTI]

    Martin, James E. (Tijeras, NM); Hughes, Robert C. (Albuquerque, NM); Anderson, Robert A. (Albuquerque, NM)

    2001-02-27T23:59:59.000Z

    A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.

  3. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01T23:59:59.000Z

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  4. Giant magnetoresistive sensor

    DOE Patents [OSTI]

    Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

    1999-01-01T23:59:59.000Z

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  5. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    E-Print Network [OSTI]

    Camesano, Terri

    -Perot interference fiber optic sensor is W. Shang, H. Su, G. Li, and G.S. Fischer are with Automation and Inter Needle Placement Weijian Shang, Student Member, IEEE, Hao Su, Student Member, IEEE, Gang Li, Student- compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate

  6. Optical Fibers Optics and Photonics

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    Optical Fibers Optics and Photonics Dr. Palffy-Muhoray Ines Busuladzic Department of Theoretical and Applied Mathematics The University of Akron April 21, 2008 #12;Outline · History of optical fibers · What are optical fibers? · How are optical fibers made? · Light propagation through optical fibers · Application

  7. Polyimide Capacitive Humidity Sensors 

    E-Print Network [OSTI]

    Lofgren, H.; Mills, F.

    1988-01-01T23:59:59.000Z

    The need for a full-range, low cast humidity sensor has led Honeywell to develop a capacitive relative humidity (RH) sensor with resistance to environmental contaminants. The sensor is used in a bridge circuit to give either a voltage or a current...

  8. Sensor Networks and Consensus

    E-Print Network [OSTI]

    Schenato, Luca

    3 Dic 2009 1/32 Sensor Networks and Consensus An application: Localization and Tracking Distributed Sensors Calibration Randomized Kalman Filter Distributed Kalman Smoother Simone Del Favero PhD Thesis: Localization and Tracking Distributed Sensors Calibration Randomized Kalman Filter Distributed Kalman Smoother

  9. Polyimide Capacitive Humidity Sensors

    E-Print Network [OSTI]

    Lofgren, H.; Mills, F.

    1988-01-01T23:59:59.000Z

    The need for a full-range, low cast humidity sensor has led Honeywell to develop a capacitive relative humidity (RH) sensor with resistance to environmental contaminants. The sensor is used in a bridge circuit to give either a voltage or a current...

  10. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  11. Adaptive optics for ophthalmic applications using a pyramid wavefront

    E-Print Network [OSTI]

    Dainty, Chris

    Adaptive optics for ophthalmic applications using a pyramid wavefront sensor St´ephane R. Chamot and Chris Dainty Applied Optics, Experimental Physics Department National University of Ireland Galway, University Road Galway, Ireland stephane.chamot@nuigalway.ie http://optics.nuigalway.ie/index.html Simone

  12. Optical processing furnace with quartz muffle and diffuser plate

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1996-01-01T23:59:59.000Z

    An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy.

  13. Robust model-based fault diagnosis for chemical process systems

    E-Print Network [OSTI]

    Rajaraman, Srinivasan

    2006-08-16T23:59:59.000Z

    Fault detection and diagnosis have gained central importance in the chemical process industries over the past decade. This is due to several reasons, one of them being that copious amount of data is available from a large number of sensors...

  14. Interactive optical panel

    DOE Patents [OSTI]

    Veligdan, J.T.

    1995-10-03T23:59:59.000Z

    An interactive optical panel assembly includes an optical panel having a plurality of ribbon optical waveguides stacked together with opposite ends thereof defining panel first and second faces. A light source provides an image beam to the panel first face for being channeled through the waveguides and emitted from the panel second face in the form of a viewable light image. A remote device produces a response beam over a discrete selection area of the panel second face for being channeled through at least one of the waveguides toward the panel first face. A light sensor is disposed across a plurality of the waveguides for detecting the response beam therein for providing interactive capability. 10 figs.

  15. Interactive optical panel

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1995-10-03T23:59:59.000Z

    An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

  16. Detection of electrophilic and nucleophilic chemical agents

    DOE Patents [OSTI]

    McElhanon, James R.; Shepodd, Timothy J.

    2014-08-12T23:59:59.000Z

    A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

  17. Photointercalating-semiconductor/solid-electrolyte junctions for storage and chemical detection. Phase 2. Final report, 1 October 1986-31 May 1988

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-05-31T23:59:59.000Z

    The overall objective of this Phase II effort was to perform a scientific and technical characterization of photointercalating-semiconductor/solid-electrolyte junctions for photoelectrochemical energy storage, with emphasis being placed upon the Group IV dichalcogenides n-HfS/sub 2/ and n-ZrS/sub 2/ and their interface with solid polymer electrolytes. Also incorporated within the scope of this program was the application of insights gained towards novel approaches for chemical detection. Here, emphasis was placed upon surface acoustic wave (SAW) and multiple-reflecting optical-waveguide sensors for the reversible detection of SO/sub 2/.

  18. Abstract An application of gas sensors for rapid bio-analysis is presented. An array of temperature-modulated

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    Abstract An application of gas sensors for rapid bio- analysis is presented. An array by a chemical compound. This finding suggests the possibility of using cross-selective gas-sensor arrays conditions of the cells. Electronic nose systems, which rely on a combination of cross-selective gas sensors

  19. Multivariate Optical Computation for Predictive Spectroscopy

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Multivariate Optical Computation for Predictive Spectroscopy Matthew P. Nelson, Jeffrey F. Aust, J Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6 A novel optical approach to predicting chemical into the structure of a set of paired optical filters. Light passing through the paired filters produces an analog

  20. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04T23:59:59.000Z

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.