Powered by Deep Web Technologies
Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

2

Advanced motor driven clamped borehole seismic receiver  

DOE Patents (OSTI)

A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

Engler, B.P.; Sleefe, G.E.; Striker, R.P.

1993-02-23T23:59:59.000Z

3

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

4

Hostile wells: the borehole seismic challenge | Open Energy Information  

Open Energy Info (EERE)

Hostile wells: the borehole seismic challenge Hostile wells: the borehole seismic challenge Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hostile wells: the borehole seismic challenge Citation William Wills. Hostile wells: the borehole seismic challenge [Internet]. 2013. Oil and Gas Engineer - Subsea & Seismic. [cited 2013/10/01]. Available from: http://www.engineerlive.com/content/22907 Retrieved from "http://en.openei.org/w/index.php?title=Hostile_wells:_the_borehole_seismic_challenge&oldid=690045" Categories: References Geothermal References

5

Borehole Summary Report for Core Hole C4998 Waste Treatment Plant Seismic Boreholes Project  

Science Conference Proceedings (OSTI)

Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

Barnett, D. BRENT; Garcia, Benjamin J.

2006-12-15T23:59:59.000Z

6

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measurement. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

7

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

Science Conference Proceedings (OSTI)

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

8

Evaluation of borehole electromagnetic and seismic detection of fractures  

DOE Green Energy (OSTI)

Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

Chang, H.T.; Suhler, S.A.; Owen, T.E.

1984-02-01T23:59:59.000Z

9

Piezotube Borehole Seismic Source for Continuous Crosswell ...  

Tom Daley and colleagues at Berkeley Lab have invented a seismic source that can be operated while fluid is being injected or withdrawn from an aquifer or oil well.

10

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

11

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

12

Borehole-Wall Imaging with Acoustic and Optical Televiewers for  

Open Energy Info (EERE)

Borehole-Wall Imaging with Acoustic and Optical Televiewers for Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Abstract Imaging with acoustic and optical televiewers results in continuous and oriented 360 degree views of the borehole wall from which the character and orientation of lithologic and structural features can be defined for fractured-bedrock aquifer investigations. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing

13

Borehole seismic monitoring of seismic stimulation at OccidentalPermian Ltd's -- South Wason Clear Fork Unit  

SciTech Connect

Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within a reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.

Daley, Tom; Majer, Ernie

2007-04-30T23:59:59.000Z

14

Modelling Of Downhole Seismic Sources I: Literature Review, Review Of Fundamentals, Impulsive Point Source In A Borehole  

E-Print Network (OSTI)

This paper represents the first of a two paper sequence comprising a multi-faceted introduction to the numerical and analytical modelling of seismic sources in a borehole.

Meredith, J. A.

1990-01-01T23:59:59.000Z

15

Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.  

SciTech Connect

During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

Gardner, Martin G.; Price, Randall K.

2007-02-01T23:59:59.000Z

16

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400 level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

Bjorn N. P. Paulsson

2006-09-30T23:59:59.000Z

17

First field test of NAPL detection with high resolution borehole seismic imaging  

Science Conference Proceedings (OSTI)

The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration.

Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

2002-05-01T23:59:59.000Z

18

Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String  

E-Print Network (OSTI)

the Naylor-1 Instrument String April 2009 Thomas M. Daley 1the performance of the seismic string. The moveout of low-the upper section of the string (1420 1500 m) but never on

Daley, T.M.

2010-01-01T23:59:59.000Z

19

Combined Borehole Seismic and Electromagnetic Inversion For High-Resolution Petrophysical Assessment Of Hydocarbon Reservoirs  

Science Conference Proceedings (OSTI)

This report summarizes the work performed between January 2005 and December 2007, under DOE research contract DE-FC26-04NT15507. The project is was performed by the Center for Petroleum and Geosystems Engineering of The University of Texas at Austin and Lawrence Berkeley National Laboratory under the auspices of the National Energy Technology Office (NETL) and the Strategic Center for Natural Gas and Oil (SCNGO). During the three-year project, we developed new methods to combine borehole sonic and electromagnetic (EM) measurements for the improved assessment of elastic and petrophysical properties of rock formations penetrated by a well. Sonic measurements consisted of full waveform acoustic amplitudes acquired with monopole and dipole sources, whereas EM measurements consisted of frequency-domain voltages acquired with multi-coil induction systems. The combination of sonic and EM measurements permitted the joint estimation of elastic and petrophysical properties in the presence of mud-filtrate invasion. It was conclusively shown that the combined interpretation of sonic and EM measurements reduced non-uniqueness in the estimation of elastic and petrophysical properties and improved the spatial resolution of the estimations compared to estimations yielded separately from the two types of measurements. Moreover, this approach enabled the assessment of dynamic petrophysical properties such as permeability, as it incorporated the physics of mud-filtrate invasion in the interpretation of the measurements. The first part of the project considered the development of fast and reliable numerical algorithms to simulate borehole sonic waveforms in 2D, 3D, and radial 1D media. Such algorithms were subsequently used in the quantitative estimation of elastic properties jointly from borehole sonic and EM measurements. In the second part of the project we developed a new algorithm to estimate water saturation, porosity, and dry-rock elastic moduli jointly from borehole sonic and EM measurements. This algorithm assumed radial 1D variations of fluid saturation due to mud-filtrate invasion. Subsequently, we adapted the estimation method to interpret borehole field measurements acquired in both a shaly-sand sedimentary sequence and a tight-gas sandstone formation. In the two cases, we simulated the process of mud-filtrate invasion and concomitantly honored sonic and EM measurements. We produced reliable estimates of permeability and dry-rock moduli that were successfully validated with rock-core measurements. Finally, we introduced a new stochastic inversion procedure to estimate elastic, electrical, and petrophysical properties of layered media jointly from waveform sonic and frequency-domain EM measurements. The procedure was based on Bayesian statistical inversion and delivered estimates of uncertainty under various forms of a-priori information about the unknown properties. Tests on realistic synthetic models confirmed the reliability of this procedure to estimate elastic and petrophysical properties jointly from sonic and EM measurements. Several extended abstracts and conference presentations stemmed from this project, including 2 SEG extended abstracts, 1 SPE extended abstract, and 2 SPWLA extended abstracts. Some of these extended abstracts have been submitted for publication in peer-reviewed journals.

Carlos Torres-Verdin; G. Michael Hoversten; Ki Ha Lee; Gregory Newman; Kurt Nihei

2008-12-31T23:59:59.000Z

20

Amplitude and frequency experimental field measurements of a rotating?imbalance seismic source associated with changes in lithology surrounding a borehole  

Science Conference Proceedings (OSTI)

Field measurements of the vibration amplitude of a rotating?imbalance seismic source in a liquid?filled borehole are described. The borehole was a cased oil well that had been characterized by gamma?ray cement bond and compensated neutron litho?density/gamma?ray logs. The well logs indicated an abrupt transition from shale to limestone at a depth of 2638 ft. The vibration amplitude and frequency of a rotating?imbalance seismic source was measured versus applied voltage as the source was raised from 2654 to 2618 ft through the shalelimestone transition. It was observed that the vibration amplitude changed by approximately 10% in magnitude and the frequency changed approximately 15% as the source passed the shalelimestone transition. The measurements were compared to predictions provided by a two?dimensional analytical model of a rotating?imbalance source located in a liquid?filled bore hole. It was observed that the sensitivity of the experimentally measured vibration amplitude of the seismic source to the properties of the surrounding geologic media was an order of magnitude greater than that predicted by the two?dimensional analytical model.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Seismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1  

E-Print Network (OSTI)

-frequency attenuation and moduli estimates using a fiber-optic strainmeter = /(2n), where is the wavelength of light of strain gages, fiber-optic and ultrasonic data. * Not enough light was received at the detector (mirrorsSeismic-frequency attenuation and moduli estimates using a fiber-optic strainmeter Ludmila Adam 1

22

Seismic sources  

SciTech Connect

Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

Green, Michael A. (Oakland, CA); Cook, Neville G. W. (Lafayette, CA); McEvilly, Thomas V. (Berkeley, CA); Majer, Ernest L. (El Cirrito, CA); Witherspoon, Paul A. (Berkeley, CA)

1992-01-01T23:59:59.000Z

23

The feasibility of developing a borehole sparker for geothermal wells  

DOE Green Energy (OSTI)

A feasibility study was undertaken to determine the practicality of designing a borehole sparker (underwater electric discharge) seismic source for use in an extremely harsh environment (69MPa @ 275{degrees}C = 10,000 psi @ 527{degrees}F). Important electrical and hydrodynamic parameters of underwater spark discharges, component availability, and past accomplishments of others in the field of borehole-to-borehole sparker surveying are discussed. It is concluded that this instrument could be economically developed.

McClung, J.B.

1977-01-01T23:59:59.000Z

24

Low Noise Borehole Triaxial Seismometer Phase II  

Science Conference Proceedings (OSTI)

This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

Kerr, James D; McClung, David W

2006-11-06T23:59:59.000Z

25

borehole | OpenEI  

Open Energy Info (EERE)

borehole borehole Dataset Summary Description NOAA borehole data with temperatures at different depths. http://www.ncdc.noaa.gov/paleo/borehole/nam.html Source NOAA Date Released April 08th, 2010 (4 years ago) Date Updated Unknown Keywords borehole geothermal NOAA Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon NOAA_borehole_data_4-8-10.xlsx (xlsx, 478.7 KiB) Quality Metrics Level of Review No Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment http://www.ncdc.noaa.gov/oa/about/open-access-climate-data-policy.pdf Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

26

Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Vertical Seismic Profiling Vertical Seismic Profiling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Seismic Profiling Details Activities (4) Areas (3) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

27

Borehole data transmission apparatus  

DOE Patents (OSTI)

A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

Kotlyar, Oleg M. (1739 Grandview #2, Idaho Falls, ID 83402)

1993-01-01T23:59:59.000Z

28

Borehole data transmission apparatus  

DOE Patents (OSTI)

A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

Kotlyar, O.M.

1993-03-23T23:59:59.000Z

29

Available Technologies: Piezotube Borehole Seismic Source for ...  

oil and gas reservoirs ; aquifers for CO 2 sequestration; ADVANTAGES: Aids in optimizing oil recovery by providing real time and continuous data on reservoir ...

30

Definition: Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

the subsurface.1 References http:www.slb.commediaFilesevaluationbooksfundamentalsofboreholeseismictechnologyoverview.pdf Ret LikeLike UnlikeLike You like...

31

Borehole induction coil transmitter  

DOE Patents (OSTI)

A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

Holladay, Gale (Livermore, CA); Wilt, Michael J. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

32

Definition: Vertical Seismic Profiling | Open Energy Information  

Open Energy Info (EERE)

Profiling Profiling Jump to: navigation, search Dictionary.png Vertical Seismic Profiling Vertical Seismic Profile (VSP) is a technique of seismic measurements used for high resolution seismic imaging. It can also be used for correlation with surface seismic data providing velocity information and information for processing such as deconvolution parameters. The defining characteristic of a VSP is that the detectors are in a borehole.[1][2][3] View on Wikipedia Wikipedia Definition Also Known As Advanced Borehole Seismology (ABS), Related Terms Seismic Techniques, High Resolution Imaging and Monitoring References ↑ Bob Hardage VSP Principles ↑ High resolution 3D seismic imaging using 3C data from large downhole seismic arrays Paulsson et al. (2004) ↑ Mueller Soroka Paulsson (2010)

33

Exploratory Boreholes | Open Energy Information  

Open Energy Info (EERE)

Exploratory Boreholes Exploratory Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Boreholes Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a borehole Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Boreholes: An exploratory borehole is drilled for the purpose of identifying the

34

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

35

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-01-01T23:59:59.000Z

36

Downhole hydraulic seismic generator  

DOE Patents (OSTI)

A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole. 4 figs.

Gregory, D.L.; Hardee, H.C.; Smallwood, D.O.

1990-12-31T23:59:59.000Z

37

Apparatus and method for detecting seismic waves  

SciTech Connect

Disclosed is an apparatus for transducing seismic signals and a method for placing said apparatus for detecting seismic signals. The apparatus comprises at least one geophone preferably embedded in a polymeric material contained in a tubular member. A lower portion of the tubular member preferably contains ballast. The tubular member is preferably cemented into a borehole.

O' Brien, T.T.

1985-08-06T23:59:59.000Z

38

Definition: Borehole CCTV | Open Energy Information  

Open Energy Info (EERE)

CCTV Jump to: navigation, search Dictionary.png Borehole CCTV A borehole CCTV survey is a technique used to assess the inner workings of a borehole. Video footage allows...

39

Borehole Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Borehole Geophysical Methods Citation Carole D. Johnson. Borehole...

40

Down-hole periodic seismic generator  

DOE Patents (OSTI)

A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

Hardee, H.C.; Hills, R.G.; Striker, R.P.

1982-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Seismic CD  

NLE Websites -- All DOE Office Websites (Extended Search)

SEISMIC CD Table of Contents INTRODUCTION Background Resource Findings and Recovery Timeline Oil Program ADIS Overview Gas Program ADIS Overview SEISMIC TECHNOLOGY DEVELOPMENT...

42

High-temperature borehole instrumentation  

DOE Green Energy (OSTI)

A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

1985-10-01T23:59:59.000Z

43

High-temperature borehole instrumentation  

DOE Green Energy (OSTI)

Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980, at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 317/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. The materials development programs cover all aspects of geothermal energy extraction. Research on drilling, hydraulic fracturing, and wellbore logging were necessary to determine the technical and economic feasibility of the hot dry rock concepts.

Dennis, B.R.; Koczan, S.; Cruz, J.

1982-01-01T23:59:59.000Z

44

Electromagnetic fields in cased borehole  

DOE Green Energy (OSTI)

Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

2001-07-20T23:59:59.000Z

45

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

46

NOAA Borehole Data | OpenEI  

Open Energy Info (EERE)

NOAA Borehole Data NOAA Borehole Data Dataset Summary Description NOAA borehole data with temperatures at different depths. http://www.ncdc.noaa.gov/paleo/borehole/nam.html Source NOAA Date Released April 08th, 2010 (4 years ago) Date Updated Unknown Keywords borehole geothermal NOAA Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon NOAA_borehole_data_4-8-10.xlsx (xlsx, 478.7 KiB) Quality Metrics Level of Review No Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment http://www.ncdc.noaa.gov/oa/about/open-access-climate-data-policy.pdf Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

47

Borehole Geophysical Logging | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Borehole Geophysical Logging Citation Hager-Richter Geoscience, Inc.....

48

24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES  

SciTech Connect

Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

Erik C. Westman

2003-10-24T23:59:59.000Z

49

Shear wave transducer for boreholes  

DOE Patents (OSTI)

A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

Mao, N.H.

1984-08-23T23:59:59.000Z

50

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

51

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

52

NETL: News Release - Microhole "Designer" Seismic Testing Its Potential in  

NLE Websites -- All DOE Office Websites (Extended Search)

April 24, 2007 April 24, 2007 Microhole "Designer" Seismic Testing Its Potential in the Field DOE-Funded Technology Offers Low-Cost Deployment of Vertical Seismic Profiling MORGANTOWN, WV - Using microhole technology developed in partnership with the National Energy Technology Laboratory (NETL) to inexpensively deploy sensors for vertical seismic profiling (VSP) could dramatically enhance the oil and gas industry's ability to find and produce huge volumes of by-passed oil and natural gas. VSP's advantages over conventional surface seismic have long been known. Placing seismic recording devices in boreholes results in a much improved signal-to-noise ratio compared with surface seismic. VSP gives an especially high-resolution image of the immediate vicinity of the borehole.

53

Borehole Logging Methods for Exploration and Evaluation of Uranium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium...

54

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

55

DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES | Open  

Open Energy Info (EERE)

REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Details Activities (6) Areas (6) Regions (0) Abstract: Lawrence Berkeley National Laboratory (LBNL) at the direction of the United States Department of Energy (DOE) Geothermal Technologies EGS Program is installing, operating, and/or interfacing seismic arrays at multiple Enhanced Geothermal Systems (EGS) sites. The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality

56

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

57

Borehole stability in densely welded tuffs  

SciTech Connect

The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

Fuenkajorn, K.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (United States). Dept. of Mining and Geological Engineering

1992-07-01T23:59:59.000Z

58

Borehole seismic monitoring of seismic stimulation at Occidental Permian Ltd's -- South Wason Clear Fork Unit  

E-Print Network (OSTI)

guide. The wave guide would allow energy to travel farthera potential wave guide. The directly propagating energy must

Daley, Tom; Majer, Ernie

2007-01-01T23:59:59.000Z

59

Definition: Optical Televiewer | Open Energy Information  

Open Energy Info (EERE)

Optical Televiewer Jump to: navigation, search Dictionary.png Optical Televiewer A 360 view camera that can be lowered into a borehole via logging cable. The camera's purpose is...

60

Development of a geothermal acoustic borehole televiewer  

DOE Green Energy (OSTI)

Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

Heard, F.E.; Bauman, T.J.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09T23:59:59.000Z

62

Seismic Studies  

SciTech Connect

This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (2) For probabilistic analyses supporting the demonstration of compliance with preclosure performance objectives, provide a mean seismic hazard curve for the surface facilities area. Results should be consistent with the PSHA for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at Yucca Mountain. (3) For annual ground motion exceedance probabilities appropriate for postclosure analyses, provide site-specific seismic time histories (acceleration, velocity, and displacement) for the waste emplacement level. Time histories should be consistent with the PSHA and reflect available knowledge on the limits to extreme ground motion at Yucca Mountain. (4) In support of ground-motion site-response modeling, perform field investigations and laboratory testing to provide a technical basis for model inputs. Characterize the repository block and areas in which important-to-safety surface facilities will be sited. Work should support characterization and reduction of uncertainties in inputs to ground-motion site-response modeling. (5) On the basis of rock mechanics, geologic, and seismic information, determine limits on extreme ground motion at Yucca Mountain and document the technical basis for them. (6) Update the ground-motion site-response model, as appropriate, on the basis of new data. Expand and enhance the technical basis for model validation to further increase confidence in the site-response modeling. (7) Document seismic methodologies and approaches in reports to be submitted to the NRC. (8) Address condition reports.

R. Quittmeyer

2006-09-25T23:59:59.000Z

63

Assembly for directional drilling of boreholes  

Science Conference Proceedings (OSTI)

This patent describes a drilling assembly for directional drilling of boreholes in subsurface formations. The assembly comprising a downhole drilling motor. The motor having an output shaft which is suitable to drive a rotary drill bit and a motor housing which is suitable to be arranged at the lower end of a drill string; stabilizing means for stabilizing the assembly; means in the assembly for permanently tilting the central axis of the output shaft with respect to the longitudinal axis of the drill string in the borehole. It is characterized in that the stabilizing means include a lower-most stabilizer which is secured to and rotates with the output shaft.

Steiginga, A.; Worrall, R.N.

1989-11-14T23:59:59.000Z

64

Method for establishing high permeability flow path between boreholes  

SciTech Connect

A method for linking adjacent boreholes in a subterranean formation, particularly in a coal gasification array, by firing a high velocity terradynamic projectile from one borehole to the other.

Dow, Jerome P. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

65

Method for isolating two aquifers in a single borehole  

DOE Patents (OSTI)

A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

Burklund, P.W.

1984-01-20T23:59:59.000Z

66

Finite element modeling of borehole heat exchanger systems  

Science Conference Proceedings (OSTI)

Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior ... Keywords: Borehole heat exchanger, Borehole thermal energy store, FEFLOW, TRNSYS

H. -J. G. Diersch; D. Bauer; W. Heidemann; W. Rhaak; P. Schtzl

2011-08-01T23:59:59.000Z

67

Optics  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics A computer program to calculate the optical properties of glazing systems and laminates. The program can be used to construct new laminates from existing components and...

68

Efficient numerical modeling of borehole heat exchangers  

Science Conference Proceedings (OSTI)

This paper presents a finite element modeling technique for double U-tube borehole heat exchangers (BHE) and the surrounding soil mass. Focus is placed on presenting numerical analyses describing the capability of a BHE model, previously reported, to ... Keywords: BHE, Geothermal heat pumps, Geothermic, Heat transfer, Space heating

R. Al-Khoury; T. Klbel; R. Schramedei

2010-10-01T23:59:59.000Z

69

Seismic reconnaissance of the Los Alamos Scientific Laboratory's Dry Hot Rock Geothermal Project area  

DOE Green Energy (OSTI)

Active seismic methods using high-explosive sources and nondestructive energy sources were used to determine seismic velocities, signal detectability, and subsurface geologic structure in the vicinity of the Los Alamos Scientific Laboratory's (LASL) Dry Hot Rock Geothermal Project area. Positions of several faults have been determined. A synthetic seismogram has been created that shows good agreement with recorded reflection records taken near exploratory borehole GT-2.

Kintzinger, P.R.; West, F.G.

1976-07-01T23:59:59.000Z

70

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

71

Seismic methods for resource exploration in enhanced geothermal systems  

DOE Green Energy (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

72

Electrical resistance tomography from measurements inside a steel cased borehole  

DOE Patents (OSTI)

Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

Daily, William D. (Livermore, CA); Schenkel, Clifford (Walnut Creek, CA); Ramirez, Abelardo L. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

73

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

74

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Medina County, TX Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Task 6- Field test of 5-level seismic array in a borehole...

75

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Pedro, CA Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Task 6- Field test of 5-level seismic array in a borehole at a...

76

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

77

Feasibility of a borehole VHF radar technique for fracture mapping  

DOE Green Energy (OSTI)

Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

Chang, H.T.

1984-01-01T23:59:59.000Z

78

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

79

Temperature Measurements in Boreholes: An Overview of Engineering...  

Open Energy Info (EERE)

Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

80

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Borehole survey instrumentation development for geothermal applications  

DOE Green Energy (OSTI)

The creation and subsequent study of hot dry rock geothermal reservoirs requires sophisticated tools and instruments that can function for relatively long periods of time in the hostile downhole environment. Detection of fracture dimensions and orientation of the geothermal reservoir is critical for the successful completion of the hot dry rock energy extraction system. The development of downhole instrumentation capable of characterizing the hydraulic-fracture systems must emphasize reliability of measuring devices and electro-mechanical components to function properly at borehole temperature exceeding 275/sup 0/C and pressures of 69 MPa (10,000 psi).

Dennis, B.R.

1980-01-01T23:59:59.000Z

82

Seismic Hazard Assessment for the Baku City and Absheron Peninsula, Azerbaijan  

Science Conference Proceedings (OSTI)

This paper deals with the seismic hazard assessment for Baku and the Absheron peninsula. The assessment is based on the information on the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect. I analyze active faults, seismicity, soil and rock properties, geological cross-sections, the borehole data of measured shear-wave velocity, lithology, amplification factor of each geological unit, geomorphology, topography, and basic rock and surface ground motions. To estimate peak ground acceleration (PGA) at the surface, PGA at the basic rock is multiplied by the amplification parameter of each surface layers. Quaternary soft deposits, representing a high risk due to increasing PGA values at surface, are studied in detail. For a near-zone target earthquake PGA values are compared to intensity at MSK-64 scale for the Absheron peninsula. The amplification factor for the Baku city is assessed and provides estimations for a level of a seismic motion and seismic intensity of the studied area.

