Powered by Deep Web Technologies
Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

MHK Projects/Reedsport OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Reedsport OPT Wave Park Reedsport OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.22,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

2

MHK Projects/Coos Bay OPT Wave Park | Open Energy Information  

Open Energy Info (EERE)

Coos Bay OPT Wave Park Coos Bay OPT Wave Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3664,"lon":-124.218,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

3

MHK Projects/Centreville OPT Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Centreville OPT Wave Energy Park Centreville OPT Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5761,"lon":-124.264,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

4

MHK Projects/Reedsport OPT Wave Park Expanded Project | Open Energy  

Open Energy Info (EERE)

Reedsport OPT Wave Park Expanded Project Reedsport OPT Wave Park Expanded Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.798,"lon":-124.24,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

5

Microsoft Word - G0421-ReedsportWavePark-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum John Schaad Customer Service Engineering - TPC-ALVEY Proposed Action: Reedsport OPT Wave Park Generation Integration (G0421) Budget Information: Work Order # 246379, Task # 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.7: "Acquisition, installation, operation, and removal of communication systems..." B4.6: "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." Location: Douglas County, Oregon Proposed by: Douglas Electric Cooperative (DEC), Bonneville Power Administration (BPA) Description of the Proposed Action: Ocean Power Technologies, Inc. (OPT) has requested to

6

MHK Projects/Santona Wave Energy Park | Open Energy Information  

Open Energy Info (EERE)

Santona Wave Energy Park Santona Wave Energy Park < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4421,"lon":-3.45319,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

7

DYN-OPT Users Manual  

E-Print Network (OSTI)

Hall (1996). LANE-OPT Users Manual Version 1.0, PATH WorkingBERKELEY DYN-OPT Users Manual Cenk Caliskan Randolph W. Hall1055-1417 DYN-OPT Users Manual December, 1996 Cenk Caliskan

Caliskan, C.; Hall, R. W.

1997-01-01T23:59:59.000Z

8

GenOpt  

NLE Websites -- All DOE Office Websites (Extended Search)

GenOpt A multi-parameter optimization program designed for minimization of an objective function, such as annual energy use, that is calculated by an external simulation program...

9

OPT's Reedsport Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPT's Reedsport Project OPT's Reedsport Project Summary of Licensing and Permitting As of April 13, 2011 Single PowerBuoy ® and DOE Project The scope of the DOE Reedsport Deployment and Ocean Test project (DE-EE0003646) is the installation of a single autonomous PowerBuoy at Reedsport, Oregon followed by two (2) years of operation in the Oregon Territorial Sea (TRL 7/8 Relevant Environment). Since the single PowerBuoy will not be grid connected, the lead Federal Agency for this effort is the U.S. Army Corps of Engineers. OPT filed a Joint Permit Application and draft Biological Assessment with the Corps and has secured the following permits and/or authorizations for the single PowerBuoy deployment which are posted on the DOE's NEPA EF1 website: o Corps Permit NWP-2007-62, which includes conditions from National Marine Fisheries

10

OPT Annual Report, FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPT Annual Report, FY 2012 OPT Annual Report, FY 2012 i Executive Summary The Office of Environmental Management (EM) was established to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Many problems posed by its operations are unique, and include the transportation of unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures during remediation of the contaminated sites. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material and waste. The mission of the Department of Energy (DOE) Office of Packaging and Transportation (OPT) positioned

11

OPT  

NLE Websites -- All DOE Office Websites (Extended Search)

Deposition Laboratory Deposition Laboratory Objective: To help develop reflective optical elements as well as experimental samples for all the APS users. Description: The deposition laboratory is located in class 10,000 cleanroom on the APS experiment hall floor near sector 1. In addition, an air-class 1 cleanhood is available and is used for handling and loading optics. Large (1.5 m) Sputter Deposition System The 1.5 m sputter deposition system consists of four large vacuum chambers, each 16" in diameter (406 mm) and 66" (1670 mm) long . The first chamber next to the clean hood is a load lock chamber isolated from the other three chambers by a computer-controlle 1.5 m Sputter Deposition System d gate valve. Mirror substrates as large as 150 cm long, 20 cm wide, and 14 cm high can

12

Building Energy Software Tools Directory: GenOpt  

NLE Websites -- All DOE Office Websites (Extended Search)

TRACE, TRNSYS, etc., or any user-written program). GenOpt is written entirely in Java so that it is platform independent. An interface for coupling external simulation...

13

Difficult OptEase Filter Retrievals After Prolonged Indwelling Times  

SciTech Connect

PurposeThe OptEase vena cave filter (Cordis, Piscataway, NJ) is commercially available as a retrievable or permanent filter with short recommended indwelling time, presumably due to extensive contact of the filter side struts with the inferior vena cava wall and subsequent neointimal hyperplasia leading to incorporation. Our purpose was to evaluate OptEase filter retrievals with a long indwelling time period that required unconventional retrieval techniques.Materials and MethodsWe retrospectively reviewed patients who underwent OptEase filter retrieval with long undwelling times requiring additional maneuvers for retrieval. Techniques used included rigid endobronchial forceps dissection and wire-through-loop snare. Each patient underwent postretrieval venogram to evaluate for possible complications. In addition, patients had clinical follow-up 2 weeks after the retrieval procedure.ResultsThere were three patients (2 women, 1 man; average age 64 years) who underwent OptEase filter retrieval. The mean indwelling time was 6.4 months. The indwelling filters were successfully retrieved. There were no complications. Postprocedural follow-up showed no clinical pathology.ConclusionUnconventional techniques aided in the retrieval of OptEase filters with long indwelling times.

Van Ha, Thuong G., E-mail: tgvanha@radiology.bsd.uchicago.edu; Kang, Lisa; Lorenz, Jonathan; Zangan, Steven; Navuluri, Rakesh; Straus, Christopher; Funaki, Brian [University of Chicago, Section of Interventional Radiology, Department of Radiology (United States)

2013-08-01T23:59:59.000Z

14

OSTI Web Measurement and Tracking Opt-Out | OSTI, US Dept of Energy, Office  

Office of Scientific and Technical Information (OSTI)

OSTI Web Measurement and Tracking Opt-Out OSTI Web Measurement and Tracking Opt-Out As you use this website, OSTI collects web measurement and tracking data. For full details see User Privacy under Website Policies and Important Links. If you do not wish to participate in this web measurement and tracking activity, you may opt-out of this information collection by clicking on the opt-out button on this page. To opt-out, it is necessary to install a cookie on your computer. This cookie identifies that you have opted-out. If you delete the opt-out cookie, if you change computers or Web browsers, or upgrade your existing browser, you will need to opt-out again. I wish to be excluded from web measurement and tracking. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services

15

A 2-Opt based differential evolution for global optimization  

Science Conference Proceedings (OSTI)

Differential evolution (DE) is a simple and effective global optimization algorithm. It has been successfully applied to solve a wide range of real-world optimization problems. However, DE has shown some weaknesses, especially the long computational ... Keywords: 2-Opt algorithm, Differential evolution, Optimization

Cheng-Wen Chiang; Wei-Ping Lee; Jia-Sheng Heh

2010-09-01T23:59:59.000Z

16

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 4, January 9, 2001 Welcome to Research Park Notes Look for tidbits of information on...

17

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 3, December 19, 2000 Welcome to Research Park Notes Look for tidbits of information...

18

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 7, February 20, 2001 Welcome to Research Park Notes Look for tidbits of information...

19

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 9, March 20, 2001 Welcome to Research Park Notes Look for tidbits of information on...

20

Oak Ridge National Environmental Research Park -- Research Park...  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Newsletter Oak Ridge National Environmental Research Park Research Park Notes Issue 5, January 23, 2001 Welcome to Research Park Notes Look for tidbits of information on...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clean Cities National Parks Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of...

22

Parking Infrastructure and the Environment  

E-Print Network (OSTI)

A B O U T how parking infrastructure affects energy demand,the extensive parking infrastructure, including the costs ofdata on parking infrastructure. For example, consider the

Chester, Mikhail; Horvath, Aprad; Madanat, Samer

2011-01-01T23:59:59.000Z

23

NREL-Optimizing Rooftop Space with SolOpt Presentation | Open Energy  

Open Energy Info (EERE)

NREL-Optimizing Rooftop Space with SolOpt Presentation NREL-Optimizing Rooftop Space with SolOpt Presentation Jump to: navigation, search Tool Summary Name: Optimizing Rooftop Space with SolOpt Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Buildings, Solar Topics: Implementation, Technology characterizations Resource Type: Presentation, Guide/manual, Training materials Website: www.solaramericacities.energy.gov/pdfs/2010_annual_meeting/Thu400_SWH_ Optimizing Rooftop Space with SolOpt Screenshot References: Optimizing Rooftop Space with SolOpt[1] Logo: Optimizing Rooftop Space with SolOpt This presentation answers the question: "How do you decide what type of solar system should be used for a specific facility?" References ↑ "Optimizing Rooftop Space with SolOpt"

24

ReOpt[trademark] V2.0 user guide  

Science Conference Proceedings (OSTI)

Cleaning up the large number of contaminated waste sites at Department of Energy (DOE) facilities in the US presents a large and complex problem. Each waste site poses a singular set of circumstances (different contaminants, environmental concerns, and regulations) that affect selection of an appropriate response. Pacific Northwest Laboratory (PNL) developed ReOpt to provide information about the remedial action technologies that are currently available. It is an easy-to-use personal computer program and database that contains data about these remedial technologies and auxiliary data about contaminants and regulations. ReOpt will enable engineers and planners involved in environmental restoration efforts to quickly identify potentially applicable environmental restoration technologies and access corresponding information required to select cleanup activities for DOE sites.

White, M K; Bryant, J L

1992-10-01T23:59:59.000Z

25

MOTORWEEK YELLOWSTONE NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

26

Amusement Park Physics!  

NLE Websites -- All DOE Office Websites (Extended Search)

Amusement Park Physics If you have an idea for a great field trip, please click our Ideas page Amusement Park Physics, or Physics Day, is a program which seeks to teach students...

27

Green Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Parks Steve Butterworth National Park Service 60 National Parks 2007 30,000 MWH $3,700,000 6,400,000 GSF 139 MWH Green 495 MWH RE 2 Green Energy Parks PARTNERSHIP Department of Interior - National Park Service Department of Energy - Office of Energy Efficiency and Renewable Energy Partnership established by  Established by Interagency MOU  Signed September 2007  Guided by interagency task force co-chaired by DOI/NPS and DOE/FEMP 3 Green Energy Parks GOALS  Serve as proving ground for emerging green energy technologies  Meet or exceed EPACT 2005 and E.O. 13423 Federal energy management mandates 4 Green Energy Parks Drivers  Improve the energy efficiency of facilities and vehicle fleets in advance of the NPS 2016

28

Preserving DOE's Research Parks  

NLE Websites -- All DOE Office Websites (Extended Search)

listed species on its re- search site. The Arid Lands Ecological Reserve at the Hanford Research Park contains the only sizable remaining fragment of shrub-steppe in...

29

Premium Power Industrial Park Design  

Science Conference Proceedings (OSTI)

This report is intended to provide insights on the consideration, design, and implementation of power quality (PQ) parks -- business parks where superb electric power quality, reliability, and availability (QRA) are optimized for the businesses within the park.

2002-02-14T23:59:59.000Z

30

Free Parking or Free Markets  

E-Print Network (OSTI)

chalice, providing ample free parking while hiding the manyShoup. 2011. The High Cost of Free Parking, revised edition,Free Parking or Free Markets DONALD SHOUP It is no doubt

Shoup, Donald

2011-01-01T23:59:59.000Z

31

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATES OF AMERICA STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon NOTICE OF AVAILABILITY OF ENVIRONMENTAL ASSESSMENT (December 3, 2010) In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project

32

Web Measurement and Tracking Opt-Out | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Web Policies » Web Measurement and Tracking Web Policies » Web Measurement and Tracking Opt-Out Web Policies Web Measurement and Tracking Opt-Out Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Web Measurement and Tracking Opt-Out Print Text Size: A A A RSS Feeds FeedbackShare Page As you use this website, the Office of Science collects web measurement and tracking data. For full details see User Privacy. If you do not wish to participate in this web measurement and tracking activity, you may opt-out of this information collection by clicking on the opt-out button on this page. To opt-out, it is necessary to install a cookie on your computer. This cookie identifies that you have opted-out. If you delete the opt-out cookie, if you change computers or Web browsers, or upgrade your existing

33

Building a 100 Mpixel graphics device for the OptIPuter  

Science Conference Proceedings (OSTI)

Wide area optical lambda networks create new possibilities for data-intensive scientific research and collaboration. One initiative to create novel infrastructure is the OptIPuter project which aims to build a distributed virtual computer using optical ... Keywords: OptIPuter, UDP, lambda switching, optical networks, remote visualization, streaming video, ultra-high resolution visualization

Bram Stolk; Paul Wielinga

2006-10-01T23:59:59.000Z

34

Novel Audio Amplifier System Using Opt-Coupling of LED and PD  

Science Conference Proceedings (OSTI)

This paper proposes a completely new and simple audio amplifier system using the opt-coupling of LED (Light Emitting Diode) and PD (Photo Diode), without using conventional devices such as Transistor IC and Vacuum Tube. This paper also explains that ... Keywords: audio amplifier, LED and PD, opt-coupling, distar, transistor, low noise, kansei product

Junichi Fujita, Tetsuo Hattori, Kensho Okamoto

2013-07-01T23:59:59.000Z

35

Research Park Notes, Issue 20  

NLE Websites -- All DOE Office Websites (Extended Search)

0, September 4, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

36

Research Park Notes, Issue 14  

NLE Websites -- All DOE Office Websites (Extended Search)

4, May 29, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

37

Research Park Notes, Issue 17  

NLE Websites -- All DOE Office Websites (Extended Search)

7, July 24, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

38

Research Park Notes, Issue 16  

NLE Websites -- All DOE Office Websites (Extended Search)

6, July 10, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

39

Research Park Notes, Issue 22  

NLE Websites -- All DOE Office Websites (Extended Search)

2, October 2, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

40

Research Park Notes, Issue 25  

NLE Websites -- All DOE Office Websites (Extended Search)

5, November 13, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Research Park Notes, Issue 15  

NLE Websites -- All DOE Office Websites (Extended Search)

5, June 12, 2001 Welcome to Research Park Notes Look for tidbits of information on National Environmental Research Park activities, observations, and users every couple of weeks....

42

SolOpt: A Novel Approach to Solar Rooftop Optimization  

DOE Green Energy (OSTI)

Traditionally Photovoltaic Technology (PV) and Solar Hot Water Technology (SHW) have been designed with separate design tools, making it difficult to determine the appropriate mix of PV and SHW. A new tool developed at the National Renewable Energy Laboratory changes how the analysis is conducted through an integrated approach based on the life cycle cost effectiveness of each system. With 10 inputs someone with only basic knowledge of the building can simulate energy production from PV and SHW, and predict the optimal sizes of the systems. The user can select from four optimization criteria currently available: Greenhouse Gas Reduction, Net-Present Value, Renewable Energy Production, and Discounted Payback Period. SolOpt provides unique analysis capabilities that aren't currently available in any other software programs. Validation results with industry accepted tools for both SHW and PV are presented.

Lisell, L.; Metzger, I.; Dean, J.

2011-01-01T23:59:59.000Z

43

NREL: Sustainable NREL - Parking Garage  

NLE Websites -- All DOE Office Websites (Extended Search)

Parking Garage Parking Garage A photo of a grey, five-story, above-ground parking garage. Solar panels are seen installed on the roof of the structure. NREL's multi-story parking garage. NREL's parking garage proves that large garages can be designed and built sustainably-at no additional cost. And although parking garages don't qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) certification, NREL designed the parking garage to LEED Platinum standards to maximize energy savings and environmental stewardship. The structure is expected to perform 90% better than a standard garage built just to code. Fast Facts Cost: $14,172 per parking space Cost is typically $15,500 to $24,500 per parking space Square Feet: 578,320 Parking Spaces: 1,800

44

Won Young Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Won Park Won Park Won Young Park International Energy Studies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2144 (510) 495-2252 WYPark@lbl.gov Won Young Park is a senior research associate at Lawrence Berkeley National Laboratory (LBNL). He is working on technical analysis for televisions, computer monitors, and lighting for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative. In the studies, he assesses energy savings potential in efficiency improvement options, evaluates cost effectiveness of key technologies, and provides technical information and recommendations for policies and programs designed to accelerate the adoption of efficient technologies. He also supports a Korea project that

45

Sang-Jae Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Sang-Jae Park Sang-Jae Park Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 70-0128 (510) 495-8161 SangJaePark@lbl.gov Sang-Jae Park is a Postdoctoral Researcher at Environmental Energy Technology Division in Lawrence Berkeley National Laboratory. He received his BS and MS degrees in Chemical Engineering from Seoul National University and his PhD degree in Chemistry from University of Pennsylvania in the study of conducting polymers. In the graduate works, he studied a novel class of amphiphilic conducting block-copolymers composed of a widely studied conjugated polymer. His current research in LBNL is focused on the development of conductive polymer binders for lithium ion batteries. By

46

Green Energy Parks Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Program Energy Parks Program Terry Brennan NPS Green Energy Parks Coordinator Federal Utility Partnership Working Group Meeting April 15 th , 2008 Overview  Energy Consumption in the NPS  Green Energy Parks Program  Questions and Discussion NPS Energy Consumption NPS Assets by Type and Region - The NPS is comprised of 391 units encompassing more than 8 million acres-with tens of thousands of assets within seven regions - 2,000 4,000 6,000 8,000 10,000 12,000 14,000 Intermountain 13,793 (24%) Pacific West 12,450 (21%) Southeast 10,877 (19%) Northeast 9,036 (16%) Midwest 6,351 (11%) National Capital 3,708 (6%) Alaska 1,745 (3%) Count of Assets All Other Paved/Unpaved Roads Wastewater System Water System Campgrounds Trails Housing Buildings - - - - NPS Inventory Summary

47

FORSYTHFORSYTH FOREST PARKFOREST PARK  

E-Print Network (OSTI)

Bryan Hall(195), Jolley Hall(129), Cyclotron Bldg.(113), McMillen Lab Bldg.(196), Power Plant/House(142 Garage 28 Parking lot #40, just south of Plant Growth Greenhouse Life Sciences Bldg.(243), Plant Growth

Doering, Tamara

48

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

49

Handicapped Parking Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Guidance Handicapped Parking Guidance U.S. Department of Energy Headquarters Handicapped Parking Procedures It is the policy of the Department of Energy (DOE)...

50

Oak Ridge National Environmental Research Park -- Parknotes  

NLE Websites -- All DOE Office Websites (Extended Search)

Return to Publications Oak Ridge National Environmental Research Park Research Park Notes Research Park Notes was an informal mechanism, developed by Pat Parr, the Oak Ridge...

51

OSTI Web Measurement and Tracking Opt-Out | OSTI, US Dept of...  

Office of Scientific and Technical Information (OSTI)

Tracking Opt-Out As you use this website, OSTI collects web measurement and tracking data. For full details see User Privacy under Website Policies and Important Links. If you...

52

Opt-E-Plus Software for Commercial Building Optimization (Fact Sheet)  

SciTech Connect

This fact sheet describes Opt-E-Plus software, a tool used by researchers at NREL to help identify commercial building features and characteristics that provide cost-effective energy savings.

2010-03-01T23:59:59.000Z

53

National Park Service - Yellowstone National Park, Wyoming | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

54

MIDDLE PARK Conservation Action Plan  

E-Print Network (OSTI)

MIDDLE PARK Conservation Action Plan 2011 Update Plant Species of Focus: Kremmling milkvetch Conservation Initiative Workshop dates: June 26, 2008 and July 6, 2010 Report date: August 25, 2011 Middle Park................................................................................................................... 6 A. Conservation Targets

55

Bike parking LEEGHWATERSTRAATDREBBELWEG  

E-Print Network (OSTI)

Main Entrance 3mE ExitExit Exit Exit Exit Exit Exit Exit Exit Main Entrance ID SQUARE CAR PARKING CAR & Hydro Lab - F.0 Delft Haptics Lab - F.1 MT-Towing tank - D.0 Delft Biorobotics Lab - E.0 PMP= Workshop

Lindken, Ralph

56

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

57

System Dynamics Simulation for Park Management: A Case Study of Glacier National Park, Montana .  