Babayev, Gulam R. [Geology Institute, Azerbaijan National Academy of Sciences, 29A, H. Javid Ave., Baku AZ1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

83

Borehole-Wall Imaging with Acoustic and Optical Televiewers for...  

Open Energy Info (EERE)

and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. Authors John H. Williams...

84

High Temperature Borehole Televiewer software user manual  

DOE Green Energy (OSTI)

The High Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures of 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the development effort. This report contains a User Manual which describes the operation of this software. The software is designed in a menu format allowing the user to change many of the parameters which control both the acquisition and the display of the Televiewer data. An internal data acquisition card digitizes the waveform from the tool at a rate of 100,000 samples per second. The data from the tool, both the range or arrival time and the amplitude of the return signal, are displayed in color on the CRT screen of the computer during the logging operation. This data may be stored on the hard disk for later display and analysis. The software incorporates many features which aid in the setup of the tool for proper operation. These features include displaying and storing the captured waveform data to check the voltage and time windows selected by the user. 17 refs., 28 figs., 15 tabs.

Duda, L.E.

1989-11-01T23:59:59.000Z

85

Second ILAW Site Borehole Characterization Plan  

Science Conference Proceedings (OSTI)

The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

SP Reidel

2000-08-10T23:59:59.000Z

86

Optical  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Optical fiber-based single-shot picosecond transient absorption spectroscopy Andrew R. Cook a͒ and Yuzhen Shen Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA ͑Received 27 January 2009; accepted 29 May 2009; published online 17 July 2009͒ A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving ϳ15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device ͑CCD͒ detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse

87

Deep borehole disposition of surplus fissile materials-The site selection process  

Science Conference Proceedings (OSTI)

One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.

Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H

1996-05-01T23:59:59.000Z

88

Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA  

DOE Green Energy (OSTI)

The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

Carrrigan, Charles R.

1989-03-21T23:59:59.000Z

89

Blasting agent for blasting in hot boreholes  

SciTech Connect

A blasting agent is described which is resistant to decomposition when exposed to elevated temperatures (e.g., 325 to 350 F) for 24 hr. It is composed of an inorganic oxidizing salt such as ammonium nitrate; a high-boiling liquid oxygen-containing organic fuel, e.g., dibutyl phthalate; a densifying agent such as ferrophosphorus and a coating agent such as calcium stearate. A primer assembly contains the thermally stable blasting agent in a cartridge can. The assembly has a well at one end containing a high-explosive booster attached to high-energy detonating cord, which is in initiating relationship with a blasting cap. The metal-cartridged blasting agent and primer assembly are useful for blasting in hot boreholes, which can be either wet or dry. 9 claims.

Schaefer, W.E.

1974-06-25T23:59:59.000Z

90

Head assembly for multiposition borehole extensometer  

DOE Patents (OSTI)

A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

Frank, Donald N. (Livermore, CA)

1983-01-01T23:59:59.000Z

91

How borehole ballooning alters drilling responses  

Science Conference Proceedings (OSTI)

From field observations of drilling and hole instability problems over a 30-year period, a new and more complete understanding of plastic well-bore behavior - under certain pressure imbalance conditions - is being developed and verified with detailed well histories. Rock mechanics theory, thus far primarily concerned with plastic behavior and borehole collapse on the underbalanced side, is in at least partial agreement with these observations. This article further elaborates on the pressure-responsive plastic behavior of shales under tremendous downhole stresses, particularly in the overbalanced, ballooning mode. The primary subject matter of the article is divided into the following areas: Stable operating margin; Plastic behavior region; Wellbore wall yields; Brittle sloughings; Loss of mud; Gain of mud; Shut-in pressure; Reflex gas; Charged RFT's; Preexisting balloon; Drilling rate.

Gill, J.A.

1989-03-13T23:59:59.000Z

92

Head assembly for multiposition borehole extensometer  

DOE Patents (OSTI)

A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

Frank, D.N.

1981-06-09T23:59:59.000Z

93

Seismic Design Expectations Report  

Energy.gov (U.S. Department of Energy (DOE))

The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

94

Assessing Beyond Design Basis Seismic Events and Implications on Seismic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessing Beyond Design Basis Seismic Events and Implications on Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist) Defense Nuclear Facilities Safety Board Topics Covered: Department of Energy Approach to Natural Phenomena Hazards Analysis and Design (Seismic) Design Basis and Beyond Design Basis Seismic Events Seismic Risk Implications - Key Parameters and Insights Conclusions Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Results from Beyond Design Basis Event Pilots Idaho National Laboratory Advanced Test Reactor Probabilistic Risk

95

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

96

Temperature Measurements in Boreholes: An Overview of Engineering and  

Open Energy Info (EERE)

Temperature Measurements in Boreholes: An Overview of Engineering and Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Temperature Measurements in Boreholes: An Overview of Engineering and Scientific Applications Abstract Temperature data obtained in boreholes serve as critical input to many fields of engineering, exploration, and research: (1) in well completions, (2) gas and fluid production engineering, (3) in the exploration for hydrocarbons and ore minerals, and (4) for testing hypotheses concerning the evolution of the Earth's crust and tectonic processes. Wireline-conveyed maximum-recording thermometers and continuous-reading thermistors are used to measure absolute temperatures, differential

97

Minor actinide waste disposal in deep geological boreholes  

E-Print Network (OSTI)

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

98

A drop-in-concept for deep borehole canister emplacement  

E-Print Network (OSTI)

Disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock (i.e., "granite") is an interesting repository alternative of long standing. Work at MIT over the past two decades, and more recently ...

Bates, Ethan Allen

2011-01-01T23:59:59.000Z

99

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

100

Bond strength of cementitious borehole plugs in welded tuff  

Science Conference Proceedings (OSTI)

Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The electrical resistivity method in cased boreholes  

DOE Green Energy (OSTI)

The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

Schenkel, C.J.

1991-05-01T23:59:59.000Z

102

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

103

Seismic Imaging and Monitoring  

SciTech Connect

I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

Huang, Lianjie [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

104

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2009)&oldid=425640"

105

Seismicity and seismic stress in the Coso Range, Coso geothermal...  

Open Energy Info (EERE)

California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian...

106

IPEEE Seismic Insights  

Science Conference Proceedings (OSTI)

This report compiles and summarizes results of the seismic portion of the Individual Plant Examination for External Events (IPEEE) conducted for each U.S. nuclear plant. Utilities can use trends developed from these results -- together with their individual plant-specific results -- to address future seismic issues on a risk-informed basis.

1999-05-20T23:59:59.000Z

107

Seismic Fragility Application Guide  

Science Conference Proceedings (OSTI)

The "Seismic Fragility Applications Guide" provides utilities with in-depth guidelines for performing fragility analysis as part of a seismic probabilistic risk assessment (SPRA). These cost-effective and practical procedures and the resulting SPRA can support risk-informed/performance-based (RI/PB) applications. To download a pdf file of the product description for this report, click here.

2002-12-18T23:59:59.000Z

108

Logging technology for high-temperature geothermal boreholes  

DOE Green Energy (OSTI)

Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. Results of this extensive development advanced the logging technology in geothermal boreholes to present state-of-the art. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980 at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 320/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. Many of the geophysical measurements needed to develop the hot dry rock concept are unique. Most of the routine instruments used in petroleum drilling fail in the hot and abrasive environment. New equipment developed includes not only the downhole sonde that houses the transducer and associated line driving electronics, but modifications also were needed on the entire data retrieval systems and associated data analysis technology. Successful performance of wellbore surveys in the EE-2 and EE-3 boreholes depended upon the capacity of the sensors, instrument sonde, cablehead, and armored logging cable to work in this severe environment. The major areas of materials development for surveying the boreholes in the high-temperature environment were on elastomeric seals, electrical insulation for logging cables, downhole sensors, and associated downhole electronic and electro-mechanical components.

Dennis, B.R.

1984-05-01T23:59:59.000Z

109

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

110

Elements of a continuous-wave borehole radar. Final report  

DOE Green Energy (OSTI)

The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

1997-08-01T23:59:59.000Z

111

Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Biasi, Et Al., 2008) Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Ileana Tibuleac, Leiph Preston (2008) Regional Resource Area Mapping In Nevada Using The Usarray Seismic Network Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Central_Nevada_Seismic_Zone_Region_(Biasi,_Et_Al.,_2008)&oldid=425638" Category: Exploration Activities What links here

112

Cross borehole induced polarization to detect subsurface NAPL at the Savannah River Site, South Carolina  

E-Print Network (OSTI)

Spectral induced polarization measurements were acquired in six cross-borehole panels within four boreholes at the Savannah River Site. The investigation was performed to delineate the presence of dense non-aqueous phase ...

Lambert, Michael B. (Michael Brian), 1980-

2003-01-01T23:59:59.000Z

113

Method of migrating seismic records  

DOE Patents (OSTI)

The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

Ober, Curtis C. (Las Lunas, NM); Romero, Louis A. (Albuquerque, NM); Ghiglia, Dennis C. (Longmont, CO)

2000-01-01T23:59:59.000Z

114

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents (OSTI)

An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

115

Size influence on the sealing performance of cementitious borehole plugs  

Science Conference Proceedings (OSTI)

Flow tests have been conducted on cement plugs with diameters of 158.8 mm and 196.9 mm, and length to diameter ratios of one, in boreholes in basalt blocks and in steel pipes. Expansion strains and curing temperatures have been monitored on cement plugs in boreholes in basalt blocks, in PVC and in steel pipes with diameters from 25.4 mm to 196.9 mm and length to diameter ratios of one and two. During permeability tests, basalt blocks have fractured, presumably due to water injection pressure, cement expansion and packer pressure. Falling head tests have been performed on some block fractures to study the influence of the complicated interaction between a cement borehole plug (e.g. swelling and shrinkage alternations) and the rock, as well as of the normal stress across the fracture, on the hydraulic conductivity of a fracture intersecting a plugged borehole. The hydraulic conductivity of the cement plugs in the steel pipes varies between 3.57 x 10/sup -11/ cm/min and 3.65 x 10/sup -9/ cm/min. Cement swelling tests remain inconclusive about size effects, primarily because of instrumentation problems. Cement curing temperatures increase from small to large diameter cement plugs.

Akgun, H.; Daemen, J.J.K.

1986-09-01T23:59:59.000Z

116

Electrical resistance tomography using steel cased boreholes as electrodes  

DOE Patents (OSTI)

An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

Daily, W.D.; Ramirez, A.L.

1999-06-22T23:59:59.000Z

117

Category:Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

2 subcategories, out of 2 total. A Active Seismic Techniques 2 pages P Passive Seismic Techniques 2 pages Pages in category "Seismic Techniques" The following 2...

118

Seismic Ruggedness of Relays  

Science Conference Proceedings (OSTI)

Relay GERS (Generic Equipment Ruggedness Spectra) provide utilities with generic seismic capability for more than 100 electrical relays most commonly used in nuclear power plants. The data can be used directly for the assessment of relays in the resolution of Unresolved Safety Issue A-46, "Seismic Qualification of Equipment in Operating Nuclear Plants" and for the Individual Plant Evaluation for External Events (IPEEE) for resolution of USNRC severe accident policy issues.

1991-08-01T23:59:59.000Z

119

Field site investigation: Effect of mine seismicity on groundwater hydrology  

Science Conference Proceedings (OSTI)

The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Philip, J. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-04-01T23:59:59.000Z

120

Identification Of Rippability And Bedrock Depth Using Seismic Refraction  

SciTech Connect

Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer [Geophysics Section, School of Physics, 11800 Universiti Sains Malaysia, Pulau Pinang (Malaysia); Mohamad, Edy Tonizam [Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

2010-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

122

Potential uses for a high-temperature borehole gravimeter  

DOE Green Energy (OSTI)

It is possible to design a canister to cool a borehole gravimeter for use in geothermal and high-temperature (up to 350/sup 0/C) gas wells. Repeat surveys with such a gravimeter could (1) help estimate the extent of reservoir plugging in geothermal injection well after one year of operation and (2) detect compaction of a geothermal aquifer if the change in thickness of the aquifer exceeds 1 m. The instrument could be used together with conventional logging tools to evaluate radial dependence of density around a well, or to estimate gas-filled porosity around wells drilled with mud. A high-temperature borehole gravimeter could also be used to evaluate structure and stratigraphy around geothermal and high-temperature gas wells.

Hearst, J.R.; Kasameyer, P.W.; Owen, L.B.

1978-03-08T23:59:59.000Z

123

Development of an acoustic sensor for a geothermal borehole televiewer  

DOE Green Energy (OSTI)

The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

Wonn, J.W.

1979-03-01T23:59:59.000Z

124

Development of an acoustic sensor for a geothermal Borehole Televiewer  

DOE Green Energy (OSTI)

The objective of this project is to upgrade acoustic sensor technology such that appropriate well logging instruments can be made to operate under the hostile environment conditions anticipated in geothermal resource exploration and evaluation. The Borehole Televiewer (BHTV) was selected as the vehicle for this sensor improvement work, primarily because of its demonstrated ability to detect and characterize fractures under sub-geothermal conditions. The work done toward providing an improved sensor for the televiewer is described. An experimental sensor concept was devised, incorporating a thin metal acoustic window, an improved, high-temperature internal coupling fluid, and thermally resistant sensor internals. During an autoclave test, it was successfully demonstrated that the resulting experimental sensor design concept provides the basic target detection and characterization functions required of a fracture mapping, Borehole Televiewer under simulated geothermal conditions. In particular, the experimental sensor remained operational at 275/sup 0/C and 7000 psi.

Wonn, J.W.

1979-03-01T23:59:59.000Z

125

Magnitude correlations in global seismicity  

Science Conference Proceedings (OSTI)

By employing natural time analysis, we analyze the worldwide seismicity and study the existence of correlations between earthquake magnitudes. We find that global seismicity exhibits nontrivial magnitude correlations for earthquake magnitudes greater than M{sub w}6.5.

Sarlis, N. V. [Solid State Section and Solid Earth Physics Institute, Physics Department, University of Athens, Panepistimiopolis, Zografos GR-157 84, Athens (Greece)

2011-08-15T23:59:59.000Z

126

Induced seismicity. Final report  

DOE Green Energy (OSTI)

The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models.

Segall, P.

1997-09-18T23:59:59.000Z

127

Time-lapse crosswell seismic and VSP monitoring of injected CO2 ina brine aquifer  

SciTech Connect

Seismic surveys successfully imaged a small scale C02injection (1,600 tons) conducted in a brine aquifer of the Frio Formationnear Houston, Texas. These time-lapse bore-hole seismic surveys,crosswell and vertical seismic profile (VSP), were acquired to monitorthe C02 distribution using two boreholes (the new injection well and apre-existing well used for monitoring) which are 30 m apart at a depth of1500 m. The crosswell survey provided a high-resolution image of the C02distribution between the wells via tomographic imaging of the P-wavevelocity decrease (up to 500 mls). The simultaneously acquired S-wavetomography showed little change in S-wave velocity, as expected for fluidsubstitution. A rock physics model was used to estimate C02 saturationsof 10-20 percent from the P-wave velocity change. The VSP survey resolveda large (-70 percent) change in reflection amplitude for the Friohorizon. This C02 induced reflection amplitude change allowed estimationof the C02 extent beyond the monitor well and on 3 azimuths. The VSPresult is compared with numerical modeling of C02 saturations and isseismically modeled using the velocity change estimated in the crosswellsurvey.

Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten,G.M.

2006-05-30T23:59:59.000Z

128

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

129

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

130

Method of correlating a core sample with its original position in a borehole  

SciTech Connect

A method of correlating a core sample with its original position in a borehole. The borehole is logged to determine the bulk density of the formation surrounding the borehole. The core sample is scanned with a computerized axial tomographic scanner (CAT) to determine the attenuation coefficients at a plurality of points in a plurality of cross sections along the core sample. The bulk density log is then compared with the attenuation coefficients to determine the position to which the core sample correlates in the borehole. Alternatively, the borehole can be logged to determine the photoelectric absorption of the formation surrounding the borehole, and this log can be compared with data derived from scanning the core sample with a CAT at two different energy levels.

Vinegar, H. J.; Wellington, S. L.

1985-09-24T23:59:59.000Z

131

Seismic Analysis of Existing Facilties and Evaluation of Risk...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* Develop Seismic Equipment List (SEL) * Perform seismic screening - Perform DOEEH-0545 seismic walkdowns - Perform structural and anchorage seismic analysis to DOEEH-...

132

A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

133

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data  

SciTech Connect

Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmanns equations and Archies law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

Chen, J.; Hoversten, G.M.

2011-09-15T23:59:59.000Z

134

Characterization of the Ground Thermal Response to Heating by a Deep Vertical Borehole Heat Exchanger.  

E-Print Network (OSTI)

??This thesis presents an experiment and an analysis that evaluates some of the long-standing assumptions in deep vertical borehole ground heat exchanger (GHX) theory. These (more)

Olfman, Maeir Zalman

2012-01-01T23:59:59.000Z

135

Borehole gravity surveys in the Cretaceous-Tertiary Sagavanirktok Formation, Kuparuk River oil field, Alaska  

SciTech Connect

Detailed borehole gravity surveys (sponsored by the US Department of Energy) were made in three wells in the Kuparuk River and westernmost Prudhoe Bay oil fields, Alaska from depths as shallow as 15 m to as great as 1,340 m through permafrost and underlying heavy oil bearing sandstones of the Sagavanirktok Formation. A subbituminous coal-bearing sequence and the stability field for methane hydrate occur partly within and partly below the permafrost zone, whose base, defined by the 0{degree}C isotherm, varies from 464 to 564 m. The surveys provided accurate, large-volume estimates of in-situ bulk density from which equivalent porosity was calculated using independent grain and pore-fluid density information. This density and porosity data helped to define the rock mass properties within the hydrate stability field and the thermal conductivity, seismic character, and compaction history of the permafrost. Bulk density of the unconsolidated to poorly consolidated sections ranges mostly from 1.9 to 2.3 g/cm{sup 3}. The shallow permafrost section appears to be slightly overcompacted in comparison to similar sedimentary sequences in nonpermafrost regions. The cause of this apparent overcompaction is unknown but may be due to freeze-thaw processes that have similarly affected sea floor and surficial deposits elsewhere in the Arctic. Fluctuations of bulk density appear to be controlled principally by (1) textural variations of the sediments, possibly exaggerated locally within the permafrost zone by excess ice, (2) presence or absence of carbonaceous material, and (3) type of pore-fluid (water-ice vs. water vs. hydrocarbons). As hypothetical models predict bulk-density is slightly lower opposite one interval of possible methane hydrate. Porosity may be as high as 40-45% for selected coarser grained units within the permafrost zone, and as high as 30-35% in a series of well sorted, heavy oil-bearing sandstones.

Beyer, L.A. (Geological Survey, Menlo Park, CA (USA))

1990-05-01T23:59:59.000Z

136

Seismic Design Expectations Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismic Design Expectations Report Seismic Design Expectations Report March 2010 CD- This Rev of th Se -0 view Module w he overall Cons OFFICE O eismic De C CD-1 was used to dev struction Projec inco OF ENVIRO Standard esign Exp Critical Deci CD-2 M velop the Revie ct Review cond orporated in the ONMENTA Review Pla pectation ision (CD) A C March 2010 ew Plan for the ducted in 2009 e current versio AL MANAG an (SRP) ns Report Applicability D-3 e Oak Ridge Bl 9. Lessons lear on of the Modu GEMENT t (SDER) CD-4 ldg. 3019 60% rned from this r ule. ) Post Ope design review review have be eration w as part een Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental

137

Continuous active-source seismic monitoring of CO2 injection in abrine aquifer  

SciTech Connect

Continuous crosswell seismic monitoring of a small-scale CO2injection was accomplished with the development of a noveltubing-deployed piezoelectric borehole source. This piezotube source wasdeployed on the CO2 injection tubing, near the top of the saline aquiferreservoir at 1657-m depth, and allowed acquisition of crosswellrecordings at 15-minute intervals during the multiday injection. Thechange in traveltime recorded at various depths in a nearby observationwell allowed hour-by-hour monitoring of the growing CO2 plume via theinduced seismic velocity change. Traveltime changes of 0.2 to 1.0 ms ( upto 8 percent ) were observed, with no change seen at control sensorsplaced above the reservoir. The traveltime measurements indicate that theCO2 plume reached the top of the reservoir sand before reaching theobservation well, where regular fluid sampling was occuring during theinjection, thus providing information about the in situ buoyancy ofCO2.

Daley, Thomas M.; Solbau, Ray D.; Ajo-Franklin, Jonathan B.; Benson, Sally M.

2006-12-10T23:59:59.000Z

138

ELASTIC-WAVEFIELD SEISMIC STRATIGRAPHY: A NEW SEISMIC IMAGING TECHNOLOGY  

Science Conference Proceedings (OSTI)

The focus of elastic-wavefield seismic stratigraphy research shifted from onshore prospects to marine environments during this report period. Four-component ocean-bottom-cable (4-C OBC) seismic data acquired in water depths of 2400 to 2500 feet across Green Canyon Block 237 in the Gulf of Mexico were processed and analyzed. The P-P and P-SV images of strata immediately below the seafloor exhibit amazing differences in P-P and P-SV seismic facies. These data may be one of the classic examples of the basic concepts of elastic-wavefield seismic stratigraphy.

Bob A. Hardage

2004-05-06T23:59:59.000Z

139

Seismic scaling laws revisited  

E-Print Network (OSTI)

at fast speed Local energy balance Gc U Dc slip friction i n i Es = U Gc #12; Main result: Energy Mo= DSL3 D S L Moment Seismic energy ES=¿ D S L3 Es Mo Energy moment ratio #12; Thus Es ~ 105 Mo ~ U Summary of Observed Radiated Energy vs Moment log Mo=1.5 Mw9.6 Beroza et al, 2001 #12

Madariaga, Raúl

140

Disposition of excess fissile materials in deep boreholes  

SciTech Connect

As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. Plutonium utilization options have in common the generation of high-level radioactive waste which will be disposed of in a mined geologic disposal system to be developed for spent reactor fuel and defense high level waste. Other final disposition forms, such as plutonium metal, plutonium oxide and plutonium immobilized without high-level radiation sources may be better suited to placement in a custom facility. This paper discusses a leading candidate for such a facility; deep (several kilometer) borehole disposition. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. The safety argument centers around ancient groundwater indicating lack of migration, and thus no expected communication with the accessible environment until the plutonium has decayed.

Halsey, W.G. [Lawrence Livermore National Lab., CA (United States); Danker, W. [USDOE, Washington, DC (United States); Morley, R. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Temperature logging as an aid to understanding groundwater flow in boreholes  

SciTech Connect

Borehole temperatures are affected by a range of physical phenomena, including drilling and engineering procedures, thermal resistivity of the rock, surface climatic changes, local heat sources and sinks, free convection of the borehole fluid, and water flows inside the borehole. As a result, temperature logs provide unique information not available from other logs. On the other hand, because the temperature log is sensitive to a variety of phenomena, one or more of these may obscure the effect being studied. In the case where groundwater is entering the borehole at one depth and exiting at another depth (or at the surface) the temperature disturbance resulting from this flow is likely to be a prominent feature of the temperature profile of the borehole. Because of this, water flows in boreholes are often a source of noise in temperature logs, obscuring the features of interest. Recently, however, unusual groundwater behavior was noted in several boreholes at the Nevada Test Site (NTS), and temperature logs were run as part of a program to study this phenomenon. In this case the groundwater flow has been the feature of interest in the logs, and the logs have been useful as an aid in understanding the water flow in those boreholes.

Conaway, J.G.

1987-01-01T23:59:59.000Z

142

Immobilized low-activity waste site borehole 299-E17-21  

SciTech Connect

The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

1998-08-01T23:59:59.000Z

143

Automatic detection of lithologic boundaries using the Walsh transform: A case study from the KTB borehole  

Science Conference Proceedings (OSTI)

An automatic method of lithologic boundary detection based on Walsh transform theory is developed and applied to the German Continental Deep Drilling Project (KTB) borehole well log data. Walsh functions are natural choices for describing binary waveforms; ... Keywords: Borehole geophysics, KTB, Low-pass filtering, Rock boundary detection, Walsh transforms

Saumen Maiti; R. K. Tiwari

2005-10-01T23:59:59.000Z

144

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

Science Conference Proceedings (OSTI)

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25T23:59:59.000Z

145

Measurement Research of Borehole-to-Surface Electric Potential Gradient Method in Monitoring Hydraulic Fracture  

Science Conference Proceedings (OSTI)

As the main measures to improve oil and gas production, hydraulic fracturing has been widely applied in modern oil industry. By means of lower resistance properties of fracturing fluid, borehole-to-surface electric potential gradient method analyses ... Keywords: borehole-to-surface electric method, Ab normal depth, launch current, polar distance, electric potential gradient

Tingting Li; Kaiguang Zhu; Jia Wang; Chunling Qiu; Jun Lin

2012-04-01T23:59:59.000Z

146

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

147

Seismic analysis of lattice towers.  

E-Print Network (OSTI)

??In the absence of specific guidelines for the seismic analysis of self-supporting telecommunication towers, designers may be tempted to apply simplified building code approaches to (more)

Khedr, Mohamed Abdel Halim.

1998-01-01T23:59:59.000Z

148

Device and method for imaging of non-linear and linear properties of formations surrounding a borehole  

DOE Patents (OSTI)

In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

2013-10-08T23:59:59.000Z

149

Seismic Design of Reinforced Concrete Mat Foundations  

Science Conference Proceedings (OSTI)

... of building types including high-rise residential towers, healthcare, and ... bearing pressure for transient loads (wind or seismic ... Tower Seismic Force ...

2012-09-17T23:59:59.000Z

150

Crosswell Seismic Tomography | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Crosswell Seismic Tomography Citation Schlumberger. Crosswell Seismic...

151

Induced Seismicity Impact | Open Energy Information  

Open Energy Info (EERE)

Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Category: NEPA Resources What links...

152

Commercialization of atom interferometers for borehole gravity gradiometry. Fourth quarterly report, July--September 1993  

DOE Green Energy (OSTI)

The present status of tasks is: Task 1- Solution of tomography problem (completed qtrs. 1 and 2), Task 2- Study influence of vibrations (completed qtr. 3), Task 3- List of borehole imposed constraints (completed qtr.3 with update this qtr.), Task 4- Evaluate merits of various cooling schemes (completed this qtr.), Task 5- Specify magnet system requirements (completed qtr. 3), Task 6-Specify laser system (in progress), and Task 7- a. specify detector, b. specify gratings and layout, c. specify gratings and magnet spacers, d. specify vacuum system (all in progress). During this quarter, we report an update to Task 3, as well as the completion of Task 4. Work on Tasks 6 and 7 is in progress. The use of a magneto-optic trap (MOT), the choice of atomic species, state of the art for lithium MOT`s, use of lenses to increase the intensity, computerized simulation of system throughtput, and magnetic lens design are the topics addressed concerning Task 4.

Clauser, J.F.

1993-11-01T23:59:59.000Z

153

Geophysics I. Seismic Methods  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on different seismic survey methods. Each of the 38 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

154

Data Mining for Seismic Exploration  

Science Conference Proceedings (OSTI)

Seismic exploration plays an important role in petroleum industry. It is widely admitted that there are a lot of limitations of conventional data analysis ways in oil and gas industry. Traditional methods in petroleum engineering are knowledge-driven ... Keywords: seismic exploration, data mining, cluster analysis

Zhongbin Ouyang; Jing He; Keliang Zhang

2008-12-01T23:59:59.000Z

155

Induced Seismicity | Open Energy Information  

Open Energy Info (EERE)

Induced Seismicity Induced Seismicity Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Induced Seismicity 2 Geothermal ARRA Funded Projects for Induced Seismicity Geothermal Lab Call Projects for Induced Seismicity Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

156

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

Dowla, F.U.; Jarpe, S.P.; Maurer, W.

1994-12-13T23:59:59.000Z

157

Micromachined silicon seismic transducers  

SciTech Connect

Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

1995-08-01T23:59:59.000Z

158

Seismic event classification system  

DOE Patents (OSTI)

In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

Dowla, Farid U. (Castro Valley, CA); Jarpe, Stephen P. (Brentwood, CA); Maurer, William (Livermore, CA)

1994-01-01T23:59:59.000Z

159

Fracture detection, mapping, and analysis of naturally fractured gas reservoirs using seismic technology. Final report, November 1995  

SciTech Connect

Many basins in the Rocky Mountains contain naturally fractured gas reservoirs. Production from these reservoirs is controlled primarily by the shape, orientation and concentration of the natural fractures. The detection of gas filled fractures prior to drilling can, therefore, greatly benefit the field development of the reservoirs. The objective of this project was to test and verify specific seismic methods to detect and characterize fractures in a naturally fractured reservoir. The Upper Green River tight gas reservoir in the Uinta Basin, Northeast Utah was chosen for the project as a suitable reservoir to test the seismic technologies. Knowledge of the structural and stratigraphic geologic setting, the fracture azimuths, and estimates of the local in-situ stress field, were used to guide the acquisition and processing of approximately ten miles of nine-component seismic reflection data and a nine-component Vertical Seismic Profile (VSP). Three sources (compressional P-wave, inline shear S-wave, and cross-line, shear S-wave) were each recorded by 3-component (3C) geophones, to yield a nine-component data set. Evidence of fractures from cores, borehole image logs, outcrop studies, and production data, were integrated with the geophysical data to develop an understanding of how the seismic data relate to the fracture network, individual well production, and ultimately the preferred flow direction in the reservoir. The multi-disciplinary approach employed in this project is viewed as essential to the overall reservoir characterization, due to the interdependency of the above factors.

NONE

1995-10-01T23:59:59.000Z

160

A multi-physics, integrated approach to formation evaluation using borehole geophysical measurements and 3D seismic data  

E-Print Network (OSTI)

AUTOCAD, CAD, CADD) bcc blind courtesy copy ACT [logging] neutron porosity (Cf source) BCOM [JOK and epithermal neutron porosity (Am/Be source) logging tool (Schlumberger version G) CORELOG [ODP] database International Association of Drilling Contractors IAPSO International Association for the Physical Sciences

Torres-Verdín, Carlos

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

162

Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data  

DOE Patents (OSTI)

Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

Ward, Stanley H. (Salt Lake City, UT)

1989-01-01T23:59:59.000Z

163

Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14  

DOE Green Energy (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 4.1 {micro}gal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1988-01-01T23:59:59.000Z

164

Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14  

DOE Green Energy (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 0.0040 mgal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1988-01-01T23:59:59.000Z

165

Regional Examples of Geological Settings for Nuclear Waste Disposal in Deep Boreholes  

E-Print Network (OSTI)

This report develops and exercises broad-area site selection criteria for deep boreholes suitable for disposal of spent nuclear fuel and/or its separated constituents. Three candidates are examined: a regional site in the ...

Sapiie, B.

166

Analytical Modeling of Wave Generation by the Borehole Orbital Vibrator Source  

E-Print Network (OSTI)

of the source as a function of wave frequency and rockon the source-fluid boundary and the fluid-rock boundary. ToP2 1731 m/s Rock S velocity c S2 Source/borehole parameters

Nakagawa, Seiji; Daley, Thomas M.

2004-01-01T23:59:59.000Z

167

An evaluation of the feasibility of disposal of nuclear waste in very deep boreholes  

E-Print Network (OSTI)

Deep boreholes, 3 to 5 km into igneous rock, such as granite, are evaluated for next- generation repository use in the disposal of spent nuclear fuel and other high level waste. The primary focus is on the stability and ...

Anderson, Victoria Katherine, 1980-

2004-01-01T23:59:59.000Z

168

Feasibility of very deep borehole disposal of US nuclear defense wastes  

E-Print Network (OSTI)

This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

Dozier, Frances Elizabeth

2011-01-01T23:59:59.000Z

169

Borehole Gravity Measurements In The Salton Sea Scientific Drilling Program Well State 2-14  

Science Conference Proceedings (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity were measured at the Salton Sea Scientific Drilling Program well State 2-14. The borehole gravimetric densities matched the well logs, but the surface gradient was found to be 0.0040 mgal/m higher than expected. When the borehole observations are corrected for the observed free air gradient above ground, they produce densities which are nearly uniformly higher than log densities by about 0.07 gm/cm{sup 3}. These measurements require densities in the depth range .5 to 3 km, for a radius of a few kilometers around State 2-14 to be as dense as those found in State 2-14. Combining the borehole gravity and calculated vertical gravity gradients on the surface, we find that this densified zone covers much of a broad thermal anomaly to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1987-01-01T23:59:59.000Z

170

Frequent-Interval Seismic CPTu  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Frequent-Interval Frequent-Interval Seismic CPTu D. Bruce Nothdurft, MSCE, PE, PG SRS Geotechnical Engineering Department Savannah River Nuclear Solutions Alec V. McGillivray, PhD, PE Geotechnical Consultant Brent J. Gutierrez, PhD, PE NPH Engineering Manager, DOE-SR Motivation  The seismic piezocone penetration test (SCPTu) utilized at SRS because it provides rapid and thorough site characterization.  Evaluation of non-linear soil behavior...  detailed stratigraphy  small-strain velocity measurements  large-strain non-seismic measurements  Depth scale disparity  large-strain non-seismic measurements nearly continuous with depth  small-strain velocity measurements over 1 m depth intervals. 2 October 25-26, 2011 DOE NPH Conference

171

Position paper: Seismic design criteria  

SciTech Connect

The purpose of this paper is to document the seismic design criteria to be used on the Title 11 design of the underground double-shell waste storage tanks and appurtenant facilities of the Multi-Function Waste Tank Facility (MWTF) project, and to provide the history and methodologies for determining the recommended Design Basis Earthquake (DBE) Peak Ground Acceleration (PGA) anchors for site-specific seismic response spectra curves. Response spectra curves for use in design are provided in Appendix A.

Farnworth, S.K.

1995-05-22T23:59:59.000Z

172

Experience Based Seismic Equipment Qualification  

Science Conference Proceedings (OSTI)

This report provides guidelines that can be used to perform an experience-based seismic equipment qualification for verification of seismic adequacy of active electrical and mechanical equipment consistent with requirements of American Society of Civil Engineers (ASCE)-7. The report summarizes what requirements are sufficient to ensure that an item of equipment can perform its intended safety function after a design earthquake. The report also provides additional guidance on ensuring that an item of equi...

2007-12-21T23:59:59.000Z

173

Numerical Modeling of Complex Porous Media For Borehole Applications  

E-Print Network (OSTI)

The diffusion/relaxation behavior of polarized spins of pore filling fluid, as often probed by NMR relaxometry, is widely used to extract information on the pore-geometry. Such information is further interpreted as an indicator of the key transport property of the formation in the oil industry. As the importance of reservoirs with complex pore geometry grows, so does the need for deeper understanding of how these properties are inter-related. Numerical modeling of relevant physical processes using a known pore geometry promises to be an effective tool in such endeavor. Using a suite of numerical techniques based on random-walk (RW) and Lattice-Boltzmann (LB) algorithms, we compare sandstone and carbonate pore geometries in their impact on NMR and flow properties. For NMR relaxometry, both laboratory measurement and simulation were done on the same source to address some of the long-standing issues in its borehole applications. Through a series of "numerical experiments" in which the interfacial relaxation properties of the pore matrix is varied systematically, we study the effect of a variable surface relaxivity while fully incorporating the complexity of the pore geometry. From combined RW and LB simulations, we also obtain diffusion-convection propagator and compare the result with experimental and network-simulation counterparts.

Seungoh Ryu; Weishu Zhao; Gabriela Leu; Philip M. Singer; Hyung Joon Cho; Youngseuk Keehm

2009-08-13T23:59:59.000Z

174

Applications of a downhole programmable microprocessor for a geothermal borehole inspection tool  

DOE Green Energy (OSTI)

The high-temperature scanning borehole inspection system is currently being developed jointly by the Los Alamos National Laboratory (LANL) and Westfalische Berggewerkschaftskasse (WBK) of West Germany. The downhole instrument is a digital televiewer that utilized a microprocessor to digitize, process and transmit the acoustic information to the surface acquisition and control system. The primary operation of the downhole acoustic assembly uses a piezoelectric crystal acting as a receiver-transmitter which is mounted on the rotating head. The crystal emits a burst of acoustic energy that propagates through the borehole fluid with a portion of the energy reflected by the borehole wall back to the crystal. The time of travel and the amplitude of the reflected signal are conditioned by the microprocessor and transmitted along with other pertinent data to the surface data processing center. This instrument has been designed specifically for use in geothermal borehole environments to determine the location of fractures intersecting the borehole and provide information concerning overall borehole conditions. It may also be used for definitive casing inspection. The instrument essentially eliminates operator interaction for downhole control and simplifies assembly and maintenance procedures.

Jermance, R.L.; Moore, T.K.; Archuleta, J.; Hinz, K.

1987-01-01T23:59:59.000Z

175

Newberry Seismic Deployment Fieldwork Report  

DOE Green Energy (OSTI)

This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquake detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.

Wang, J; Templeton, D C

2012-03-21T23:59:59.000Z

176

Definition: Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search Dictionary.png Active Seismic Techniques Active seismic techniques study the behavior of artificially-generated elastic waves in the subsurface. A seismic wave or pulse is generated at the surface by an active seismic source which can be a vibration, mechanical impact, or near-surface explosion.[1] View on Wikipedia Wikipedia Definition Seismic waves are waves of energy that travel through the Earth's layers, and are a result of an earthquake, explosion, or a volcano that imparts low-frequency acoustic energy. Many other natural and anthropogenic sources create low amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer,

177

Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity  

DOE Green Energy (OSTI)

One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

1987-01-01T23:59:59.000Z

178

Long term study of the seismic environment at LIGO  

E-Print Network (OSTI)

The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.

E. J. Daw; J. A. Giaime; D. Lormand; M. Lubinski; J. Zweizig

2004-03-11T23:59:59.000Z

179

Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

2008-09-11T23:59:59.000Z

180

Device and method for imaging of non-linear and linear properties of formations surrounding a borehole  

DOE Patents (OSTI)

In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

2013-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Reference design and operations for deep borehole disposal of high-level radioactive waste.  

SciTech Connect

A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall, the results of the reference design development and the cost analysis support the technical feasibility of the deep borehole disposal concept for high-level radioactive waste.

Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

2011-10-01T23:59:59.000Z

182

Feasibility investigation and design study of optical well logging methods for high temperature geothermal wells. Final report  

DOE Green Energy (OSTI)

The results are reported of a one-year program designed to investigate the feasibility of optical techniques applied to well-logging, to extend measurement capabilities in high-temperature geothermal boreholes. The basic concept is shown schematically. It makes use of a special armored cable containing fiber optic wave guides, connected to passive, downhole optical transducers. The latter modulate an optical carrier in response to borehole parameters. The optical carrier is a beam of infrared light transmitted from an optical source at the surface over an optical fiber. The modulated beam from the transducer is then returned to the surface over a second fiber, where conventional optical communications techniques are used to detect and decode the down hole information. (MHR)

Swanson, R.K.; Anderson, R.E.; Ash, J.I.; Beissner, R.E.; Smith, V.D.

1977-12-01T23:59:59.000Z

183

Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater.  

E-Print Network (OSTI)

?? The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors (more)

Calzada, Eduard

2012-01-01T23:59:59.000Z

184

Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source - A feasibility study  

Science Conference Proceedings (OSTI)

Roof falls due to poor rock conditions in a coal longwall panel may threaten miner's life and cause significant interruption to mine production. There has been a requirement for technologies that are capable of imaging the rock conditions in longwall coal mining, ahead of the working face and without any interruption to production. A feasibility study was carried out to investigate the characteristics of seismic signals generated by the continuous coal cutter (shearer) and recorded by geophone arrays deployed ahead of the working face, for the purpose of seismic tomographic imaging of roof strata condition before mining. Two experiments were conducted at a coal mine using two arrays of geophones. The experiments have demonstrated that the longwall shearer generates strong and low-frequency (similar to 40 Hz) seismic energy that can be adequately detected by geophones deployed in shallow boreholes along the roadways as far as 300 m from the face. Using noise filtering and signal cross correlation techniques, the seismic arrival times associated with the shearer cutting can be reliably determined. It has proved the concept that velocity variations ahead of the face can be mapped out using tomographic techniques while mining is in progress.

Luo, X.; King, A.; Van de Werken, M. [CSIRO, Brisbane, Qld. (Australia)

2009-11-15T23:59:59.000Z

185

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

186

FAST Simulation of Seismic Wind Turbine Response  

DOE Green Energy (OSTI)

This paper discusses recent additions to the computer simulation code FAST that allow a user to consider seismic loads.

Prowell, I.; Elgamal, A.; Jonkman, J.

2010-03-01T23:59:59.000Z

187

The Nuclear Renaissance & the NRC Seismic Research ...  

Science Conference Proceedings (OSTI)

... Existing and New Reactor Licensing Offices ... Seismic Isolation Small Modular Reactors SSI modeling of NPPs under non-traditional loads ...

2011-03-10T23:59:59.000Z

188

Seismic Regionalization In Northeast Russia  

E-Print Network (OSTI)

In an effort to characterize seismicity in support of nuclear explosion monitoring for the continental regions of northeast Russia, we have been analyzing information obtained from regional seismic network operators. Our goal is to merge catalog, bulletin, waveform, and other ground truth data from several regional networks into a comprehensive data set that we will use for various seismic research projects. To date we have compiled a bulletin from published and unpublished event data of about 200,000 events and over 150,000 arrival times. We have also determined that the Russian regional network catalogs are contaminated with mining-explosion events. Hence, one of our primary efforts is to identify mining events when possible and move them into a separate bulletin from the natural earthquakes. We have extended our preliminary analysis of explosion contamination of Russian seismicity catalogs using temporal analysis into the Irkutsk and Chita districts and the Buryat Republic. Based on analysis of epicenters and origin times reported in Material po Seismichnost' Sibiri for 1970 -- 1993, it is likely that considerable explosion contamination occurs in the gold (Bodaibo, northern Irkutsk Region, and in the Chita region), mica (Vitim, northern Irkutsk Region), and other mining areas (Bushulei, Nerchinsk, and Petrovsk in the Buryat and Chita areas). Explosion contamination is also observed in northernmost Mongolia in the mining and industrial district near Darkhan. Explosions associated with the construction of the Baikal-Amur Mainline Railroad are likely, as was observed in the Amur district; however, the amount of natural seismicity dominates the activity and makes it impossible to resolve the railroad separately. In conjunction with the Magadan Seismic Network operators,...

Kevin Mackey Kazuya; Kazuya Fujita; Lee K. Steck; Hans E. Hartse

2002-01-01T23:59:59.000Z

189

Seismic Performance Requirements for WETF  

Science Conference Proceedings (OSTI)

This report develops recommendations for requirements on the Weapons Engineering Tritium Facility (WETF) performance during seismic events. These recommendations are based on fragility estimates of WETF structures, systems, and components that were developed by LANL experts during facility walkdowns. They follow DOE guidance as set forth in standards DOE-STD-1021-93, ''Natural Phenomena Hazards Performance Categorization Guidelines for Structures, Systems, and Components'' and DOE-STD-1020-94, ''Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities''. Major recommendations are that WETF institute a stringent combustible loading control program and that additional seismic bracing and anchoring be provided for gloveboxes and heavy equipment.

Hans Jordan

2001-01-01T23:59:59.000Z

190

Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain  

SciTech Connect

Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence more than the other. It was also observed that P-wave and S-wave do not always reflect from the same stratal boundaries. The utilization of full-elastic seismic wavefield needs to be maximized in oil and gas explorations in order to optimize the search for hydrocarbons.

Innocent Aluka

2008-08-31T23:59:59.000Z

191

Role of borehole geophysics in defining the physical characteristics of the  

Open Energy Info (EERE)

Role of borehole geophysics in defining the physical characteristics of the Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Numerous geophysical logs have been made in three deep wells and in several intermediate depth core holes in the Raft River geothermal reservoir, Idaho. Laboratory analyses of cores from the intermediate depth holes were used to provide a qualitative and quantitative basis for a detailed interpretation of logs from the shallow part of the reservoir. A less detailed interpretation of logs from the deeper part of the reservoir

192

High-temperature batteries for geothermal and oil/gas borehole applications  

DOE Green Energy (OSTI)

A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

GUIDOTTI,RONALD A.

2000-05-25T23:59:59.000Z

193

Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations  

SciTech Connect

The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa.

Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

1993-11-01T23:59:59.000Z

194

High energy gas fracture experiments in liquid-filled boreholes: potential geothermal application  

SciTech Connect

High Energy Gas Fracturing is a tailored pulse fracturing technique which uses propellants to obtain controlled fracture initiation and extension. Borehole pressurization rates can be tailored, by suitable choice of propellants, to produce four or eight fractures radiating from the wellbore. High Energy Gas Fracture (HEGF) research is conducted at DOE's Nevada Test Site (NTS) in a tunnel complex where experiments can be done under realistic in situ stress conditions (1400 psi (9.7 MPa) overburden stress). Pressure measurements are made in the test borehole during all fracturing experiments. Experiments are mined back to provide direct observation of fracturing obtained. The initial objective of HEGF research was to develop multiple fracturing technology for application in gas well stimulation. HEGF research at NTS and in Devonian shale demonstration tests has resulted in a completed technology for multiple fracturing in uncased, liquid-free wellbores. Current resarch is directed toward extending the technique to liquid-filled boreholes for application in geothermal in addition to gas and oil wells. For liquid-free boreholes, multiple fracturing is specified in terms of pressure risetime required for a given borehole diameter. Propellants are mixed to achieve the desired risetime using a semiempirical mixing equation. The same techniques were successfully applied to fracturing in liquid-filled wellbores. However, the addition of liquid in the borehole results in a significantly more complicated fracturing behavior. Hydrodynamic effects are significant. Multiple fractures are initiated but only some propagated. Multiple- and hydraulic-type fracturing and wellbore crushing have been observed in the same experiment. The potential of using HEGB for geothermal well stimulation has been demonstrated through the present experiments. 18 refs., 40 figs., 4 tabs.

Cuderman, J.F.; Chu, T.Y.; Jung, J.; Jacobson, R.D.

1986-07-01T23:59:59.000Z

195

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

196

Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring Teleseismic-Seismic Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Teleseismic-Seismic Monitoring Details Activities (33) Areas (18) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Map geothermal reservoir geometry. Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

197

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

198

Micromachined silicon seismic accelerometer development  

Science Conference Proceedings (OSTI)

Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

Barron, C.C.; Fleming, J.G.; Montague, S. [and others

1996-08-01T23:59:59.000Z

199

Disposition of excess weapon plutonium in deep boreholes - site selection handbook  

Science Conference Proceedings (OSTI)

One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

1996-09-01T23:59:59.000Z

200

KINKFOLD: an AutoLISP program for construction of geological cross-sections using borehole image data  

Science Conference Proceedings (OSTI)

KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that ... Keywords: borehole image logs, cross-section, dip meter logs, kink-fold method, structural model

Sait Ismail zkaya

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole  

DOE Patents (OSTI)

In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

2012-10-16T23:59:59.000Z

202

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC  

Open Energy Info (EERE)

USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: We relocate 14 years of seismicity in the Coso Geothermal Field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform crosscorrelation to augment the expansive catalog of Pand S-wave

203

Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.  

Science Conference Proceedings (OSTI)

Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

Gray, Genetha Anne; Brady, Patrick Vane [Sandia National Laboratories, Albuquerque, NM; Arnold, Bill Walter [Sandia National Laboratories, Albuquerque, NM

2012-09-01T23:59:59.000Z

204

Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.  

SciTech Connect

Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

Gray, Genetha Anne; Brady, Patrick Vane [Sandia National Laboratories, Albuquerque, NM; Arnold, Bill Walter [Sandia National Laboratories, Albuquerque, NM

2012-09-01T23:59:59.000Z

205

Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22  

SciTech Connect

The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants, technetium-99 and uranium-238, along with other trace metals were determined in acid and water extracts by inductively coupled plasma mass spectrometry.

Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

2006-10-18T23:59:59.000Z

206

Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data  

DOE Patents (OSTI)

Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth. 30 figs.

Ward, S.H.

1989-10-17T23:59:59.000Z

207

Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole  

DOE Patents (OSTI)

An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole.

Bevan, John E.; King, Grant W.

1997-12-01T23:59:59.000Z

208

Climate from borehole data: Energy fluxes and temperatures since Hugo Beltrami  

E-Print Network (OSTI)

anomaly. The vertical profile of the temperature anomaly, depends on the history of energy balance. Wang, and R. L. Bras, Energy balance at the Earth's surface: Heat flux history in eastern CanadaClimate from borehole data: Energy fluxes and temperatures since 1500 Hugo Beltrami Environmental

Beltrami, Hugo

209

Nonrotating, self-centering anchor assembly for anchoring a bolt in a borehole  

DOE Patents (OSTI)

An expandable anchor assembly is provided for anchoring the threaded end portion of an elongated roof bolt in a borehole. The anchoring assembly includes a hollow outer sleeve in the form of a plurality of symmetrically arranged, longitudinal segmented wall portions with exterior gripping teeth and an inner expander sleeve in the form of a corresponding plurality of longitudinal wall portions symmetrically arranged about a central axis to define an inner threaded cylindrical section. The inner sleeve is captured within and moveable axially relative to the outer sleeve. As the threaded end portion of the elongated bolt is inserted into the inner threaded cylindrical section of the inner sleeve from the trailing end to the leading end thereof, the inner sleeve expands over and clamps around the threaded end portion of the elongated bolt. Thereafter, partial withdrawal of the elongated bolt from the borehole causes the inner sleeve to axially move relative to the outer sleeve from the leading end toward the trailing end of the outer sleeve in a wedging action to cause the outer sleeve to radially expand and force engagement of the gripping teeth against the sidewall of the borehole to thereby secure the expandable anchor assembly and therewith the threaded end portion of the elongated bolt within the borehole. 8 figs.

Bevan, J.E.; King, G.W.

1998-12-08T23:59:59.000Z

210

Utilization of melting techniques for borehole wall stabilization. [Applied to geothermal well production systems  

DOE Green Energy (OSTI)

A research program on the Subterrene concept based on excavation by melting has been completed. Theoretical and experimental studies were made for a broad range of applications. Most recently, a study of Subterrene deep geothermal well production systems predicted that, compared to rotary-drilled wells, significant cost savings are possible, e.g., 2 and 4 million dollars for 10-km-deep wells and geothermal gradients of 25 and 40 K/km, respectively. It was also concluded that for most wells the rate of penetration of the melting bits should be increased several times over that attained in the Subterrene tests. Subterrene melting penetration tests showed that borehole glass liners can be formed in a wide variety of materials and structural characterization tests showed that tuff glass cylinders can be many times stronger in compression than the parent material. Also, the tests showed that the rock-glass liner permeability decreases rapidly with confining pressure. New melting devices are conceivable that could line rotary-drilled boreholes with rock glass or other materials with resultant improvements in well costs. With emphasis on borehole liners, an overview of Subterrene program results, data on rock-glass liners, and suggestions on how molten materials might be applied to the borehole wall as part of a rotary drilling operation are presented.

Altseimer, J.H.

1977-01-01T23:59:59.000Z

211

Nuclear component horizontal seismic restraint  

DOE Patents (OSTI)

A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

Snyder, Glenn J. (Lynchburg, VA)

1988-01-01T23:59:59.000Z

212

Statistical Physics Approaches to Seismicity  

E-Print Network (OSTI)

This entry in the Encyclopedia of Complexity and Systems Science, Springer present a summary of some of the concepts and calculational tools that have been developed in attempts to apply statistical physics approaches to seismology. We summarize the leading theoretical physical models of the space-time organization of earthquakes. We present a general discussion and several examples of the new metrics proposed by statistical physicists, underlining their strengths and weaknesses. The entry concludes by briefly outlining future directions. The presentation is organized as follows. I Glossary II Definition and Importance of the Subject III Introduction IV Concepts and Calculational Tools IV.1 Renormalization, Scaling and the Role of Small Earthquakes in Models of Triggered Seismicity IV.2 Universality IV.3 Intermittent Periodicity and Chaos IV.4 Turbulence IV.5 Self-Organized Criticality V Competing mechanisms and models V.1 Roots of complexity in seismicity: dynamics or heterogeneity? V.2 Critical earthquakes ...

Sornette, D

2008-01-01T23:59:59.000Z

213

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A [LaFayette, CA

2009-05-05T23:59:59.000Z

214

Tube-wave seismic imaging  

DOE Patents (OSTI)

The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

Korneev, Valeri A. (Lafayette, CA); Bakulin, Andrey (Houston, TX)

2009-10-13T23:59:59.000Z

215

Oklahoma seismic network. Final report  

SciTech Connect

The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

Luza, K.V.; Lawson, J.E. Jr. [Oklahoma Geological Survey, Norman, OK (United States)]|[Univ. of Oklahoma, Norman, OK (United States). Energy Center

1993-07-01T23:59:59.000Z

216

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

217

Hanford Borehole Geologic Information System (HBGIS) Updated Users Guide for Web-based Data Access and Export  

Science Conference Proceedings (OSTI)

The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised users guide supersedes the previous users guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.

Mackley, Rob D.; Last, George V.; Allwardt, Craig H.

2008-09-24T23:59:59.000Z

218

CX-009363: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009363: Categorical Exclusion Determination Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration CX(s) Applied:...

219

CX-009456: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009456: Categorical Exclusion Determination Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon CX(s) Applied: A9, B3.1...

220

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Paulsson, Inc. (PI) Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Storage DE-FE0004522 - Bjrn Paulsson, Paulsson, Inc....

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CX-009455: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009455: Categorical Exclusion Determination Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon CX(s) Applied: A9, B3.1...

222

Categorical Exclusion Determinations: A11 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009363: Categorical Exclusion Determination Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration CX(s) Applied:...

223

Probabilistic economic evaluation of substation seismic upgrade  

SciTech Connect

This paper presents a methodology for deciding whether or not to implement seismic design modifications at Southern California Edison's (SCE) Substation facilities. The method considers the potential for substation capability loss resulting from earthquake damage, cost of seismic modification made today, the cost of damage restoration after that modification is made, the cost of doing nothing now, and the site specific earthquake probability. Based on these findings, recommendations for seismic modifications of substation facilities could be made.

Ong, T.L.; Ensign, R.L.; Martin, D.F.; Richter, H.L. (Southern California Edison Co., Rosemead, CA (USA))

1990-04-01T23:59:59.000Z

224

HYDRAULIC FRACTURING AND INDUCED SEISMICITY IN KANSAS  

E-Print Network (OSTI)

For some time the public has asked questions about seismic activity related to hydraulic fracturing and other oil-field related activities. In particular, there is concern that the energy that goes into the subsurface during hydraulic fracturing is sufficient to cause felt earthquakes. The following is a response to those questions. 1) Seismic activity that is related to human activities is generally referred to as induced seismicity or triggered seismicity. Induced seismicity is defined as seismic events attributable to human activities (National Research Council, 2012). The term triggered seismicity is also used to describe situations in which human activities could potentially trigger large and potentially damaging earthquakes (Shemeta et al., 2012). The following discussion uses only the term induced seismicity to refer to seismic activity in which human activity plays a role. 2) Because it uses energy to fracture rocks to release oil or natural gas, hydraulic fracturing does create microseismic events (of a magnitude less than 2.0). Felt earthquake activity (generally greater than a magnitude 3.0) resulting from hydraulic fracturing has been confirmed from only one location in the world (National Research Council, 2012). In the

unknown authors

2013-01-01T23:59:59.000Z

225

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Open Energy Info (EERE)

Facebook icon Twitter icon Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing Geothermal Lab Call Project Jump to: navigation,...

226

Tentative Framework for Development of Advanced Seismic ...  

Science Conference Proceedings (OSTI)

... 3-30 4. Conceptual Reformulation of Seismic Design Parameters ..... ... 4-5 4.4.1 Maximum Considered Earthquake Basis for the RM Factor ...

2013-06-17T23:59:59.000Z

227

Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39  

Science Conference Proceedings (OSTI)

This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three contaminated boreholes around T-106 do not clearly identify the leading edge of the plume. However, the profiles do collectively suggest that bulk of tank-related fluids (center of mass) still resides in Ringold Formation Taylor Flats member fine-grained sediments. Most of the chemical data, especially the nitrate and technetium-99 distributions with depth, support a flow conceptual model that suggests vertical percolation through the Hanford formation H2 unit near T-106 and then a strong horizontal spreading within the CCUu unit followed by more slow vertical percolation, perhaps via diffusion, into the deeper strata. Slow flushing by enhanced recharge and rapid snow melt events (Feb. 1979) appear to lead to more horizontal movement of the tank fluids downgradient towards C4105. The inventories as a function of depth of potential contaminants of concern, nitrate, technetium, uranium, and chromium, are provided. In-situ Kd values were calculated from water and acid extract measurements. For conservative modeling purposes we recommend using Kd values of 0 mL/g for nitrate, Co-60, and technetium-99, a value of 0.1 mL/g for uranium near borehole C4104 and 10 mL/g for U near borehole C4105, and 1 mL/g for chromium to represent the entire vadose zone profile from the bottoms of the tanks to the water table. A technetium-99 groundwater plume exists northeast and east of T WMA. The highest technetium-99 concentration in fiscal year 2003 was 9,200 pCi/L in well 299-W11-39. The most probable source for the technetium-99 is the T waste management area. Groundwater from wells in the west (upgradient) and north of WMA T appear to be highly influenced by wastes disposed to the cribs and trenches on the west side of the WMA. Groundwater from wells at the northeast corner and the east side of the WMA appears to be evolving towards tank waste that has leaked from T-101 or T-106.

Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

2004-09-01T23:59:59.000Z

228

Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments  

SciTech Connect

In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 g/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.32.5 g/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of total uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

2012-11-26T23:59:59.000Z

229

Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...  

Open Energy Info (EERE)

10). References Bernard Chouet, Kehti Aki (1981) Seismic Structure And Seismicity Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Retrieved from "http:en.openei.orgw...

230

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

231

Category:Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed information on Passive Seismic Techniques,...

232

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

233

Seismic attribute analyses of lower Permian (Wolfcampian-Leonardian) carbonate buildups, SW Midland, Texas  

E-Print Network (OSTI)

A trend of Wolfcampian-Leonardian carbonate buildups is located in the southwestern Midland Basin, Upton County, Texas. The buildup trend is located east of the eastern faulted margin of the Central Basin Platform and north of the Ozona Arch. Carbonate deposition began during lowstand times, within or just below wave base. In the Southwestern Midland Basin, the Wolfcampian-Leonardian carbonate interval is lithologically heterogeneous due to the presence of abundant lithoclastic debris that was shed from the uplifted Central Basin Platform. The lithologic heterogeneity makes it difficult to identify the buildups on seismic profiles. Several inferred buildups have been drilled in the past, but many boreholes only penetrated lithoclastic facies, not true buildup facies. Analyses of various seismic attributes were conducted for the Wolfcampian-Leonardian interval in the SW Midland Basin in an attempt to improve the recognition and imaging of the carbonate buildups. The objective was to identify a set of attributes that directly indicate the buildup locations. After extensive trial of various attributes, the variance attribute was selected as the optimum seismic attribute. The resultant 3D variance volume was used to detect the buildup locations, and some aspects of their internal stratigraphy, and to establish the fault framework in the Amacker survey. The instantaneous frequency attribute, combined with the variance attribute was also marginally useful for imaging the buildups. The variance attribute and instantaneous frequency were compared. Images generated from the variance attribute are better than those generated using the instantaneous frequency because on these images, it is possible to localize the buildups. The instantaneous frequency attribute combined with the variance attribute allows recognition of lithologic heterogeneities inside the buildup interval.

Decalf, Carole Christiane

2001-01-01T23:59:59.000Z

234

Seismic monitoring at The Geysers  

DOE Green Energy (OSTI)

During the last several years Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL) have been working with industry partners at The Geysers geothermal field to evaluate and develop methods for applying the results of microearthquake (MEQ) monitoring. It is a well know fact that seismicity at The Geysers is a common occurrence, however, there have been many studies and papers written on the origin and significance of the seismicity. The attitude toward MEQ data ranges from being nothing more than an curious artifact of the production activities, to being a critical tool in evaluating the reservoir performance. The purpose of the work undertaken b y LBL and LLNL is to evaluate the utility, as well as the methods and procedures used in of MEQ monitoring, recommend the most cost effective implementation of the methods, and if possible link physical processes and parameters to the generation of MEQ activity. To address the objectives above the MEQ work can be categorized into two types of studies. The first type is the direct analysis of the spatial and temporal distribution of MEQ activity and studying the nature of the source function relative to the physical or chemical processes causing the seismicity. The second broad area of study is imaging the reservoir/geothermal areas with the energy created by the MEQ activity and inferring the physical and/or chemical properties within the zone of imaging. The two types of studies have obvious overlap, and for a complete evaluation and development require high quality data from arrays of multicomponent stations. Much of the effort to date at The Geysers by both DOE and the producers has concentrated establishing a high quality data base. It is only within the last several years that this data base is being fully evaluated for the proper and cost effective use of MEQ activity. Presented here are the results to date of DOE`s effort in the acquisition and analysis of the MEQ data.

Majer, E.L.; Romero, A.; Vasco, D.; Kirkpatrick, A.; Peterson, J.E. [Lawrence Berkeley Lab., CA (United States); Zucca, J.J.; Hutchings, L.J.; Kasameyer, P.W. [Lawrence Livermore National Lab., CA (United States)

1993-04-01T23:59:59.000Z

235

Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Seismic Soil Structure Interaction (SSI) Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline  Purpose of Presentation  Linear versus Non-Linear Seismic SSI  Non-Linear seismic Soil Structure Interaction (NLSSI) Studies  The NLSSI Introduction  Non-Linearity in Seismic SSI Analysis  Commercial Software Elements  Commercial Software Non-Linear Constitutive Models  Non-Linear Seismic SSI Damping  Demonstration of Time Domain 2D Model  NLSSI Validation Approach  NLSSI Implementation  Need For NLSSI  Conclusions E102003020BDS Purpose of Presentation  The purpose of the presentation is to establish the need for using non-linear analysis

236

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

237

Water borne transport of high level nuclear waste in very deep borehole disposal of high level nuclear waste  

E-Print Network (OSTI)

The purpose of this report is to examine the feasibility of the very deep borehole experiment and to determine if it is a reasonable method of storing high level nuclear waste for an extended period of time. The objective ...

Cabeche, Dion Tunick

2011-01-01T23:59:59.000Z

238

Seismic Studies of Substation Equipment: Progress Report  

Science Conference Proceedings (OSTI)

IEEE Standard 693, Recommended Practice for Seismic Design of Substations, is used by electric power utilities to qualify substation equipment for seismic movements. Deficiencies exist in the present standard, and information is unavailable for dynamic response that may be used to better analyze equipment and permit equipment evaluation in case of limited configuration changes, such as insulator substitution.

2009-09-28T23:59:59.000Z

239

Seismic Probabilistic Risk Assessment Implementation Guide  

Science Conference Proceedings (OSTI)

BackgroundThis report provides updates to the guidelines and approaches for seismic probabilistic risk assessments (SPRAs) that were published in the initial Electric Power Research Institute (EPRI) report Seismic Probabilistic Risk Assessment Implementation Guide (1002989) in 2003. It provides practical guidelines for SPRA development to support a variety of uses, including risk-informed applications.It is intended that a probabilistic risk ...

2013-12-18T23:59:59.000Z

240

Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/Algorithm.pps In addition, we presented a second application of the Q algorithm at the SEG International Conference in Houston, Texas, in May 2005. The presentation attracted significant interest there as well, and it can be obtained from the following link: http://www.swri.org/4org/d15/elecsys/resgeo/ppt/attenuation.pps.

Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

2006-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

3-D Inversion Of Borehole-To-Surface Electrical Data Using A  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » 3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3-D Inversion Of Borehole-To-Surface Electrical Data Using A Back-Propagation Neural Network Details Activities (0) Areas (0) Regions (0) Abstract: The "fluid-flow tomography", an advanced technique for geoelectrical survey based on the conventional mise-a-la-masse measurement, has been developed by Exploration Geophysics Laboratory at the Kyushu University. This technique is proposed to monitor fluid-flow behavior

242

Use of an acoustic borehole televiewer to investigate casing corrosion in geothermal wells  

DOE Green Energy (OSTI)

Corrosion of well and surface equipment due to the presence of hot, corrosive brines is one of the major problems facing geothermal operators. For wellbore casing, this problem is complicated by the fact that in-place inspection is difficult at best. In an attempt to improve this situation, a prototype acoustic borehole televiewer designed to operate in geothermal wells was used to study the corrosion damage to casing in three commercial wells. The results of this experiment were promising. The televiewer returns helped to define areas of major corrosion damage and to indicate the extent of the damage. This paper briefly discusses the corrosion problem, describes the acoustic borehole televiewer, and then summarizes the results of the field test of the televiewer's capability for investigating corrosion.

Carson, C.C.; Bauman, T.

1986-03-01T23:59:59.000Z

243

Borehole data package for well 699-37-47A, PUREX Plant Cribs, CY 1996  

Science Conference Proceedings (OSTI)

A new groundwater monitoring well (699-37-47A) was installed in 1996 as a downgradient well near the PUREX Plant Cribs Treatment, Storage, and Disposal Facility at Hanford. This document provides data from the well drilling and construction operations, as well as data from subsequent characterization of groundwater and sediment samples collected during the drilling process. The data include: well construction documentation, geologist`s borehole logs, results of laboratory analysis of groundwater samples collected during drilling and of physical tests conducted on sediment samples collected during drilling, borehole geophysics, and results of aquifer testing including slug tests and flowmeter analysis. This well (699-37-47A) was constructed in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-24-00H and interim milestone M-24-35 (Ecology et al. 1994), and was funded under Project W-152.

Lindberg, J.W.; Williams, B.A.; Spane, F.A.

1997-02-01T23:59:59.000Z

244

Method of measuring material properties of rock in the wall of a borehole  

SciTech Connect

To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

Overmier, D. K.

1985-04-16T23:59:59.000Z

245

Development and field testing of the high-temperature borehole televiewer  

DOE Green Energy (OSTI)

The High-Temperature Borehole Televiewer is a downhole instrument which provides acoustic pictures of the borehole walls that are suitable for casing inspection and fracture detection in geothermal wells. The Geothermal Drilling Organization has funded the development of a commercial tool survivable to temperatures up to 275{degree}C and pressures of 5000 psi. A real-time display on an IBM-compatible PC was included as part of the developmental effort. This paper describes the three principal components are: the mechanical section, the electronics, and the computer software and hardware. Each of these three components are described with special attention to important design changes most pertinent to a high temperature environment. The results of two field tests of the televiewer system are also described. 7 refs., 4 figs.

Duda, L.E.; Uhl, J.E.; Wemple, R.P.

1990-01-01T23:59:59.000Z

246

Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes  

DOE Patents (OSTI)

Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

Vail, III, William B. (Bothell, WA)

1989-01-01T23:59:59.000Z

247

Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes  

DOE Patents (OSTI)

Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

Vail, W.B. III.