E-Print Network (OSTI)

??National park management encounters the challenge of conserving the park unimpaired for the enjoyment of future generations. Many national parks in the world are faced (more)

[No author

2012-01-01T23:59:59.000Z

58

Structure analysis based parking slot marking recognition for semi-automatic parking system  

Science Conference Proceedings (OSTI)

Semi-automatic parking system is a driver convenience system automating steering control required during parking operation. This paper proposes novel monocular-vision based target parking-slot recognition by recognizing parking-slot markings when driver ...

Ho Gi Jung; Dong Suk Kim; Pal Joo Yoon; Jaihie Kim

2006-08-01T23:59:59.000Z

59

Report: EM Energy Park Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Energy Park Initiative EM Energy Park Initiative September 30, 2009 Submitted by the EMAB Energy Park Initiative Subcommittee Background: The Energy Park Initiative (EPI) aims to convert the Office of Environmental Management's (EM) liabilities - its contaminated sites, facilities, and materials - into reusable assets focused on providing solutions to critical national energy and environmental issues. These assets include the sites' natural resources, infrastructure, institutional controls, and human and economic capital. The EPI is a high priority for EMAB since the initiative is still in the formative planning and implementation phases. The EPI Subcommittee members are Paul Dabbar (lead), James Ajello, Lessie Price, and Robert Thompson. Recommendations:

60

Research Park Notes, Issue 21  

NLE Websites -- All DOE Office Websites (Extended Search)

from individuals from the Department of Energy, Oak Ridge National Laboratory, BWXT-Y12, Bechtel Jacobs, TVA, Great Smoky Mountains National Park, Oak Ridge Associated...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A second row Parking Paradox  

E-Print Network (OSTI)

We consider two variations of the discrete car parking problem where at every vertex of the integers a car arrives with rate one, now allowing for parking in two lines. a) The car parks in the first line whenever the vertex and all of its nearest neighbors are not occupied yet. It can reach the first line if it is not obstructed by cars already parked in the second line (screening). b) The car parks according to the same rules, but parking in the first line can not be obstructed by parked cars in the second line (no screening). In both models, a car that can not park in the first line will attempt to park in the second line. If it is obstructed in the second line as well, the attempt is discarded. We show that both models are solvable in terms of finite-dimensional ODEs. We compare numerically the limits of first and second line densities, with time going to infinity. While it is not surprising that model a) exhibits an increase of the density in the second line from the first line, more remarkably this is also true for model b), albeit in a less pronounced way.

S. R. Fleurke; C. Kuelske

2008-11-21T23:59:59.000Z

62

Are TODs Over-Parked?  

E-Print Network (OSTI)

high level of car parking and usage at the surveyed Fremontin turn further induces car ownership and usage i.e. , the

Cervero, Robert; Adkins, Arlie; Sullivan, Cathleen

2009-01-01T23:59:59.000Z

63

Research Park Notes, Issue 19  

NLE Websites -- All DOE Office Websites (Extended Search)

Pat Parr. PARK RESEARCH AND USERS Reservation Data for Carbon Sequestration and Energy Crop Production - Holly Gibbs (Postmasters Research Associate in the Environmental Sciences...

64

Federal Energy Management Program: National Park Service - Yellowstone  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

65

New Results on the Old kOpt Algorithm for the TSP Barun Chandra \\Lambda , Howard Karloff y , Craig Tovey z  

E-Print Network (OSTI)

New Results on the Old k­Opt Algorithm for the TSP Barun Chandra \\Lambda , Howard Karloff y , Craig

Tovey, Craig A.

66

National Parks in the U.S.  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks National Parks are natural areas that are protected by the United States Government, and controlled by the National Park Service. These parks offer a great deal of information about different habitats, wildlife, and how to plan a trip. These parks also have many educational activities that are available to both teachers and students! All links below are provided by the National Park Service (http://www.nps.gov) Acadia National Park Acadia National Park Maine Home Page : http://www.nps.gov/acad/index.htm For Teachers! For Students! American Samoa National Park American Samoa National Park American Samoa, USA Home Page : http://www.nps.gov/npsa/index.htm For Teachers! For Students! Arches National Park Arches National Park Utah Home Page : http://www.nps.gov/arch/index.htm

67

Designing for ecology : the ecological park  

E-Print Network (OSTI)

This thesis aims to define a) what an ecological park is, and b) whether it is a new model in park design. Reference to the literature on landscape ecology is used to analyze the natural ecological merit of these parks, ...

Power, Andres M

2006-01-01T23:59:59.000Z

68

Traveling-wave tubes and backward-wave oscillators with weak external magnetic fields T. M. Abu-elfadl, G. S. Nusinovich, A. G. Shkvarunets, Y. Carmel, and T. M. Antonsen, Jr.  

E-Print Network (OSTI)

Research, University of Maryland at College Park, College Park, Maryland 20742-3511 D. Goebel Boeing EDD electrons and the axial electric field of the wave. Applying such a strong magnetic field requires heavy

Nusinovich, Gregory S.

69

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

Area Science Park Jump to: navigation, search Name Area Science Park Place Italy Sector Services Product General Financial & Legal Services ( Government Public sector )...

70

Solar Parks of Extremadura | Open Energy Information  

Open Energy Info (EERE)

Parks of Extremadura Jump to: navigation, search Name Solar Parks of Extremadura Place Spain Sector Solar Product A joint venture by Spanish Solar company Econenergias and Deutsche...

71

Better Buildings Neighborhood Program: University Park, Maryland...  

NLE Websites -- All DOE Office Websites (Extended Search)

Park, Maryland, Plans to STEP Into New Communities to someone by E-mail Share Better Buildings Neighborhood Program: University Park, Maryland, Plans to STEP Into New Communities...

72

Environment/Health/Safety/Security (EHSS): Parking  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Code. Temporary Handicap Parking: LBNL makes every effort to accommodate disabled drivers by making appropriate parking spaces available. Persons possessing a disabled...

73

Agro Business Park | Open Energy Information  

Open Energy Info (EERE)

Business Park Jump to: navigation, search Name Agro Business Park Place Denmark Sector Services Product General Financial & Legal Services ( Government Public sector ) References...

74

Wind Park Solutions Arcadia | Open Energy Information  

Open Energy Info (EERE)

Arcadia Jump to: navigation, search Name Wind Park Solutions Arcadia Place Big Sandy, Montana Sector Wind energy Product JV between Wind Park Solutions America and Arcadia...

75

Parke Panda Corporation aka Parke Industries | Open Energy Information  

Open Energy Info (EERE)

Panda Corporation aka Parke Industries Panda Corporation aka Parke Industries Jump to: navigation, search Name Parke Panda Corporation (aka Parke Industries) Place Glendora, California Zip 91740 Product A licensed, bonded, and fully insured C-10 design/build contractor. Coordinates 39.83977°, -75.074694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83977,"lon":-75.074694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Park and chill : redesign parking garage in Hong Kong  

E-Print Network (OSTI)

What are the aesthetics of urban infrastructure? Urban infrastructure has remained isolated to human activities. We all share memory and experience with urban infrastructure, e.g. we drive on the same roads and park our ...

Ting, Sze Ngai

2011-01-01T23:59:59.000Z

77

Genesis Park | Open Energy Information  

Open Energy Info (EERE)

Genesis Park LP Genesis Park LP Name Genesis Park LP Address 2131 San Felipe Place Houston, Texas Zip 77019 Region Texas Area Product Private equity firm. Year founded 2000 Phone number (713) 521-1980 Website http://www.genesis-park.com/ Coordinates 29.74873°, -95.412815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.74873,"lon":-95.412815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

The Practice of Parking Requirements  

E-Print Network (OSTI)

the cost of the required parking is thus $20 per square foot$40 per square foot of floor area, or twice the cost in aper 1,000 square feet in a TOD, and the developer's cost of

Shoup, Donald C.

2006-01-01T23:59:59.000Z

79

Jim Parks - Research Staff - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Jim Parks Group Leader, Emissions & Catalysis Research Group (T) 865-946-1283 (F) 865-946-1354 parksjeii@ornl.gov Education Ph.D., Physics, University of Tennessee, 1995 B.S.,...

80

Forrestal Garage Parking Guidelines, Revised August 12, 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines, Revised August 12, 2010 Forrestal Garage Parking Guidelines Forrestal Garage...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Department and National Park Service Announce Clean Cities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive...

82

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Forrestal Garage Parking Procedures - The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled...

83

Texas Parks and Wildlife Department | Open Energy Information  

Open Energy Info (EERE)

Parks and Wildlife Department Jump to: navigation, search Logo: Texas Parks and Wildlife Department Name Texas Parks and Wildlife Department Address 4200 Smith School Rd Place...

84

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative National Parks Initiative Submit a Project, National Park Service logo Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of reducing petroleum use and greenhouse gas emissions. This initiative complements the NPS Climate Friendly Parks program by demonstrating the environmental benefits of reducing petroleum use. Glacier Greater Yellowstone Area Rocky Mountain Denali National Mall and Memorial Park Mississippi River Sleeping Bear Dunes Yellowstone Grand Teton Mammoth Cave Zion Blue Ridge Parkway Great Smoky Mountains Shenandoah Acadia San Antonio Missions Grand Canyon Golden Gate Mesa Verde Project Locations - Photo of the snow-covered Teton Mountain range in Grand Teton National Park.

85

Clean Cities: Clean Cities National Parks Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

86

Handicapped Parking Procedures (HQ) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. Individuals with temporary or permanent mobility impairment who, because of their condition, have a need to request a handicapped parking permit for the Forrestal or Germantown facilities, should use the following procedures: Complete a Parking Application Complete the Permit Application form DOE F 1400.12. In instances when the Parking Management personnel can visually assess an applicant's mobility impairment (i.e. use of crutches, walker, etc.), a temporary parking permit may be granted. At the time of application, the

87

Nancy Sutley and Todd Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nancy Sutley and Todd Park About Us Nancy Sutley and Todd Park Most Recent Green Button Momentum June...

88

An exploration of the relationship between use of parks and access, park appeal, and communication effectiveness  

E-Print Network (OSTI)

Understanding what variables influence park use would assist park providers and policy makers in acquiring, designing, managing, and funding initiatives which encourage or support park use. Previous studies indicate that access to parks (measured by both objective and perceived distances), park appeal in terms of being well-maintained, and effective communication between constituents and park suppliers, relate positively to park use. This study explores the relationships between access, appeal, and communication and park use. Access is operationalized as four objective distances from household to nearest park using both Euclidian and Network measures, and by subjective self-reported measures of ability to access parks on foot or by bicycle. Appeal is concerned with the influence of parks perceived level of maintenance and availability of amenities on the probability of park use. Effective communication is operationalized by three variables: perceptions of being well-informed, being included in the planning process, and being able to give feedback to park leaders. These variables and selected demographic data were extracted from an existing data set: the City of College Station Needs Assessment. Findings indicated that a) respondents with access to parks are more likely to use parks, b) level of maintenance and available amenities influenced use, and c) respondents who are well-informed are more likely to use parks.

Walker, Jamie Rae

2008-12-01T23:59:59.000Z

89

Woodland Park Healthy Forest Initiative  

E-Print Network (OSTI)

whether we could get Colorado Springs to take some of it. The Mayor called the head of the electric plant Healthy Forest Initiative 1 1 Colorado Forest Restoration Institute Collaboration Case Study: Woodland Park Healthy Forest Initiative Corrie Knapp Prepared for the Colorado Forest Restoration Institute

90

Transforming Parks and Protected Areas  

E-Print Network (OSTI)

areas Lisa M. Campbell, Noella J. Gray; and Zoe A. Meletis In many countries, parks and protected areas construction of nature, conservation and development narratives, and alternative consumption - and what World' or 'developing' countries. One feature of political ecology has been an overriding emphasis

Bolch, Tobias

91

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

92

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reedsport OPT Wave Park, LLC Project No. 12713-002 Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon NOTICE OF AVAILABILITY OF ENVIRONMENTAL ASSESSMENT (December 3, 2010) In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project (FERC Project No. 12713-002), which would be located in Oregon State territorial waters about 2.5 nautical miles off the coast near Reedsport, in Douglas County, Oregon. Staff prepared an environmental assessment (EA), which analyzes the potential environmental effects of licensing the project and concludes that licensing the project,

93

EA-1890: DOE Notice of Availability of the Draft Environmental Assessment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Draft Environmental Assessment EA-1890: DOE Notice of Availability of the Draft Environmental Assessment Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project (FERC Project No. 12713-002), which would be located in Oregon State territorial waters about 2.5 nautical miles off the coast near Reedsport, in Douglas County, Oregon. Notice of Availability of Environmental Assessment: Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon (December 2010)

94

Bridgeview Park facility solar retrofit  

DOE Green Energy (OSTI)

The weatherization and insulation of a presently unheated frame park building and the installation of a Trombe wall on the south side of the structure for passive solar heating are planned. The major objectives of the project are to increase the exposure of local residents and visitors to passive solar technology and to demonstrate the applicability of passive solar technology to residential, commercial and recreational buildings. Some changes in the original plans are discussed. Five blueprints illustrate the planned improvements. (LEW)

Not Available

1981-01-01T23:59:59.000Z

95

Microsoft PowerPoint - 08XTPO-M_Node_Opt.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

node node Optimization Single-node Optimization Customer Documentation and Training PGI Compiler Options -help option displays command line options Request information about either a single option or groups of options options % pgf90 -help=groups Display the available optimization switches % pgf90 -switch -help ------------------------------------ * % pgf90 -fast -help % pgf90 fast help * Reading rcfile /opt/pgi/6.2.2/linux8664/6.2/bin/.pgf90rc -fast * Common optimizations; includes -O2 -Munroll=c:1 -Mnoframe -Mlre 10/18/2010 2 Cray Private PGI Compiler Options -fast Chooses generally optimal flags for the target platform and includes: -O2 - Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse - Mscalarsse -Mcache_align -Mflushz -fastsse == -fast fastsse fast -O2 This level performs all level-one local optimization as well as level two

96

EngOpt 2012 -International Conference on Engineering Optimization Rio de Janeiro, Brazil, 1-5 July 2012.  

E-Print Network (OSTI)

EngOpt 2012 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 1-5 July, 39401-089 - Montes Claros - MG, Brazil E-mail: nilson.brito@unimontes.br Departamento de Matem´atica, Universidade Federal de Ouro Preto, 35400-000 - Ouro Preto - MG, Brazil E-mail: anderson

Cruz, Frederico

97

MARK-OPT: A Concurrency Control Protocol for Parallel B-Tree Structures to Reduce the Cost of SMOs  

Science Conference Proceedings (OSTI)

In this paper, we propose a new concurrency control protocol for parallel B-tree structures capable reducing the cost of structure-modification-operation (SMO) compared to the conventional protocols such as ARIES/IM and INC-OPT. We call this protocol ... Keywords: B-tree, concurrency control, index, latch, parallel DB

Tomohiro Yoshihara; Dai Kobayashi; Haruo Yokota

2007-08-01T23:59:59.000Z

98

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

99

Renewable Energy Parks Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Parks Webinar Renewable Energy Parks Webinar Renewable Energy Parks Webinar March 19, 2013 1:00PM MDT Webinar This free DOE webinar on "Community Renewable Energy Success Stories: Renewable Energy Parks," will take place on Tuesday, March 19, from 1:00 p.m. to 2:15 p.m. Mountain Daylight Time. The webinar will highlight how the city of Ellensburg, Washington, and the Town of Hempstead, New York, created renewable energy parks in their areas by integrating multiple renewable energy technologies. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the

100

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low-Energy Parking Structure Design (Brochure)  

Science Conference Proceedings (OSTI)

This guide provides design teams with best practices for parking structure energy efficiency in the form of goals for each design aspect that affects energy use.

Not Available

2013-01-01T23:59:59.000Z

102

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

103

Oak Ridge National Environmental Research Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Environmental Research Park Available Data Habitat Management Invasive Species Publications Wildlife What's New Some of the documents on this page are in...

104

Book review of SUPERSTITION by Robert Park  

E-Print Network (OSTI)

The 2008 book Superstition: Belief in the age of science, by Robert Park, published by Princeton University Press is briefly reviewed.

Melott, Adrian

2009-01-01T23:59:59.000Z

105

Federal Energy Management Program: National Park Service - San Miguel  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - San Miguel Island, California to someone by E-mail Share Federal Energy Management Program: National Park Service - San Miguel Island, California on Facebook Tweet about Federal Energy Management Program: National Park Service - San Miguel Island, California on Twitter Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Google Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Delicious Rank Federal Energy Management Program: National Park Service - San Miguel Island, California on Digg Find More places to share Federal Energy Management Program: National Park Service - San Miguel Island, California on AddThis.com... Energy-Efficient Products

106

Federal Energy Management Program: National Park Service - Chickasaw,  

NLE Websites -- All DOE Office Websites (Extended Search)

National Park National Park Service - Chickasaw, Oklahoma to someone by E-mail Share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Facebook Tweet about Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Twitter Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Google Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Delicious Rank Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Digg Find More places to share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

107

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

108

Utah State Parks and Recreation | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Utah State Parks and Recreation Jump to: navigation, search Name Utah State Parks and...

109

Microsoft Word - Contractor Parking Search June 2008- website...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parking Search June 2008 Preferred Parking 1. Golden Gate Fields - this is the preferred area, as we will be validating site access at this location. Location: 1100 Eastshore...

110

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

111

Quantity versus Quality in Off-Street Parking Requirements  

E-Print Network (OSTI)

off-street parking requirements does not restrict parking orrequirements if they are con- verted to residential uses. Los Angeles, for example, does

Mukhija, Vinit; Shoup, Donald

2006-01-01T23:59:59.000Z

112

Toyota Prius Fuel Use in Yellowstone National Park - October...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Use in Yellowstone National Park - October 2006 Four 2004 Toyota Prius hybrid electric vehicles (HEVs) were introduced into the Yellowstone National Park motor pool during the...

113

Street and Parking Facility Lighting Retrofit Financial Analysis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar August 22, 2013 1:00PM...

114

Before the House Subcommittee on National Parks, Forests and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks, Forests and Public Lands - Committee on Natural Resources Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources Before...

115

Before the House Subcommittee on National Parks Committee on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Committee on Energy and Commerce Before the House Subcommittee on National Parks Committee on Energy and Commerce Testimony of Ingrid Kolb, Director Office of Management...

116

Changes related to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

117

Pages that link to "Battery Park Industries Inc formerly Moltech...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Battery Park Industries Inc formerly Moltech Power Systems Inc" Battery Park Industries...