1989-04-11T23:59:59.000Z

248

Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

2008-09-11T23:59:59.000Z

249

Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22  

SciTech Connect

This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

2008-09-11T23:59:59.000Z

250

Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments  

Science Conference Proceedings (OSTI)

In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 g/g, acid extract) in uranium concentrations (~0.32.5 g/g, acid extract) in uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

2012-11-26T23:59:59.000Z

251

Rock mass sealing: experimental assessment of borehole plug performance. Annual report, June 1983-May 1984  

Science Conference Proceedings (OSTI)

This report describes experimental field and laboratory borehole plugging performance assessment studies that have been performed, completed, started, or planned during the period June 1, 1983-May 31, 1984. Results are given from field flow tests on three cement plugs installed in vertical boreholes in basalt and on one nearly horizontal cement plug. The horizontal plus seals the borehole very well, as does one of the vertical plugs. The initial hydraulic conductivity of the other two vertical field plugs has been relatively high, and remedial action is described. Laboratory simulations have been performed to study the influence of dynamic loading on cement plug performance, and no detrimental effects have been detected. Conversely, drying of cement plugs, especially over extended periods of time and at elevated temperatures does increase the hydraulic conductivity of the plugs severely, as well as reducing their bond strength along the plug-rock interface. Microscopic inspection, strength and flow tests on boreholes in basalt have been used to identify the characteristics of a drilling-induced damaged zone in basalt. While such a damaged zone exists, and has typical features (e.g., fracture density, size, location, orientation) determined by the drilling method and the rock characteristics, it is thin and not likely to be a preferential flowpath. A comprehensive suite of standard engineering characterization tests has been performed on seven commercial bentonites, complemented by flow tests on bentonite plugs, chemical analysis and swelling tests. Experimental designs are given for the study of size and of thermal effects on plug performance, and a few preliminary results are presented. Results are included from ongoing cement push-out tests and swelling measurements.

Daemen, J.J.K.; Greer, W.B.; Adisoma, G.S.; Fuenkajorn, K.; Sawyer, W.D. Jr.; Yazdandoost, A.; Akgun, H.; Kousari, B.

1985-03-01T23:59:59.000Z

252

Seismicity in Azerbaijan and Adjacent Caspian Sea  

Science Conference Proceedings (OSTI)

So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

Panahi, Behrouz M. [Geology Institute, Azerbaijan National Academy of Sciences, 29-A H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

253

A Fiber Optic Seismic Sensor for Unattended Ground Sensing Applications  

E-Print Network (OSTI)

as promising technologies for many applications, such as intruder detection and perimeter defense systems-based demodulation system; (b) a digital lock-in amplifier and field programmable gate array techniques for weak for numerous applications, which include intruder detection and perimeter defense systems for military

Li, Hongbin

254

Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borehole logging methods for exploration Borehole logging methods for exploration and evaluation o f uranium deposits . Philip H. O d d , Robert F. Bmullad and Carl P. Lathan rej~rinkttl fnlm Mining and Groundwater Geophysiall967 Borehole logging methods for exploration and evaluation of uranium deposits Philip H. Dodd, Robert F. Droullard and Carl P. Lathan US. Atomic Energy Commhwn GmrPd Jtinct&n, Colorado Abstract, M o l e 1 - i s thc geophysical methad mast exten&@ w r t i n the Udtrrd States for exploratio~ md edwtim of wanhi &pod&. dammow lop, C o r n r n d j suppkrnentd with a singbz-pobt msfstailee log, m t l y supply about 80 percent of the bask data for om regerve c W t i o R a d mu& of the w ~ k r 6 . p ~ &ngk inf~nnatio~ Tmck-mounted 'rotmy eqnipmcnt i s EMhmody emphy&& holes usually hwre a nominai b

255

A borehole fluid conductivity logging method for the determination of fracture inflow parameters  

DOE Green Energy (OSTI)

It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore to provide data in the estimation of the hydrologic behavior of fractured rocks. The fluid inflow rates from the fractures into the wellbore are important quantities to measure. Often these inflows are at very low rates. One often finds that only a few percent of the fractures identified by core inspection and geophysical logging are water-conducting fractures, the rest being closed, clogged, or isolated from the water flow system. A new procedure is proposed and a corresponding method of analysis developed to locate water-conducting fractures and obtain fracture inflow parameters by means of a time sequence of electric conductivity logs of the borehole fluid. The physical basis of the analysis method is discussed. The procedure is applied to an existing set of data, which shows initiation and growth of nine conductivity peaks in a 900-m section of a 1690-m borehole, corresponding to nine water-conducting fractures intersecting the borehole. We are able to match all nine peaks and determine the flow rates from these fractures. 16 refs., 28 figs., 5 tabs.

Tsang, Chin-Fu

1987-10-01T23:59:59.000Z

256

The U-tube: A new paradigm in borehole fluid sampling  

Science Conference Proceedings (OSTI)

Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.

Freifeld, B. M.

2009-10-01T23:59:59.000Z

257

Parallel implementation of stochastic inversion of seismic tomography data  

Science Conference Proceedings (OSTI)

In this paper parallel implementation of stochastic inversion of seismic tomography data was presented. Classical approach to travel time tomography assumes straight line of seismic rays between sources and receives points and isotropy of geological ... Keywords: inverse problem, master-slave paradigm, seismic anisotropy, seismic tomography

Maciej Dwornik; Anna Pi?ta

2011-09-01T23:59:59.000Z

258

Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect

The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energy's Hanford Site near Richland, Washington, was established in 1999 based on an extensive probabilistic seismic hazard analysis completed in 1996 by Geomatrix Consultants, Inc. In subsequent years, the Defense Nuclear Facilities Safety Board (DNFSB) staff questioned the some of the assumptions used in developing the seismic design basis, particularly the adequacy of the site geotechnical surveys. Existing site-specific shear wave velocity data were considered insufficient to reliably use California earthquake response data to directly predict ground motions at the Hanford Site. To address this concern, the Department of Energy's Office of River Protection (ORP) and Pacific Northwest National Laboratory (PNNL) developed and executed a plan for acquiring site-specific soil data down to approximately 500 feet, and for reanalyzing the effects of deeper layers of sediments interbedded with basalt. New geophysical data were acquired, analyzed, and interpreted with respect to existing geologic information gathered from other Hanford-related projects in the WTP area. Existing data from deep boreholes were assembled and interpreted to produce a model of the deeper rock layers consisting of inter-layered basalts and sedimentary interbeds. These data were analyzed statistically to determine the variability of seismic velocities. The earthquake ground motion response was simulated on a large number of models resulting from a weighted logic tree approach that addressed the geologic and geophysical uncertainties. Weights in the logic tree were chosen by a working group based on the strength or weakness of the available data for each combination of logic tree parameters. Finally, interim design ground motion spectra were developed to envelope the remaining uncertainties. The results of this study demonstrate that the site-specific soil structure (Hanford and Ringold formations) beneath the WTP is thinner than was assumed in the 1996 Hanford Site-wide model. This thinness produces peaks in the response spectra (relative to those in 1996) near 2 Hz and 5 Hz. The soil geophysical properties, shear wave velocity, and nonlinear response to the earthquake ground motions are known sufficiently, and alternative interpretations consistent with this data did not have a strong influence on the results. The structure of the upper four basalt flows (Saddle Mountains Basalt), which are inter-layered with sedimentary interbeds (Ellensburg Formation), produces strong reductions in the earthquake ground motions that propagate through them to reach the surface. Uncertainty in the strength of velocity contrasts between these basalts and interbeds resulted from an absence of measured shear wave velocities (Vs) in the interbeds. For this study, Vs in the interbeds was estimated from older, limited compressional wave (Vp) data using estimated ranges for the ratio of the two velocities (Vp/Vs) based on analogues in similar materials. The Vs for the basalts, where Vp/Vs is well defined, still is limited by the quality and quantity of the Vp data. A range of possible Vs for the interbeds and basalts was included in the logic trees that produced additional uncertainty in the resulting response spectra. The uncertainties in these response spectra were enveloped at approximately the 84. percentile (based on the logic tree) to produce conservative design spectra. This conservatism increased the seismic design basis by up to 40% compared to the 1999 values. Because of the sensitivity of the calculated response spectra to the velocity contrasts between the basalts and interbedded sediments, additional boreholes and direct Vs measurements through these layers are now being planned. The new measurements are expected to reduce the uncertainty in the site response that is caused by the lack of direct knowledge of the Vs contrasts within these layers. (authors)

Rohay, A.C.; Reidel, S.P. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

2006-07-01T23:59:59.000Z

259

Seismic stimulation for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

2008-07-22T23:59:59.000Z

260

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

DOE Green Energy (OSTI)

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Methods for Determination of Seismic Fragilities: Seismic Fragilities Using Scenario Earthquakes  

Science Conference Proceedings (OSTI)

Seismic probabilistic risk assessment (SPRA) is an increasingly important means of assessing the seismic safety of nuclear power plants. The standard approach for incorporating the seismic hazard into an SPRA is to use the uniform hazard spectra (UHS), which is computed independently at each spectral frequency, resulting in an equal probability of exceeding the ground motion at any frequency. As a result, the UHS may not be representative of an actual earthquake spectrum, and is a potential source of con...

2011-11-22T23:59:59.000Z

262

Seismic Pulses Derivation from the Study of Source Signature Characteristics  

Science Conference Proceedings (OSTI)

This paper deals with a deterministic technique for the derivation of seismic pulses by the study of source characteristics. The spectral characteristics of the directly or the nearest detected seismic signal is analyzed and considered as the principle source signature. Using this signature seismic pulses are derived with accurate time position in the seismic traces. The technique is applied on both synthetic and field refraction seismic traces. In both cases it has estimated that the accurate time shifts along with amplitude coefficients.

Rahman, Syed Mustafizur; Nawawi, M. N. Mohd.; Saad, Rosli [School of Physics, Univeristi Sains Malaysia, 11800 USM, Pulau Pinang (Malaysia)

2010-07-07T23:59:59.000Z

263

Estimating Oceanic Turbulence Dissipation from Seismic Images  

Science Conference Proceedings (OSTI)

Seismic images of oceanic thermohaline finestructure record vertical displacements from internal waves and turbulence over large sections at unprecedented horizontal resolution. Where reflections follow isopycnals, their displacements can be used ...

W. Steven Holbrook; Ilker Fer; Raymond W. Schmitt; Daniel Lizarralde; Jody M. Klymak; L. Cody Helfrich; Robert Kubichek

264

Seismic retrofitting of deficient Canadian buildings  

E-Print Network (OSTI)

Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...

Gemme, Marie-Claude

2009-01-01T23:59:59.000Z

265

Seismic assessment strategies for masonry structures  

E-Print Network (OSTI)

Masonry structures are vulnerable to earthquakes, but their seismic assessment remains a challenge. This dissertation develops and improves several strategies to better understand the behavior of masonry structures under ...

DeJong, Matthew J. (Matthew Justin)

2009-01-01T23:59:59.000Z

266

Seismic design verification of LMFBR structures  

SciTech Connect

The report provides an assessment of the seismic design verification procedures currently used for nuclear power plant structures, a comparison of dynamic test methods available, and conclusions and recommendations for future LMFB structures.

1977-07-01T23:59:59.000Z

267

Fluid driven torsional dipole seismic source  

DOE Patents (OSTI)

A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provides. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder of an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping. 4 figs.

Hardee, H.C.

1990-08-08T23:59:59.000Z

268

Seismic analysis of piping with nonlinear supports  

Science Conference Proceedings (OSTI)

The modeling and results of nonlinear time-history seismic analyses for three sizes of pipelines restrained by mechanical snubbes are presented. Numerous parametric analyses were conducted to obtain sensitivity information which identifies relative importance of the model and analysis ingredients. Special considerations for modeling the pipe clamps and the mechanical snubbers based on experimental characterization data are discussed. Comparisions are also given of seismic responses, loads and pipe stresses predicted by standard response spectra methods and the nonlinear time-history methods.

Barta, D.A.; Huang, S.N.; Severud, L.K.

1980-01-01T23:59:59.000Z

269

Forecasting Seismic Signatures of Stellar Magnetic Activity  

E-Print Network (OSTI)

For the Sun, a tight correlation between various activity measures and oscillation frequencies is well documented. For other stars, we have abundant data on magnetic activity and its changes but not yet on its seismic signature. A prediction of the activity induced frequency changes in stars based on scaling the solar relations is presented. This seismic signature of the activity should be measurable in the data expected within few years.

W. A. Dziembowski

2007-09-17T23:59:59.000Z

270

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents (OSTI)

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

Vail, W.B. III.

1989-11-21T23:59:59.000Z

271

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents (OSTI)

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

Vail, W.B. III.

1991-08-27T23:59:59.000Z

272

Method and system for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents (OSTI)

A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2012-02-14T23:59:59.000Z

273

Axial strength of cement borehole plugs in granite and basalt. Topical report on rock mass sealing  

SciTech Connect

This report describes experimental and theoretical studies of the axial strength of cement plugs installed in boreholes drilled coaxially in granite and in basalt cylinders. Experimental work has consisted of loading the cement plugs to failure while measuring loads and displacements. Such tests have been performed on borehole plugs with a diameter and a length ranging from 2.5 cm to 10 cm. Results from over one hundred experiments show that the strength is high, sufficient for anticipated loads at repository depths, but very variable, complicating the design of very short plugs. Significant residual strength (thirty to fifty percent of the peak strength) is observed. A frictional model of the interface shear strength, tau = c + sigma(tan phi), in combination with the assumption of an exponential shear stress distribution or plug-rock load transfer, provides the simplest realistic model for plug strength characterization. The integrated strength thus calculated compares moderately well with experimental results. An extensive review is given of more sophisticated analysis procedures that should be of value for general plug design applications. Generic analyses and their implications for plug performance are included. Variability of experimental results complicates the assessment of their direct detailed applicability. 115 references, 70 figures, 19 tables.

Stormont, J.C.; Daemen, J.J.K.

1983-12-01T23:59:59.000Z

274

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents (OSTI)

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1991-01-01T23:59:59.000Z

275

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents (OSTI)

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1989-01-01T23:59:59.000Z

276

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

277

System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole  

SciTech Connect

In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

2013-01-01T23:59:59.000Z

278

OPTICS5  

NLE Websites -- All DOE Office Websites (Extended Search)

Optics5 (5.1.02) Knowledge Base Optics5 (5.1.02) Knowledge Base Last Updated: 09/11/13 Table of Contents INSTALLATION EXECUTION bullet ** Operating Systems -- Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista ** bullet ** Running Optics5 with Microsoft Windows 7 and Vista 64 bit ** Optics5 may not work correctly with regional/locale settings using "," as a decimal separator. bullet Which Windows operating systems can be used to run Optics? "Class Does Not Support Automation or Expected Interface" error message bullet How much hard disk space should be available to install Optics? Optics user manual bullet I receive a virus warning (nimda-virus) when installing Optics. What should I do? NFRC Procedure for Applied Films bullet I have installed Optics but I can't find the program or the icon.

279

Characterization of the Virgo Seismic Environment  

E-Print Network (OSTI)

The Virgo gravitational wave detector is an interferometer (ITF) with 3km arms located in Pisa, Italy. From July to October 2010, Virgo performed its third science run (VSR3) in coincidence with the LIGO detectors. Despite several techniques adopted to isolate the interferometer from the environment, seismic noise remains an important issue for Virgo. Vibrations produced by the detector infrastructure (such as air conditioning units, water chillers/heaters, pumps) are found to affect Virgo's sensitivity, with the main coupling mechanisms being through beam jitter and scattered light processes. The Advanced Virgo (AdV) design seeks to reduce ITF couplings to environmental noise by having most vibration-sensitive components suspended and in-vacuum, as well as muffle and relocate loud machines. During the months of June and July 2010, a Guralp-3TD seismometer was stationed at various locations around the Virgo site hosting major infrastructure machines. Seismic data were examined using spectral and coherence analysis with seismic probes close to the detector. The primary aim of this study was to identify noisy machines which seismically affect the ITF environment and thus require mitigation attention. Analyzed machines are located at various distances from the experimental halls, ranging from 10m to 100m. An attempt is made to measure the attenuation of emitted noise at the ITF and correlate it to the distance from the source and to seismic attenuation models in soil.

The Virgo Collaboration; T. Accadia; F. Acernese; P. Astone; G. Ballardin; F. Barone; M. Barsuglia; A. Basti; Th. S. Bauer; M. Bebronne; M. G. Beker; A. Belletoile; M. Bitossi; M. A. Bizouard; M. Blom; F. Bondu; L. Bonelli; R. Bonnand; V. Boschi; L. Bosi; B. Bouhou; S. Braccini; C. Bradaschia; M. Branchesi; T. Briant; A. Brillet; V. Brisson; T. Bulik; H. J. Bulten; D. Buskulic; C. Buy; G. Cagnoli; E. Calloni; B. Canuel; F. Carbognani; F. Cavalier; R. Cavalieri; G. Cella; E. Cesarini; O. Chaibi; E. Chassande-Mottin; A. Chincarini; A. Chiummo; F. Cleva; E. Coccia; P. -F. Cohadon; C. N. Colacino; J. Colas; A. Colla; M. Colombini; A. Conte; M. Coughlin; J. -P. Coulon; E. Cuoco; S. DAntonio; V. Dattilo; M. Davier; R. Day; R. De Rosa; G. Debreczeni; W. Del Pozzo; M. del Prete; L. Di Fiore; A. Di Lieto; M. Di Paolo Emilio; A. Di Virgilio; A. Dietz; M. Drago; G. Endroczi; V. Fafone; I. Ferrante; F. Fidecaro; I. Fiori; R. Flaminio; L. A. Forte; J. -D. Fournier; J. Franc; S. Frasca; F. Frasconi; M. Galimberti; L. Gammaitoni; F. Garufi; M. E. Gaspar; G. Gemme; E. Genin; A. Gennai; A. Giazotto; R. Gouaty; M. Granata; C. Greverie; G. M. Guidi; J. -F. Hayau; A. Heidmann; H. Heitmann; P. Hello; P. Jaranowski; I. Kowalska; A. Krolak; N. Leroy; N. Letendre; T. G. F. Li; N. Liguori; M. Lorenzini; V. Loriette; G. Losurdo; E. Majorana; I. Maksimovic; N. Man; M. Mantovani; F. Marchesoni; F. Marion; J. Marque; F. Martelli; A. Masserot; C. Michel; L. Milano; Y. Minenkov; M. Mohan; N. Morgado; A. Morgia; S. Mosca; B. Mours; L. Naticchioni; F. Nocera; G. Pagliaroli; L. Palladino; C. Palomba; F. Paoletti; M. Parisi; A. Pasqualetti; R. Passaquieti; D. Passuello; G. Persichetti; F. Piergiovanni; M. Pietka; L. Pinard; R. Poggiani; M. Prato; G. A. Prodi; M. Punturo; P. Puppo; D. S. Rabeling; I. Racz; P. Rapagnani; V. Re; T. Regimbau; F. Ricci; F. Robinet; A. Rocchi; L. Rolland; R. Romano; D. Rosinska; P. Ruggi; B. Sassolas; D. Sentenac; L. Sperandio; R. Sturani; B. Swinkels; M. Tacca; L. Taffarello; A. Toncelli; M. Tonelli; O. Torre; E. Tournefier; F. Travasso; G. Vajente; J. F. J. van den Brand; C. Van Den Broeck; S. van der Putten; M. Vasuth; M. Vavoulidis; G. Vedovato; D. Verkindt; F. Vetrano; A. Vicere; J. -Y. Vinet; S. Vitale; H. Vocca; R. L. Ward; M. Was; M. Yvert; A. Zadrozny; J. -P. Zendri

2011-08-08T23:59:59.000Z

280

Downhole Seismic Monitoring at the Geysers  

DOE Green Energy (OSTI)

A 500-ft length, 6-level, 3-component, vertical geophone array was permanently deployed within the upper 800 ft of Unocal's well GDCF 63-29 during a plug and abandonment operation on April 7, 1998. The downhole array remains operational after a period of 1 year, at a temperature of about 150 C. Continuous monitoring and analysis of shallow seismicity (<4000 ft deep) has been conducted over that same 1-year period. The downhole array was supplemented with 4 surface stations in late-1998 and early-1999 to help constrain locations of shallow seismicity. Locations occurring within about 1 km ({approximately}3000 ft) of the array have been determined for a subset of high-frequency events detected on the downhole and surface stations for the 10-week period January 6 to March 16, 1999. These events are distinct from surface-monitored seismicity at The Geysers in that they occur predominantly above the producing reservoir, at depths ranging from about 1200 to 4000 ft depth (1450 to -1350 ft elevation). The shallow seismicity shows a northeast striking trend, similar to seismicity trends mapped deeper within the reservoir and the strike of the predominant surface lineament observed over the productive field.

Rutledge, J.T.; Anderson, T.D.; Fairbanks, T.D.; Albright, J.N.

1999-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network (OSTI)

at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

Feighner, Mark A.

2010-01-01T23:59:59.000Z

282

Cost reduction through improved seismic design  

SciTech Connect

During the past decade, many significnt seismic technology developments have been accomplished by the United States Department of Energy (USDOE) programs. Both base technology and major projects, such as the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR) plant, have contributed to seismic technology development and validation. Improvements have come in the areas of ground motion definitions, soil-structure interaction, and structural analysis methods and criteria for piping, equipment, components, reactor core, and vessels. Examples of some of these lessons learned and technology developments are provided. Then, the highest priority seismic technology needs, achievable through DOE actions and sponsorship are identified and discussed. Satisfaction of these needs are expected to make important contributions toward cost avoidances and reduced capital costs of future liquid metal nuclear plants. 23 references, 12 figures.

Severud, L.K.

1984-01-01T23:59:59.000Z

283

Seismic hazard analysis overview and executive summary  

Science Conference Proceedings (OSTI)

The Site Specific Spectra Project (SSSP) described in this report was a multi-year study funded by the US Nuclear Regulatory Commission (NRC) as part of NRC's Systematic Evaluation Program (SEP). The main objective of this project was to provide assistance to the NRC by developing estimates of the seismic hazard at the nine oldest nuclear power plant sites east of the Rocky Mountains which were included in the SEP. This volume gives brief overview of the SEP and the SSSP including a discussion of the formal elicitation of expert opinion used to obtain a subjective representation of parameters that affect seismic hazard and the development of the seismic hazard at the nine SEP facilities.

Bernreuter, D.L.; Minichino, C.

1982-10-01T23:59:59.000Z

284

Weapons test seismic investigations at Yucca Mountain  

Science Conference Proceedings (OSTI)

Yucca Mountain, located on and adjacent to the Nevada Test Site, is being characterized as part of an ongoing effort to identify a potential high-level nuclear waste repository. This site will be subjected to seismic ground motions induced by underground nuclear explosions. A knowledge of expected ground motion levels from these tests will enable the designers to provide for the necessary structural support in the designs of the various components of the repository. The primary objective of the Weapons Test Seismic Investigation project is to develop a method to predict the ground motions expected at the repository site as a result of future weapons tests. This paper summarizes the data base presently assembled for the Yucca Mountain Project, characteristics of expected ground motions, and characterization of the two-dimensional seismic properties along paths between Yucca Mountain and the testing areas of the Nevada Test Site.

Phillips, J.S.; Shephard, L.E.; Walck, M.C.

1991-01-01T23:59:59.000Z

285

Seismic Qualification Case Study for a New Inverter  

Science Conference Proceedings (OSTI)

This report reviews and compares methods used for the seismic qualification of safety related equipment at nuclear power plants and examines an alternative, hybrid approach. The report investigates the costs and lead times for each seismic qualification approach and also discusses the seismic capacity definitions that result from the application of each qualification approach. The report includes a case study that applies the new approach to the seismic qualification of an inverter.