118

Landscaping and Parking Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landscaping and Parking Renovations Landscaping and Parking Renovations Landscaping and Parking Renovations October 16, 2013 - 4:54pm Addthis Renewable Energy Options for Site and Parking Renovations Geothermal Heat Pumps (GHP) Photovoltaics (PV) Solar Water Heating Renovations to Federal facility landscaping and parking areas can provide opportunities for several renewable energy options, including geothermal heat pumps (GHP), solar water heating, photovoltaics (PV), and energy efficiency technologies. Site Landscape If any ground is going to be disturbed during renovation, the potential for laying the underground portion of a GHP system should be considered at the same time. Sometimes referred to as ground source heat pumps or Geoexchange systems, GHP systems leverage the constant temperature of the earth for

119

Parking requirements as a barrier to housing development: regulation and reform in Los Angeles  

E-Print Network (OSTI)

a residential parking requirement does not only discriminatethis does suggest that the parking requirement itself might

Manville, Michael; Shoup, Donald C

2010-01-01T23:59:59.000Z

120

EA-1890: DOE Notice of Availability of the Draft Environmental Assessment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1890: DOE Notice of Availability of the Draft Environmental EA-1890: DOE Notice of Availability of the Draft Environmental Assessment EA-1890: DOE Notice of Availability of the Draft Environmental Assessment Reedsport OPT Wave Park, LLC Project No. 12713-002 Oregon In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's (Commission or FERC's) regulations, 18 CFR Part 380 (Order No. 486, 52 FR 47897), the Office of Energy Projects has reviewed Reedsport OPT Wave Park, LLC's application for license for the Reedsport OPT Wave Park Project (FERC Project No. 12713-002), which would be located in Oregon State territorial waters about 2.5 nautical miles off the coast near Reedsport, in Douglas County, Oregon. Notice of Availability of Environmental Assessment: Reedsport OPT Wave

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1890: Final Environmental Assessment (Adopted) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment (Adopted) Final Environmental Assessment (Adopted) EA-1890: Final Environmental Assessment (Adopted) Hydropower License, Reedsport OPT Wave Park Project-FERC Project No. 12713-002 On February 1, 2010, Reedsport OPT Wave Park, LLC (OPT) filed an application for an original license to construct and operate the Reedsport OPT Wave Park Project (Reedsport Project or project). The 1.5-megawatt (MW) project would include 10 wave energy conversion devices moored in Oregon State territorial waters about 2.5 nautical miles off the coast near Reedsport, in Douglas County, Oregon. The onshore portion of the project, also located in Douglas County, would occupy about 5 acres of federal lands administered by the U.S. Department of Agriculture, Forest Service (Forest Service). The project would generate an average of about 4,140

122

Driving the National Parks Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving the National Parks Forward Driving the National Parks Forward Driving the National Parks Forward June 19, 2012 - 4:02pm Addthis Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this project do? The Energy Department is partnering with the National Park Service to increase alternative fuel use of vehicle fleets at national parks around the country. Describing America's National Parks, historian Wallace Stegnar once said they were "the best idea we ever had." But like any good idea, the parks are constantly adapting to meet the needs of the present. Clean Cities,

123

Application of fuzzy logic for autonomous bay parking of automobiles  

Science Conference Proceedings (OSTI)

In this paper, we investigate the control problem of autonomous bay parking system. We choose a referenced parking lot and define a suitable parking spot based on some measurements at various places. A kinetic model is set up for the convenience of analysis ... Keywords: Fuzzy logic, autonomous vehicle control, bay parking, kinetic model, simulation

Zhao-Jian Wang; Jian-Wei Zhang; Ying-Ling Huang; Hui Zhang; Aryan Saadat Mehr

2011-11-01T23:59:59.000Z

124

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Parking Incentive Programs to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on AddThis.com... More in this section...

125

Clean Cities: Mammoth Cave National Park Coordinator Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Mammoth Cave National Park Coordinator Mammoth Cave National Park Coordinator Meeting to someone by E-mail Share Clean Cities: Mammoth Cave National Park Coordinator Meeting on Facebook Tweet about Clean Cities: Mammoth Cave National Park Coordinator Meeting on Twitter Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Google Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Delicious Rank Clean Cities: Mammoth Cave National Park Coordinator Meeting on Digg Find More places to share Clean Cities: Mammoth Cave National Park Coordinator Meeting on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Contacts Mammoth Cave National Park Coordinator Meeting The 2007 Clean Cities coordinator meeting at Mammoth Cave National Park

126

Criterion Wind Park | Open Energy Information  

Open Energy Info (EERE)

Criterion Wind Park Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Constellation Energy Developer Constellation Energy Energy Purchaser Old Dominion Location Garrett County MD Coordinates 39.317075°, -79.377451° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.317075,"lon":-79.377451,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Todd Park | OpenEI Community  

Open Energy Info (EERE)

04 04 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235304 Varnish cache server Todd Park Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 October, 2012 - 12:49 Tim O'reilly interviews Todd Park OpenEI Tim O'reilly Todd Park Check out theTim O'Reilly interview of Todd Park, US Chief Technology Officer, on his innovation agenda and his tips for creating a culture of innovation inside the United States Government. Syndicate content 429 Throttled (bot load)

128

Milner Dam Wind Park | Open Energy Information  

Open Energy Info (EERE)

Milner Dam Wind Park Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.495962°, -114.021106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.495962,"lon":-114.021106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

National Park Service | Open Energy Information  

Open Energy Info (EERE)

Park Service Park Service Jump to: navigation, search Logo: National Park Service Name National Park Service Address 1849 C Street NW Place Washington, District of Columbia Zip 20240 Year founded 1916 Website http://www.nps.gov/index.htm Coordinates 38.8936749°, -77.0425236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8936749,"lon":-77.0425236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Forbes Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Forbes Park Wind Farm Facility Forbes Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Forbes Park Developer Boreal Renewable Energy Energy Purchaser Forbes Park Location Chelsea MA Coordinates 42.3917638°, -71.0328284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3917638,"lon":-71.0328284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Sigel Wind Park | Open Energy Information  

Open Energy Info (EERE)

Sigel Wind Park Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Harbor Beach MI Coordinates 43.8549985°, -82.7925216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8549985,"lon":-82.7925216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Noble Altona Wind Park | Open Energy Information  

Open Energy Info (EERE)

Noble Altona Wind Park Noble Altona Wind Park Jump to: navigation, search Name Noble Altona Wind Park Facility Noble Altona Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Power Developer Noble Environmental Power Location Clinton County NY Coordinates 44.831383°, -73.664024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.831383,"lon":-73.664024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Oregon Trail Wind Park | Open Energy Information  

Open Energy Info (EERE)

Wind Park Wind Park Jump to: navigation, search Name Oregon Trail Wind Park Facility Oregon Trail Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power / Reunion Power Location Twin Falls County ID Coordinates 42.927683°, -114.919252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.927683,"lon":-114.919252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Independent Oversight Inspection, East Tennessee Technology Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA...

136

Tuana Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Tuana Gulch Wind Park Tuana Gulch Wind Park Jump to: navigation, search Name Tuana Gulch Wind Park Facility Tuana Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.89°, -114.98° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.89,"lon":-114.98,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Lighting Energy Efficiency in Parking Campaign  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

138

Jackson Park Hospital Green Building Medical Center  

Science Conference Proceedings (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicagoâ??s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

139

Lighting Energy Efficiency in Parking Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

140

Cogeneration for industrial and mixed-use parks. Volume 3. A guide for park developers, owners, and tenants. Final report  

SciTech Connect

Using cogeneration in mixed-use and industrial parks can cut energy costs ad smooth out peak load demands - benefits for servicing utilities and park owners and tenants. The two handbooks developed by this project can help utilities identify existing or planned parks as potential cogeneration sites as well as help developers and park owners evaluate the advantages of cogeneration. The second handbook (volume 3) describes the benefits of cogeneration for park developers, owners, and tenants.

Schiller, S.R.; Minicucci, D.D.; Tamaro, R.F.

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Office for UMore Park Academic Initiatives-Summer Research 2010 UMore Park and Energy  

E-Print Network (OSTI)

effective. · A Home Energy Rating System must be used on the improvements to determine cost effective nessOffice for UMore Park Academic Initiatives- Summer Research 2010 UMore Park and Energy Efficient Incentives...............20 Financial Incentives for Home owners.............21-30 Homeowner Energy Saving

Netoff, Theoden

142

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

143

Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

Reducing Congestion through Smart Parking Management Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary Name: Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf SFpark is a new project being implemented with federal Urban Partnership Program funds. It combines innovative technologies and strategies to redistribute the demand for parking in real-time. Goals include making parking easier, reducing congestion (by reducing circling and double parking), improving bus speed and reliability, and transferring lessons learned to other cities.

144

Minden Wind Park | Open Energy Information  

Open Energy Info (EERE)

Minden Wind Park Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Minden City MI Coordinates 43.637272°, -82.78022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.637272,"lon":-82.78022,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Mountain Parks Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

Parks Electric, Inc Parks Electric, Inc Jump to: navigation, search Name Mountain Parks Electric, Inc Place Colorado Utility Id 13050 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial: Large Power Peak-Shaving Rate (Primary Service) Commercial Commercial: Large Power Peak-Shaving Rate (Secondary Service) Commercial Commercial: Large Power Rate Commercial Commercial: Small Power Rate Commercial General Service (Residential): Time-of-Use Rate Rate A Residential General Service (Residential): Time-of-Use Rate, Rate B Residential

146

Golden Valley Wind Park | Open Energy Information  

Open Energy Info (EERE)

Golden Valley Wind Park Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Cassia County ID Coordinates 42.379924°, -113.876892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.379924,"lon":-113.876892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Noise from cooling towers of power parks  

SciTech Connect

A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A- weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed. (auth)

Zakaria, J.; Moore, F.K.

1975-10-14T23:59:59.000Z

148

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

149

Alternative Fuels Data Center: Certified Technology Park Designation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Certified Technology Certified Technology Park Designation to someone by E-mail Share Alternative Fuels Data Center: Certified Technology Park Designation on Facebook Tweet about Alternative Fuels Data Center: Certified Technology Park Designation on Twitter Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Google Bookmark Alternative Fuels Data Center: Certified Technology Park Designation on Delicious Rank Alternative Fuels Data Center: Certified Technology Park Designation on Digg Find More places to share Alternative Fuels Data Center: Certified Technology Park Designation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Certified Technology Park Designation The Indiana Economic Development Corporation (IDEC) may designate an area

150

Cambridge in transition : regulating parking in a growing city  

E-Print Network (OSTI)

Parking is regulated today by cities to achieve a variety of goals including traffic reduction, air quality improvement, urban densification, and climate change mitigation. In the City of Cambridge, Massachusetts, parking ...

Ferrentino, Cara Elizabeth

2013-01-01T23:59:59.000Z

151

Urban mechanics : the parking garage as an instrument of legibility  

E-Print Network (OSTI)

No typology has fragmented urban space more than the parking garage. In fact, the city of Houston's parking contingent practice has a resulted in a garage on 30% of the downtown district.The range from a few underground ...

Martinez, Marcus E. (Marcus Eugene)

2012-01-01T23:59:59.000Z

152

Park County, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montana. Its FIPS County Code is 067. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Park County, Montana Clyde Park, Montana Cooke...

153

Solarmarkt Solar Sued Park GmbH | Open Energy Information  

Open Energy Info (EERE)

Park GmbH Place Memmingen, Bavaria, Germany Zip 87700 Sector Solar Product Bavaria-based solar PV system installer. References Solarmarkt Solar Sued Park GmbH1 LinkedIn...

154

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Parking Fee Exemption to someone by E-mail Parking Fee Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Fee Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

155

Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park  

E-Print Network (OSTI)

Riding Mountain National Park, Manitoba. Journal of WildlifeMountain National Park, Manitoba. Journal of Mammalogy, 73,

Wilmers, C C; Crabtree, R L; Smith, D W; Murphy, K M; Getz, Wayne M

2003-01-01T23:59:59.000Z

156

Oak Ridge Science and Technology Park | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Development Carbon Fiber Cluster Strategy Additive Manufacturing Cluster Strategy Entrepreneurial Development Programs Oak Ridge Science and Technology Park Economic...

157

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

158

Light stripe projection based parking space detection for intelligent parking assist system  

E-Print Network (OSTI)

Abstract This paper proposes a novel light stripe projection based free parking space recognition method in order to overcome the common drawbacks of existing vision based target parking position designation methods in dark indoor parking site. 3D information of parking site is recognized by light stripe projection method. By analyzing the 3D information, system can recognize discontinuous points, pivot, and opposite-site reference point. Experiments show that the proposed method can successfully designate target position in spite of dark illumination condition and the black reflective surface of vehicle. Furthermore, because the proposed method can be implemented just by adding a low-cost light plane projector, it is economically practical solution. I I.

Ho Gi Jung; Dong Suk Kim; Pal Joo Yoon; Jaihie Kim

2007-01-01T23:59:59.000Z

159

Fossil Gulch Wind Park | Open Energy Information  

Open Energy Info (EERE)

Fossil Gulch Wind Park Fossil Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Development Group/United Materials Developer Exergy Development Group/United Materials Energy Purchaser Idaho Power Location Northwest of Hagerman ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Discovery Park Impact NNSA PRISM Center for  

E-Print Network (OSTI)

Discovery Park Impact NNSA PRISM Center for Prediction of Reliability, Integrity and Survivability in PRISM. Purdue is one of 5 centers funded under NNSA's Predictive Science Academic Alliance Program Computing, a division of Information Technology at Purdue. The NNSA national laboratories will be involved

Ginzel, Matthew

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Iowa Stored Energy Park | Open Energy Information  

Open Energy Info (EERE)

Stored Energy Park Stored Energy Park Jump to: navigation, search Name Iowa Stored Energy Park Place Ankeny, Iowa Zip 50021 Sector Wind energy Product Iowa Stored Energy Park is planning a 268MW wind project that would store its power as compressed air in deep underground geological formations, which could later be heated and used to drive turbines to generate electricity. Coordinates 41.73184°, -93.605264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.73184,"lon":-93.605264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

163

City of Winter Park Energy Conservation Rebate Program (Florida) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) City of Winter Park Energy Conservation Rebate Program (Florida) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Solar Water Heating Program Info State Florida Program Type Local Rebate Program Rebate Amount Varies based upon technology and eligible sector The City of Winter Park is now offering rebates to Winter Park electric residential and commercial customers for implementing energy conservation measures. Residential customers can qualify for rebates on duct repair, attic

164

Microsoft PowerPoint - Gilbertson.EnergyParksInitiative.042909  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Parks Energy Parks Initiative Initiative " " Leveraging Assets to Increase the Taxpayer Leveraging Assets to Increase the Taxpayer ' ' s Return on Investment s Return on Investment " " April 29, 2009 2 Office of Environmental Management (EM) Economic Stimulus EM footprint reduction, small site completions, and additional investment opportunities Jobs created Lifecycle cost reduced Environment protected Footprint reduced Large tracts of land and infrastructure available Energy Parks * Clean, Diverse Energy Sources *Energy security *Establish long- term site mission *Sustainable jobs Footprint Reduction & Energy Parks Footprint Reduction & Energy Parks 3 * Focusing on "shovel ready, boots on the ground" projects contributing to footprint reduction and small site completions

165

Evaluation of design ventilation requirements for enclosed parking facilities  

SciTech Connect

This paper proposes a new design approach to determine the ventilation requirements for enclosed parking garages. The design approach accounts for various factors that affect the indoor air quality within a parking facility, including the average CO emission rate, the average travel time, the number of cars, and the acceptable CO level within the parking garage. This paper first describes the results of a parametric analysis based on the design method that was developed. Then the design method is presented to explain how the ventilation flow rate can be determined for any enclosed parking facility. Finally, some suggestions are proposed to save fan energy for ventilating parking garages using demand ventilation control strategies.

Ayari, A.; Krarti, M.

2000-07-01T23:59:59.000Z

166

Energy Department and National Park Service Announce Clean Cities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Park Service Announce Clean Cities National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks June 19, 2012 - 11:05am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the National Park Service today announced that five national parks around the country will deploy fuel efficient and alternative fuel vehicles as part of an expanded partnership, helping to protect some of America's most prized natural environments. "Through the Clean Cities partnership, the Energy Department and the

167

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

168

Alternative Fuels Data Center: Mammoth Cave National Park Uses Only  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mammoth Cave National Mammoth Cave National Park Uses Only Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on AddThis.com...

169

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Parking Incentive to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

170

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

171

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

172

Parks, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parks, Arizona: Energy Resources Parks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2605664°, -111.9487743° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2605664,"lon":-111.9487743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Euro Solar Parks Inc | Open Energy Information  

Open Energy Info (EERE)

Euro Solar Parks Inc Euro Solar Parks Inc Place Ho-ho-Kus, New Jersey Zip 7423 Sector Solar Product New Jersey-based solar developer focused on development of projects in Europe, specifically Greece, and South America. Coordinates 40.998625°, -74.109279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.998625,"lon":-74.109279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Park Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Park Electric Coop Inc Park Electric Coop Inc Place Montana Utility Id 14500 Utility Location Yes Ownership C NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Light - 100 watt HPS Lighting Outdoor Light - 200 watt HPS Lighting Residential - Large Residential Residential - Net-Metered - Base #1 Residential Residential - Net-Metered - Base #2 Residential Residential - Net-Metered - Base #3 Residential Residential - Small Residential Seasonal Power Service - Pumps Industrial Seasonal Rate Residential

175

Bexar County Parking Garage Photovoltaic Panels  

Science Conference Proceedings (OSTI)

The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

Golda Weir

2012-01-23T23:59:59.000Z

176

Notus Falmouth Technology Park | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Notus Falmouth Technology Park Jump to: navigation, search Name Notus Falmouth Technology Park Facility Notus Falmouth Technology Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Notus Clean Energy Developer Notus Clean Energy Location East Falmouth MA Coordinates 41.605949°, -70.620722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.605949,"lon":-70.620722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

'Neighborhood in a park' harnesses the sun | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun 'Neighborhood in a park' harnesses the sun November 10, 2010 - 11:13am Addthis Lorelei Laird Writer, Energy Empowers The Minneapolis neighborhood of Bryn Mawr is already a "green" neighborhood in a sense. Called a "neighborhood within a park," the diverse, middle-class enclave borders on four parks, including the city's 759-acre flagship Theodore Wirth Park. Over the summer, however, the Bryn Mawr Neighborhood Association (BMNA) launched a program intended to add more metaphorical greenness. Through its Bryn Mawr Solar Program, it's granting $1,000 to $3,000 to residents and businesses installing solar photovoltaic panels or hot water heaters. Andrew Kraling, a co-representative for his area of the neighborhood, said

178

Women @ Energy: Hye-Sook Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hye-Sook Park Hye-Sook Park Women @ Energy: Hye-Sook Park March 12, 2013 - 1:17pm Addthis Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have

179

National Parks Move Transportation Forward in America's Great Outdoors |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parks Move Transportation Forward in America's Great Parks Move Transportation Forward in America's Great Outdoors National Parks Move Transportation Forward in America's Great Outdoors March 28, 2013 - 3:00pm Addthis Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? The five new National Parks Initiative projects will save the

180

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Updated August 12, 2010 Updated August 12, 2010 FORRESTAL FACILITY PARKING PROCEDURES The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. This guide applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. Requirements General. It is the policy of DOE that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. The following rules apply: a) The Office of Administration must centrally manage all Forrestal parking facilities

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong

182

Danehy Park Wind Turbine Project Preliminary Assessment Report  

E-Print Network (OSTI)

) Northern Power 100 (100 kW) Aeronautica 29-225 (225 kW) Polaris 500 (500 kW) The first four turbinesDanehy Park Wind Turbine Project Preliminary Assessment Report Danehy Park Project Group Wind the following five turbines for potential installation at Danehy Park: SkyStream 3.7 (2.4 kW) Polaris 20 (20 kW

183

Inspection of Forrestal parking permit allocation and assignments  

Science Conference Proceedings (OSTI)

The purpose of this inspection was to review the process cr allocating and assigning parking permits at the Forrestal building. Specifically, we sought to determine the roles and responsibilities of Department of Energy (DOE) officials involved in the administration of the Forrestal parking permit process during the period June 1, 1991 to February 1, 1992. We also sought to determine if the allocation and assignment of Forrestal building parking spaces was implemented in accordance with Federal and DOE requirements. For our review, we interviewed the Headquarters officials involved in the administration of the parking permit allocation and assignment process. We also reviewed parking permit files and associated documentation for the period June 1, 1991 through February 1, 1992. In addition, we conducted a limited sampling of parking permits that were revoked during July and August 1991 to assess if they were processed in compliance with applicable regulations. We found no evidence that the actions by the Special Assistant to the Secretary (White House Liaison) and the other members of the parking committee regarding the issuance and revocation of parking permits were for any reason other than a desire to ensure that only individuals having a legitimate basis for a parking permit were issued a permit. However, we found that decisions by the parking committee regarding revocation of permits and appeals of revocation decisions were not always documented, nor were there written guidelines or procedures to govern the activities of the committee. In our view, the lack of written guidelines and procedures resulted in the use of invalidated personal knowledge by the parking committee in making decisions involving the revocation of parking permits and led to inconsistencies in the notification of individuals about the associated appeal process.

Not Available

1992-12-16T23:59:59.000Z

184

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

185

Lake George Park Commission: Stormwater Management (New York) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) Lake George Park Commission: Stormwater Management (New York) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider Lake George Park Commission

186

Protection of Public Parks and Recreational Lands (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) Protection of Public Parks and Recreational Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas Parks and Wildlife Department

187

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Jump to:...