2007-12-17T23:59:59.000Z

286

Workshop on the Seismic Rehabilitation of Lightly Reinforced ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR5741 Proceedings, Workshop on the Seismic Rehabilitation of Lightly Reinforced Concrete Frames Gaithersburg, MD ...

2004-10-04T23:59:59.000Z

287

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

288

Seismic isolation systems with distinct multiple frequencies  

DOE Patents (OSTI)

The present invention relates generally to a method and apparatus for supporting a structure such as a building, bridge, or power plant such that it is isolated from seismic vibratory ground motion. More particularly, the present invention relates to a method and apparatus for supporting a structure by an isolation system which will not allow large dynamic loads to be transmitted to the supported structure due to seismic motions which have damaging energy at frequencies at or near the natural frequency of the structure and the overall structural systems. 4 figs.

Wu, Ting-shu; Seidensticker, R.W.

1989-04-14T23:59:59.000Z

289

Workshop on borehole measurements and interpretation in scientific drilling - identification of problems and proposals for their solution: proceedings  

DOE Green Energy (OSTI)

Critical instrumentation needs for borehole-oriented, geoscience research were identified in a program consisting of formal presentations, psoter sessions and a workshop. The proceedings include results of the workshops, abstracts of the papers and poster sessions, and the attendance list. Details of any of the presentations should be obtained from the individual authors. Separate entries were prepared for individual presentations.

Cooper, D.L.; Traeger, R.K. (eds.)

1984-03-01T23:59:59.000Z

290

Borehole Optimisation System (BOS) - A case study assessing options for abstraction of urban groundwater in Nottingham, UK  

Science Conference Proceedings (OSTI)

The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban ... Keywords: Borehole Optimisation System, GIS, PCE, Probabilistic risk modelling, Urban groundwater

N. G. Tait; R. M. Davison; S. A. Leharne; D. N. Lerner

2008-05-01T23:59:59.000Z

291

Acoustic wave propagation in a fluid-filled borehole surrounded by a formation with stress-relief-induced anisotropy  

SciTech Connect

The stress relief associated with the drilling of a borehole may lead to an anisotropic formation in the vicinity of the borehole, where the properties in the radial direction differ from those in the axial and tangential directions. Thus, axial and radial compressional acoustic velocities are different, and similarly, the velocity of an axial shear-wave depends on whether the polarization is radial or tangential. A model was developed to describe acoustic wave propagation in a borehole surrounded by a formation with stress-relief-induced radial transverse isotropy (RTI). Acoustic full waveforms due to a monopole source are computed using the real-axis integration method, and dispersion relations are found by tracing poles in the k[sub z] plane. An analytic expression for the low-frequency Stoneley wave is developed. The numerical results confirm the expectations that the compressional refraction is mainly given by the axial compressional velocity, while the shear refraction arrival is due to the shear wave with radial polarization. As a result, acoustic logging in an RTI formation, will indicate a higher v[sub p]/v[sub s] ratio than that existing in the virgin formation. It also follows that the shear velocity may be a better indicator of a mechanically damaged zone near the borehole than the compressional velocity. The Stoneley-wave velocity was found to decrease with the increasing degree of RTI.

Renlie, L. (IKU Petroleum Research, Trondheim (Norway)); Raaen, A.M. (Statoil, Postuttak, Trondheim (Norway))

1993-09-01T23:59:59.000Z

292

Last printed 3/16/2004 3:01 PM High-Frequency (Light) Borehole-Radar System  

E-Print Network (OSTI)

Last printed 3/16/2004 3:01 PM High-Frequency (Light) Borehole-Radar System Ramac from Mala Geoscience Packing List 1) Radar control unit (Ramac surface GPR system) (Old or New CU2 is O.K.). 2) Laptop computer with acquisition software, manuals, logbook and protocol sheets. 3) Backup system; zip, jaz, or CD

Barrash, Warren

293

System for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents (OSTI)

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

2012-09-04T23:59:59.000Z

294

Device and method for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents (OSTI)

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2010-11-23T23:59:59.000Z

295

System for generating a beam of acoustic energy from a borehole, and applications thereof  

DOE Patents (OSTI)

In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt T. (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

2012-07-31T23:59:59.000Z

296

Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments  

Science Conference Proceedings (OSTI)

Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

2008-12-31T23:59:59.000Z

297

Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report  

SciTech Connect

The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

1981-05-01T23:59:59.000Z

298

Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada  

SciTech Connect

Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey`s Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report.

Whitfield, M.S. Jr.; Loskot, C.L. [Geological Survey, Denver, CO (United States); Cope, C.M. [Foothill Engineering Consultants, Inc., Golden, CO (United States)

1993-04-01T23:59:59.000Z

299

Monitoring temperature conditions in recently drilled nonproductive industry boreholes in Oklahoma  

SciTech Connect

Temperature conditions were monitored in seven industry petroleum-test wells (called holes-of-opportunity in this report) that were drilled in central and eastern Oklahoma. Five of these wells provided useful temperature information, and two wells were used to determine the length of time needed for the borehole-fluid temperature to achieve thermal equilibrium with the formation rocks. Four wells were used to verify the validity of a geothermal-gradient map of Oklahoma. Temperature surveys in two wells indicated a gradient lower than the predicted gradients on the geothermal-gradient map. When deep temperature data, between 5000 and 13,000 feet, are adjusted for mud-circulation effects, the adjusted gradients approximate the gradients on the geothermal-gradient map. The temperature-confirmation program appears to substantiate the geographic distribution of the high- and low-thermal-gradient regimes in Oklahoma. 13 refs., 18 figs., 7 tabs.

Harrison, W.E.; Luza, K.V.

1985-06-01T23:59:59.000Z

300

Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources  

Science Conference Proceedings (OSTI)

Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

 

NLE Websites -- All DOE Office Websites (Extended Search)

Optic Distributed Acoustic Sensing for Subsurface Seismic Monitoring Optic Distributed Acoustic Sensing for Subsurface Seismic Monitoring Tom Daley (LBL Geophysics) Abstract: Recent development of commercial distributed acoustic sensing (DAS) has introduced the potential to acquire seismic data with large spatial sampling, using near commodity-type fiber optic cables. We will describe a series of field tests to investigate the characteristics of DAS, with a focus on deep (<3km) borehole deployments. The fibers were deployed as part of a multi-purpose modular borehole monitoring (MBM) scheme. We will show data examples from at least two recent VSP tests (in Alabama and Australia), including comparison to co-deployed and separately deployed borehole geophones, and results from surface deployment in a shallow trench. The seismic sources used include a vibroseis truck and a weight

302

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: High precision earthquake locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir management. We analyze 16 years of seismicity to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously

303

Optical keyboard  

DOE Patents (OSTI)

An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

Veligdan, James T. (Manorville, NY); Feichtner, John D. (Fiddletown, CA); Phillips, Thomas E. (San Diego, CA)

2001-01-01T23:59:59.000Z

304

Distributed computing of Seismic Imaging Algorithms  

E-Print Network (OSTI)

The primary use of technical computing in the oil and gas industries is for seismic imaging of the earth's subsurface, driven by the business need for making well-informed drilling decisions during petroleum exploration and production. Since each oil/gas well in exploration areas costs several tens of millions of dollars, producing high-quality seismic images in a reasonable time can significantly reduce the risk of drilling a "dry hole". Similarly, these images are important as they can improve the position of wells in a billion-dollar producing oil field. However seismic imaging is very data- and compute-intensive which needs to process terabytes of data and require Gflop-years of computation (using "flop" to mean floating point operation per second). Due to the data/computing intensive nature of seismic imaging, parallel computing are used to process data to reduce the time compilation. With introducing of Cloud computing, MapReduce programming model has been attracted a lot of attention in parallel and di...

Emami, Masnida; Jaberi, Nasrin

2012-01-01T23:59:59.000Z

305

RISC-3 Seismic Assessment Guidelines: Preliminary Report  

Science Conference Proceedings (OSTI)

This report provides guidance for establishing reasonable confidence that structures, systems, and components (SSCs) of nuclear plants, categorized as RISC-3 under the 10 CFR 50.69 Risk Informed Safety Categorization Process, will perform their required functions under design basis seismic conditions.

2004-12-15T23:59:59.000Z

306

Seismic Probabilistic Risk Assessment Implementation Guide  

Science Conference Proceedings (OSTI)

The "SPRA Implementation Guide" provides utilities with in-depth guidelines for seismic probabilistic risk assessments (SPRAs). These cost-effective and practical procedures for SPRA support a variety of purposes, including risk-informed/performance-based (RI/PB) applications.

2003-12-31T23:59:59.000Z

307

Nevada Test Site seismic: telemetry measurements  

SciTech Connect

The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

Albright, J N; Parker, L E; Horton, E H

1983-08-01T23:59:59.000Z

308

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

309

Induced seismicity associated with enhanced geothermal system  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

310

Assessment of fiber optic pressure sensors  

SciTech Connect

This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

Hashemian, H.M.; Black, C.L.; Farmer, J.P. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

1995-04-01T23:59:59.000Z

311

5h Other Seismic Stakeholder InteractionsGlenn Kelly- Appendix 5 Seismic.wpd Page 3  

E-Print Network (OSTI)

decommissioning plants. During the course of the workshop, presentations by the NRC and the industry concluded that spent fuel pools possess substantial capability beyond their design basis to with stand seismic events but that variations in seismic capacity existed due to plant specific designs and locations. The consensus was that the risk was low enough that precise quantification was not necessary to support exemption requests but that this needed to be confirmed on a plant specific basis with deterministic criteria. It was recommended that a simple spent fuel pool (SFP) vulnerability check list be developed to provide additional assurance that no beyond-design-basis seismic structural vulnerabilities exist at decommissioning plants. Enclosed for your review is the "Seismic Screening Criteria For Assessing Potential Pool Vulnerabilities At Decommissioning Plants." Please contact me at (202) 739-8110 or by e-mail (apn@.nei.org) if you have any questions or if a meeting should be scheduled to discuss the enclosed seismic checklist.

Glenn Kelly Aee Attached; George Hubbard; Aee Attached; Glenn Kelly; Alan Nelson; Alan Nelson

2000-01-01T23:59:59.000Z

312

OPTICS 5  

NLE Websites -- All DOE Office Websites (Extended Search)

OPTICS (Version 5.1.02) OPTICS (Version 5.1.02) Release notes NOTE: See the Optics Knowledge Base for how to run this version of Optics on the Microsoft Vista and Microsoft Windows 7 operating systems March 5, 2003: Release Maintenance Pack 2 New ! January 7, 2003: Release Maintenance Pack 1 October 23, 2002: Release Optics 5.1.01 September 27, 2002: Release Optics 5.1.00 (only released on CDs at NFRC Annual Fall Meeting) Release notes Maintenance Pack 2 Bug fixes: New features: bullet Applied films that were created could not be saved or exported. This has been fixed. bullet Exporting glazing systems generated a message that the operation failed because the glazing system type is unknown. Glazing systems can now be exported to file (e.g. to view the spectral data), but the structure information will be lost.

313

Seismic Emissions Surveys | Open Energy Information  

Open Energy Info (EERE)

Emissions Surveys Emissions Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Emissions Surveys Abstract With recent improvements in acquiring, processing and interpreting data, seismic ground noise provides a valuable tool for geothermal exploration. A time domain beam steering array processing technique is employed. This process eliminates the occurrence of false anomalies caused by local geologic amplification effects. Surveys of this type are used to located naturally fractured reservoirs. Results form Dixie Valley and Desert Peak, Nevada correlate well with the location of productive wells or known geology. Authors Katz and Lewis J. Published Journal Geothermal Resources Council Transactions, 1984 DOI Not Provided Check for DOI availability: http://crossref.org

314

Definition: Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Seismic methods provide information regarding the elastic properties of the subsurface through the measurement of the propagation velocity of elastic waves.[1] View on Wikipedia Wikipedia Definition Seismology /saɪzˈmɒlədʒi/ is the scientific study of earthquakes and the propagation of elastic waves through the Earth or through other planet-like bodies. The field also includes studies of earthquake effects, such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, oceanic, atmospheric, and artificial processes (such as explosions). A related field that uses geology to infer information regarding past earthquakes is paleoseismology. A recording of earth motion as a function of time is called a seismogram. A seismologist

315

Seismic monitoring at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

This report summarizes the efforts of LBL to utilize MEQ data in reservoir definition as well as in evaluating its performance. Results of the study indicate that the velocity and attenuation variations correlate with the known geology of the field. At the NW Geysers, high velocity anomalies correspond to metagraywacke and greenstone units while low velocity anomalies seem to be associated with Franciscan melanges. Low Vp/Vs and high attenuation delineate the steam reservoir suggesting undersaturation of the reservoir rocks. Ongoing monitoring of Vp/Vs may be useful in tracking the expansion of the steam zone with time. Spatial and temporal patterns of seismicity exhibit compelling correlation with geothermal exploitation. Clusters of MEQs occur beneath active injection wells and appear to shift with changing injection activities. High resolution MEQ locations hold promise for inferring fluid flow paths, especially in tracking injectate. This study has demonstrated that continuous seismic monitoring may be useful as an active reservoir management tool.

Romero, A.E. Jr.; Kirkpatrick, A.; Majer, E.L.; Peterson, J.E. Jr.

1994-09-01T23:59:59.000Z

316

Seismic behavior of geogrid reinforced slag wall  

Science Conference Proceedings (OSTI)

Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

Edincliler, Ayse [Bogazici University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, Cengelkoey-Istanbul (Turkey); Baykal, Gokhan; Saygili, Altug [Bogazici University, Department of Civil Engineering, Bebek-Istanbul (Turkey)

2008-07-08T23:59:59.000Z

317

Seismic responses of unanchored electrode storage fixtures  

SciTech Connect

Two anchored electrode storage fixtures will be installed in the process cell of the Integral Fast Reactor`s Fuel Cycle Facility at ANL-W in Idaho. In addition to the concerns for structural integrity, the potential for uplifting and tipping of the fixtures during the design basis earthquake must also be examined. In the analysis, a response-spectrum method was employed to investigate tipping, while a static approach was used for the structural-integrity evaluations. The results show that the combined stresses from seismic and other loads are within the allowables permitted by the design codes. The overall vertical seismic reaction forces at the leveling pads are compressive, implying that the fixtures will remain in contact with the floor. No uplifting or tipping of the fixture will occur during the design basis earthquake.

Ting-shu Wu; Blomquist, C.A.; Haupt, H.J.; Herceg, J.E.

1993-06-01T23:59:59.000Z

318

Savannah River Site disaggregated seismic spectra  

SciTech Connect

The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings' position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M[sub w] < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI.

Stephenson, D.E.

1993-02-01T23:59:59.000Z

319

Savannah River Site disaggregated seismic spectra  

SciTech Connect

The objective of this technical note is to characterize seismic ground motion at the Savannah River Site (SRS) by postulated earthquakes that may impact facilities at the site. This task is accomplished by reviewing the deterministic and probabilistic assessments of the seismic hazard to establish the earthquakes that control the hazard to establish the earthquakes that control the hazard at the site and then evaluate the associated seismic ground motions in terms of response spectra. For engineering design criteria of earthquake-resistant structures, response spectra serve the function of characterizing ground motions as a function of period or frequency. These motions then provide the input parameters that are used in the analysis of structural response. Because they use the maximum response, the response spectra are an inherently conservative design tool. Response spectra are described in terms of amplitude, duration, and frequency content, and these are related to source parameters, travel path, and site conditions. Studies by a number of investigators have shown by statistical analysis that for different magnitudes the response spectrum values are different for differing periods. These facts support Jennings` position that using different shapes of design spectra for earthquakes of different magnitudes and travel paths is a better practice than employing a single, general-purpose shape. All seismic ground motion characterization results indicate that the PGA is controlled by a local event with M{sub w} < 6 and R < 30km. The results also show that lower frequencies are controlled by a larger, more distant event, typically the Charleston source. The PGA of 0.2 g, based originally on the Blume study, is consistent with LLNL report UCRL-15910 (1990) and with the DOE position on LLNL/EPRI.

Stephenson, D.E.

1993-02-01T23:59:59.000Z

320

Optical engineering  

SciTech Connect

The Optical Engineering thrust area at Lawrence Livermore National Laboratory (LLNL) was created in the summer of 1996 with the following main objectives: (1) to foster and stimulate leading edge optical engineering research and efforts key to carrying out LLNL's mission and enabling major new programs; (2) to bring together LLNL's broad spectrum of high level optical engineering expertise to support its programs. Optical engineering has become a pervasive and key discipline, with applications across an extremely wide range of technologies, spanning the initial conception through the engineering refinements to enhance revolutionary application. It overlaps other technologies and LLNL engineering thrust areas.

Saito, T T

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development Of Active Seismic Vector-Wavefield Imaging Technology For  

Open Energy Info (EERE)

Of Active Seismic Vector-Wavefield Imaging Technology For Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Details Activities (2) Areas (2) Regions (0) Abstract: This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves.

322

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

323

Use of experience data for DOE seismic evaluations  

SciTech Connect

As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE.

Barlow, M.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Budnitz, R. [Future Resources Associates, Inc., Berkeley, CA (United States); Eder, S.J. [EQE Engineering Consultants, San Francisco, CA (United States); Eli, M.W. [Lawrence Livermore National Lab., CA (United States)

1993-09-30T23:59:59.000Z

324

Short-Period Seismic Noise in Vorkuta (Russia)  

SciTech Connect

Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.

Kishkina, S B; Spivak, A A; Sweeney, J J

2008-05-15T23:59:59.000Z

325

Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi  

Science Conference Proceedings (OSTI)

In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

Not Available

1989-04-01T23:59:59.000Z

326

Raytheon downhole information system. Electromagnetic borehole measurements while drilling system. Final report  

DOE Green Energy (OSTI)

A description is given of the Raytheon Downhole Information System (RDIS), a real time electromagnetic borehole measurements while drilling system, applicable to oil, gas, and geothermal drilling. It communicates in both directions through the earth in a single hop at a downlink data rate of 3 bps and uplink rates dependent on depth--typically 6 bits/second at 10,000 ft and 2 bits/second at 15,000 ft; electromagnetic signal transmission time of approximately .1 second. Downhole hardware for communications, sensors, and power are packaged in three 30 ft subs. Downhole hardware can be developed to permit operation in a 275/sup 0/C geothermal environment. A cost analysis is included that predicts RDIS service could be economically priced at approximately $1000/day. Commercial availability depends primarily on proof of capability by demonstration in a working drilling well. The most significant portions of needed hardware are available. A description of a geothermal drilling telemetry system is included in Appendix A.

Kolker, M.; Greene, A.H.; Kasevich, R.S.; Robertson, J.C.; Grossi, M.D.

1978-03-01T23:59:59.000Z

327

Rock physics characterization of Conway granite from a DOE borehole, Conway, New Hampshire  

DOE Green Energy (OSTI)

The Conway granite of New Hampshire is a highly radioactive intrusive into which a 1-km-deep borehole was drilled and continuously cored in 1975. There are two major granitic units, the Osceola and the Conway. The Conway is cut by three lamprophyre dikes. Elastic moduli and petrographic studies were on 14 samples from the core. These data and observations have been used to determine groupings in the rocks by characterizing microstructure. An important result is that carefully taken physical properties data (for example, velocities and strains) are sensitive indicators of microstructure. Based on velocity and strain data, three distinct groups are found: the lamprophyre dike rocks and two groups each of which contain samples from both the Osceola and Conway formations. These groups are also distinguished by petrographic observations of microcrack patterns. The groups are apparently controlled by grain size and by uniformity of the mixing of the mineral phases in the samples, and not by mineral modes or depth. This last result implies the coring of the Conway samples may have intensified the amount of cracking over that in the rocks in situ, but not the type of cracking. Coring does not apparently induce a distinct population of very thin (low aspect ratio) cracks; that is, such cracks are not needed to explain the low pressure stress and velocity data of these samples.

Warren, N.

1979-11-01T23:59:59.000Z

328

Industry Approach to Seismic Severe Accident Policy Implementation  

Science Conference Proceedings (OSTI)

This report provides utilities with industry recommended guidelines for cost-effective seismic evaluation of nuclear power plants in response to NRC Generic Letter 88-20. Guidance is provided on application of seismic probabilistic risk assessment and seismic margin methods for full-, focused-, and reduced-scope evaluations. It provides strategies for coordinating these evaluations with similar reviews needed for resolution of Unresolved Safety Issue (USI) A-46.

1991-11-01T23:59:59.000Z

329

Piedmont seismic reflection study: A program integrated with tectonics to probe the cause of eastern seismicity  

Science Conference Proceedings (OSTI)

A new tectonic model of the Appalachian orogen indicates that one, not two or more, terrane boundaries is present in the Piedmont and Blue Ridge of the central and southern Appalachians. This terrane boundary is the Taconic suture, it has been transported in the allochthonous Blue Ridge/Piedmont crystalline thrust nappe, and it is repeated at the surface by faulting and folding associated with later Paleozoic orogenies. The suture passes through the lower crust and lithosphere somewhere east of Richmond. It is spatially associated with seismicity in the central Virginia seismic zone, but is not conformable with earthquake focal planes and appears to have little causal relation to their localization.

Glover, L. III; Coruh, C.; Costain, J.K.; Bollinger, G.A. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Geological Sciences)

1992-03-01T23:59:59.000Z

330

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...  

Open Energy Info (EERE)

Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

331

Tube-wave Seismic Imaging and Monitoring Method for Oil ...  

Valeri Korneev at Berkeley National Lab has developed a low cost method for real-time seismic monitoring of underground fluid reservoirs based on tube-wave analysis.

332

Tube-wave Seismic Imaging and Monitoring Method for Oil ...  

Tube-wave Seismic Imaging and Monitoring Method for Oil Reservoirs and Aquifers Lawrence Berkeley National Laboratory. Contact LBL About This Technology

333

Thermal Gradient Holes At Central Nevada Seismic Zone Region...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

334

Development Of Active Seismic Vector-Wavefield Imaging Technology...  

Open Energy Info (EERE)

This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and...

335

Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE...  

Open Energy Info (EERE)

Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP)...

336

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION WITHIN THE COSO GETHERMAL FIELD, CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

337

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California...

338

Geothermal: Sponsored by OSTI -- Seismic Technology Adapted to...  

Office of Scientific and Technical Information (OSTI)

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report Geothermal Technologies Legacy Collection HelpFAQ...

339

Microsoft Word - Calpine EGS_Seismic Eval Final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Environmental Impacts of Induced Seismicity at the Calpine Enhanced Geothermal System Project, The Geysers, California prepared for RMT, Inc. 4 West Fourth Avenue,...

340

APPENDIX J: STATEMENT OF COMPLIANCE WITH DOE SEISMICITY PROTOCOL  

NLE Websites -- All DOE Office Websites (Extended Search)

compliance with the "Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems". Calpine Corporation and other Geysers geothermal operators have long been...

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Seismic data Analysis Program (The "Hot Pot Project...  

Open Energy Info (EERE)

seismic data to locate deep geothermal structures. Awardees (Company Institution) OSKI Energy, LLC Awardee Website http:www.oskienergy.com Partner 1 Optim, Inc Partner 2...

342

Injection monitoring with seismic arrays and adaptive noise cancellation  

DOE Green Energy (OSTI)

Although the application of seismic methods, active and passive, to monitor in-situ reservoir stimulation processes is not new, seismic arrays and array processing technology coupled with a new noise cancellation method has not been attempted. Successful application of seismic arrays to passively monitor in-situ reservoir stimulation processes depends on being able to sufficiently cancel the expected large amplitude background seismic noise typical of an oil or geothermal production environment so that small amplitude seismic signals occurring at depth can be detected and located. This report describes the results of a short field experiment conducted to test both the application of seismic arrays for in-situ reservoir stimulation monitoring and the active noise cancellation technique in a real reservoir production environment. Although successful application of these techniques to in-situ reservoir stimulation monitoring would have the greatest payoff in the oil industry, the proof-of-concept field experiment site was chosen to be the Geysers geothermal field in northern California. This site was chosen because of known high seismicity rates, a relatively shallow production depth, cooperation and some cost sharing the UNOCAL Oil Corporation, and the close proximity of the site to LLNL. The body of this report describes the Geysers field experimental configuration and then discusses the results of the seismic array processing and the results of the seismic noise cancellation followed by a brief conclusion. 2 refs., 11 figs.

Harben, P.E.; Harris, D.B.; Jarpe, S.P.

1991-01-01T23:59:59.000Z

343

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

344

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

345

Time-dependent seismic tomography and its application to the...  

Open Energy Info (EERE)

changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

346

Seismic Reflection Data and Conceptual Models for Geothermal...  

Open Energy Info (EERE)

Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection...

347

Next-Generation Performance-Based Seismic Design ...  

Science Conference Proceedings (OSTI)

Page 1. Next-Generation Performance-Based Seismic Design Guidelines Program Plan for New and Existing Buildings FEMA-445 / August 2006 ...

2007-03-01T23:59:59.000Z

348

Seismic Design of Steel Special Concentrically Braced Frame ...  

Science Conference Proceedings (OSTI)

Page 1. NEHRP Seismic Design Technical Brief No. 8 ... Dr. John (Jay) L. Harris, III, managed the project to produce this Technical Brief for EL. ...

2013-08-01T23:59:59.000Z

349

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type ...

350

Using Supercomputers to Improve Seismic Hazard Maps | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

of 2% in 50 years. Using Supercomputers to Improve Seismic Hazard Maps PI Name: Thomas Jordan PI Email: tjordan@usc.edu Institution: Southern California Earthquake Center...

351

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

352

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Blewitt, Et Al., 2003) Exploration...

353

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

354

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics  

E-Print Network (OSTI)

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms October 2011 Keywords: Global seismicity Declustered catalogue Earthquake energy distribution Plate tectonics In this paper, we analyse the distributions of number of events (N) and seismic energy (E

Doglioni, Carlo

355

Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring  

SciTech Connect

Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

Arabasz, W J; Pechmann, J C

2001-03-01T23:59:59.000Z

356

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al. (2006a), it is concluded that time-domain SSI analysis using ANSYS{reg_sign} is justified for predicting the global response of the DSTs. The most significant difference between the current revision (Revision 1) of this report and the original issue (Revision 0) is the treatment of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome.

MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

2009-01-15T23:59:59.000Z

357

Development of a HT seismic downhole tool.  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) require the stimulation of the drilled well, likely through hydraulic fracturing. Whether fracturing of the rock occurs by shear destabilization of natural fractures or by extensional failure of weaker zones, control of the fracture process will be required to create the flow paths necessary for effective heat mining. As such, microseismic monitoring provides one method for real-time mapping of the fractures created during the hydraulic fracturing process. This monitoring is necessary to help assess stimulation effectiveness and provide the information necessary to properly create the reservoir. In addition, reservoir monitoring of the microseismic activity can provide information on reservoir performance and evolution over time. To our knowledge, no seismic tool exists that will operate above 125 C for the long monitoring durations that may be necessary. Replacing failed tools is costly and introduces potential errors such as depth variance, etc. Sandia has designed a high temperature seismic tool for long-term deployment in geothermal applications. It is capable of detecting microseismic events and operating continuously at temperatures up to 240 C. This project includes the design and fabrication of two High Temperature (HT) seismic tools that will have the capability to operate in both temporary and long-term monitoring modes. To ensure the developed tool meets industry requirements for high sampling rates (>2ksps) and high resolution (24-bit Analog-to-Digital Converter) two electronic designs will be implemented. One electronic design will utilize newly developed 200 C electronic components. The other design will use qualified Silicon-on-Insulator (SOI) devices and will have a continuous operating temperature of 240 C.

Maldonado, Frank P.; Greving, Jeffrey J.; Henfling, Joseph Anthony; Chavira, David J.; Uhl, James Eugene; Polsky, Yarom

2009-06-01T23:59:59.000Z

358

Geophysics II. Tools for seismic interpretation  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on tools for seismic data interpretation. Each of the 25 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

359

Geophysics III. Geologic interpretation of seismic data  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on geologic interpretation of seismic data interpretation. Each of the 21 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

360

First Quarter Hanford Seismic Report for Fiscal Year 2009  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as minor with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2009-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

3D porosity prediction from seismic inversion and neural networks  

Science Conference Proceedings (OSTI)

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack ... Keywords: Feed-forward neural network, Matlab, Reservoir characterization, Seismic inversion

Emilson Pereira Leite; Alexandre Campane Vidal

2011-08-01T23:59:59.000Z

362

Knowledge Assisted Visualization: Knowledge-assisted visualization of seismic data  

Science Conference Proceedings (OSTI)

We present novel techniques for knowledge-assisted annotation and computer-assisted interpretation of seismic data for oil and gas exploration. We describe the existing procedure for oil and gas search which consists of manually extracting information ... Keywords: 2D textures, 3D textures, Illustrative visualization, Knowledge-assisted visualization, Rapid interpretation, Seismic interpretation

Daniel Patel; yvind Sture; Helwig Hauser; Christopher Giertsen; M. Eduard Grller

2009-10-01T23:59:59.000Z

363

First Quarter Hanford Seismic Report for Fiscal Year 2011  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

2011-03-31T23:59:59.000Z

364

Engineering Seismic Base Layer for Defining Design Earthquake Motion  

Science Conference Proceedings (OSTI)

Engineer's common sense that incident wave is common in a widespread area at the engineering seismic base layer is shown not to be correct. An exhibiting example is first shown, which indicates that earthquake motion at the ground surface evaluated by the analysis considering the ground from a seismic bedrock to a ground surface simultaneously (continuous analysis) is different from the one by the analysis in which the ground is separated at the engineering seismic base layer and analyzed separately (separate analysis). The reason is investigated by several approaches. Investigation based on eigen value problem indicates that the first predominant period in the continuous analysis cannot be found in the separate analysis, and predominant period at higher order does not match in the upper and lower ground in the separate analysis. The earthquake response analysis indicates that reflected wave at the engineering seismic base layer is not zero, which indicates that conventional engineering seismic base layer does not work as expected by the term 'base'. All these results indicate that wave that goes down to the deep depths after reflecting in the surface layer and again reflects at the seismic bedrock cannot be neglected in evaluating the response at the ground surface. In other words, interaction between the surface layer and/or layers between seismic bedrock and engineering seismic base layer cannot be neglected in evaluating the earthquake motion at the ground surface.

Yoshida, Nozomu [Department of Civil and Environmental Engineering, Tohoku Gakuin University, Tagajo 1-13-1, Miyagi (Japan)

2008-07-08T23:59:59.000Z

365

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

366

Geographic Information System At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401371

367

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Central_Nevada_Seismic_Zone_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401360"

368

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

369

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et  

Open Energy Info (EERE)

Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner, Et Al., 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Refraction Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Michelle Heimgartner, James B. Scott, Weston Thelen, Christopher R. Lopez, John N. Louie (2005) Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Central_Nevada_Seismic_Zone_Region_(Heimgartner,_Et_Al.,_2005)&oldid=401382

370

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

371

Nonlinear acoustic/seismic waves in earthquake processes  

Science Conference Proceedings (OSTI)

Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.

Johnson, Paul A. [Geophysics Group, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos New Mexico 87544 (United States)

2012-09-04T23:59:59.000Z

372

The discrete Kalman filtering approach for seismic signals deconvolution  

SciTech Connect

Seismic signals are a convolution of reflectivity and seismic wavelet. One of the most important stages in seismic data processing is deconvolution process; the process of deconvolution is inverse filters based on Wiener filter theory. This theory is limited by certain modelling assumptions, which may not always valid. The discrete form of the Kalman filter is then used to generate an estimate of the reflectivity function. The main advantage of Kalman filtering is capability of technique to handling continually time varying models and has high resolution capabilities. In this work, we use discrete Kalman filter that it was combined with primitive deconvolution. Filtering process works on reflectivity function, hence the work flow of filtering is started with primitive deconvolution using inverse of wavelet. The seismic signals then are obtained by convoluting of filtered reflectivity function with energy waveform which is referred to as the seismic wavelet. The higher frequency of wavelet gives smaller wave length, the graphs of these results are presented.

Kurniadi, Rizal; Nurhandoko, Bagus Endar B. [Departement of Physics Intitut Teknologi Bandung, Jl. Ganesha 10 Bandung (Indonesia)

2012-06-20T23:59:59.000Z

373

Second Quarter Hanford Seismic Report for Fiscal Year 2008  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2008-06-26T23:59:59.000Z

374

First Quarter Hanford Seismic Report for Fiscal Year 2008  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earthquakes were classified as random events.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2008-03-21T23:59:59.000Z

375

Application of the Neo-Deterministic Seismic Microzonation Procedure in Bulgaria and Validation of the Seismic Input Against Eurocode 8  

SciTech Connect

The earthquake record and the Code for design and construction in seismic regions in Bulgaria have shown that the territory of the Republic of Bulgaria is exposed to a high seismic risk due to local shallow and regional strong intermediate-depth seismic sources. The available strong motion database is quite limited, and therefore not representative at all of the real hazard. The application of the neo-deterministic seismic hazard assessment procedure for two main Bulgarian cities has been capable to supply a significant database of synthetic strong motions for the target sites, applicable for earthquake engineering purposes. The main advantage of the applied deterministic procedure is the possibility to take simultaneously and correctly into consideration the contribution to the earthquake ground motion at the target sites of the seismic source and of the seismic wave propagation in the crossed media. We discuss in this study the result of some recent applications of the neo-deterministic seismic microzonation procedure to the cities of Sofia and Russe. The validation of the theoretically modeled seismic input against Eurocode 8 and the few available records at these sites is discussed.

Ivanka, Paskaleva [CLSMEE--BAS, 3 Acad G. Bonchev str, 1113 Sofia (Bulgaria); Mihaela, Kouteva [CLSMEE-BAS, 3 Acad G. Bonchev str, 1113 Sofia (Bulgaria); ESP-SAND, ICTP, Trieste (Italy); Franco, Vaccari [DST-University of Trieste, Via E. Weiss 4, 34127 Trieste (Italy); Panza, Giuliano F. [DST-University of Trieste, Via E. Weiss 4, 34127 Trieste (Italy); ESP-SAND, ICTP, Trieste (Italy)

2008-07-08T23:59:59.000Z

376

Ground motion input in seismic evaluation studies  

Science Conference Proceedings (OSTI)

This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

Sewell, R.T.; Wu, S.C.

1996-07-01T23:59:59.000Z

377

Seismic imaging of the Medicine Lake Caldera  

DOE Green Energy (OSTI)

Medicine Lake Volcano, a broad shield volcano about 50 km east of Mount Shasta in northern California, produced rhylotic eruptions as recently as 400 years ago. Because of this recent activity it is of considerable interest to producers of geothermal energy. The USGS and LLNL conducted an active seismic experiment designed to explore the area beneath and around the caldera. This experiment had two purposes: To produce high-quality velocity and attenuation images of the young magma body presumed to be the source for the young volcanic features, and to collect a dataset that can be used to develop and test seismic imaging methods that may be useful for understanding other geothermal systems. Eight large explosions were detonated in a 50 km radius circle around the volcano, a distance chosen to produce strong upward traveling signals through the area of interest. The data were inverted using Aki's method to produce three-dimensional velocity and attenuation images of the sub-surface. Preliminary interpretation shows low velocity and attenuation on the flanks of the volcano, and coincident high attenuation values and low velocities (-20%) from 3 to 5 km beneath the center of the caldera. This zone may be a region of partial melt which fed the youngest eruptions.

Zucca, J.J.; Evans, J.R.; Kasameyer, P.W.

1987-04-01T23:59:59.000Z

378

Topical report on subsurface fracture mapping from geothermal wellbores. Phase I. Pulsed radar techniques. Phase II. Conventional logging methods. Phase III. Magnetic borehole ranging  

DOE Green Energy (OSTI)

To advance the state-of-the-art in Hot Dry Rock technology, an evaluation is made of (i) the use of radar to map far-field fractures, (ii) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, and (iii) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. Improvements in both data interpretation techniques and high temperature operation are required. The surveying of one borehole from another appears feasible at ranges of up to 200 to 500 meters by using a low frequency magnetic field generated by a moderately strong dipole source (a solenoid) located in one borehole, a sensitive B field detector that traverses part of the second borehole, narrow band filtering, and special data inversion techniques.

Hartenbaum, B.A.; Rawson, G.

1980-09-01T23:59:59.000Z

379

HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS  

Science Conference Proceedings (OSTI)

M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste.

MACKEY, T.C.

2006-03-17T23:59:59.000Z

380

Analysis of seismic sloshing of reactor tanks considering submerged components and seismic isolation  

Science Conference Proceedings (OSTI)

A study of the seismic sloshing response of a large pool-type reactor tank with several deck-mounted components is presented. The main objective of the study is to investigate the effects of internal components on the sloshing response and to determine the sloshing loads on the components. The study shows that the presence of internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequencies of a tank with internal components are considerably higher than those of a tank without internals. The higher sloshing frequencies reduce the sloshing wave height on the free surface but the dynamic pressures of the fluid are increased. The effects of seismic isolation on sloshing response are also presented.

Ma, D.C.; Chang, Y.M.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optical memory  

DOE Patents (OSTI)

Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

Mao, Samuel S; Zhang, Yanfeng

2013-07-02T23:59:59.000Z

382

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

383

Validation of seismic probabilistic risk assessments of nuclear power plants  

SciTech Connect

A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

1994-01-01T23:59:59.000Z

384

Seismic Safety Margins Research Program. Phase I, final report - overview  

SciTech Connect

The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. 66 refs., 29 figs., 10 tabs.

Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

1981-03-06T23:59:59.000Z

385

N Reactor Seismic Task Force analysis and fix summary  

Science Conference Proceedings (OSTI)

The N Reactor Safety Enhancement Program (SEP) and the Accelerated Safety Enhancement Program (ASEP) were established to implement recommendations made earlier by study groups assessing the safety of N Reactor. The recommendations which dealt with seismic issues were assigned to Safety Enhancement Programs, Defense Reactor Programs for implementation. A Seismic Task Force was assembled to perform the analyses, design the modifications, direct the performance of the work and provide program management of the effort to seismically qualify the facility. This document identifies the reports published by the task force to resolve each of the seismic issues raised by safety assessments. The reports, in turn, provide a list of recommended fixes (Fixes are potential problems, not resolved in the engineering analyses, which require repair, cleanup or modifications to hardware to establish seismic qualification). The purpose of this report is to provide a guide to seismic fixes implemented by the Seismic Task Force. This information is provided in the form of a ``fix log`` which lists fixes according to the report which recommended them and identifies the work authorization (WA), engineering documentation (Design Change, Field Change Notice or Engineering Change Notice) and acceptance dates for each fix. 5 refs., 6 tabs.

Rainey, T.E.

1989-05-01T23:59:59.000Z

386

Planning Tools For Seismic Risk Mitigation. Rules And Applications  

SciTech Connect

Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

De Paoli, Rosa Grazia [Department of Landscape Planning, Mediterranean University of Reggio Calabria (Italy)

2008-07-08T23:59:59.000Z

387

Optical switch  

DOE Patents (OSTI)

An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

Reedy, Robert P. (Livermore, CA)

1987-01-01T23:59:59.000Z

388

Optical switch  

DOE Patents (OSTI)

An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

Reedy, R.P.

1987-11-10T23:59:59.000Z

389

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

Matthias G. Imhof; James W. Castle

2003-11-01T23:59:59.000Z

390

Buried fiber optic intrusion sensor  

E-Print Network (OSTI)

A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry, disturbances were monitored in long (several km) lengths of optical fiber. Narrow linewidth and low frequency drift in the laser were achieved through a combination of optical feedback and insulation of the laser cavity against environmental effects. The frequency drift of the laser, characterized using an all-fiber Mach Zehnder interferometer, was found to be less than 1 MHz/min, as required for operation of the intrusion detection system. Intrusions were simulated in a laboratory setting using a piezoelectric transducer to produce a controllable optical phase shift at the 2 km point of a 12 km path length. Interrogation of the distributed sensor was accomplished by repetitively gating light pulses from the stable laser into the sensing fiber. By monitoring the Rayleigh backscattered light with a photodetector and comparing traces with and without an induced phase shift, the phase disturbances were detected and located. Once the feasibility of such a sensor was proven in the laboratory, the experimental set up was transferred to Texas A&M's Riverside Campus. At the test site, approximately 40 meters of fiber optic cable were buried in a triangle perimeter and then spliced into the 12 km path length which was housed inside the test facility. Field tests were conducted producing results comparable to those found in the laboratory. Intrusions over this buried fiber were detectable on the ?-OTDR trace and could be localized to the intrusion point. This type of sensor has the potential benefits of heightened sensitivity, covertness, and greatly reduced cost over the conventional seismic, acoustic, infrared, magnetic, and fiber optic sensors for monitoring long (multi-km) perimeters.

Maier, Eric William

2005-05-01T23:59:59.000Z

391

Post-processing of seismic parameter data based on valid seismic event determination  

DOE Patents (OSTI)

An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.

McEvilly, Thomas V. (733 Alvarado Rd., Berkeley, CA 94705)

1985-01-01T23:59:59.000Z

392

Review of seismicity and ground motion studies related to development of seismic design at SRS  

Science Conference Proceedings (OSTI)

The NRC response spectra developed in Reg. Guide 1.60 is being used in the studies related to restarting of the existing Savannah River Site (SRS) reactors. Because it envelopes all the other site specific spectra which have been developed for SRS, it provides significant conservatism in the design and analysis of the reactor systems for ground motions of this value or with these probability levels. This spectral shape is also the shape used for the design of the recently licensed Vogtle Nuclear Station, located south of the Savannah River from the SRS. This report provides a summary of the data base used to develop the design basis earthquake. This includes the seismicity, rates of occurrence, magnitudes, and attenuation relationships. A summary is provided for the studies performed and methodologies used to establish the design basis earthquake for SRS. The ground motion response spectra developed from the various studies are also summarized. The seismic hazard and PGA`s developed for other critical facilities in the region are discussed, and the SRS seismic instrumentation is presented. The programs for resolving outstanding issues are discussed and conclusions are presented.

Stephenson, D.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Acree, J.R. [Westinghouse Environmental and Geotechnical Services, Inc., Columbia, SC (United States)

1992-08-01T23:59:59.000Z

393

A Numerical Feasibility Study of Three-Component Induction Logging for Three Dimensional Imaging About a Single Borehole  

Science Conference Proceedings (OSTI)

A theoretical analysis has been completed for a proposed induction logging tool designed to yield data which are used to generate three dimensional images of the region surrounding a well bore. The proposed tool consists of three mutually orthogonal magnetic dipole sources and multiple 3 component magnetic field receivers offset at different distances from the source. The initial study employs sensitivity functions which are derived by applying the Born Approximation to the integral equation that governs the magnetic fields generated by a magnetic dipole source located within an inhomogeneous medium. The analysis has shown that the standard coaxial configuration, where the magnetic moments of both the source and the receiver are aligned with the axis of the well bore, offers the greatest depth of sensitivity away from the borehole compared to any other source-receiver combination. In addition this configuration offers the best signal-to-noise characteristics. Due to the cylindrically symmetric nature of the tool sensitivity about the borehole, the data generated by this configuration can only be interpreted in terms of a two-dimensional cylindrical model. For a fill 3D interpretation the two radial components of the magnetic field that are orthogonal to each other must be measured. Coil configurations where both the source and receiver are perpendicular to the tool axis can also be employed to increase resolution and provide some directional information, but they offer no true 3D information.

ALUMBAUGH, DAVID L.; WILT, MICHAEL J.

1999-08-01T23:59:59.000Z

394

Characterization of Vadose Zone Sediment: Slant Borehole SX-108 in the S-SX Waste Management Area  

Science Conference Proceedings (OSTI)

This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.17. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the fourth in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from a slant borehole installed beneath tank SX-108 (or simply SX-108 slant borehole).

Serne, R. Jeffrey; Last, George V.; Schaef, Herbert T.; Lanigan, David C.; Lindenmeier, Clark W.; Ainsworth, Calvin C.; Clayton, Ray E.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Orr, Robert D.; Kutnyakov, Igor V.; Wilson, Teresa C.; Wagnon, Kenneth B.; Williams, Bruce A.; Burke, Deborah S.

2008-09-11T23:59:59.000Z

395

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

396

Single well seismic imaging of a gas-filled hydrofracture  

SciTech Connect

A single well seismic survey was conducted at the Lost Hills, Ca oil field in a monitoring well as part of a CO2 injection test. The source was a piezoelectric seismic source and the sensors were a string of hydrophones hanging below the source. The survey was processed using standard CMP reflection seismology techniques. A potential reflection event was observed and interpreted as being caused by a near vertical hydrofracture. The radial distance between the survey well and the hydrofracture is estimated from Kirchoff migration using a velocity model derived from cross well seismic tomography. The hydrofracture location imaged after migration agrees with the location of an existing hydrofracture.

Daley, Thomas M.; Gritto, Roland; Majer, Ernest L.

2003-08-19T23:59:59.000Z

397

Structural reliability analysis and seismic risk assessment  

SciTech Connect

This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed.

Hwang, H.; Reich, M.; Shinozuka, M.