188

THE LABORATORY Located in Menlo Park, California, SLAC National  

NLE Websites -- All DOE Office Websites (Extended Search)

THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide...

189

LED Provides Effective and Efficient Parking Area Lighting at...  

NLE Websites -- All DOE Office Websites (Extended Search)

New LED parking area lights at the NAVFAC Engineering Service Center at Port Hueneme provide high quality, evenly distributed light. Photo courtesy of PNNL because of its long...

190

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

191

Green Park, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Park, Missouri: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

192

The Access Almanac: Ending the Abuse of Disabled Parking Placards  

E-Print Network (OSTI)

ALMANAC Ending the Abuse of Disabled Parking Placards DONALDtell an anecdote about disabled placard abuse. One of minenoticing that cars with disabled placards occupied almost

Shoup, Donald

2011-01-01T23:59:59.000Z

193

Berkeley Lab Transportation and Parking Demand Management Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Demand Management Committee masthead Articles Fehrs & Peers Reports FAQ FeedbackComments Contact Us Transportation Links Current Parking Impacts Due To Construction...

194

Available Data -- Oak Ridge National Environmental Research Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Environmental Research Park Home Habitat Management Invasive Species Publications Wildlife What's New Available Data Some of the documents on this page are in...

195

Federal Energy Management Program: Outdoor Solid State Parking...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Structures Case Studies Resources Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Outdoor Solid State Parking Lot and Structure...

196

Richardson Acts to Save DOE's Research Parks  

Science Conference Proceedings (OSTI)

In ''Preserving DOE's Research Parks'' (Issues, Winter 1997-98 ), we argued that some of the nation's most irreplaceable outdoor laboratories for scientific research and education are at risk of being disposed of by the Department of Energy (DOE). We are pleased that Secretary of Energy Bill Richardson has recently acted to protect the unique values of DOE property, but we believe that more steps should be taken. Since June 1999, Richardson has set aside lands in five of the seven DOE research parks for wildlife preservation, research, education, and recreation. Management plans have been or are being established for 1,000 acres at the Los Alamos National Laboratory in New Mexico, 57,000 acres at the Hanford Nuclear Reserve in Washington, 10,000 acres at the Savannah River Site in Georgia, 74,000 acres at the Idaho National Environmental and Engineering Laboratory, and 3,000 acres at the Oak Ridge Reservation in Tennessee. These sites are to be managed as biological and wildlife preserves, allowing opportunities for research, education, and, for most of them, recreation. ''In places of rare environmental resources,'' Richardson said, ''we have a special responsibility to the states and communities that have supported and hosted America's long effort to win the Cold War and we owe it to future generations to protect these precious places so that they can enjoy nature's plenty just as we do''. The preserves are home to several rare wildlife species, including bald eagles and loggerhead shrike, as well as numerous other animal and plant species. The only population of one rare plant, the White Bluffs bladder pod, occurs at the Hanford site. Under Richardson's plan, traditional Native American cultural uses of these sites will continue. The preserves will also continue to provide a safety buffer for DOE facilities. Despite these promising moves, the long-term viability of the management arrangements that have been established varies across the sites. For example, because of various constraints, the DOE agreement with the Tennessee Wildlife Resources Agency for management of the Three Bend Scenic and Wildlife Refuge on the Oak Ridge Reservation is for only five years, compared to the 25-year agreement with the U.S. Fish and Wildlife Service at Hanford. Further, some Oak Ridge city leaders have opposed establishing the refuge, because they want the land to be used for housing and industrial development. Pressure to develop these unique lands is likely to continue to mount. Although DOE is required to identify surplus property according to the terms of Executive Order 12512, we have asked that this process occur without compromising long-term research, conservation, and education opportunities, including possible new facilities. To date, we feel that these values have not been given adequate weight and have not been integrated into national environmental goals. We also believe that retaining the research parks is a cost-effective means of bolstering President Clinton's Lands Legacy Initiative. Research park lands near communities can serve as buffers against sprawl as well as offering nearby urban residents diverse educational and recreational opportunities, such as hiking, biking, hunting, and nature walks. We further recommend that DOE develop a long-term management plan for protecting opportunities for energy-related research, conservation, and education in the DOE research parks. This plan should include an outreach program specifying ways for the community, educators, and scientists to take advantage of the user facilities of the parks. For example, local science camps could be expanded to become national opportunities for students and educators to learn about energy use, conservation, and the environment. We envision that DOE's ''EcoCamps'' could be just as popular as NASA's Space Camps.

Dale, V.H.

2000-01-01T23:59:59.000Z

197

East Tennessee Technology Park 3-1 3. East Tennessee Technology Park  

E-Print Network (OSTI)

, the K-25 Site was named the "East Tennessee Technology Park" to reflect its new mission. DOE's long's closure plan. The cleanup approach makes land and various types of buildings (e.g., office, manufacturing and the attendant regulations, by DOE orders, and by agreements with regulatory bodies. Table 3.1 provides

Pennycook, Steve

198

Nellis AFB 'Sun Park' Photovoltaic Power Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Briefing is: Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOA/JACLULT Overview *Objective * Provide renewable utility service from a Contractor owned Photovoltaic (Solar Power) Array to Nellis AFB electrical distribution system * Successful offeror owns and operates the PV Array for length of lease *Legal Instruments * Nellis AFB enters into an indefinite term utility service contract with successful offeror * May cancel with one year notification * 20 year land lease * Provides land for PV array via a land lease ( land treated as"Gov't furnished equipment" in utility contract) Why PV - Why Nellis * Support renewable energy goals

199

Sonnen Solar Park GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

search Name Sonnen Solar Park GmbH & Co KG Place Germany Sector Solar Product 1.75MW solar PV park in Bavaria, developed by Voltwerk. References Sonnen Solar Park GmbH & Co...

200

DOE Order 344.1A, Parking at the Forrestal Facility | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility DOE Order 344.1A, Parking at the Forrestal Facility Define Policies and procedures governing parking at the Forrestal facility DOE Order 344.1A, Parking at the...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Recommendations for Improving LEED Transportation and Parking Credits  

E-Print Network (OSTI)

Buildings can be located, designed and managed to optimize transportation and parking efficiency. This paper describes ways to improve LEED (Leadership in Energy and Environmental Design) transportation and parking credits. Typical LEED programs reduce building energy consumption 20-60%. Cost effective mobility and parking management programs often provide similar motor vehicle trip and parking generation reductions, resulting in large economic, social and environmental benefits. However, the current LEED rating system overlooks some of the most effective mobility and parking management strategies. It encourages practitioners to choose strategies based on their ease of implementation rather than effectiveness. As a result, the current LEED rating system is unlikely to implement mobility and parking management as much as optimal. This paper recommends a different approach which defines performance targets needed to achieve LEED categories (silver, gold, platinum). Developers would establish mobility and parking management plans that indicate how targets will be met, how performance will be evaluated, and what additional strategies will be deployed if needed to achieve targets. This optimizes mobility and parking management programs, and responds to changing demands. However, it is unnecessary to wait for a major reform to improve and expand LEED transportation credits; new credits proposed in this paper could be quickly incorporated into the existing LEED rating system.

Todd Litman; Todd Alex; Er Litman

2011-01-01T23:59:59.000Z

202

B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND  

E-Print Network (OSTI)

B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

Mullins, Dyche

203

Parking and Transportation Service 1117 E. 6th  

E-Print Network (OSTI)

Parking and Transportation Service 1117 E. 6th Street Tucson, Arizona 85721 BICYCLE (AND NON-MOTORIZED TRANSPORTATION) Parking & Traffic Regulations 2011-2012 It is the responsibility of all individuals walking. For additional information, please call: Administration 621-3550 Alternative Transportation 626-RIDE Customer

Utzinger, Urs

204

Disabled Parking & Access Plan Campus Disabled Persons (DP)  

E-Print Network (OSTI)

ongoing survey service contract · Accurate Parking Space Counts ­ Yearly aerial photos for review Plan Ongoing Objectives · Keep Campus Survey and Campus-wide Access Plan Current · Follow Up Feedback ­ Computer-based survey of surface features, buildings, parking lot striping, pedestrian walkways ­ Campus

de Lijser, Peter

205

Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service  

E-Print Network (OSTI)

National Parks hydrogen and fuel cell initiative must be education and research.and fuel cell projects in the National Parks Service must be education and research.

Eggert, Anthony

2004-01-01T23:59:59.000Z

206

The socio-economic impact of tourism in the Karoo National Park / Madelien Ferreira.  

E-Print Network (OSTI)

??Literature on ecotourism and sustainable tourism emphasises the responsibilities and opportunities in protecting national parks through appropriate tourism development. National parks assist in addressing the (more)

Ferreira, Madelien

2008-01-01T23:59:59.000Z

207

"Blackfeet Belong to the Mountains": Blackfeet Relationships with the Glacier National Park Landscape and Institution.  

E-Print Network (OSTI)

??National Parks are home to many landscapes of great significance to Native American peoples. The eastern half of Glacier National Park is considered a homeland (more)

Craig, David R.

2008-01-01T23:59:59.000Z

208

Independent Oversight Inspection, East Tennessee Technology Park, Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, East Tennessee Technology Park, Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 Independent Oversight Inspection, East Tennessee Technology Park, Summary Report - May 2003 May 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and East Tennessee Technology Park The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April and May 2003. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management

209

National Parks Clean Up with Alternative Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Up with Alternative Fuels Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong in our National Parks, maintaining their air quality has become a real

210

ISC-Reducing Congestion through Smart Parking Management | Open Energy  

Open Energy Info (EERE)

ISC-Reducing Congestion through Smart Parking Management ISC-Reducing Congestion through Smart Parking Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ISC-Reducing Congestion through Smart Parking Management Agency/Company /Organization: Institute for Sustainable Communities (ISC) Sector: Climate, Energy Focus Area: Transportation Resource Type: Case studies/examples, Lessons learned/best practices Website: www.iscvt.org/resources/documents/san_francisco_sfpark.pdf Locality: San Francisco, California Cost: Free Language: English ISC-Reducing Congestion through Smart Parking Management Screenshot References: Reducing Congestion through Smart Parking Management[1] "The transit study concluded that congestion is a primary factor reducing the reliability and speed of onroad transit, which in turn is exacerbated

211

Parke County REMC - Energy Efficient Equipment Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program Parke County REMC - Energy Efficient Equipment Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pump: 1 per home or business Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Water Heater: $50 - $150 Refrigerator/Freezer Recycling: $35 Air-Source/Dual Fuel Heat Pump: $150 - $500 Geothermal Heat Pump: $800 Provider Parke County REMC Parke County REMC offers rebates to commercial and residential customers for purchasing and installing qualifying energy efficient water heaters, air-source heat pumps, dual fuel heat pumps, and geothermal heat pumps.

212

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

213

Independent Oversight Inspection, East Tennessee Technology Park - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park - East Tennessee Technology Park - November 2008 Independent Oversight Inspection, East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE East Tennessee Technology Park (ETTP) during August through September 2008. HSS reports directly to the Office of the Secretary of Energy, and the ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. The inspection was performed concurrently with an inspection of emergency management at the Oak Ridge National Laboratory,

214

Walmart Sees the Light for Parking Lots | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart.

215

March 19, 2013 Webinar: Renewable Energy Parks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks March 19, 2013 Webinar: Renewable Energy Parks This webinar was held March 19, 2013, and provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable energy parks in their areas. Download the presentations below, watch the webinar (WMV 217 MB), or view the text version. Find more CommRE webinars. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the conclusion of the project the city hopes to show the benefits of

216

B#: a Battery Emulator and Power Profiling Instrument Pai H. Chou, Chulsung Park, Jae Park, Kien Pham, and Jinfeng Liu  

E-Print Network (OSTI)

B#: a Battery Emulator and Power Profiling Instrument Pai H. Chou, Chulsung Park, Jae Park, Kien-sharp), a programmable power supply that emulates the behavior of a battery. It measures the current load, calls a battery simulation program to compute the voltage in real time, and controls a linear regulator to mimic

Shinozuka, Masanobu

217

TIAX, LLC. Acorn Park Cambridge, Massachusetts  

NLE Websites -- All DOE Office Websites (Extended Search)

TIAX, LLC. TIAX, LLC. Acorn Park Cambridge, Massachusetts 02140-2390 75570-00 Structural Limitations in the Scale-up of Anode Supported SOFCs Final Report to DOE NETL October 9th, 2002 SS.75570.PARSONS.TASK1.DRFTFiNALRPT.060602.REV1 1 Outline of Final Report 2 Approach & Scope 3 Model Development 1 Background & Objectives 5 Multi Channel SOFC Results 4 Single Channel SOFC Results 6 Limitations for Cell Size 7 Summary 0 Executive Summary A Appendix SS.75570.PARSONS.TASK1.DRFTFiNALRPT.060602.REV1 2 * The SECA strategy is to develop cost-effective modular planar SOFC stack technology that could be applied to a broad range of applications: - Application of similar stack design to multiple applications would accelerate stack cost reduction - Applications range from small-capacity applications (< 10 kW) with 1-4 stacks, to

218

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

219

Jackson Park Hospital Green Building Medical Center  

SciTech Connect

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago's recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work. The new green building houses the hospital's Family Medicine Residency Program and Specialty Medical Offices. The residency program has been vital in attracting new, young physicians to this medically underserved area. The new outpatient center will also help to allure needed medical providers to the community. The facility also has areas designated to women's health and community education. The Community Education Conference Room will provide learning opportunities to area residents. Emphasis will be placed on conserving resources and protecting our environment, as well as providing information on healthcare access and preventive medicine. The new Medical Office Building was constructed with numerous energy saving features. The exterior cladding of the building is an innovative, locally-manufactured precast concrete panel system with integral insulation that achieves an R-value in excess of building code requirements. The roof is a 'green roof' covered by native plantings, lessening the impact solar heat gain on the building, and reducing air conditioning requirements. The windows are low-E, tinted, and insulated to reduce cooling requirements in summer and heating requirements in winter. The main entrance has an air lock to prevent unconditioned air from entering the building and impacting interior air temperatures. Since much of the traffic in and out of the office building comes from the adjacent Jackson Park Hospital, a pedestrian bridge connects the two buildings, further decreasing the amount of unconditioned air that enters the office building. The HVAC system has an Energy Efficiency Rating 29% greater than required. No CFC based refrigerants were used in the HVAC system, thus reducing the emission of compounds that contribute to ozone depletion and global warming. In addition, interior light fixtures employ the latest energy-efficient lamp and ballast technology. Interior lighting throughout the building is operated by sensors that will automatically turn off lights inside a room when the room is unoccupied. The electrical traction elevators use less energy than typical elevators, and they are made of 95% recycled material. Further, locally manufactured products were used throughout, minimizing the amount of energy required to construct this building. The primary objective was to construct a 30,000 square foot medical office building on the Jackson Park Hospital campus that would comply with newly adopted City of Chicago green building codes focusing on protecting the environment and conserving energy and resources. The energy saving systems demonstrate a state of the-art whole-building approach to energy efficient design and construction. The energy efficiency and green aspects of the building contribute to the community by emphasizing the environmental and economic benefits of conserving resources. The building highlights the integration of Chicago's new green building codes into a poor, inner city neighborhood project and it is designed to attract medical providers and physicians to a medically underserved area.

William Dorsey; Nelson Vasquez

2010-03-31T23:59:59.000Z

220

Eden Park Illumination | Open Energy Information  

Open Energy Info (EERE)

Illumination Illumination Jump to: navigation, search Name Eden Park Illumination Place Champaign, Illinois Zip 61821 Product Illinois-based startup focused on the commercialisation and development of highly efficient microplasma lighting. Coordinates 40.1142°, -88.243499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1142,"lon":-88.243499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oceanic Internal Waves Are Not Weak Waves  

Science Conference Proceedings (OSTI)

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from recent weak wave theoretical calculations ...

Greg Holloway

1980-06-01T23:59:59.000Z

222

OPT's Reedsport Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Single PowerBuoy and DOE Project The scope of the DOE Reedsport Deployment and Ocean Test project (DE-EE0003646) is the installation of a single autonomous PowerBuoy at...

223

Hawaiian Electric Company, Inc. Photovoltaic Energy Park Master Development Planning  

Science Conference Proceedings (OSTI)

This document describes a Master Development Plan to develop, construct, and operate a photovoltaic energy park (PVEP). The central feature of the park would be a large-scale solar power plant with up to 3.0 MW (peak) capacity of single axis tracking and fixed systems. The park would be developed in phases using multiple 100 kilowatt (peak) solar power systems. The plant would utilize proven PV technology commonly available at the time of the construction. In addition, space has been set aside for resear...

2004-02-20T23:59:59.000Z

224

Before the House Subcommittee on National Parks, Forests and Public Lands - Committee on Natural Resources  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Proposed Manhattan Project National Historical Park By: Ingrid Kolb, Director Office of Management

225

Light-stripe-projection-based target position designation for intelligent parking-assist system  

Science Conference Proceedings (OSTI)

This paper proposes a novel light-stripe-projection-based target position-designation method for an intelligent parking assist system, providing an economical free-space-based target position-designation method for poorly lit indoor parking spaces without ... Keywords: driver-assistant system (DAS), free-space-based target position designation, indoor parking space, light stripe projection (LSP), parking-assist system

Ho Gi Jung; Dong Seok Kim; Jaihie Kim

2010-12-01T23:59:59.000Z

226

A Climatology of Gravity Wave Motions in the Mesopause Region at Adelaide, Australia  

Science Conference Proceedings (OSTI)

A statistical study of gravity wave motions in the mesosphere and lower thermosphere measured with a MF partial reflection radar located at Buckland Park new Adelaide (35S, 138E) in the period November 1933 to December 1984 is presented. The ...

Robert A. Vincent; David C. Fritts

1987-02-01T23:59:59.000Z

227

Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Glacier-Waterton Park Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Digg Find More places to share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on AddThis.com... Dec. 31, 2004 Glacier-Waterton Park Powers Buses With Propane F ind out how Glacier-Waterton International Peace Park uses propane buses.

228

Mid-Atlantic Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Mid-Atlantic Wind Park Facility Mid-Atlantic Wind Park Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer NRG Bluewater Wind Location Offshore from Rehoboth Beach DE Coordinates 38.633333°, -74.775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.633333,"lon":-74.775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Montana Fish, Wildlife & Parks | Open Energy Information  

Open Energy Info (EERE)

Fish, Wildlife & Parks Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name Montana Fish, Wildlife & Parks Address 1420 East 6th Ave, PO Box 200701 Place Helena, Montana Zip 59620-0701 Phone number 406-444-2535 Website http://fwp.mt.gov/doingBusines Coordinates 46.586864°, -112.01525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.586864,"lon":-112.01525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

231

Enforcement Documents - East Tennessee Technology Park | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park East Tennessee Technology Park Enforcement Documents - East Tennessee Technology Park August 4, 2005 Preliminary Notice of Violation, Bechtel Jacobs Company, LLC - EA-2005-04 Preliminary Notice of Violation issued to Bechtel Jacobs Company, LLC, related to the New Hydrofracture Facility Transportation Event and the Personnel Contamination Event at the Hot Storage Garden Facility at the East Tennessee Technology Park November 19, 2003 Preliminary Notice of Violation, Bechtel Jacobs Company, LLC - EA-2003-09 Preliminary Notice of Violation issued to Bechtel Jacobs Company, LLC, related to Multiple Nuclear Safety Issues at Oak Ridge and the Paducah Gaseous Diffusion Plant July 17, 2003 Enforcement Letter, BNFL Inc - July 10, 2003 Enforcement Letter issued to BNFL, Inc. related to potential violations of

232

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

233

Mojave Solar Park Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Solar Park Solar Power Plant Solar Park Solar Power Plant Jump to: navigation, search Name Mojave Solar Park Solar Power Plant Facility Mojave Solar Park Sector Solar Facility Type Concentrating Solar Power Developer Solel Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819°, -76.941939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Manhattan Project National Historical Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project National Historical Park Manhattan Project National Historical Park Manhattan Project National Historical Park The Department, as the direct descendent of the Manhattan Engineer District, owns and manages the Federal properties at most of the major Manhattan Project sites, including Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, New Mexico. For over a decade, the Department, in cooperation with other Federal agencies, state and local governments, and other stakeholders, has pursued the possibility of including its most significant Manhattan Project properties within a Manhattan Project National Historical Park. A panel of distinguished historic preservation experts convened in 2001 by the Advisory Council on Historic Preservation at the request of the Department of Energy recommended that the "ultimate goal" for

236

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

237

Considerations in the recycling of urban parking garages  

E-Print Network (OSTI)

Because of the decreasing use of private automobiles in city centers and because of usual development pressures, some urban parking garages will become available for replacement or recycling. The choice between replacement ...