1984-01-01T23:59:59.000Z

398

Seismic Monitoring Of Blasting Activity In Russia  

E-Print Network (OSTI)

Two significant mining regions in Russia lie near Novosibirsk and at the Kursk Magnetic Anomaly. A small percentage of events from these areas trigger the International Monitoring System (IMS). We have studied IMS recordings of events from these areas with the main goal of better understanding how these blasts are detonated and how these events will be most effectively monitored using IMS data. We have collected ground-truth information on the mining blasts and crustal structure in the area to facilitate modeling of the events. We have focused on sifting out from further consideration routine mining events and identifying detonation anomalies. We define master traces to represent tight clusters of mining events and to be used to identify anomalous events. We have examined recordings of events from eight significant event clusters in the 500-km-long Kuzbass/Abakan mining trend near Novosibirsk. The recordings were made by the IMS station ZAL. We see significant variations in the P onset and early coda between different events in clusters. We have found strong evidence of a detonation anomaly in just one of the events (out of 178 examined). Differences in the onset wave trains are attributed largely to differences in the firing patterns. Time independent spectral modulations have been observed in seismic signals produced by delay-fired mining events in mining regions throughout the world. The Novosibirsk trend is no exception to this rule. Delay-fired events in many mining regions, such as Kuzbass/Abakan, are also commonly associated with enhanced long-period (2- to 8-s) surface waves. The mine blasts in Russian mining regions appear, seismically, to resemble large blasts recorded in other regions (such as Wyoming). Techniques found to be effective in Wyoming, reviewed by...

Michael Hedlin University; Michael A. H. Hedlin

2002-01-01T23:59:59.000Z

399

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270°C) that boils to feed steam to the high-temperature

400

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Seismic Reflection Data and Conceptual Models for Geothermal Development in  

Open Energy Info (EERE)

Seismic Reflection Data and Conceptual Models for Geothermal Development in Seismic Reflection Data and Conceptual Models for Geothermal Development in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Reflection Data and Conceptual Models for Geothermal Development in Nevada Abstract Seismic reflection data were collected in two geothermalareas in Nevada to support geologic structural models andgeothermal well targeting. The data were integrated withsurface mapping, well results, and other geophysical data inconceptual geologic models in both areas. Faults wereinterpreted from reflection data based on reflector offsetsand apparent fault surface reflectors dipping away from therange front. Interpreted faults at Blue Mt., where severalwells have been drilled, correlated with well entries.Subsequent well targeting based on the conceptualstructural model

402

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Data Acquisition-Manipulation At Central Nevada Seismic Zone Region Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Determining heat loss is one more tool to use in geothermal exploration. It is relatively easy to calculate if the thermal aureole has been mapped with thermal gradient well measurements. With the heat loss information, predicted production capacity can be used to help review the system being explored.

403

Vertical Seismic Profiling (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

(Majer, 2003) (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Vertical Seismic Profiling Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

404

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

405

Rules and Regulations Governing Geophysical, Seismic or Other Type  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations Governing Geophysical, Seismic or Other Type Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Geophysical, seismic or Other Type Exploration on State-Owned Lands Other than State-Owned Marine Waters is applicable to the Natural Gas Sector and the Coal with CCS Sector. This law

406

Definition: Teleseismic-Seismic Monitoring | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Teleseismic-Seismic Monitoring Jump to: navigation, search Dictionary.png Teleseismic-Seismic Monitoring Teleseismic monitoring is a technique to seismically image an area utilizing earthquakes originating from distances greater than 1,000 km from the measurement site.[1] View on Wikipedia Wikipedia Definition A teleseism is the tremor caused by an earthquake that is very far away. According to the USGS, the term, teleseismic refers to earthquakes that occur more than 1000 km from the measurement site. Often teleseismic events can be picked up only by seismometers that are in low background noise locations; whereas, in general, a tremor of a magnitude 5.3 earthquake can be seen anywhere in the world with modern seismic

407

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

408

Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan  

Science Conference Proceedings (OSTI)

Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and the dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.

Ayyubova, Leyla J. [Geology Institute, Azerbaijan National Academy of Sciences, 29A, H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

409

Non-linear Seismic Soil Structure Interaction Method for Developing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF A HIGH- TEMPERATURE GAS-COOLED REACTOR (HTGR)" Kennedy, R.P. e.t. all. 1975 * NUREGCR-6957, CORRELATION OF ANALYSIS OF JNES SEISMIC WALL PRESSURE DATA FOR ABWR MODEL...

410

3-D Seismic Methods For Geothermal Reservoir Exploration And...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The...

411

Hypercube performance for 2-D seismic finite-difference modeling  

Science Conference Proceedings (OSTI)

Wave-equation seismic modeling in two space dimensions is computationally intensive, often requiring hours of supercomputer CPU time to run typical geological models with 500 500 grids and 100 sources. This paper analyzes the performance of ACOUS2D, ...

L. J. Baker

1989-01-01T23:59:59.000Z

412

Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran  

Science Conference Proceedings (OSTI)

This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrence relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.

Amiri, G. Ghodrati [Iran University of Science and Technology--Islamic Azad University of Shahrekord, Narmak, Tehran 16846 (Iran, Islamic Republic of); Dehkordi, M. Raeisi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of); Amrei, S. A. Razavian [College of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Kamali, M. Koohi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

413

Effects of Recent Environmental Changes on Global Seismicity and Volcanism  

Science Conference Proceedings (OSTI)

A covariation of recent global environmental changes and seismicity on Earth is demonstrated. Presently, rising concern about anthropogenic activities and their consequences on the cryosphere and environment have always overlooked changes related ...

Evgeny A. Podolskiy

2009-05-01T23:59:59.000Z

414

Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...  

Open Energy Info (EERE)

mW 0.385 GW 3.85e-4 TW Plants Included in Planned Estimate 4 Plants with Unknown Planned Capacity 9 Geothermal Areas within the Central Nevada Seismic Zone Geothermal Region...

415

The retrofitting of existing buildings for seismic criteria  

E-Print Network (OSTI)

This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

Besing, Christa, 1978-

2004-01-01T23:59:59.000Z

416

Understanding seismic design criteria for Japanese nuclear power plants  

SciTech Connect

This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with US criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton, NY (United States); Costello, J.F. [US Nuclear Regulatory Commission, Washington, DC (United States)

1994-12-31T23:59:59.000Z

417

Design of innovative dynamic systems for seismic response mitigation  

E-Print Network (OSTI)

Rocking wall systems consist of shear walls, laterally connected to a building, that are moment-released in their strong plane. Their purpose is to mitigate seismic structural response by constraining a building primarily ...

Seymour, Douglas (Douglas Benjamin)

2012-01-01T23:59:59.000Z

418

Applicaiton of the Computer Program SASSI for Seismic SSI Analysis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop October...

419

Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 Motivation * Understand the...

420

Statistical study of seismicity associated with geothermal reservoirs in California  

DOE Green Energy (OSTI)

Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity are diffuse and appear unsuitable for defining the areal extent of the reservoir. However, from the temporal characteristics of the seismicity associated with these regions a general discriminant was constructed that combines several physical parameters for identifying the presence of a geothermal system.

Hadley, D.M.; Cavit, D.S.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "optic borehole seismic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Modeling-Computer Simulations At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

422

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

423

Third Quater Seismic Report for Fiscal Year 2007  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, 16 local earthquakes were recorded during the third quarter of fiscal year 2007. The largest event (magnitude 2.0) occurred on April 16, 2007 and was located 4 km southwest of the 400 Area in the Columbia River basalts at a depth of approximately 3 km. Stratigraphically, 7 earthquakes occurred in the Columbia River basalts (approximately 0-5 km depth), 1 earthquake in the pre-basalt sediments (approximately 5-10 km depth), and 8 earthquakes in the crystalline basement (approximately 10-25 km depth). Geographically, 8 earthquakes occurred in swarm areas, and 8 earthquakes were classified as random events. The Hanford SMA network was triggered on the 300 Area and the 400 Area SMA by the 2.0 Mc seismic event that occurred on April 16, 2007. The maximum vertical acceleration was 0.07 % g and the maximum horizontal acceleration was 0.05% g at the 300 Area SMA, 13.5 km from the event. At the 400 Area SMA, only 5.2 km from the event, the maximum vertical acceleration was 0.25 % g and the maximum horizontal acceleration was 0.23% g. These are the first recordings of a small local earthquake on the SMA network. The reportable action level of 2% g for Hanford facilities is approximately 8 times larger than the peak accelerations observed at the 400 Area and no action was required.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2007-09-19T23:59:59.000Z

424

Experience Based Seismic Verification Guidelines for Overhead Crane Systems: Volume I - Seismic Review Procedure; Volume II - Performance of Overhead Cranes in Strong Motion Earthquakes  

Science Conference Proceedings (OSTI)

This report provides guidelines that can be used to perform an experience-based seismic capability verification of overhead cranes systems at nuclear power plants. The report summarizes seismic experience data from strong-motion earthquakes for these systems and identifies the characteristics of systems that could lead to failure or unacceptable behavior in an earthquake. The seismic experience data show that overhead crane systems exhibit extremely good performance under strong-motion seismic loading, w...

2005-06-08T23:59:59.000Z

425

Seismicity related to geothermal development in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

Ryall, A.S.; Vetter, U.R.

1982-07-08T23:59:59.000Z

426

Seismic review of vault for MFTF upgrade project  

SciTech Connect

This letter report was prepared in accordance with the scope of work for the preconceptual seismic evaluation of the (..cap alpha.. + T) Tandem Mirror Fusion Machine concrete vault. The scope of the work was developed with the assistance of the Bechtel site representative Dr. Sunil Ghose. The report contains comments and preconceptual recommendations on wall upgrading for an 150-ton crane installation, concrete vault seismic capability for (..cap alpha.. + T) conditions, and recommendations for future work.

Franklin, H.A.

1983-09-29T23:59:59.000Z

427

Fracture Detection and Water Sweep Characterization Using Single-well Imaging, Vertical Seismic Profiling and Cross-dipole Methods in Tight and Super-k Zones, Haradh II, Saudi Arabia  

E-Print Network (OSTI)

This work was conducted to help understand a premature and irregular water breakthrough which resulted from a waterflooding project in the increment II region of Haradh oilfield in Saudi Arabia using different geophysical methods. Oil wells cannot sustain the targeted oil production rates and they die much sooner than expected when water enters the wells. The study attempted to identify fracture systems and their role in the irregular water sweep. Single-well acoustic migration imaging (SWI), walkaround vertical seismic profiling (VSP) and cross-dipole shear wave measurements were used to detect anisotropy caused by fractures near and far from the borehole. The results from all the different methods were analyzed to understand the possible causes of water fingering in the field and determine the reasons for discrepancies and similarities of results of the different methods. The study was done in wells located in the area of the irregular water encroachment in Haradh II oilfield. Waterflooding was performed, where water was injected in the water injector wells drilled at the flanks of Harahd II toward the oil producer wells. Unexpected water coning was noticed in the west flank of the field. While cross-dipole and SWI measurements of a small-scale clearly identify a fracture oriented N60E in the upper tight zone of the reservoir, the VSP measurements of a large-scale showed a dominating fracture system to the NS direction in the upper highpermeability zone of the same reservoir. These results are consistent with the directions of the three main fracture sets in the field at N130E, N80E and N20E, and the direction of the maximum horizontal stress in the field varies between N50E and N90E. Results suggested that the fracture which is detected by cross-dipole at 2 to 4 ft from the borehole is the same fracture detected by SWI 65 ft away from the borehole. This fracture was described using the SWI as being 110 ft from top to bottom, having an orientation of N60E and having an angle of dip of 12 relative to the vertical borehole axis. The detected fracture is located in the tight zone of the reservoir makes a path for water to enter the well from that zone. On the Other hand, the fractures detected by the large-scale VSP measurements in the NS direction are responsible for the high-permeability in the upper zone of the reservoir.

Aljeshi, Hussain Abdulhadi A.

2012-05-01T23:59:59.000Z

428

Virginia Regional Seismic Network. Final report (1986--1992)  

SciTech Connect

In 1986, the Virginia Regional Seismic Network was one of the few fully calibrated digital seismic networks in the United States. Continued operation has resulted in the archival of signals from 2,000+ local, regional and teleseismic sources. Seismotectonic studies of the central Virginia seismic zone showed the activity in the western part to be related to a large antiformal structure while seismicity in the eastern portion is associated spatially with dike swarms. The eastern Tennessee seismic zone extends over a 300x50 km area and is the result of a compressive stress field acting at the intersection between two large crustal blocks. Hydroseismicity, which proposes a significant role for meteoric water in intraplate seismogenesis, found support in the observation of common cyclicities between streamflow and earthquake strain data. Seismic hazard studies have provided the following results: (1) Damage areas in the eastern United States are three to five times larger than those observed in the west. (2) Judged solely on the basis of cataloged earthquake recurrence rates, the next major shock in the southeast region will probably occur outside the Charleston, South Carolina area. (3) Investigations yielded necessary hazard parameters (for example, maximum magnitudes) for several sites in the southeast. Basic to these investigations was the development and maintenance of several seismological data bases.

Bollinger, G.A.; Sibol, M.S.; Chapman, M.C.; Snoke, J.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (US). Seismological Observatory

1993-07-01T23:59:59.000Z

429

Seismic design and evaluation criteria based on target performance goals  

SciTech Connect

The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion.

Murray, R.C.; Nelson, T.A. [Lawrence Livermore National Lab., CA (United States); Kennedy, R.P. [Structural Mechanics Consulting, Inc., Yorba Linda, CA (United States); Short, S.A. [EQE International, Inc., Irvine, CA (United States)

1994-04-01T23:59:59.000Z

430

High temperature testing of the EDCON borehole gravity housing system conducted at Los Alamos National Laboratories, January 12-18, 1986  

DOE Green Energy (OSTI)

A series of tests were conducted on the EDCON borehole gravity meter (BHGM) high temperature sonde. The tests were conducted to determine the suitability of this sonde for logging operations in the Department of Energy Salton Trough test well. 1 ref., 3 figs., 4 tabs.

Not Available

1986-01-01T23:59:59.000Z

431

3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines  

Science Conference Proceedings (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2008-03-01T23:59:59.000Z

432

Results of 1999 Spectral Gamma-Ray and Neutron Moisture Monitoring of Boreholes at Specific Retention Facilities in the 200 East Area, Hanford Site  

SciTech Connect

Twenty-eight wells and boreholes in the 200 East Are% Hanford Site, Washington were monitored in 1999. The monitored facilities were past-practice liquid waste disposal facilities and consisted of six cribs and nineteen ''specific retention'' cribs and trenches. Monitoring consisted of spectral gamma-ray and neutron moisture logging. All data are included in Appendix B. The isotopes {sup 137}Cs, {sup 60}Co, {sup 235}U, {sup 238}U, and {sup 154}Eu were identified on spectral gamma logs from boreholes monitoring the PUREX specific retention facilities; the isotopes {sup 137}Cs, {sup 60}Co, {sup 125}Sb, and {sup 154}Eu were identified on the logs from boreholes at the BC Controlled Area cribs and trenches; and {sup 137}Cs, {sup 60}Co, and {sup 125}Sb were, identified on the logs from boreholes at the BX specific retention trenches. Three boreholes in the BC Controlled Area and one at the BX trenches had previous spectral gamma logs available for comparison with 1999 logs. Two of those logs showed that changes in the subsurface distribution of {sup 137}CS and/or {sup 60}Co had occurred since 1992. Although the changes are not great, they do point to continued movement of contaminants in the vadose zone. The logs obtained in 1999 create a larger baseline for comparison with future logs. Numerous historical gross gamma logs exist from most of the boreholes logged. Qualitative comparison of those logs with the 1999 logs show many substantial changes, most of which reflect the decay of deeper short-lived isotopes, such as {sup 106}Ru and {sup 125}Sb, and the much slower decay of shallower and longer-lived isotopes such as {sup 137}Cs. The radionuclides {sup 137}Cs and {sup 60}Co have moved in two boreholes since 1992. Given the amount of movement and the half-lives of the isotopes, it is expected that they will decay to insignificant amounts before reaching groundwater. However, gamma ray logging cannot detect many of the contaminants of interest such as {sup 99}Tc, NO{sub 3}, or {sup 129}I, all of which can be highly mobile in the vadose zone and, for the radionuclides, have long half-lives.

DG Horton; RR Randall

2000-01-18T23:59:59.000Z

433

200-DV-1OU Sediment and Pore Water Analysis and Report for Samples at Borehole C8096  

Science Conference Proceedings (OSTI)

This is an analytical data report for sediment samples received at 200-DV-1 OU. On August 30, 2011 sediment samples were received from 200-DV-1 OU Borehole C8096 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

Lindberg, Michael J.

2011-10-01T23:59:59.000Z

434

Annual Hanford Seismic Report for Fiscal Year 2008  

SciTech Connect

The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and 119 degrees and 120 degrees west longitude). The event was not reported as being felt on the Hanford Site or causing any damage and was communicated to the Pacific Northwest National Laboratory Operations Center per HSAP communications procedures. The event is not considered to be significant with regard to site safety and not unprecedented given the sites seismic history. The Hanford strong motion accelerometer (SMA) stations at the 200 East Area, 300 Area, and 400 Area were triggered by the May 18 event. The maximum acceleration recorded at the SMA stations (0.17% at the 300 Area) was 12 times smaller than the reportable action level (2% g) for Hanford Site facilities.

Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

2008-12-29T23:59:59.000Z

435

Seismic Behaviour of Vertical Mass Isolated Structures  

SciTech Connect

In this paper, the seismic behaviour of vertical mass isolated structures against the earthquake is studied. These structures are assumed to be consisted of two subsystems. Mass subsystem possesses low lateral stiffness but carries the major part of mass of the system. Stiffness subsystem, however, controls the deformation of the mass subsystem and attributes with much higher stiffness. The isolator layer is, therefore, located in between the mass and the stiffness subsystems and assumed to be a viscous damper layer. The analytical model used for this investigation is a dual mass-spring model which is an extended form of the three element Maxwell model. In this study, the ability of mass isolation techniques in reducing earthquake effects on buildings with two approaches, parametric and numerical approaches, is shown. In the parametric approach, by definition an isolation factor for structure and determination the dynamic characteristics of system, the relative optimum value of the isolator damping coefficient is obtained. The results provide an insight on role of relative stiffness and mass ratio of the two subsystems. Finally, in the numerical approach, the spectral responses of these structures due to the earthquake are investigated. The results show a noticeable decrease in earthquake input force to vertical mass isolated structures in comparison with non-isolated structures.

Nekooei, M.; Ziyaeifar, M. [Structural Engineering Research Centre, International Institute of Earthquake Engineering and Seismology (IIEES), P.O. Box 19395-3913, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

436

Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) | Open  

Open Energy Info (EERE)

2012) 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011-2012) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were analyzed to improve hypocentral locations and simultaneously invert for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated since the 1980's. 2012: 14 years of seismicity in the Coso Geothermal Field were relocated using differential travel times and simultaneously invert for

437

Azimuthal variation of radiation of seismic energy from cast blasts  

SciTech Connect

As part of a series of seismic experiments designed to improve the understanding of the impact of mining blasts on verifying a Comprehensive Test Ban Treaty, a sixteen station network of three-component seismic sensors were deployed around a large cast shot in the Black Thunder Mine. The seismic stations were placed, where possible, at a range of 2.5 kilometers with a constant inter-station spacing of 22.5 degrees. All of the data were recorded with the seismometers oriented such that the radial component pointed to the middle point of the approximately 2 kilometer long shot. High quality data were recorded at each station. Data were scaled to a range of 2.5 kilometers and the sum of the absolute value of the vertical, radial, and transverse channels computed. These observations were used to construct radiation patterns of the seismic energy propagating from the cast shot. It is obvious that cast shots do not radiate seismic energy isotropically. Most of the vertical motion occurs behind the highwall while radial and transverse components of motion are enhanced in directions parallel to the highwall. These findings have implications for local (0.1 to 15 kilometer range) and possibly for regional (100 to 2,000 kilometer range) seismic observations of cast blasting. Locally, it could be argued that peak particle velocities could be scaled not only by range but also by azimuthal direction from the shot. This result implies that long term planning of pit orientation relative to sensitive structures could mitigate problems with vibration levels from future blasting operations. Regionally, the local radiation pattern may be important in determining the magnitude of large scale cast blasts. Improving the transparency of mining operations to international seismic monitoring systems may be possible with similar considerations.

Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Martin, R.L. [Thunder Basin Coal Co., Wright, WY (United States)

1996-12-31T23:59:59.000Z

438

Seismic response analyses for reactor facilities at Savannah River  

Science Conference Proceedings (OSTI)

The reactor facilities at the Savannah River Plant (SRP) were designed during the 1950's. The original seismic criteria defining the input ground motion was 0.1 G with UBC (uniform building code) provisions used to evaluate structural seismic loads. Later ground motion criteria have defined the free field seismic motion with a 0.2 G ZPA (free field acceleration) and various spectral shapes. The spectral shapes have included the Housner spectra, a site specific spectra, and the US NRC (Nuclear Regulatory Commission) Reg. Guide 1.60 shape. The development of these free field seismic criteria are discussed in the paper. The more recent seismic analyses have been of the following type: fixed base response spectra, frequency independent lumped parameter soil/structure interaction (SSI), frequency dependent lumped parameter SSI, and current state of the art analyses using computer codes such as SASSI. The results from these computations consist of structural loads and floor response spectra (used for piping and equipment qualification). These results are compared in the paper and the methods used to validate the results are discussed. 14 refs., 11 figs.

Miller, C.A. Costantino, C.J. (City Univ. of New York, NY (USA)); Xu, J. (Brookhaven National Lab., Upton, NY (USA))

1991-01-01T23:59:59.000Z

439

Seismic Hazard Assessment of Tehran Based on Arias Intensity  

SciTech Connect

In this paper probabilistic seismic hazard assessment of Tehran for Arias intensity parameter is done. Tehran is capital and most populated city of Iran. From economical, political and social points of view, Tehran is the most significant city of Iran. Since in the previous centuries, catastrophic earthquakes have occurred in Tehran and its vicinity, probabilistic seismic hazard assessment of this city for Arias intensity parameter is useful. Iso-intensity contour lines maps of Tehran on the basis of different attenuation relationships for different earthquake periods are plotted. Maps of iso-intensity points in the Tehran region are presented using proportional attenuation relationships for rock and soil beds for 2 hazard levels of 10% and 2% in 50 years. Seismicity parameters on the basis of historical and instrumental earthquakes for a time period that initiate from 4th century BC and ends in the present time are calculated using Tow methods. For calculation of seismicity parameters, the earthquake catalogue with a radius of 200 km around Tehran has been used. SEISRISKIII Software has been employed. Effects of different parameters such as seismicity parameters, length of fault rupture relationships and attenuation relationships are considered using Logic Tree.

Amiri, G. Ghodrati [Center of Excellence for Fundamental Studies in Structural Engineering, College of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 16846 (Iran, Islamic Republic of); Mahmoodi, H. [College of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Amrei, S. A. Razavian [College of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

440