Paul, Michael Johannes

1981-01-01T23:59:59.000Z

238

Renewable Energy at Channel Islands National Park; Federal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and...

239

Policies for parking pricing derived from a queueing perspective  

E-Print Network (OSTI)

Drivers in urban neighborhoods who cruise streets, seeking inexpensive on-street parking create a significant fraction of measured traffic congestion. The solution to this problem is to reduce the total traffic volume ...

Sasanuma, Katsunobu

2009-01-01T23:59:59.000Z

240

DOE - Office of Legacy Management -- Seaway Industrial Park ...  

Office of Legacy Management (LM)

to LaGrone; Authorization for remedial Action at the Seaway Industrial Park and Ashland Oil Co. (I) Sites at Tonawanda, NY, and Mallinckrodt Chemical Co., St. Louis, MO; June 22,...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Park County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming. Its FIPS County Code is 029. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype B. Registered Energy Companies in Park County, Wyoming Nacel...

242

Maintenance-based design of concrete parking structures  

E-Print Network (OSTI)

The purpose of this study is to determine what type of preventative maintenance for a concrete parking structure will produce the maximum economic benefit. Existing models for concrete deterioration are analyzed for their ...

Stoakes, Christopher D. (Christopher David)

2007-01-01T23:59:59.000Z

243

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar  

Energy.gov (U.S. Department of Energy (DOE))

DOE will present a live webinar titled "Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool" on Thursday, August 22, from 1:00 p.m. to 2:00 p.m. Eastern Daylight Time....

244

Energy Department and National Park Service Announce Clean Cities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities to deploy an all-electric vehicle (EV), a plug-in hybrid EV, and 12 propane lawn mowers. The park also plans to install three EV chargers, two of which will be...

245

INDIANAPOLIS AMUSEMENT PARKS, 1903-1911: LANDSCAPES ON THE EDGE.  

E-Print Network (OSTI)

??In May 1906, Wonderland Amusement Park opened its gates on East Washington Street in Indianapolis to reveal its 125-foot tall Electric Tower, a tree-top Scenic (more)

Zeigler, Connie J.

2007-01-01T23:59:59.000Z

246

Photovoltaics and the National Park Service : an institutional analysis  

E-Print Network (OSTI)

This paper is one of a series resulting from institutional analysis of photovoltaic (PV) acceptance. The case reported here involves the acceptance of PV by the National Park Service. As part of the Department of the ...

Nutt-Powell, Thomas E.

1980-01-01T23:59:59.000Z

247

Automatic Parallel Parking and Returning to Traffic Maneuvers  

E-Print Network (OSTI)

This video illustrates a control approach developed to perform parallel parking and returning to traffic maneuvers for a car capable of autonomous motion. The key idea is to carry out a motion control procedure involving a "Localization-Planning-Execution" cycle until a specified location of the car relative to its environment is reached. Range measurements are used to model environmental objects around the car. The automatic maneuvers developed are demonstrated on an experimental electric autonomous car in a usual traffic environment. 1 Introduction Many drivers have difficulties or make errors while parallel parking or in pulling out of a parking place. A control approach to automatic parallel parking and pulling out maneuvers has been developed and tested on an experimental electric car capable of autonomous motion. The manual car driving is supplemented with an automatic steering and velocity control [1]. The car is equiped with: (1) - a sensor unit to measure relative distances ...

Igor Paromtchik; Christian Laugier

1998-01-01T23:59:59.000Z

248

Oregon Parks and Recreation Department | Open Energy Information  

Open Energy Info (EERE)

Recreation Department Name Oregon Parks and Recreation Department Address 725 Summer St., N.E. Suite C Place Salem, OR Zip 97301 Phone number 503-986-0707 Website http:...

249

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

250

The Social Life of Steeplechase Park: Neighborhood Dog-Park as a "Third Place  

E-Print Network (OSTI)

In the United States, there is a growing trend towards livable cities that facilitate physical, psychological, and social well-being. According to Congress of the New Urbanism, the great American suburb served by the automobile, does not fulfill all these functions. Urban sociologist Ray Oldenburg points out three realms of satisfactory life as work, home and the great good place as the third. The third place is one that facilitates barrier free social interaction, for example the American main-street, the English pub, French coffee house etc. Despite the ever existing need for such places, greater travel distances and the ever expanding needs of the automobile era have stripped our urban fabric of these. The Charter of the New Urbanism points out that in the American suburbs, neighborhood parks have the potential to serve as third places. The twofold purpose of this research was to examine Steeplechase dog-park using Oldenburgs Third Place construct as a starting point; and then to operationalize third place by establishing relationships between social characteristics and physical environment. Participant observation, casual conversations and ethnographic interviews were methods used to examine how residents use Steeplechase Park. The observation phase was used to understand on-site behavior, user interests and then establish contacts with participants for recruitment. In-depth interviews were then conducted to examine user history, relationships and attitudes toward the place. Data was coded and analyzed in NVivo 10 utilizing Oldenburgs framework as a reference, the components of which were then examined for correlations to the physical elements. The findings of suggest that Steeplechase Park functions as a somewhat unique third place in terms of user motivation, companion animal/social lubricant, neutrality and inclusiveness of the place. Findings also establish useful links between the physical design of the space and the social activity; prospect-refuge supported by vegetation and layout, topography, shade, edges and access being the most important aspects. Additionally, lack of maintenance was established as a major concern to sustained use.

Gulati, Nidhi 1986-

2012-12-01T23:59:59.000Z

251

What is the purpose of our national parks?  

E-Print Network (OSTI)

A lively discussion ensues today over the ''mandate'' of America's national parks. Utilitarians say parks are for people-the forest always returns no matter what we do. Consevationists say, let's balance use between recreation and protection of natural resources. Preservationists say, the parks were created to protect the natural resources and recreation must be subordinate. In a capitalistic frenzy following Independence in 1776, Americans consumed, wasted, and sold their forests and wildlife, precipitating a host of ills upon the land such as, drought, floods, and wildlife extinctions. During this period the first 3 public reserves--Hot Springs, Mariposa Bigtree Grove with Yosemite, and Yellowstone were set apartl by Congress for the masses- particularly the poor-as national healing meccas and public playgrounds. Although the nation's timber supply was in danger of depletion by lumber barons who were rapidly harvesting virgin forests, the idea of federal forest reservles was repugnant and resisted by Congress until 1891. During this time Forest Reserves weren't deliberately enacted into law but came in as an amendment to the Timber Culture Act allowing Presidents the right to reserve forests on the headwaters of rivers to prevent seasonal flooding. This was done for conservation--not preservation-reasons, especially during the Teddy Roosevelt/Gifford Pinchot years. Sponsors of the National Park Service bill of 1916 wanted to develop the National Parks for mass use to prevent commercial exploitation by adjacent states of these areas. The law clearly wasn't passed with an environmental agenda in mind. Mather and Albright acting in concert together developed the scenic areas of the parks for recreational use, but left the rest of the park undeveloped which satisfied most environmental groups. Franklin D. Roosevelt sought to help the nation come out of a depression and develop parks with CCC funds. Park visitation improved and rapidly grew following WWII with another infusion of development during the mid-1950's to 60's. An environmental movement took the nation by storm during the period of rapid growth in park visitation. National Parks began losing their scenic appeal from over development and mass visitation. Planning frameworks were developed with names like ROS, C-CAP, VIM, LAC, and VERP to cope with the destructiveness of resource damage from mass visitation. Psychological needs to relieve stress in natural environments have been responsible for millions of visitors seeking recreation in National Parks and retirement communities surrounding them. Parks have been losing species since the 1920's when animal counts began, and will continue unless a science program of species enrichment is adopted. This will require the Park Service to abandon the failing policies of 'natural regulation' and 'nonintervention.' A new policy of natural education should be attempted by the Park Service to instill understanding and overcome fears and discomforts with fauna and flora which exist in the general public.

Manning, Orlinda D.

2001-01-01T23:59:59.000Z

252

WaveWave Interaction of Unstable Baroclinic Waves  

Science Conference Proceedings (OSTI)

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wavewave interaction in the ...

Joseph Pedlosky; Lorenzo M. Polvani

1987-02-01T23:59:59.000Z

253

Information Resources: Using the Street and Parking Facility Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool This August 22, 2013 webinar provided a guided walk-through of the Street and Parking Facility Lighting Retrofit Financial Analysis Tool. Developed by a partnership of the DOE Municipal Solid-State Street Lighting Consortium, the Clinton Climate Initiative/C40, and the DOE Federal Energy Management Program, the Excel-based tool assists with the financial analysis of retrofitting street and parking facility lighting with more efficient alternatives. During the webinar, Doug Elliott of Pacific Northwest National Laboratory discussed how the tool can be used to evaluate costs and benefits associated with converting to more efficient street and parking facility lighting and how property owners, city and other government agencies, utilities, and energy efficiency organizations can use the tool to compute annualized energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback associated with potential lighting upgrades.

254

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network (OSTI)

The new industrial park energy supply (NIPES) concept is an attractive approach for providing a stable, long-term domestic energy source for industrial plants at reasonable cost and reasonable financial risk. The NIPES concept consists of a system of energy supply stations and steam transmission lines that supply process heat and electricity to multiple users in an industrial park(s) setting. The energy supply stations grow along with the industrial park(s) as new industries are attracted by a reliable, reasonably priced energy source. This paper describes the generic NIPES concept and summarizes the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. The economics of the specific NIPES system is compared to that of individual user-owned coal-fired facilities for new industrial plants and of individual user-owned oil-fired facilities for existing industrial plants. The results indicate substantial savings associated with the NIPES system for both new and existing users and/or a potential for high return on investment by third-party investors.

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

255

The Sandia Wave Reflector  

The Sandia wave reflector is a magnetic conductor for wireless transmissions near 433 MHz. The device reflects perpendicular electromagnetic waves in-phase and suppresses surface waves resulting in improved gain performance and effective operation ...

256

Geostrophic Shock Waves  

Science Conference Proceedings (OSTI)

Organized depth discontinuities involving a balance between steepening and dissipation are usually referred to as shock waves. An analytical educed gravity model is used to examine a special kind of shock wave. The wave under study is a depth ...

Doron Nof

1986-05-01T23:59:59.000Z

257

A Thunderstorm Bow Wave  

Science Conference Proceedings (OSTI)

The thunderstorm solitary gust or bow wave, observed by Doviak and Ge, is examined from the viewpoint of boundary layer wave theory. It is concluded that all its well defined characteristics are consistently modeled as a bow wave of ducted ...

G. Chimonas; Carmen J. Nappo

1987-02-01T23:59:59.000Z

258

Changing the state of fairness : redeveloping Fair Park as a catalyst for the revitalization of South Dallas  

E-Print Network (OSTI)

This thesis studies Fair Park, a 277 acre public park located in Dallas, Texas. Fair Park represents prevalent planning challenges - the repurposing of sites that have outlived their initial uses and the reintegration of ...

Di Mambro, Giuliana Siena

2013-01-01T23:59:59.000Z

259

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270°C) that boils to feed steam to the high-temperature

260

Estes Park Light and Power Department - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estes Park Light and Power Department - Commercial and Industrial Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Custom Energy Incentive: $0.10 per annual kWh saved Demand Incentive: $500 per kW saved during Summer Peak Period Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

National Park Service - Chickasaw, Oklahoma | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chickasaw, Oklahoma Chickasaw, Oklahoma National Park Service - Chickasaw, Oklahoma October 7, 2013 - 9:56am Addthis Photo of Comfort Station at the Chickasaw National Recreation Area The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations. The decision to use solar water heating at the site was the result of a collaborative effort between the National Renewable Energy Laboratory (NREL) Federal Energy Management Program (FEMP) and Solar Process Heat Program in support of NPS. Chickasaw visitors wanted hot showers, and park personnel wanted an alternative to conventional water heaters. The facility

262

Oversight Reports - East Tennessee Technology Park | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Tennessee Technology Park East Tennessee Technology Park Oversight Reports - East Tennessee Technology Park December 30, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Facility - December 2013 Review of the Fire Protection Program and Fire Protection Systems at the Transuranic Waste Processing Center September 20, 2013 Independent Oversight Review, Oak Ridge Transuranic Waste Processing Center, September 2013 Review of Management of Safety Systems at the Oak Ridge Transuranic Waste Processing Center and Associated Feedback and Improvement Processes June 24, 2013 Independent Oversight Review, URS CH2M Oak Ridge - June 2013 Review of Oak Ridge Environmental Management Radiological Controls Activity Level Implementation August 25, 2011 Independent Activity Report, Oak Ridge Office - June 2011

263

McKinley Wind Park | Open Energy Information  

Open Energy Info (EERE)

McKinley Wind Park McKinley Wind Park Facility McKinley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Detroit Edison Developer Detroit Edison Energy Purchaser Detroit Edison Location Pigeon MI Coordinates 43.87277698°, -83.26126099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.87277698,"lon":-83.26126099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Community Renewable Energy Success Stories Webinar: Renewable Energy Parks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Below is the text version of the webinar titled "Renewable Energy Parks," originally presented on March 19, 2013. Operator: The broadcast is now starting. All attendees are in Listen Only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar. It is sponsored by the U.S. Department of Energy (DOE) . Sorry. We're moving some slides around. We'll go right back to the front one there. Thanks, Devin. This is Sarah Busche and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and log on, but while we do this Devin is going to run

265

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

266

City of Lake Park, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota (Utility Company) Park, Minnesota (Utility Company) Jump to: navigation, search Name Lake Park City of Place Minnesota Utility Id 10609 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL CONTROLLED A/C CREDIT Commercial COMMERCIAL DUAL FUEL AND STORAGE HEATING Commercial COMMERCIAL SERVICE RATE Commercial COMMERCIAL WATER HEATER CREDIT Commercial PRIVATE YARD LIGHTS Lighting RESIDENTIAL CONTROLLED A/C CREDIT Residential RESIDENTIAL DUAL FUEL AND STORAGE HEATING Residential RESIDENTIAL SERVICE RATE Residential

267

Clean Cities National Parks Initiative Project Success Story Form  

NLE Websites -- All DOE Office Websites (Extended Search)

National Parks Initiative Project Success Story Form National Parks Initiative Project Success Story Form Do you know about a successful petroleum-reduction activity or clean-transportation project that should be featured with the National Parks Initiative projects? In addition to being on the Clean Cities website, these success stories can be featured in U.S. Department of Energy and U.S. Department of Interior publications and in videos with potential national television coverage. These success stories should be related to alternative fuels, advanced vehicle technologies, and smart driving practices, and they must be projects at NPS units. To submit a success story idea, complete the form below and click the "Submit by E-Mail" button in the upper-right corner of this page or save the form and e-mail it to andrew.hudgins@nrel.gov.

268

SolarPark Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

SolarPark Engineering Co Ltd SolarPark Engineering Co Ltd Jump to: navigation, search Name SolarPark Engineering Co Ltd Place Bucheon, Gyeonggi-do, Korea (Republic) Sector Solar Product Korean solar project developer, currently building a 15MW PV plant in Gochang County. Coordinates 37.500069°, 126.792229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.500069,"lon":126.792229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Village of Hyde Park, Vermont (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hyde Park, Vermont (Utility Company) Hyde Park, Vermont (Utility Company) Jump to: navigation, search Name Hyde Park Village of Place Vermont Service Territory Vermont Website www.hydeparkvt.com/watera Green Button Reference Page www.efficiencyvermont.com Green Button Committed Yes Utility Id 9144 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric (AE) Residential General Service (GS) Commercial Large General Service Industrial Residential (RS) Residential Security Lights - Ded. Pole Lighting

270

Climate Leadership in Parks (CLIP) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Climate Leadership in Parks (CLIP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Leadership in Parks (CLIP) Agency/Company /Organization: National Park Service Phase: Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

271

Denver Federal Center Solar Park | Open Energy Information  

Open Energy Info (EERE)

Center Solar Park Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser Xcel Energy Address West 6th Ave & Kipling Street Location Lakewood, Colorado Zip 80225 Coordinates 39.7247982353°, -105.118432045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7247982353,"lon":-105.118432045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Parke County Rural E M C | Open Energy Information  

Open Energy Info (EERE)

Parke County Rural E M C Parke County Rural E M C Jump to: navigation, search Name Parke County Rural E M C Place Indiana Utility Id 14471 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RATE SCHEDULE C (Rate 3 and 4) Commercial RATE SCHEDULE LG-OP (Rate 5) Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 1 Commercial Rate Rider DG (Rate 11) Distributed Generation Rider Option 2 Commercial Rate Rider P (Rate 66) Prepaid Service Commercial Rate Rider RE(RATE 66) Residential

273

Town of Estes Park, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Estes Park, Colorado (Utility Company) Estes Park, Colorado (Utility Company) Jump to: navigation, search Name Town of Estes Park Place Colorado Utility Id 5997 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE COMMERCIAL Commercial LARGE COMMERICIAL TIME OF DAY Commercial MUNICIPAL RATE Commercial OUTDOOR AREA LIGHTING Lighting RENEWABLE ENERGY CHARGE Commercial RESIDENTIAL Residential RESIDENTIAL DEMAND Residential RESIDENTIAL ENERGY BASIC TIME-OF-DAY Residential

274

Florham Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florham Park, New Jersey: Energy Resources Florham Park, New Jersey: Energy Resources (Redirected from Florham Park, NJ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.787878°, -74.3882072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.787878,"lon":-74.3882072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

276

EA-1212: Lease of Land for the Development of a Research Park...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1212: Lease of Land for the Development of a Research Park at...

277

Parking Permit Application, Form HQ F 1400.12 rev 02-10 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application, Form HQ F 1400.12 rev 02-10 More Documents & Publications DOE HQ F 1400.12 Forrestal Garage Parking Guidelines, Revised August 12, 2010 Handicapped Parking Guidance...

278

Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness  

Science Conference Proceedings (OSTI)

The current study tests applications of the Comfort Formula (COMFA) energy budget model by assessing the moderating effects of urban parks in contrast to streets, and it also looks at the influence of park types (open or treed). Exploration ...

Jennifer K. Vanos; Jon S. Warland; Terry J. Gillespie; Graham A. Slater; Robert D. Brown; Natasha A. Kenny

2012-09-01T23:59:59.000Z

279

Alternative Fueled Vehicles in the Great Smoky Mountains National Park: Cades Cove  

Science Conference Proceedings (OSTI)

The Great Smoky Mountains National Park (GSMNP) -- located in a beautiful mountainous area along the southern portion of the North Carolina and Tennessee borders and largely within the Tennessee Valley Authority (TVA) service territory -- is the most visited national park in the United States. As the number of park visitors increases, so do the number of vehicles in the park at any given time. The contributing emissions that result from the enormous number of internal combustion engine vehicles supply a ...

2004-11-29T23:59:59.000Z

280

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network (OSTI)

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation, chosen by EPRI to support the industrial parks study. Cogeneration benefits for park owners, tenants and the local utilities are presented. A method developed for selecting industrial park sites for cogeneration facilities and design and financing options are also discussed.

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

282

UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project UMore Park Wind Turbine Project Loggerhead Shrike Survey Draft Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 [1] UMore Park Wind Turbine Project Loggerhead Shrike Survey Report to Barr Engineering Lee A. Pfannmuller June 15, 2010 Project Area The University of Minnesota owns approximately 5,000 acres in Dakota County, known as the University of Minnesota Outreach, Research and Education (UMore) Park. A concept master plan was developed

283

Fundamental Guided Wave Metrology  

Science Conference Proceedings (OSTI)

Fundamental Guided Wave Metrology. Summary: ... The program is focused on fundamental measurement research for microwave parameters. ...

2010-10-05T23:59:59.000Z

284

Embedded automatic parking management system based on RFID and existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, an Embedded Automatic Parking Management System (EAPMS) that integrates the existed gate system and RFID is proposed. This system includes Embedded Gate Hardware, Gate-PC Controller, RFID System, Parking Management Platform. Most systems ... Keywords: RFID, embedded, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee; Nan-Yuan Huang

2008-07-01T23:59:59.000Z

285

Modular RFID parking management system based on existed gate system integration  

Science Conference Proceedings (OSTI)

In this paper, a Modular RFID Parking Management System that integrates the existed gate system and RFID is proposed. This system includes Modular Gate-PC Controller and Embedded Gate Hardware, RFID System, Modular Parking Management Platform. Most systems ... Keywords: RFID, embedded, modular, parking management, system integration

Ming-Shen Jian; Kuen Shiuh Yang; Chung-Lun Lee

2008-06-01T23:59:59.000Z

286

Evolution of knowledge creation and diffusion: the revisit of Taiwan's Hsinchu Science Park  

Science Conference Proceedings (OSTI)

The Hsinchu Science Park in Taiwan has been synonymous with dynamic and flourishing high-tech industries and companies since the 1980s. Using patent citation data, this empirical study shows that Taiwan's Hsinchu Science Park is a healthy and knowledge-based ... Keywords: Knowledge flows, Patent citation, R11, R58, Region innovation system, Science Park, Taiwan

Mei-Chih Hu

2011-09-01T23:59:59.000Z

287

Historical GIS as a Platform for Public Memory at Mammoth Cave National Park  

Science Conference Proceedings (OSTI)

The Mammoth Cave Historical GIS (MCHGIS) fosters new understandings of a national park landscape as a historic farming community and offers a web-based platform for public memory of pre-park inhabitants. It maps the 1920 manuscript census at the household ... Keywords: Historical GIS, Kentucky, Mammoth Cave, National Parks, Public Memory, Public Participation GIS, Virtual Community Building

Katie Algeo; Ann Epperson; Matthew Brunt

2011-10-01T23:59:59.000Z

288

Evaluating and benchmarking productive performances of six industries in Taiwan Hsin Chu Industrial Science Park  

Science Conference Proceedings (OSTI)

Science Park provides a unique environment for accelerating technological innovation. The purpose of this paper is to analyze efficiency and productivity growth of six industries in Taiwan Hsin Chu Industrial Science Park for the period 2000-2006. From ... Keywords: DEA, Hsin Chu Industrial Science Park, Malmquist Productivity Indexes, Window analysis

Chia Chi Sun

2011-03-01T23:59:59.000Z

289

Reunion at Bletchley Park, 19 October 1991 Brian Randell  

E-Print Network (OSTI)

of Newcastle upon Tyne The reunion was organized by the Bletchley Archaeological and Historical Society (BAHS: Bletchley Park was occupied by the HQ of Britain's cryptanalytic and signals intelligence organisation by English Heritage (the organization which is responsible for many historic buildings and sites in England

Newcastle upon Tyne, University of

290

District heating system, College Industrial Park, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The College Industrial Park (CIP) is located to the northwest of the Oregon Institute of Technology (OIT) campus. Waste water from the OIT campus geothermal heating system flows through an open ditch to the south of the Park. Being aware of this, city personnel have requested the Geo-Heat Center design a distribution network for the Park to eventually utilize an estimated 600 GPM of the 130/sup 0/F waste water. Geothermal water from each campus building is discharged into storm drains which also collect surface run off from parking lots, roofs and grounds. Waste water temperatures are generally between 120/sup 0/F and 130/sup 0/F, however, it may drop as low as 90/sup 0/F when mixing occurs with large amounts of surface run off. Peak heating load requirements for the OIT campus are estimated to be 17.8 x 10/sup 6/ Btu/hour for 567,000 square feet of space. Peak flow rate of geothermal fluid to satisfy this load is then 593 GPM based on a net 60/sup 0/F temperature differential. Three wells are available to supply the necessary flow. A Lithium-Bromide Absorption Chiller (185 ton) was installed in 1980 to provide space cooling. The chiller requires a constant flow rate of 550 GPM and discharges 170/sup 0/F water to the storm drains during summer months.

Not Available

1981-10-01T23:59:59.000Z

291

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

292

Comments on "Modelling the gap size distribution of parked cars"  

E-Print Network (OSTI)

In this Comment we discuss some points concerning the modeling of parked cars proposed in the article by Rawal and Rodgers, Physica A (2005). We also introduce another approach to this problem which leads to a better description of the empirical data collected by the authors.

Girardi, Mauricio

2009-01-01T23:59:59.000Z

293

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks  

E-Print Network (OSTI)

Actes JFPC 2012 Optimal Allocation of Renewable Energy Parks: A Two-stage Optimization Model-economical study of renewable energy on the other hand, investigates gradual implantation of Renewable Energy (RE of energy demand, available resources, anticipated renewable engineering cost re- ductions [13]. However

Paris-Sud XI, Université de

294

Watching Gravitational Waves  

E-Print Network (OSTI)

In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.

Joachim Moortgat

2001-04-02T23:59:59.000Z

295

Clean Cities: Submitting Project Ideas for the Clean Cities National Parks  

NLE Websites -- All DOE Office Websites (Extended Search)

Submitting Project Ideas for the Clean Submitting Project Ideas for the Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments

296

Solid-State Lighting: Using the Street and Parking Facility Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the Street and Parking Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Using the Street and

297

Better Buildings Neighborhood Program: STEP-UP Coaches a University Park  

NLE Websites -- All DOE Office Websites (Extended Search)

STEP-UP STEP-UP Coaches a University Park Family to Comfort and Savings to someone by E-mail Share Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Facebook Tweet about Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Twitter Bookmark Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Google Bookmark Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Delicious Rank Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on Digg Find More places to share Better Buildings Neighborhood Program: STEP-UP Coaches a University Park Family to Comfort and Savings on

298

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

299

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

300

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gravity Waves from Thunderstorms  

Science Conference Proceedings (OSTI)

Gravity waves generated by severe thunderstorms in the eastern Ohio-Pennsylvania area were recorded by an array of microbarovariographs at Palisades, New York and by standard microbarographs across northeastern United States. The waves were ...

Nambath K. Balachandran

1980-06-01T23:59:59.000Z

302

Belvedere Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belvedere Park, Georgia: Energy Resources Belvedere Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4606984°, -84.9040969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4606984,"lon":-84.9040969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

304

Merrionette Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Merrionette Park, Illinois: Energy Resources Merrionette Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6842004°, -87.7003277° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6842004,"lon":-87.7003277,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Kendall Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4209391°, -74.560711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4209391,"lon":-74.560711,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Lake Forest Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Washington: Energy Resources Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7567644°, -122.2809602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7567644,"lon":-122.2809602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Indian Head Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Head Park, Illinois: Energy Resources Head Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7703092°, -87.9022808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7703092,"lon":-87.9022808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Comstock Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Comstock Park, Michigan: Energy Resources Comstock Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0386368°, -85.6700332° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0386368,"lon":-85.6700332,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

310

St. Louis Park, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Minnesota: Energy Resources Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9482979°, -93.3480051° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9482979,"lon":-93.3480051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Highland Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8887243°, -75.1079525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8887243,"lon":-75.1079525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Severna Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Severna Park, Maryland: Energy Resources Severna Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.070388°, -76.5452409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.070388,"lon":-76.5452409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Loveland Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Loveland Park, Ohio: Energy Resources Loveland Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.299781°, -84.2632706° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.299781,"lon":-84.2632706,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Terrace Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Terrace Park, Ohio: Energy Resources Terrace Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.1592269°, -84.3071602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1592269,"lon":-84.3071602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Mangonia Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mangonia Park, Florida: Energy Resources Mangonia Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.760341°, -80.0736529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.760341,"lon":-80.0736529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

View Park-Windsor Hills, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Park-Windsor Hills, California: Energy Resources Park-Windsor Hills, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9929545°, -118.3491169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9929545,"lon":-118.3491169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Roeland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roeland Park, Kansas: Energy Resources Roeland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0375053°, -94.6321795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0375053,"lon":-94.6321795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Ingalls Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ingalls Park, Illinois: Energy Resources Ingalls Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5213°, -88.033882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5213,"lon":-88.033882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Cliffside Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cliffside Park, New Jersey: Energy Resources Cliffside Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8214894°, -73.9876388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8214894,"lon":-73.9876388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Plantation Mobile Home Park, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Plantation Mobile Home Park, Florida: Energy Resources Plantation Mobile Home Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.702392°, -80.132515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.702392,"lon":-80.132515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

La Grange Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grange Park, Illinois: Energy Resources Grange Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8347535°, -87.861726° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8347535,"lon":-87.861726,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

City of Park River, North Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Park River Park River Place North Dakota Utility Id 14474 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Multi-Dwelling Commercial Commercial All Electric Commercial Commercial Off-Peak Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Heat Pump Residential Industrial >125,000 kWh/yr Industrial Residential Residential Residential Off Peak Residential Residential- All Electric Residential Average Rates Residential: $0.0858/kWh Commercial: $0.0905/kWh

323

Munds Park, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Munds Park, Arizona: Energy Resources Munds Park, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.945574°, -111.6401551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.945574,"lon":-111.6401551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Oakland Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Florida: Energy Resources Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.1723065°, -80.1319893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.1723065,"lon":-80.1319893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Brook Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brook Park, Ohio: Energy Resources Brook Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3983838°, -81.8045788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983838,"lon":-81.8045788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

City of College Park, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Park College Park Place Georgia Utility Id 3939 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY FLAT RATE Commercial GENERAL SERVICE NON-DEMAND Commercial LARGE GENERAL SERVICE Commercial MEDIUM GENERAL SERVICE Commercial RESIDENTIAL Residential SECURITY LIGHTING SERVICE HPS 100 W Lighting SECURITY LIGHTING SERVICE, HPS 250 Lighting SECURITY LIGHTING SERVICE, HPS 400 Lighting

327

Palisades Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palisades Park, New Jersey: Energy Resources Palisades Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8481556°, -73.997639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8481556,"lon":-73.997639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Harrington Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrington Park, New Jersey: Energy Resources Harrington Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9837089°, -73.9798601° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9837089,"lon":-73.9798601,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Baldwin Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, California: Energy Resources Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0852868°, -117.9608978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0852868,"lon":-117.9608978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodlawn Park, Oklahoma: Energy Resources Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455°, -97.6500419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5114455,"lon":-97.6500419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Gloria Glens Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glens Park, Ohio: Energy Resources Glens Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0583883°, -81.8979171° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0583883,"lon":-81.8979171,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Menlo Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Menlo Park, California: Energy Resources Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4538274°, -122.1821871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4538274,"lon":-122.1821871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Laurel Park, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laurel Park, North Carolina: Energy Resources Laurel Park, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1245734°, -81.6809391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.1245734,"lon":-81.6809391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Deer Park, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New York: Energy Resources Park, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7617653°, -73.3292857° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7617653,"lon":-73.3292857,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Fern Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fern Park, Florida: Energy Resources Fern Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.6491649°, -81.3511796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.6491649,"lon":-81.3511796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Overland Park, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Overland Park, Kansas: Energy Resources Overland Park, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9822282°, -94.6707917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9822282,"lon":-94.6707917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Ridgefield Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ridgefield Park, New Jersey: Energy Resources Ridgefield Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8570442°, -74.0215285° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8570442,"lon":-74.0215285,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Tangelo Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tangelo Park, Florida: Energy Resources Tangelo Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.4558386°, -81.4459047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.4558386,"lon":-81.4459047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Richton Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Richton Park, Illinois: Energy Resources Richton Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.484479°, -87.7033787° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.484479,"lon":-87.7033787,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Normandy Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Normandy Park, Washington: Energy Resources Normandy Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4362103°, -122.3406799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.4362103,"lon":-122.3406799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gulivoire Park, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gulivoire Park, Indiana: Energy Resources Gulivoire Park, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6133812°, -86.2452839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6133812,"lon":-86.2452839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Biscayne Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Biscayne Park, Florida: Energy Resources Biscayne Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8825951°, -80.1806025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8825951,"lon":-80.1806025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Woodbourne-Hyde Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodbourne-Hyde Park, Ohio: Energy Resources Woodbourne-Hyde Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.665533°, -84.1698908° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.665533,"lon":-84.1698908,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Roxborough Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Roxborough Park, Colorado: Energy Resources Roxborough Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.4738776°, -105.0852642° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4738776,"lon":-105.0852642,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Schiller Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Illinois: Energy Resources Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9558637°, -87.8708965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9558637,"lon":-87.8708965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Frazier Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frazier Park, California: Energy Resources Frazier Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8227556°, -118.9448219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8227556,"lon":-118.9448219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Park County RE2 Wind Project | Open Energy Information  

Open Energy Info (EERE)

County RE2 Wind Project County RE2 Wind Project Jump to: navigation, search Name Park County RE2 Wind Project Facility Park County RE2 Sector Wind energy Facility Type Community Wind Location CO Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 110683 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

348

Clearbrook Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clearbrook Park, New Jersey: Energy Resources Clearbrook Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.309831°, -74.4645962° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.309831,"lon":-74.4645962,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Gresham Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gresham Park, Georgia: Energy Resources Gresham Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7034405°, -84.3143682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7034405,"lon":-84.3143682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Hazel Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4625362°, -83.1040912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4625362,"lon":-83.1040912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

National Park Service - Lake Powell, Utah | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

352

Cascade-Chipita Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cascade-Chipita Park, Colorado: Energy Resources Cascade-Chipita Park, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9498727°, -105.0031457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9498727,"lon":-105.0031457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Humboldt Industrial Park Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Pennsylvania Wind Energy Developer Energy Unlimited Energy Purchaser Community Energy Location Hazleton PA Coordinates 40.9507°, -75.9735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9507,"lon":-75.9735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Minerva Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Minerva Park, Ohio: Energy Resources Minerva Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0764526°, -82.9437921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0764526,"lon":-82.9437921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Maplewood Park, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maplewood Park, Ohio: Energy Resources Maplewood Park, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1356133°, -80.5845173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1356133,"lon":-80.5845173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Sherwood Park, Alberta: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Alberta: Energy Resources Park, Alberta: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 6146279 Coordinates 53.51684°, -113.3187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.51684,"lon":-113.3187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Riverton-Boulevard Park, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

Riverton-Boulevard Park, Washington: Energy Resources Riverton-Boulevard Park, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5033976°, -122.3094913° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5033976,"lon":-122.3094913,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Takoma Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Takoma Park, Maryland: Energy Resources Takoma Park, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.9778882°, -77.0074765° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9778882,"lon":-77.0074765,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Nicoma Park, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nicoma Park, Oklahoma: Energy Resources Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731°, -97.3230893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4911731,"lon":-97.3230893,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Azalea Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Azalea Park, Florida: Energy Resources Azalea Park, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.5411128°, -81.3006237° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5411128,"lon":-81.3006237,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alondra Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alondra Park, California: Energy Resources Alondra Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8894595°, -118.3309073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8894595,"lon":-118.3309073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Sunland Park, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sunland Park, New Mexico: Energy Resources Sunland Park, New Mexico: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.796496°, -106.5799891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.796496,"lon":-106.5799891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Lincoln Park, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, New Jersey: Energy Resources Park, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.742064°, -74.2440299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.742064,"lon":-74.2440299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Tinley Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tinley Park, Illinois: Energy Resources Tinley Park, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5733669°, -87.7844944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5733669,"lon":-87.7844944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Oak Park, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Michigan: Energy Resources Park, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.4594803°, -83.1827051° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4594803,"lon":-83.1827051,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Village Park, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Hawaii: Energy Resources Park, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3930017°, -158.0253941° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3930017,"lon":-158.0253941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Cambridge Danehy Park Wind Turbine Preliminary Project Assessment  

E-Print Network (OSTI)

.0 100.0 120.0 0 10 20 30 40 Noise Level (dBA) Distance from Wind Turbine (m) SS P20, NP100, and P500 ACambridge Danehy Park Wind Turbine Preliminary Project Assessment Overview MIT Wind Energy Projects 4 / 25 2.5 / 25 Rated Wind Speed (m/s) 13 10 14.5 ~15 12 The above turbines were chosen to provide

368

Partial Design of a Multi-Energy Park at Clarkson University: Simulating the Electrical Performance of the Multi-Energy Park  

Science Conference Proceedings (OSTI)

Clarkson University -- an independent technological university in Potsdam, New York -- is the proposed site of a multi-energy park, which would be powered mostly by two Wartsila 2.5-MVA generators using reciprocating internal combustion engines. This report documents electrical interconnection and analytical modeling studies performed to determine the electrical characteristics of the proposed Clarkson multi-energy park.

2003-12-31T23:59:59.000Z

369

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

370

Environmental Impacts of Tourism in Khao Yai National Park, Thailand  

E-Print Network (OSTI)

Knowledge of visitor impacts is critical for sustainable tourism management in national parks. The focus of past tourism impact research on national parks is either on bio-physical impacts (conducted as recreation ecology research) or on social impacts (human dimensions, including environmental perception and crowding). Research integrating these two dimensions has been rarely conducted. This research aims to fill this gap through the integrative approach that attempts to understand current biophysical impacts of visitor activities in a national park, and it examines how visitors perceive these impacts. The primary objectives of this dissertation are 1) to provide a synthesis of existing of bio-physical impacts of visitor activities in the Khao Yai National Park (KYNP) and 2) to examine visitors perception of those impacts. Also, the factors affecting visitors perception are analyzed. Both qualitative and quantitative methods were used in this study. Previous impact studies conducted in KYNP were reviewed. A visitor survey was conducted between December 2008 and February 2009. The questionnaires were distributed to 628 domestic and 40 international visitors. The 38 KYNP official interviews were completed. Based on previous impact research in KYNP, the most common bio-physical impacts include soil compaction, removal of humus layer, erosion, plant damage, soil and root exposure, water quality deterioration, disturbance and feeding wildlife. Other environmental impacts include noise pollution and garbage accumulation. The results indicate that more than 30 percent of visitors do not recognize the negative results of their activities. With the exception of vegetation and water impacts, overall, visitors perceive the impacts as less severe than the actual impacts. Environmental impacts are rated differently by the KYNP officials, domestic, and international visitors. Also, significant differences were found among birders, hikers, and campers. The key factors influencing impact perceptions include income level, education level, residential location, park visitation experience, length of stay in KYNP, recreation activity, frequency of activity, group type, and group size. It is suggested that both the quality and the quantity of visitor impact research are needed to construct the body of knowledge of impacts in KYNP. A long-term impact monitoring is required to sustain the ecological integrity in KYNP.

Phumsathan, Sangsan

2010-08-01T23:59:59.000Z

371

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

372

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

373

New and Underutilized Technology: Bi-level Garage/Parking Lot/Pedestrian  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garage/Parking Garage/Parking Lot/Pedestrian Lighting New and Underutilized Technology: Bi-level Garage/Parking Lot/Pedestrian Lighting October 4, 2013 - 5:02pm Addthis The following information outlines key deployment considerations for bi-level garage/parking lot/pedestrian lighting within the Federal sector. Benefits Bi-level LED lighting uses fluorescent and LED lighting sources with bi-level motion sensors to reduce lighting levels when the parking area is not in use. Application Bi-level LED lighting is appropriate for garage, parking lot, and pedestrian areas. It can also be applied to pathway lighting where appropriate. Key Factors for Deployment Evaluate specific lighting and environmental requirements before deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

374

Pedestrian and traffic safety in parking lots at SNL/NM : audit background report.  

SciTech Connect

This report supplements audit 2008-E-0009, conducted by the ES&H, Quality, Safeguards & Security Audits Department, 12870, during fall and winter of FY 2008. The study evaluates slips, trips and falls, the leading cause of reportable injuries at Sandia. In 2007, almost half of over 100 of such incidents occurred in parking lots. During the course of the audit, over 5000 observations were collected in 10 parking lots across SNL/NM. Based on benchmarks and trends of pedestrian behavior, the report proposes pedestrian-friendly features and attributes to improve pedestrian safety in parking lots. Less safe pedestrian behavior is associated with older parking lots lacking pedestrian-friendly features and attributes, like those for buildings 823, 887 and 811. Conversely, safer pedestrian behavior is associated with newer parking lots that have designated walkways, intra-lot walkways and sidewalks. Observations also revealed that motorists are in widespread noncompliance with parking lot speed limits and stop signs and markers.

Sanchez, Paul Ernest

2009-03-01T23:59:59.000Z

375

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

376

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

377

Industry-Laboratory Partnerships A Review of the Sandia Science and Technology Park Initiative  

Science Conference Proceedings (OSTI)

The ''Sandia'' report summarizes a conference held to review the Sandia Science and Technology Park, its rationale and plans, and to identify potential operational and policy issues.

Wessner, C. W. (Editor)

1999-01-01T23:59:59.000Z

378

GETTING THE PRICES RIGHT: AN EVALUATION OF PRICING PARKING BY DEMAND IN SAN FRANCISCO  

E-Print Network (OSTI)

Underpriced and overcrowded curb parking creates problems for everyone except a few lucky drivers who find a cheap space; all the other drivers who cruise to find an open space waste time and fuel, congest traffic, and pollute the air. Overpriced and underoccupied parking also creates problems; when curb spaces remain empty, nearby merchants lose potential customers, workers lose jobs, and cities lose tax revenue. To address these problems, San Francisco has established SFpark, a program that adjusts parking prices to achieve a target parking availability of one or two open spaces on each block. To measure how parking prices affected parking occupancy in San Francisco we calculated the price elasticity of demand for onstreet parking revealed by 5,294 individual price and occupancy changes during the programs first year. Price elasticity varies greatly by time of day, location, and several other factors, with an average value of 0.4. The average meter price fell 1 percent during the first year, so SFpark adjusted prices up and down according to local demand without increasing prices overall. The city can improve the program by making drivers more aware of the variable prices, reducing the abuse of disabled parking placards, and introducing seasonal adjustments for parking prices.

Gregory Pierce; Donald Shoup

2013-01-01T23:59:59.000Z

379

2007 Emerald Award for Y. S. Park and T. F. Ewing [Robotics Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Experimentation > Robotics Laboratory > 2007 Emerald Award for Y. S. Park and T. F. Ewing Robotics Lab Overview Other Facilities Work with Argonne...

380

Deficiencies of Lighting Codes and Ordinances in Controlling Light Pollution from Parking Lot Lighting Installations.  

E-Print Network (OSTI)

??The purpose of this research was to identify the main causes of light pollution from parking lot electric lighting installations and highlight the deficiencies of (more)

Royal, Emily

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Orange County Great Park Welcomes U.S. Department of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT: MARCUS GINNATY 949-724-6574 Orange County Great Park Welcomes U.S. Department of Energy Solar Decathlon 2013 Collegiate Teams * Representatives from 20 collegiate teams...

382

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

kmichaud@umail.ucsb.edu Abstract: Offshore oil drilling hasto attitudes toward offshore oil drilling. This implies thats Forests and Parks 1 Offshore oil drilling has been a

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

383

The National Park Service and the use of geographic information systems (GIS) for cultural resource management.  

E-Print Network (OSTI)

??The National Park Service plays a central role in managing cultural resources in the United States and has served as a leader in the the (more)

Gardner, Bennett Rowan

2005-01-01T23:59:59.000Z

384

The Curious Institution of Mobile Home Rent Control: An Analysis of Mobile Home Parks in California  

E-Print Network (OSTI)

institution of mobile home , J. Housing Econ. (2007),into e?ects of mobile home park rent control. Journal ofinstitution of mobile home , J. Housing Econ. (2007),

Mason, Carl; Quigley, John M.

2007-01-01T23:59:59.000Z

385

Moving Toward Zero Energy Homes: Armory Park del Sol, Tucson, Arizona (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describes the energy efficient and solar energy features of the Armory Park del Sol Zero Energy Home, participant in the Zero Energy Homes initiative.

Not Available

2003-12-01T23:59:59.000Z

386

The vascular flora of Breaks Interstate Park, Pike County, Kentucky, and Dickenson County, Virginia.  

E-Print Network (OSTI)

??The vascular flora of Breaks Interstate Park was documented during two growing seasons, 2008 and 2009; with supplemental collections made in 2010 and 2011. The (more)

Clark, Julie Bennett

2012-01-01T23:59:59.000Z

387

Review: Peace Parks: Conservation and Conflict Resolution edited by Saleem H. Ali  

E-Print Network (OSTI)

led to the creation of peace parks in a given region, the elements that make it unique, the sources of funding,

Laberge, Yves

2008-01-01T23:59:59.000Z

388

Public Geology at Griffith Park in Los Angeles: A Sample Teachers Guide  

E-Print Network (OSTI)

Dipping beds of the Monterey formation in Griffith Park. [Figure 7. Listed as Monterey formation on the Dibblee map,as are the Monterey and Fernando Formations. Inclined

Helman, Daniel S

2012-01-01T23:59:59.000Z

389

Windshield Wilderness: Cars, Roads, and Nature in Washingtons National Parks  

E-Print Network (OSTI)

Review: Windshield Wilderness: Cars, Roads, and Nature inLouter. Windshield Wilderness: Cars, Roads, and Nature inpost-consumer waste. Cars, not people, are the parks

Anderson, Byron

2006-01-01T23:59:59.000Z

390

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

391

Defining the normal turbine inflow within a wind park environment  

DOE Green Energy (OSTI)

This brief paper discusses factors that must be considered when defining the [open quotes]normal[close quotes] (as opposed to [open quotes]extreme[close quotes]) loading conditions seen in wind turbines operating within a wind park environment. The author defines the [open quotes]normal[close quotes] conditions to include fatigue damage accumulation as a result of: (1) start/stop cycles, (2) emergency shutdowns, and (3) the turbulence environment associated with site and turbine location. He also interprets [open quotes]extreme[close quotes] loading conditions to include those events that can challenge the survivability of the turbine.

Kelley, N.D.

1993-06-01T23:59:59.000Z

392

Defining the normal turbine inflow within a wind park environment  

DOE Green Energy (OSTI)

This brief paper discusses factors that must be considered when defining the {open_quotes}normal{close_quotes} (as opposed to {open_quotes}extreme{close_quotes}) loading conditions seen in wind turbines operating within a wind park environment. The author defines the {open_quotes}normal{close_quotes} conditions to include fatigue damage accumulation as a result of: (1) start/stop cycles, (2) emergency shutdowns, and (3) the turbulence environment associated with site and turbine location. He also interprets {open_quotes}extreme{close_quotes} loading conditions to include those events that can challenge the survivability of the turbine.

Kelley, N.D.

1993-06-01T23:59:59.000Z

393

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

DOE Green Energy (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

394

WAVE REFLE TOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration. SAND # 2013-8893 P WAVE REFLE TOR

395

WAVE REFLE TOR  

electromagnetic wave travels through the rods along their axes it receives a 1/4 period of phase delay be- ... delay, creating positive interference that effectively

396

Trimodal steady water waves  

E-Print Network (OSTI)

We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

Mats Ehrnstrm; Erik Wahln

2013-10-31T23:59:59.000Z

397

RFI Comments - Wave Systems  

Science Conference Proceedings (OSTI)

... These attacks, such as those planted by rootkits ... PwC leveraged the power of TPMs to ... Wave EMBASSY Remote Administration Server (ERAS) has ...

2013-04-09T23:59:59.000Z

398

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

399

Collapse of Alfven waves  

SciTech Connect

The growth rates are calculated for the collapse of Alfven waves in a low-..beta.. plasma. The relationship to rf heating is discussed.(AIP)

Erokhin, N.S.; Moiseev, S.S.; Mukhin, V.V.

1977-07-01T23:59:59.000Z

400

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterization of Ambient Ozone Levels in the Great Smoky Mountains National Park  

Science Conference Proceedings (OSTI)

Ambient ozone data collected at two sites in the Great Smoky Mountains National Park (GSMNP) are summarized and compared with data from an urban and a low-elevation rural site. The ozone climatology in the park is found to be similar to that of ...

Stephen F. Mueller

1994-04-01T23:59:59.000Z

402

Wind parks equivalent models using system identification techniques based on nonlinear model structures  

Science Conference Proceedings (OSTI)

In this paper models of Wind Parks (WPs) appropriate for simulation purposes of large power systems with high wind power penetration are developed. The proposed models of the WPs are developed using system identification theory with NARX model structures. ... Keywords: modeling, system identification, wind integration, wind parks, wind turbines

F. D. Kanellos; G. J. Tsekouras; N. E. Mastorakis

2009-08-01T23:59:59.000Z

403

A fuzzy cognitive mapping analysis of the impacts of an eco-industrial park  

Science Conference Proceedings (OSTI)

Fuzzy cognitive maps are used as an automated decision aid to better assess how change in one component of a system affects the other components of the same system. To illustrate the advantage of this method, a conceptual model of an eco-industrial park ... Keywords: eco-industrial parks, fuzzy cognitive mapping, impact assessment, sustainable development

Sumita Fons; Gopal Achari; Timothy Ross

2004-04-01T23:59:59.000Z

404

Resonantly Forced Rossby Waves  

Science Conference Proceedings (OSTI)

A shallow, rotating layer of fluid that supports Rossby waves is subjected to turbulent friction through an Ekman layer at the bottom and is driven by a wave that exerts a shear stress on the upper boundary and for which the phase approximate ...

John Miles

1985-04-01T23:59:59.000Z

405

Iberdrola ? OPT Meeting January, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Suitability - Open Ocean - Water Depths Greater than 30-meters - Can Accommodate Any Tidal Variation (Flotation Driven Design) August 11, 2005 2 Ocean Power Technologies Ocean...

406

Iberdrola ? OPT Meeting January, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

- Minor and Temporary impact from EMR on marine organisms in the vicinity of the transformer and cables. * Electrical Leakage - Mild Discomfort on marine organisms and divers...

407

Pemex opts for catalytic dehydrogenation  

SciTech Connect

In the gas-rich areas such as the Middle East, Southeast Asia, Canada, and Mexico, low-cost ethane is the feed of choice for ethylene production. Coproduct production is minimal. Continued growth in demand for propylene, isobutylene, normal butone-1, and butadiene requires that alternate sources of these normally coproduct olefins be developed. Catalytic dehydrogenation, with its high selectivity to the desired olefin, is the logical and economic choice. Mexico is a case in point. It's ethylene production is based on ethane. Demand is rising for propylene and butadiene derivatives, and a potential demand exists for isobutylene to produce octane enhancers to implement an announced lead phase down. Only modest amounts of by-product monoolefin will be available from refining operations. Pemex, the Mexican refining and petrochemical giant, recognized this and started up its first Houdry Catadene /SUP TM/ plant in 1975 at Ciudad Madero to produce 55,000 metric ton/year of butadiene from normal butane. Pemex recently committed to a large (350,000 metric ton/year) propylene-from-propane plant at Morelos based on the Houdry Catofin /SUP TM/ catalytic dehydrogenation process. The plant will supply propylene to a long list of derivative plants (Table 1).

Craig, R.G.; Penny, S.J.; Schwartz, W.A.

1983-07-01T23:59:59.000Z

408

Participatory parks planning : exploring democratic design as a tool to mediate cultural conflict over neighborhood green space  

E-Print Network (OSTI)

America's park history has largely been a story of the commodification and representation of nature, from the idyllic naturescapes of the mid-nineteenth century to the reform parks and playgrounds of the City Beautiful ...

Sherman, Diana R. (Diana Ruth)

2005-01-01T23:59:59.000Z

409

Olympic Sculpture Park - Seattle, WA by Weiss/Manfredi Architecture/Landscape/Urbanism [EDRA/Places Awards 2008 -- Design  

E-Print Network (OSTI)

Park 2008 EDRA/Places Awards with Metropolis Design VisitorsIt stands for what this award is about. Dennis Frenchman:Park 2008 EDRA/Places Awards with Metropolis Design plines,

Huber, Nicole

2008-01-01T23:59:59.000Z

410

Practical speed meter designs for QND gravitational-wave interferometers  

E-Print Network (OSTI)

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors (e.g., LIGO-III and EURO), one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. A previous paper analyzed a straightforward but impractical design for a {\\it speed-meter interferometer} that accomplishes this. This paper describes some practical variants of speed-meter interferometers. Like the original interferometric speed meter, these designs {\\it in principle} can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies. These variants essentially consist of a Michelson interferometer plus an extra "sloshing" cavity that sends the signal back into the interferometer with opposite phase shift, thereby cancelling the position information and leaving a net phase shift proportional to the relative velocity. {\\it In practice}, the sensitivity of these variants will be limited by the maximum light power $W_{\\rm circ}$ circulating in the arm cavities that the mirrors can support and by the leakage of vacuum into the optical train at dissipation points. In the absence of dissipation and with a squeezed vacuum of power squeeze factor ~ 0.1 inserted into the output port so as to keep the circulating power down, the SQL can be beat by a factor 10 in power at all frequencies below some chosen $f_{\\rm opt}\\simeq 100$ Hz, with $W_{\\rm circ}\\simeq 800$ kW. Estimates are given of the amount by which vacuum leakage at dissipation points will debilitate this sensitivity; these losses are 10% or less over most of the frequency range of interest.

Patricia Purdue; Yanbei Chen

2002-08-17T23:59:59.000Z

411

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

412

DOE Order 344.1A, Parking at the Forrestal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

344.1A 344.1A Approved: 11-2-01 Admin Chg 1: 11-19-04 This directive was reviewed and certified as current and necessary by Susan J. Grant, Director, Office of Management, Budget and Evaluation/Chief Financial Officer, 11-19-04. SUBJECT: PARKING 1. OBJECTIVES. To define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. 2. CANCELLATION. This Order cancels HQ O 344.1, Parking, dated 3-5-97. 3. APPLICABILITY. This Order applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. 4. REQUIREMENTS. a. General. It is the policy of DOE that its parking facility be operated in a manner

413

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

414

Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Facility Aqua Caliente County Park Sector Geothermal energy Type Pool and Spa Location Anna-Borrego Desert State Park, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

415

LEDs and Specification for Parking Lots Lighten Energy Load | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEDs and Specification for Parking Lots Lighten Energy Load LEDs and Specification for Parking Lots Lighten Energy Load LEDs and Specification for Parking Lots Lighten Energy Load March 5, 2013 - 11:17am Addthis At its Supercenter in Leavenworth, Kansas—the first site to implement the LED Site Lighting Specification—Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the pedestrian walkway. Credit: Walmart At its Supercenter in Leavenworth, Kansas-the first site to implement the LED Site Lighting Specification-Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the

416

Cost effectiveness of park-and-ride lots in the Puget Sound region area. Final report  

SciTech Connect

A cost-effectiveness evaluation and a cost-benefit analysis was performed on a park-and-ride system consisting of 26 park-and-ride lots in the Seattle metropolitan area. Costs and benefits of the system were examined with respect to the user, the community at large, and the public agencies responsible for providing for the community's transportation needs. Using survey and other data as input, a model was developed to calculate the total incurred trip costs of both the park-and-ride trip and the corresponding trip not involving the park-and-ride lot. General results indicated that the park-and-ride system in the Seattle area is cost effective.

Rutherford, G.S.; Wellander, C.A.

1986-10-01T23:59:59.000Z

417

EA-1212: Lease of Land for the Development of a Research Park at Los Alamos  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1212: Lease of Land for the Development of a Research Park at 1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to lease undeveloped land that is part of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, to the County for private sector use as a research park. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 15, 1997 EA-1212: Mitigation Action Plan Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, NM October 8, 1997 EA-1212: Finding of No Significant Impact

418

Wave Mechanics without Probability  

E-Print Network (OSTI)

The behavior of monochromatic electromagnetic waves in stationary media is shown to be ruled by a frequency dependent function, which we call Wave Potential, encoded in the structure of the Helmholtz equation. Contrary to the common belief that the very concept of "ray trajectory" is reserved to the eikonal approximation, a general and exact ray-based Hamiltonian treatment, reducing to the eikonal approximation in the absence of Wave Potential, shows that its presence induces a mutual, perpendicular ray-coupling, which is the one and only cause of any typically wave-like phenomenon, such as diffraction and interference. Recalling, then, that the time-independent Schroedinger and Klein-Gordon equations (associating stationary "matter waves" to mono-energetic particles) are themselves Helmholtz-like equations, the exact, ray-based treatment developed for classical electromagnetic waves is extended - without resorting to statistical concepts - to the exact, trajectory-based Hamiltonian dynamics of mono-energetic point-like particles, both in the non-relativistic and in the relativistic case. The trajectories turn out to be perpendicularly coupled, once more, by an exact, stationary, energy-dependent Wave Potential, coinciding in the form, but not in the physical meaning, with the statistical, time-varying, energy-independent "Quantum Potential" of Bohm's theory, which views particles, just like the standard Copenhagen interpretation, as traveling wave-packets. These results, together with the connection which is shown to exist between Wave Potential and Uncertainty Principle, suggest a novel, non-probabilistic interpretation of Wave Mechanics.

Adriano Orefice; Raffaele Giovanelli; Domenico Ditto

2013-02-18T23:59:59.000Z

419

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

420

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Evaluation of a Wind-Wave System for Ensemble Tropical Cyclone Wave Forecasting. Part II: Waves  

Science Conference Proceedings (OSTI)

A wind-wave forecast system, designed with the intention of generating unbiased ensemble wave forecasts for extreme wind events, is assessed. Wave hindcasts for 12 tropical cyclones (TCs) are forced using a wind analysis produced from a ...

Steven M. Lazarus; Samuel T. Wilson; Michael E. Splitt; Gary A. Zarillo

2013-04-01T23:59:59.000Z

422

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfven waves  

E-Print Network (OSTI)

, College Park, Maryland 20742-3511 A. Das and P. K. Kaw Institute for Plasma Research, Bhat, Gandhinagar

Rubloff, Gary W.

423

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

424

Borough of Park Ridge, New Jersey (Utility Company) | Open Energy  

Open Energy Info (EERE)

Jersey (Utility Company) Jersey (Utility Company) Jump to: navigation, search Name Borough of Park Ridge Place New Jersey Utility Id 14472 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Floodlight Service MV 1000W Lighting Dusk to Dawn Floodlight Service HPS 100W Lighting Dusk to Dawn Floodlight Service HPS 150W Lighting Dusk to Dawn Floodlight Service HPS 175W Lighting Dusk to Dawn Floodlight Service HPS 250W Lighting Dusk to Dawn Floodlight Service HPS 360W Lighting Dusk to Dawn Floodlight Service HPS 400W Lighting

425

Highlands-Baywood Park, California: Energy Resources | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Highlands-Baywood Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.5243879°, -122.3475948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5243879,"lon":-122.3475948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Habitat Management -- Oak Ridge National Environmental Research Park  

NLE Websites -- All DOE Office Websites (Extended Search)

Invasive Species Publications Wildlife What's New Invasive Species Publications Wildlife What's New Habitat Management Some of the documents on this page are in Portable Document Format (PDF) and can only be viewed with Adobe Acrobat Reader. You can download a free copy from the Adobe site. The Oak Ridge Reservation (ORR) is covered with mostly contiguous native eastern deciduous hardwood forest. Within that framework are found many ecological communities (e.g., cedar barrens, river bluffs, wetlands) with unique biota, often including rare species. Many research park habitats are managed to protect their ecosystem values, furnish food and shelter for wildlife, and provide sites for research and monitoring. Habitats that receive special attention include prairies, forests, and wetlands and riparian areas.

427

Galena Park, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Galena Park, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7335616°, -95.2302123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7335616,"lon":-95.2302123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Alexis Park Hotel, Las Vegas Topic Group Meeting Participants were:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notes Tuesday, January 20, 1998 8:00-11:30 a.m. Notes Tuesday, January 20, 1998 8:00-11:30 a.m. Alexis Park Hotel, Las Vegas Topic Group Meeting Participants were: Audrey Adamson, UETC Daren Gilbert, State of Nevada James Baranski, State of New York Phil Marbut, Canadian Pacific Railway Kevin Blackwell, US DOT/FRA Bruce Marriott, US DOT/FRA Mike Butler, UETC Kevin Miller, CSX Transportation Sandy Covi, Union Pacific RR Markus Popa, US DOE-OCRWM Ray English, US DOE-NR David Schoendorfer, Norfolk Southern RR Bob Fronczak, AAR John Tijan, US DOT/FRA The group convened at approximately 8:00 a.m. Mr. Butler distributed a meeting agenda, welcomed participants and introduced himself as the new Rail Topic Group lead and facilitator. He introduced Item I, "Existing Business"; specifically the two matrices tasked to the Group by

429

The objectives for deep scientific drilling in Yellowstone National Park  

DOE Green Energy (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

430

Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory  

SciTech Connect

Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

2008-10-01T23:59:59.000Z

431

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

432

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

Hietala, V.M.; Vawter, G.A.

1993-12-14T23:59:59.000Z

433

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

434

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

435

L&E - high efficiency lighting for parking structure | The Better Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

structure structure Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking structure Parking structures and garages are typically lighted by older HID lighting technology without any energy-saving controls. The latest high-efficiency alternatives with energy-saving controls-including light-emitting diode (LED), induction, and fluorescent technology options-can save building owners over 40% on their parking lot lighting bills while delivering additional benefits such as better-lighted spaces. The Lighting & Electrical team developed a performance specification that

436

L&E: Adopt high-efficiency lighting for your parking lot | The Better  

NLE Websites -- All DOE Office Websites (Extended Search)

lot lot Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking lot Most parking lots are illuminated by older high-intensity discharge (HID) lighting technology without any energy-saving controls. New light-emitting diode (LED) technology can cut parking lot lighting energy bills by 40%, or much more with controls, while delivering additional benefits including long life, reduced maintenance costs, and improved lighting uniformity. The Lighting & Electrical team developed a performance specification to help building owners take advantage of these improved lighting

437

Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

State Park Pool & Spa Low Temperature Geothermal Facility State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

438

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal Facility Facility Campbells Gila Hot Springs Rv Park Sector Geothermal energy Type Pool and Spa Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

439

Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Facility Paynes Fountain of Youth RV Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

440

Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Both fluid and gas isotopic analysis. References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

442

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Hot Springs State Park Pool & Spa Low Temperature Geothermal Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Grover Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Alpine County, California Coordinates 38.5940736°, -119.8815203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

443

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stacy Park Pool Pool & Spa Low Temperature Geothermal Facility Facility Stacy Park Pool Sector Geothermal energy Type Pool and Spa Location Austin, Texas Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

444

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

445

"For Future Generations": Transculturation and the Totem Parks of the New Deal, 1938-1942  

E-Print Network (OSTI)

1967. Hesse, Karen. Aleutian Sparow. New York: Margaret K.a Japanese invasion of the Aleutian islands. 69 The parksJapanese invasion of the Aleutian Islands. 4 A photograph of

Moore, Emily Lehua

2012-01-01T23:59:59.000Z

446

A Park transform-based method for condition monitoring of three-phase electromechanical systems  

E-Print Network (OSTI)

This paper presents a Park transform-based method for preprocessing stator current data from a motor and transforming it into a form that is useful for fault detection and diagnostics. The proposed method generates power ...

Laughman, Christopher Reed

447

Transport of a Power Plant Tracer Plume over Grand Canyon National Park  

Science Conference Proceedings (OSTI)

Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have ...

Jun Chen; Robert Bornstein; Charles G. Lindsey

1999-08-01T23:59:59.000Z

448

Less Parking, More Carsharing: Supporting Small-Scale Transit-Oriented Development  

E-Print Network (OSTI)

Sensitivity of car share membership and usage to access and car share membership/usage: 8. Do you car-?share vehicles, neighborhood density, or off-?street parking access on carshare membership and usage?

Dentel-Post, Colin

2012-01-01T23:59:59.000Z

449

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

450

Highlighting high performance: Zion National Park Visitor Center, a sustainable building for the future  

DOE Green Energy (OSTI)

Zion National Park Visitor Center incorporated a variety of energy-efficient features into its design to address Zion's specific needs. The design blended with the canyon's unique qualities and will save energy and operation costs at the center.

Torcellini, P.

2000-08-11T23:59:59.000Z

451

Highlighting high performance: Zion National Park Visitor Center, a sustainable building for the future  

DOE Green Energy (OSTI)

Zion National Park Visitor Center incorporated a variety of energy-efficient features into its design to address Zion's specific needs. The design blended with the canyon's unique qualities and will save energy and operation costs at the center.

Torcellini, P.

2000-05-03T23:59:59.000Z

452

Jefferson Park : case study of a public housing project in transformation  

E-Print Network (OSTI)

This study focuses on the redevelopment of Jefferson Park, a public housing project in Cambridge, Massachusetts. The work establishes the historical political, social, and physical context in which that redevelopment takes ...

Powers, David Thomas

1984-01-01T23:59:59.000Z

453

Vp-Vs Ratios In The Yellowstone National Park Region, Wyoming...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: In this paper we study the variation of VpVs and Poisson's ratio () in the Yellowstone National Park region, using earthquakes which were well...

454

DOE - Office of Legacy Management -- Palos Park Forest Preserve Site (A  

Office of Legacy Management (LM)

Palos Park Forest Preserve Site (A Palos Park Forest Preserve Site (A Plot M) - IL 04 FUSRAP Considered Sites Site: Palos Park Forest Preserve Site (A/Plot M) (IL.04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Site A/Plot M, Illinois, Decommissioned Reactor Site Documents Related to Palos Park Forest Preserve Site (A/Plot M) Surveillance of Site A and Plot M Report for 2011. ANL-12/01 Surveillance of Site A and Plot M Report for 2007 Environment, Safety, and Health/Quality Assurance Oversight Division Surveillance of Site A and Plot M Report for 2009. ANL-10/01. April 2010 U.S. Department of Energy Office of Legacy Management Environmental

455

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Artesian Bathhouse and RV Park Pool & Spa Low Temperature Geothermal Facility Facility Artesian Bathhouse and RV Park Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network (OSTI)

Drilling for oil in parks and forest reserves, or off theoil and gas wells on government parklands and forest reservesoil and gas wells on government parklands and forest reserves

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

457

DOE - Office of Legacy Management -- Burris Park Field Station - CA 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Burris Park Field Station - CA 10 Burris Park Field Station - CA 10 FUSRAP Considered Sites Site: Burris Park Field Station (CA.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Kingsburg , California CA.10-1 Evaluation Year: 1987 CA.10-2 Site Operations: Site owned and operated by Univ. of CA conducted experiments on decontamination of soils containing Strontium-90. CA.10-1 Site Disposition: Eliminated - Adequate remediation activities performed by the University of California CA.10-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Strontium CA.10-1 Radiological Survey(s): Yes CA.10-1 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Burris Park Field Station

458

Standing wave compressor  

DOE Green Energy (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

459

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

460

TIMING OF SHOCK WAVES  

DOE Patents (OSTI)

This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

Tuck, J.L.

1955-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2001-07-17T23:59:59.000Z

462

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2003-02-11T23:59:59.000Z

463

Ultrasonic shear wave couplant  

DOE Patents (OSTI)

Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

Kupperman, David S. (Oak Park, IL); Lanham, Ronald N. (Lockport, IL)

1985-01-01T23:59:59.000Z

464

Ultrasonic shear wave couplant  

DOE Patents (OSTI)

Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

Kupperman, D.S.; Lanham, R.N.

1984-04-11T23:59:59.000Z

465

Expanding impulsive gravitational waves  

E-Print Network (OSTI)

We explicitly demonstrate that the known solutions for expanding impulsive spherical gravitational waves that have been obtained by a "cut and paste" method may be considered to be impulsive limits of the Robinson-Trautman vacuum type N solutions. We extend these results to all the generically distinct subclasses of these solutions in Minkowski, de Sitter and anti-de Sitter backgrounds. For these we express the solutions in terms of a continuous metric. Finally, we also extend the class of spherical shock gravitational waves to include a non-zero cosmological constant.

J. Podolsky; J. B. Griffiths

1999-07-06T23:59:59.000Z

466

WaveTurbulence Interactions in a Breaking Mountain Wave  

Science Conference Proceedings (OSTI)

The mean and turbulent structures in a breaking mountain wave are considered through an ensemble of high-resolution (essentially large-eddy simulation) wave-breaking calculations. Of particular interest are the turbulent heat and momentum fluxes ...

Craig C. Epifanio; Tingting Qian

2008-10-01T23:59:59.000Z

467

Effects of Long Waves on Wind-Generated Waves  

Science Conference Proceedings (OSTI)

A model is developed to explain the observation made in several laboratory experiments that short wind-generated waves are suppressed by a train of long, mechanically generated waves. A sheltering mechanism is responsible for generation of the ...

Gang Chen; Stephen E. Belcher

2000-09-01T23:59:59.000Z

468

Pulsed wave interconnect  

Science Conference Proceedings (OSTI)

Pulsed wave interconnect is proposed for global interconnect applications. Signals are represented by localized wavepackets that propagate along the interconnect lines at the local speed of light to trigger the receivers. Energy consumption is reduced ... Keywords: CMOS, VLSI, high-speed interconnect, nonlinear transmission line, pulse compression, soliton, wafer-scale-integration

Pingshan Wang; Gen Pei; Edwin Chih-Chuan Kan

2004-05-01T23:59:59.000Z

469

Water Waves and Integrability  

E-Print Network (OSTI)

The Euler's equations describe the motion of inviscid fluid. In the case of shallow water, when a perturbative asymtotic expansion of the Euler's equations is taken (to a certain order of smallness of the scale parameters), relations to certain integrable equations emerge. Some recent results concerning the use of integrable equation in modeling the motion of shallow water waves are reviewed in this contribution.

Rossen I. Ivanov

2007-07-12T23:59:59.000Z

470

Deflagration Wave Profiles  

SciTech Connect

Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

Menikoff, Ralph [Los Alamos National Laboratory

2012-04-03T23:59:59.000Z

471

Distinguishing Propagating Waves and Standing Modes: An Internal Wave Model  

Science Conference Proceedings (OSTI)

This paper examines high-frequency (0.1-0.5 cph) internal waves, waves previously characterized by the Garrett and Munk spectral fits (GM72, GM75, GM79) as being vertically symmetric propagating waves (or equivalently smeared standing modes...

M. Benno Blumenthal; Melbourne G. Briscoe

1995-06-01T23:59:59.000Z

472

Wave Activity Diagnostics Applied to Baroclinic Wave Life Cycles  

Science Conference Proceedings (OSTI)

Wave activity diagnostics are calculated for four different baroclinic wave life cycles, including the LC1 and LC2 cases studied by Thorncroft, Hoskins, and McIntyre. The wave activity is a measure of the disturbance relative to some zonally ...

Gudrun Magnusdottir; Peter H. Haynes

1996-08-01T23:59:59.000Z

473

Evolution of a Random Directional Wave and Freak Wave Occurrence  

Science Conference Proceedings (OSTI)

The evolution of a random directional wave in deep water was studied in a laboratory wave tank (50 m long, 10 m wide, 5 m deep) utilizing a directional wave generator. A number of experiments were conducted, changing the various spectral ...

Takuji Waseda; Takeshi Kinoshita; Hitoshi Tamura

2009-03-01T23:59:59.000Z

474

Wave Breaking Dissipation in the Wave-Driven Ocean Circulation  

Science Conference Proceedings (OSTI)

If wave breaking modifies the Lagrangian fluid paths by inducing an uncertainty in the orbit itself and this uncertainty on wave motion time scales is observable as additive noise, it is shown that within the context of a wavecurrent interaction ...

Juan M. Restrepo

2007-07-01T23:59:59.000Z

475

Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii  

DOE Green Energy (OSTI)

This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

Moreau, J.W.

1980-12-01T23:59:59.000Z

476

Numerical Dispersion of Gravity Waves  

Science Conference Proceedings (OSTI)

When atmospheric gravity waves are simulated in numerical models, they are not only dispersive for physical but also for numerical reasons. Their wave properties (e.g., damping or propagation speed and direction) can depend on grid spacing as ...

Guido Schroeder; K. Heinke Schlnzen

2009-12-01T23:59:59.000Z

477

Sodium Nightglow and Gravity Waves  

Science Conference Proceedings (OSTI)

Oscillations in intensity of NaD nightglow attributed to mesospheric gravity waves have bean studied. Fractional atmospheric density perturbations have been obtained by means of the linear gravity waves theory of Hines. Values of other parameters ...

A. Molina

1983-10-01T23:59:59.000Z

478

Diffusive Transport by Breaking Waves  

Science Conference Proceedings (OSTI)

A simple conceptual model of the relationship between advective transport by breaking waves and diffusive transport is derived. line model postulates that the displacement of fluid parcels by a breaking wave is analogous to molecular diffusion (...

Kenneth P. Bowman

1995-07-01T23:59:59.000Z

479

Spectral WaveTurbulence Decomposition  

Science Conference Proceedings (OSTI)

A new method of waveturbulence decomposition is introduced, for which the only instrument required is one high-frequency pointwise velocity sensor. This is a spectral method that assumes equilibrium turbulence and no waveturbulence interaction. ...

Jeremy D. Bricker; Stephen G. Monismith

2007-08-01T23:59:59.000Z

480

Kinetic Theory of Plasma Waves  

Science Conference Proceedings (OSTI)

Kinetic Wave Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

D. Van Eester; E. Lerche

Note: This page contains sample records for the topic "opt wave park" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gravitational waves and fundamental physics  

E-Print Network (OSTI)

I give an overview of the motivations for gravitational-wave research, concentrating on the aspects related to ``fundamental'' physics.

Michele Maggiore

2006-02-15T23:59:59.000Z

482

Gravitational Wave Sources: An Overview  

Science Conference Proceedings (OSTI)

With full?sensitivity operation of the first generation of gravitational wave detectors now just around the corner

Bernard F. Schutz

2003-01-01T23:59:59.000Z

483

Energy Loss by Breaking waves  

Science Conference Proceedings (OSTI)

Observations of the frequency of wind wave breaking in deep water are combined with laboratory estimates of the rate of energy loss a from single breaking wave to infer the net rate of energy transfer to the mixed layer from breaking waves, as a ...

S. A. Thorpe

1993-11-01T23:59:59.000Z

484

Long-Wave Trapping by Oceanic Ridges  

Science Conference Proceedings (OSTI)

Long waves are affected by bottom topography and under certain conditions may be trapped along topographical contours which then act as wave guides transmitting wave energy for great distances with little loss. This study examines waves trapped ...

Richard Paul Shaw; Wayne Neu

1981-10-01T23:59:59.000Z

485

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

486

DNA waves and water  

E-Print Network (OSTI)

Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

2010-12-23T23:59:59.000Z

487

The influence of waves . . .  

E-Print Network (OSTI)

With the growing interest in offshore wind resources, it has become increasingly important to establish and refine models for the interaction between wind and waves in order to obtain accurate models for the sea surface roughness. The simple Charnock relation that has been applied for open sea conditions does not work well in the shallow water near-coastal areas that are important for offshore wind energy. A model for the surface roughness of the sea has been developed based on this concept, using an expression for the Charnock constant as a function of wave age [1], and then relating the wave `age' to the distance to the nearest upwind coastline. The data used in developing these models originated partly from analysis of data from the Vindeby site, partly from previously published results. The scatter in the data material was considerable and consequently there is a need to test these models further by analysing data from sites exhibiting varying distances to the coast. Results from such analysis of recent data are presented for sites with distances to the coast varying from 10km to several hundreds of km. The model shows a good agreement also with this data.

Bernhard Lange; Jrgen Hjstrup

1999-01-01T23:59:59.000Z

488

Static Temperature Survey At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log profiles made 10

489

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE/EA-1791 (June 2010) The project area is located in a region of the state where Loggerhead Shrikes (Lanius ludovicianus) are consistently observed and known to be nesting. With populations steadily declining throughout its breeding range, the Loggerhead Shrike is officially listed as a state Threatened species in Minnesota; its status may be upgraded to Endangered during the current list review process. The shrike is also considered a Species of Special Concern in Minnesota and is a U.S. Fish and Wildlife Species of Regional Concern in the Midwest Region. Dakota County is believed to harbor the densest concentration of shrikes in Minnesota. As recently as 2009 a breeding pair

490

BioEnergie Park Soesetal GmbH | Open Energy Information  

Open Energy Info (EERE)

BioEnergie Park Soesetal GmbH BioEnergie Park Soesetal GmbH Jump to: navigation, search Name BioEnergie-Park Soesetal GmbH Place Osterode, Lower Saxony, Germany Zip 37520 Sector Biomass Product Lower Saxony-based biomass project developer. Coordinates 53.695599°, 19.973301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.695599,"lon":19.973301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

492

WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES  

DOE Patents (OSTI)

This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

Robertson-Shersby-Harvie, R.B.; Dain, J.

1956-11-13T23:59:59.000Z

493

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Goal-Based Building Procurement: Achieving 90% Energy Savings in a Parking Structure Commercial Building Energy Alliance Shanti Pless, NREL Jennifer Scheib, NREL Phil Macey AIA Phil Macey, AIA August 8 2012 August 8, 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Overview * Campus background * Parking structure o Obj jectives o Determining the energy goal o Design solution o Design solution o Energy performance * Discussion about innovation and replication * Discussion about innovation and replication * Resources for replication 2 NREL Campus Background NREL Campus Background NREL Campus Background * Pre-2007 construction:

494

The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park  

E-Print Network (OSTI)

The U.S. National Park Service has recognized visitor health and safety as an important component of protected area management. Despite this recognition, research investigating visitor health and safety issues in national parks is lacking. In order to improve the understanding of the factors contributing to visitor injuries, the purpose of this study was to: 1) identify the distribution of injuries in Hawaii Volcanoes National Park, 2) examine the relationship between visitor factors and the severity of visitor injuries in Hawaii Volcanoes National Park, 3) examine the relationship between environmental factors and the severity of visitor injuries in Hawaii Volcanoes National Park, and 4) determine the effectiveness of sign placement and indirect supervision on controlling visitor injuries in the park. Data for this study consisted of 5,947 incident reports recorded in Hawaii Volcanoes between January 1, 1993 and December 31, 2002. The results found that even though 26% of the injuries in the park occur in frontcountry regions, 53% of all visitor injuries took place at the Eruption Site. As well, 130 of the 268 (49%) fatalities occurred on roadway environments and 1,179 of the 1,698 (69%) severe injuries occurred at the Eruption Site. Logistic regression analysis used to examine the relationship between visitor factors and injury severity in Hawaii Volcanoes National Park found that female visitors, visitors wearing minimal footwear and clothing, and visitors carrying no flashlight and minimal drinking water are factors significantly associated with fatal injuries. Visitors wearing minimal footwear and clothing, visitors carrying no flashlight and minimal drinking water, visitors entering restricted areas, visitors with pre-existing health conditions, and visitors aged 50-59 years of age are factors significantly associated with severe injuries. Logistic regression analysis found no built environment factor to be significantly associated with visitor fatalities or severe injuries. However, darkness and rugged terrain were significantly associated with visitor fatalities. Chi-square tests of independence found the combined treatment of sign placement and indirect supervision to have no effect on reducing the frequency and severity of visitor injuries at the Eruption Site.

Heggie, Travis Wade

2005-12-01T23:59:59.000Z

495

Thermopolis hydrothermal system with an analysis of Hot Springs State Park  

Science Conference Proceedings (OSTI)

Thermopolis is the site of Hot Springs State Park, where numerous hot springs produce nearly 3000 gallons per minute (gpm) of 130/sup 0/F (54/sup 0/C) water. The University of Wyoming Geothermal Resource Assessment Group has studied a 1700-square-mile area centered roughly on the State Park. Available literature, bottom-hole temperatures from over 400 oil well logs, 62 oil field drill stem tests, the Wyoming State Engineer's water well files, 60 formation water analyses, thermal logs of 19 holes, and field investigations of geology and hydrology form the basis of this report.

Hinckley, B.S.; Heasler, H.P.; King, J.K.

1982-01-01T23:59:59.000Z